11
of Organometallic Chemistry. 200 (1980) 11-36 Elsevier Sequoia !%A_, Lausanne - Printed in The Netherlands
Journal
THIRTY YEARS IN ORGANOSILICON
RAYMOND
CHEMISTRY
CALAS
Laboratoire de Chimie Organique et Laboratoire de Chimie des Composk Organiques Silicium et de I’Etain associkau C.N.R.S. No. 35. 351, Cows de la Libkration 33405 Talence Cedex (France)
du
We began work in the organosilicon field in 1950. Since that date we have developed original general synthetic methods as well as preparing interesting novel products. We were interested throughout in organosilicon and pure organic synthesis. A large part of our work was published in French. This partly explains why some of it has been repeated by others without reference to our reports, and this is one reason why we offer here a general survey of our contributions to organosilicon chemistry and organic synthesis. Contents 1. Reactions involving hydrogenosilanes 2. New methods of forming silicon-carbon bonds. Elaboration models. 3. Organosilicon routes in organic synthesis. 4. Miscellaneous reactions. The studies are usually described in chronological Section.
11 of C-silylated 14
21 29
order except in the last
1. Reactions involving hydrogenosilanes l-l_
Hydrosilylation
of conpounds
having a carbon--carbon
double
bond
In our first researches in organosilicon chemistry we utilized the hydrosilation of carbon-carbon double bonds Cl] in functional derivatives such as unsaturated fatty acids [2-121, allylic esters [13] or unsaturated ethers [14,15]. Thus we prepared C-silylated acids, esters, ethers, amides, la&ones, etc. having a branched long chain. Either HSiCl, or HSiR, was used as the hyclrosilylating reagent. Later we reported hydrosilylation of methylcyclohexene [16] and terpenes such as limonene [17,18], OL-[19] and P-pinenes [20,21]. Through these studies we were able to propose a convenient route to A(l,7)-p-menthene [22,23] which had previously been very difficult to prepare. This reaction con0022-328X/80/0000-0000/$02.25,
@ 1980,
Elsevier Sequoia S.A.
12
stituted one of the first examples of the use of organosilicon intermediates in pure organic synthesis:
$j$
n;;;E:‘,,,d,,’
$=I3
MeMgCl
_
GMe3
MeCeCzH)
9
Very recently, hydrosilylation of acenaphthylene [24] gave us, after subsequent oxidation
The latter can undergo a reversible cyclomerisation involving a color change, endowing this compound with interesting photochromic properties. or -EN bond-containing 1.2. Action of hydrogenosilanes on =C=O , >C=Ncompounds Since hyclrosilylation of carbon--carbon multiple bonds was so well known, it was surprising to find that a similar reaction with carbonyl derivatives had not been described in 1957. We found at that time that hydrosilylation of ketones with HSiCl, or HSiPh3 occurred upon UV irradiation 125,261. The corresponding alcohols are formed upon hydrolysis, and so hydrosilylation constitutes an efficient reduction process:
RL t/-O R
H +
H-S,t
-
OSiL
H -sit
=
R
H
d
OH
hydrolysis
hv
t4SrCi3
or
-Ix \
HSiPh,
We investigated the stereochemistry of this reaction [27-291 which was widely developed [ 27-331, and generalized it for aldehydes [ 34-361, benzil [371, and even an acylsilane [383. Upon UV irradiation, hydrosilylation occurs by a radical mechanism. We extended the reaction to triethylsilane but in the presence of ZnCl,, involving a polar hydrosilylation process 1391. Later we showed that InCl, and especially GaCl, induce a very fast hydrosilylation of some ketones [40]:
o= 0
+
HSiEt3
E
GaCL, 5min
OSiEt, -o-
13
We discovered the first examples of hydrosilylation of carbonyl derivatives, but we note that a few months after our first report Gilman et al. described a thermal process for hydrosilylation of ketones [41]. We also investigated hydrosilylation of cr&unsaturated aldehydes and ketones [42] which was widely utilized by Frainnet et al. 1421. We also observed that hydrostannylation was possible upon UV irradiation 143-451, and the same conditions were used for hydrogermylation 1461. The reducing properties of Et,SiH were used to convert acetals into the corresponding ethers [47]: ZflCIz +
HSiEt3
+
-
Et_,SiOR-
We then studied the behaviour of y- and 6-lactones [48], amides [49,50], imino-ethers and imines [ 501, and observed that use of triethylsilane permits the conversion of primary amides into the corresponding amines or nitriles [49]. Moreover we investigated hydrosilylation of nitriles [ 511 and dinitriles [ 521. For instance PhCN afforded the corresponding N-silyl imine in satisfactory yield [ 511. ZrIClZ
PhCN + HSiEt3 -
PhCH=NSiEtJ -H30+PhCHO
These studies were carried out in collaboration with Frainnet et al. [ 531, who extended the work in this field. Our results for the above-mentioned reactions were summarized in a review [541We should point out that asymmetric hydrosilylation of carbonyl derivatives was used in the synthesis of optically active alcohols in the presence of optically active catalysts or (and) hydrogenosilanes [55]. In our case asymmetric synthesis by hydrosilylation [56] or stannylation 1571 of menthyl crotonate W%S successful,
I
but involved hydrometallation of the -C=C-
I
bond.
l-3. Other reactions involving hydrogenosilanes Being aware of the great interest in hydrogenosilanes as reagents we proposed original routes to these compounds from chlorosilanes [ 58-611 or disilanes [62-66]. (These reactions permitted us to prepare novel %--Al bond-containing derivatives 1661 and to convert industrial disilane residues into useful reagents C63-651). We also studied the conversion of chlorohydrogenosilanes into alkyl [67] or dkoxyhydrogenosilanes [681. Among the novel properties of hydrogenosilanes we observed the reduction of oxygenated compounds of silver [69] and the insertion of sulfur into the $Si-H bond [70]. The most important reaction observed was the reduction of anhydrous NiCl, by refluxing with Et,SiH [42,71-731 to give a pyrophoric nickel which is much more active than Raney Ni as a hydrogenation catalyst [74a]. This reduced nickel also catalyses the conversion of aldehydes and ketones into the corresponding alkoxysilanes or enoxysilanes [42,72,73] when
inhibited by PhSH or Et$,
0
+
e.g.:
Ni/
HSiEt3
>Si-H
OSiEt,
EtzS
+
H,
-o-
Moreover; sterically hindered halo derivatives such as ArCHCl-t-Bu are reduced to ArCH(t-Bu)CH(t-Bu)Ar by Et,SiH using Ni/sSi-H as catalyst [74b]. Use of tinenickel obtained from the reaction of NiCl, with Me,Si, (see Section 4.1.) permitted the synthesis of the first bis(triorganosiIy1) carbonates [75,76] e.g.:
o=c
/O
+
HSiEt
‘0
O=C
(OMe),
+
Ni[3Si--Sic 3
HSiPh,
-
Ni/$Si-Si5
.
w
O=C(OSiEt3)2
+
0=C(OSiPh312
+
C2H6
2CHq
These species generate CO, on heating [75]. 2. New methods of forming silicon-carbon models
bonds. Development of C-silylated
In order to provide novel species both for the development of organosilicon chemistry and for use as intermediates in pure organic synthesis our interest was to discover new methods of forming silicon--carbon bonds. First, we succeeded in the synthesis of ethynylsilanes 1771: RC-CH + HSiEh
Na or NaHlHMPA
RCrCH + Me,SiSiMe,
catalyst
Na or NaH/HMP_4
t RCrCSiEt3 + Hz
catalyst l
ReCSiMe,
f HSiMe,
Later, ethynylchlorosilanes were obtained from RCZCH, chlorosilanes and Et3N, in the presence of CuCl as a catalyst [783. Then we found an organometallic route to be especially convenient, and since 1969 we have reported numerous novel C-silylation reactions. A review [79] summarizes our results between 1968 and the beginning of 1976 (with about 100 references from our laboratories). We can now carry out direct C-silylation of most organic functional groups with either Me,SiCl/Mg/HMPA (S,) or with Me,SiCl/Li/THF (S) as the silylation reagent, (The latter is used at 0--10°C). This review wiII be restricted to some typical or recent results. 2.1. Silyiation of aldehydes and ketones Despite presumably different mechanisms [79], the reactions S, and S, show behaviour similar to that expected for organosilyl Grignard reagents.
15
SiMe, OSiMe3
R = H,a!kyl,ary\ SiMe
3 [82-841
SiMe
S111e3
3
3
H,O+
[85.66j
OSiMe3
R, R’=
H,alkyl
S,tors,) 14
dlsllylatlon
MC3SI
C(R3)
H30--cMe,S,,(R’,tR’,C-CH(R3,CO-R4
=CtR4)tOSeMe,)
enoxysllane
[87-go]
With (~&unsaturated aldehydes 1,2-disilylation was observed: R’ECCOR’%
(Me,Si)(R’)C=C=C(R2)(0SiMe3)
-H30+ (Me,Si)(R’)C=CHCOR’
(with R’ and R’ appropriately chosen). 2.2. Esters, acyl chlorides and amides C-silylation reactions were extended to aromatic [ 92,931, (Yðylenic [ 9496] or even saturated esters 196,971, e.g.:
0
16
A,---COOStMe3
Sitie,
Al-
Sl
-
x
MgSiO
R-CH-CH-COOMe
-
H30
+
Ar
SiMe,
a HO
SiMe,
x
SIMeg
R\CH_CH=c/oMe H$‘+ _ “\
%
CH-CHZ--COOMe
\
/
Me+
Likewise acyl chlorides underwent
OSIMe,
C-silylation
Me+
/
[ 97-1011. StMe3
S, excess _______t
RI--CH=C(R”)COCI
Ri CH
/
Me,St
‘OSiMe
R’ Ri
CH-CH(R’)--CHO
4
==C
-C(R’)
H,O/OH-
/
3
H30+
\
CH-CH(R’)-CO-S!Me3 /
/ Me,Si’
M e,Si’
R-CO-Cl
+
Ph-SlLt
\
-
GUI
R-CO-StPh
I I
/
Similarly aromatic [102,104], a,P-ethylenic ]105] and saturated amides [lo63 afforded mono- or disilylated derivatives at a functional carbon atom. Formamide, for instance, gave (Me,Si),CH-N(SiMe,),, in which the free rotation around the C-N bond is sterically hindered at room temperature [106]. 2.3. Imines, iminoyl chlorides and nitriles Imines [107], iminoyl chlorides [ 1081 and nitriles [ 10’7,109-1121 were easily C-silylated and the reaction with nitriIes was used to synthesize polysilylated enamines [108,109] or a-silylated nitriles [111,112]. 2.4. Other functional benzylic, allylic or propargylic derivatives Enoxysilanes in which the double bond is conjugated with a phenyl group underwent disilylation of the double bond [113,114], whereas epoxystyrene gave the derivative resulting from disilylation of styrene [ 1153. The S, reagent brings about reductive silylation of benzylic alcohols, alkoxysiianes, ethers, esters or amines [82-841: l?h-+ IZ = OSis,
Sl Tick.
F&X3,
CpZTiC12
OR, OCOR,
>
Cat -.
NMe,
-_.
-
Ph{-SiMe
3
17
Ph,CHOH was also converted into Ph,CHGeMe, [84]. Allylic functional derivatives exhibited similar behaviour, but the reductive silylation generally occurs with allylic rearrangement [83,84]. At the present time we are developing original methods for synthesizing dl&ilzinesbased on the reductive silylation of ally1 alcohols [116] or thiols [117] by the S2 reagent. E.g.:
yoH
Or
a,,,
s2
_
yQMe3
(1) PhS02NS0 (2ILtAI
(3)Me,St,NH
H,
Further, by using S2 as silylating reagent, HeCCH,OH or better HC-CCH,OMe were easily converted into the interesting species Me,SiCGCCH,SiMe, [llS]. 2.5. Halogenated derivatives Use of the S2 reagent has provided a convenient synthesis of trimethylsilylor bis(trimethylsilyl)-cycloalkanes: S2
(CH,),
_
dH-=’ SiMe,
Cl
CQOI
L Me3Si
Me3Si
SiMe
3
The S, reagent afforded allenylsilanes in its reaction with propargyl halides 11211. The SZ reagent is especially convenient for complete [122-1241 or partial silylation [123-1251 of polyhalogenated derivatives giving high yields:
18
MeCCl3
p
CI,CCHO
-
Sl
MeCCl,
Sl
SiM&,
I3231
Me3Si
OSiMe, I3 >=(
51
f-l
Cl
Recently we reported a novel method for the synthesis of allyl-, benzyl-, [126,127] and allenyl-trichlorosilanes [1X] involving reaction of allyl, benzyl and propargyl chlorides, respectively, with Cl,MeSiSiMeCl, or the methylchlorodisilane residues from the industrial-synthesis of Me,SiCl,, in the presence of SiCl,:
Nx+HMPT Cl =-
+ C12M&S~MeC12
+
SICI,
-
=.-
_
SKI,
+ 2MeSuZ13
/
Thus we devised a convenient synthesis of ws’h’c3 etc., and suggested a catalytic cycle to explain the role of the catalyst [127,1283. 2.6. Unsaturated h_vdrocarbons Mono-olefins are not very reactive either with reagent SZ at 0-10°C [129] or with reagent S1 at lOO-llO°C [130]. A saturated product was formed at 200” C 11303 _ From the readily available 1,2-cyclononadiene, a compound having the trans cycloconene skeleton was obtained by vicinal disilylation, [131] :
We have extended the previously known [132] 1,4disilylation of conjugated dienes [133,134]. Using Me,SiCl, as the chlorosilane we considerably improved the synthesis of 3-sila-l-cyclopentenes [ 1341. Moreover conjugated trienes were found to react at the 1,4- (and not 1,6-) position [134,135]. Recently we reported a one-step synthesis of a sila-tropadiene [135]. We have also proposed a a new route to sila-bicyclic derivatives 11353: SiMe2H
I -
HSiMezCl/Li THF
I c
SiMe2H
I
n = e.g.
2,4
(CH&
‘kiMe2H
MeCOOH ref lux
q
19
Similarly styrene underwent disilylation at the carbon-carbon double bond [136]. With acetylene, silylation continued progressively to give a heptasilyl derivative [ 1371. AIthough there were a few earlier reports of the disilylation of some aromatic compounds (benzene [138], for instance), we decided to study such silylation further; (a) Benzene, alkylbenzenes, m- or p-dialkylbenzenes underwent 1,4 reductive disilylation in high yield using the S, reagent [X39,140]. e.g.:
The products generally aromatize in the presence of air, but under special conditions aromatization can be accompanied by loss of one of the Me,Si groups. In the case of the derivatives obtained by 1,4_desilylation of m-xylene, we observed a spontaneous errdo-peroxidation by triplet oxygen, which is very rarely observed with such species [141]. (b) o-Dialkylbenzenes gave a mixture of l,$-disilyl and 1,2,3,4-tetrasilyl derivatives [140,142]. e.g.: SiMe
m
s2_@3+QJjy; SiMe 3
SIMe,
(c) Phenols, phenoxysihmes and related ccmpounds gave novel 6-silylated &y-unsaturated ketones e.g. [143]:
QyM’
s2
*
$” SiMe,
H,*+ _
qP* SjMe
3
Thus we have synthesized a sila-analogue of an ortho-menthenone [144].
20
(d) The reaction was extended to polyaromatics e.g. [145,146]: SlMe,
StMe3
Me3Si S2
The following were also synthesized [24,146]: Me3St
Using the silylation/oxidation process, we prepared [ 24,146] StMe3
~~~-Q-+
/
:
SiMe,
, ::I+
StMe3
StMe, \
, III*siMe3
SIMe,
SIMe,
21
These constitute new intermediates; the obtained dihydro- and tetrahydronaphthalenes have novel structures. Our investigations in this field are continuing. We also successfully silylated allyltrimethylsilane with the reagent S, using TiCl, or FeCl, as catalyst, and have also carried out di- and tri-silylation of vinyltrimethylsilane [ 84,147]: Me,Si-
L
Me3Si
WSiMe
3
The sterically hindered tetrasilyl-derivative adopts a gauche conformation at room temperature. This conformational preference is attributed to a distortion of the tertiary carbons from tetrahedral geometry because of steric repulsion between the geminal trialkylsilyl groups 11491. 3. Organosilicon routes in organic synthesis There were two aspects of our use of organosilicon derivatives in pure organic synthesis, (i) organosilicon compounds as reagents; (ii) organosilicon compounds as precursor substrates. 3.1_ Organosilicon compounds as reagents Hydrogenosilanes were found to be versatile reducing agents as shown in Section 1. The S1, S2 and Me,SiCl/Mg/THF (S,) reagents are considered separately. In the presence of a catalytic amount of GaCl,, use of trialkylchlorosilanes permitted demethylation of anisole [ 401: PhOMe + Me,SiCl
G&I3
catalyst
-&IeCi
+ PhOSiMe, -H20 PhOH
Similarly Bu,O was converted into BuCl by refluxing with Et,SiCl in the presence of GaCl,. This work, which is never cited in more recent reports concerning demethylation of ethers or esters using Me,SiI, was applied to the synthesis of a sila-analogue of stilboestrol [150]. Alkoxysilanes or siloxanes were found to be cleaved by acyl chlorides and anhydrides. Thus we obtained esters [151] or silyl derivatives of acids [152,153] and extended our work to syntheses [154,156,157] and structural studies [157,161--1651, and to the cleavage [155,156,159,160] of C-silylated ether-oxides or alkoxysilanes. Furthermore we have synthesized amines [167] and imines [168a] using hexamethyldisilazane or its derivatives as amination reagents. Use of (Me,Si),NH enables the conversion of certain esters and lactones into the corresponding nitriles [169]. We have also proposed two routes to trimethylsilylchlorosulfon-
22
ate [171,172]. Later we showed that this reagent is a very mild and efficient sulfonating reagent, more versatile than SOS, dioxan-SO, or pyridine-SO, (see Section 3.2). We must note here that C1S0,SiMe3 permits the conversion of esters into the corresponding acyl chlorides 11731: RCOOR’ + ClSO,SiMe, + RCOCl + R’OSO$iMe, Chiorosilane/Mg
(or Li) donor solvent systems
(S1. S1, S,)
(a) Me,SiCl/Mg/THF (S,) converts aryl aldehydes and ketones into products which are a result of reductive dimerization accompanied by 0-silylation [174a]. In the case of diarylketones the obtained bis(trimethylsily1) pinacolates give colored free radicals when heated in an inert atmosphere: 2 ArCOAr’ 2
[ArAr’(Me,SiO)C],
E
2 ArAr’(Me,SiO)C
I
1
H30+
medium)
ArAr’C-CArAr’.
The minimum temperature of formation and the color of free radicals depend on the nature of Ar and Ar’ and the steric hindrance from the substitutents. [Ph,C(OSiMe,)lz was used as a catalyst for radical polymerisation of styrene [174b]. Use of the S3 reagent also enabled us to prepare
P” Me Me a-d ,from pivalophenone [175]. X x-e v Me Me Ph
(b) The S1 reagent produces ediketones [SS-901, diesters [95], and diamides 11051 from the e,@msaturated corresponding carbony derivatives, especially I
when the -C=C
I
1) 5,
-fi 0
;
-
2’H30+
sequence is not conjugated with another group; e.g.:
-
t4eO&oMe
COOMe 0
23
(c) The silylation/desilylation process provides a means of reducing esters or acyl chlorides to the corresponding aldehydes: ArCOOMe or RCOCl + acylsilanes [92,93,100]
H*O’OH-‘17? aldehydes
(d) The S, reagent produces 1,4_cyclohexadienic species from benzene and alkyl-substituted derivatives [ 139,140] :
”-
R
Me+
R
SiMe,
KOH
carbitol
o-5Oc
R=H,Me
This reaction is easier to be carried out than the Birch reduction [177] in the
case of benzene because the disilyl intermediate is readily separated from the C6 hydrocarbons. Consequently the 1,4cyclohexadiene can be easily obtained free from the other six member ring hydrocarbons. Similarly the SZ system constitutes a good reagent for partial reduction of phenol derivatives to Z-cyclohexenones. Thus we very easily prepared 2cyclohexenone in high yield from anisole, and more notably 4-allyl-2-cyclohexenone, previously very difficult to obtain [ 1781 from estragole [ 1431:
Recently this method was successfully used to prepare cryptone 11791. For simple cases, as mentioned above, the silicon route can largely compete with the Birch reduction. Unfortrmately, attempts at partial reduction of the aromatic ring A of some steroids using the silylation/desilylation process were unsuccessful [ 180]_ Several reductions of halo derivatives were carried out using the S, reagent, e.g.; Cl,CCHO (1) (2) H3O+ PhCC13
CICH,CHO [ 1251
(1) S 1
giving PhCC12SiMe3)
(first acidic then basic)
+PhCHO [123] etc...
Addition of trimethylsilyl groups followed by protodesilylation thus constitutes a versatile route for the reduction of many functions. 3.2. Organosilicon compounds as precursor substrates Vinyl-, cyclopropyl- and cyclopropyhnethyl-, ethynyl-, allyl-, propargyl- and arylsilanes are considered next. Then the use of other compounds such as Me,SiCH,COOEt, Me,SiCH,CONEt,, Me,Si, and Me,Si will be discussed.
24
3.2.1. Vinylsilanes We were the first to report sulfonation (in 1966) [lS2] and acylation iin 1974) [183] reactions in these series, and we have used bis(trimethylsilyl)-1,2 ethylene for mono- or difunctionalizations: &Sl<
-
E-Cl -
>SiCl
E=
fiE
SOgStMej
COR
@2].
B83]
x=
1) CICHZOMe
Ci,Br
~eoc~coR
2) RCOCI
C’S41
P=l
Me351
cl=1
-CHO
Acylations and methoxymethylations were carried out in the presence of a Lewis acid. It should be noted that the last reaction constitutes the first example of functionalization by replacement of -SiMe, by -CHO. Radical addition of RSO,Cl to vinylsilanes followed by elimination of HCI or Me,SiCl led us to new sulfones [186]. We have also proposed a new route to vinylsilanes [187a] and to 1-trimethylsilyl-1,3-dienes which we have used in synthesis [lSS]. Furthermore, in one case we observed vinylation of chloral [X7]. 3.2.2. Cyclopropyland cyclopropylmethylsilanes Use of cyclopropyltrimethylsilane permitted for the first time the functionalization of cyclopropane by electrophilic substitution without ring opening [X39---1911:
r
S03SiMe3dS03H
D-
SiMe
E-Cl 3
-Me3StCI
c-
E
;
COR
E t
I
!?=I
[190]
B91]
In this way we synthesized the first cyclopropane sulfonic acid, and this reaction is especially convenient for the preparation of alkenyl cyclopropyl ketones.
25
Acylation of trans-bis(trimethylsilyl)cyclopropane was found to be regio and stereospecific. Cyclopropylsilanes bearing other substituents are also interesting intermediates for regiospecific substitutions [192,193].
~7~3.4.6
ma,or
Product
(wylth rated
n=6 ,t ,somer,zes ketone)
to
13 r-unsatu-
In addition, we have studied electrophilic substitution in the case of the cyclopropylmethyltrimethylsilanes (particularly acylation and sulfonation) produced by cyclopropanation of linear allylsilanes and 3-sila-lcyclopentenes [192,194196], and we obtained new unsaturated sulfonic acids, sultones and ketones (e.g. MeCOCH,C(COMe)=CHMe [192]) as well as alkenylfluorosilanes. 3.2.3. Efhynylsilanes (and allenylsilanes) Electrophilic replacement of SiMe,, discovered by Birkofer et al_ [167], has been extended to the synthesis of e,,P-acetylenic amides [198a] or imines [198b]; phenyl isocyanate led to 4-silyl-2-quinolones [199]. We obtained our most important results in sulfonation reactions, which provided access to new classes of functional acetylenic derivatives [ 200-2051, such as a-acetylenic sulfonic acids RCZCS03H (R = Ph, t-Bu, SiMe, [201] and even H, see HC=CSO,H - 2.5 H,O [203,204]) or trimethylsilyl esters of propargylic sulfonic acids from allenyl silanes and sometimes sulfonic acids themselves, e.g. CH,= C=CHSO,H [ 2021, HC$CHISOsSiMeX [205], CH,=C(Me)C(SO,SiMe,)=C(Ph)(SiMe,) [205]. Using these reactions the first cr$-acetylenic sulfonamide, Me&iC-CSO,NH,, was synthesized [ 2061. We have also shown that ethynylsilanes undergo addition reactions leading to propargylic alcohols [207a]: RGCSiMe,
+ R’CHO Lewis
RGC-_CHR’
=
RCsCCHOH-R’
&iMe, Allenylsilanes exhibit surprising behaviour, since, in contrast to the common allenes, their reaction involves allenic hydrogen bonded to the carbon which bears the silicon atom, and not an allylic hydrogen [207b]. 3.2.4. Allylsilanes ,4s in the vinylsilane series, we described the first sulfonation * [194] and acylation [209a] reactions of allylsilanes. We also reported some methoxy* P. Bourgeois. [1081.
M. Duffaut
and FL Calas described
the sulfonation
of CHZ=CHCHZSihIej
in 1966
26
methylations of these species [ 209b]. The most remarkable applications of these reactions were: (i) The synthesis of non-substituted ally1 ketones (the mild conditions avoid the isomerization to or&unsaturated ketones) [ 2101: /‘-/IMe
+
Lewis
RCOCI
CH2C12
acrd
-
-40°c
RCO-
f
Me_,StCI
(ii) A two-step synthesis of Artemisia ketone [211] from isoprene hydrochloride and senecioyl chloride:
(iii) A synthesis of novel derivatives of p-menthene or pinene having a double bond in the exocyclic position [212] :
(iv) A two-step p-diacetylation of benzene and p-xylene [213] :
I
MeCO’
MeCO
In our studies on electrophilic substitution in the 3-sila l-cyclopentenes series [195,196,214], the reaction mechanisms were investigated and we provided evidence for the possible competition between the allylic C-H or C-Si bond cleavages_ In the addition reaction series of allylsilanes we described the first allylations of aldehydes and ketones [207a,215]; e.g.:
StMe3 -
+
RCHO
Lewrs
acid
RCH(OStMe$
-
MeOH
_
,=tCHO!-,//\//
Moreover we observed addition reactions between allyl- (and even ethynyl-) silanes and chlorosulfonyl isocyanate which provide, via a four membered ring
27
lactame, a regioselective synthesis of fl,y-unsaturated nitriles [216a].
E.g.:
1 1 CISO,NCO
Z 1 QN
vs’Me3
QPJnd
(-Me
3
SICI
’
--a~
’
3
;
-“”
&.P were
Allylsilanes
SO
similarly
undergo radical reactions with sulfonyl
synihesized
[216]
chlorides (to give allyl-
sulfones and ene disulfones) [ 1861. Moreover, in the allylsilanes the ene reaction is oriented towards the reaction involving hydrogen bonded to the carbon atom which bears silicon [207]. 3.25
Propargylsilanes
Electrophilic
substitution
of Me,Si in propargylsilanes
enabled us to synthe-
size the first trimethylsilyl esters of a-allenic sulfonic acides and related comas well as some c-allenic ketones such as CH,=C= pounds [202,203,205,217] CHCO-t-Bu
[ 218]_
In the addition reaction to chloral we observed a competi-
tion between H-Cacetyienic and Si-Cpropargyiic bonds in HC=CCH,SiMe,, whereas with Me,SiCrCCH,SiMe, only the Si-Cacetvienic bond was cleaved in accordance with the proposed mechanism [ 215]_ 3.2.6. Arylsiianes Following the initial work of Eaborn [219] we have developed novel electrophilic substitutions in the aromatic series oriented by the position of the Me,Si group and not by the substitutent effects. Thus: (i) we reported a convenient route for regioselective mono- and polyiodination of the benzene ring [220]; e.g.,
(ii) We described a process for a regioselective bifunctionalization of benzene
12211:
StMe, MejSi
o,m,P
I
E-X
(-M+X)
E-X
(-Me3StX)
a 6
0,m.p respectively
0.m.p
respectively
E
28
This permitted a two-step para-disulfonation of benzene [122] or a practical route to o-disubstituted benzenes [221] (e.g. o-nitrobenzene sulfonic a&d etc.). (iii) we carried out non classical 2,5difunctionalization of toluene or metexylene and 5-functionalization of mete-xylene 12221; e.g.:
ti
Aromatization In the
presence
Me,9
of air
*
0
SiMej
-2
1 Aromatization monodesilylation
w:th (p-ch!oranlle)
Me+CI
_
S1Me3
E-Cl
-Me,SKI I
(iv) These methods were extended to the acenaphthylene (or acenaphthene) series, and we prepared various compounds such as [223]:
E E
l
: electrophlle Only
sulfonation
(reactions in the latter
case.
involved
: halogenation.
acylation,sulfonatiOn).*
k
29
3.2.7.
0 ther compounds
(a) We have used Me,SiCH&OOEt [187b,c] and MesSiCH,CONEtz 12241 as Reformatsky reagents, and from chloral and Me,SiCH,CONEt, we synthesized a compound which exhibits interesting pharmaceutical properties [224]: Me,SiCH2CONEt,
+ Cl,CCHO <1) (2)
Hydrolysis
Cl,CCHOHCHICONEt2
(b) We have used Me,Si? [225-2271 and Me,Si [228,229] in methylation reactions. For example Me,Si, converts acyl chlorides or anhydrides into methyl ketones [ 225-2271: Me,SiSiMe, + RCOCl-
AIC13
RCOMe + Me,SiCl
Convenient syntheses of methanesulfonic acid have been developed using Me,%, 12271 or Me,Si [228,229]. Under special conditions Me,Si, can be used for the methylation of Me,SiCl [230]. The reducing properties of industrial disilane residues were used for the quantitative reduction of triphenyl phosphine oxide [ 2311: industrial
PWVO) (c)
disilane
residues
+
Ph3P
Enoxysilanes were used as intermediates for the synthesis of a-haloketones
[232]:
In this Section we have demonstrated that the organosilicon route is fruitful in organic synthesis both for the development of new methods or for the preparation of novel products, most notably for expensive sophisticated derivatives because: (i) The organosilicon starting materials are readily available and the silicon group can be recovered and recycled. (ii) The toxicity of organosilicon compounds is very low. (iii) The organosilicon route needs only very mild conditions and therefore can be used in the case of sensitive .sDecies. (iv) The yields are generally high.(v) It offers the advantage of regio- (and sometimes stereo-) specificity. For these reasons we are continuing our investigations in this field. 4. Miscellaneous reactions 4.1. Investigations concerning disitanes We have described new methods of synthesizing mixed disilanes [233] (extended to digermanes [231]) and reported a practical synthesis of (Me,Si), [235]. We have described some reducing properties of disilanes (in addition to the uses mentioned above in Sections 1.3 [62-66], 2.5 j126-1281 or 3.2.7
30
[225-227]). Thus we have observed that various disilanes (Me,Si?, (EtzMeSi)z [(MeO),MeSi], reduce some metallic salts (Ni, Cu, Ag, Hg and Fe salts) [2362381: NiCll + Me,%? reflus Ni + 2 Me,SiCl Disilanes (as well as hydrogenosilanes) were observed to reduce PhSOICl 12391 and NBS to give AT-silylimidesand Me,SiBr [236]. Studies were also undertaken of the recovery and catalytic conversion of industrial disilanes residues into monochlorosilanes [63,240]. Physico-chemical properties of disilanes were investigated [241] and a ‘9Si NMR study of methylchlorodisilanes is in progress [ 2421. 4.2. Silanols, siloxanes, alkoxysilanes We have devised a synthesis of silanediols in the alicyclic series [243] and of various functional [24,192,195,196,214,244,245] or nonfunctional [119,194] siloxanes, and of chlorosiloxanes [246]. We have published data on the physicochemical properties of disiloxanes (or digermoxanes) and alkoxysilanes (or germanes) [247]. It should be pointed out that siloxanes having two groups in the 1,3 positions with respect to an cu-amino-acidfunction have been synthesized, and constitute a new class of C-silylated amino-acids [ 2481. In the heterocyclic series we worked on the synthesis of sila-(or stanna-) oxacycloalkanes [ 2481. Condensation of organo- (or diorgano-) dichlorosilanes with diols give products which exist either as monomers or dimers [250,251]. We have established rules which allow us to predict the structure of the product to be obtained. We have also studied the action of chlorosilanes on epoxides to produce /3-chloroalkoxysilanes [ 2521. 4.3. Si-N bond containing compounds We have described some studies on diaminosilanes [253], silylimides [ 2541 and even a primary hydrogenosilazane [255]. We have also investigated the action of hexamethyldisilazane on benzoyl disulfide [256], and obtained the trimethylsilyl derivatives of benzamide and thiobenzoic acid. 4.4.
Organosilicon
compounds
containing sulfur
In addition to the previously mentioned publications on trimethylsilylchlorosulfonate, we have developed reactions of bis(silyl)sulfates [170-1721, alkyltrimethylsilylsulfates [171,172] as well as silylesters of benzene sulfonic acid 12571. Use of compounds such as PhSSiMe, was found to allow the conversion of acyl chlorides or anhydrides into the corresponding thioesters [258] and of iminoyl chlorides into thioamides [259]. During these studies we observed the reduction of disulfides either by hydrogenosilanes or even chlorosilanes to give thiols. We also obtained silylesters of thiobenzoic acid from PhCOSSCOPh and hydrogenosilanes or silylamines (in the last the corresponding benzamide are formed [260].). 4.5. Chlorosilanes and silylated hydrocarbons We briefly note here reports not previously mentioned. Chlorosilanes are reduced to the corresponding hydrogenosilanes by some Grignard reagents
31
having reducing properties [ 261,262 ]_ Th ese reactions were extended to halo derivatives of germanium or tin [ZSZ]. The Grignard reagent prepared from chlorobenzene in PhCl as solvent also reduces Me,SiCl, but it should be noted that PhSiMe3 is formed if small amounts of a basic solvent are added [263]. The mechanisms of all these reactions were investigated. Various silylated derivatives of chloroacetic esters [264] and p-cymene 12651 were synthesized, as was (i-Pr),Si which was the object of structural studies 12661. Finally, we note a surprising result observed in the silylation of adamantanone using MejSiCl or Me,SiClz/Li/THF, which is that Me,SiCl and Me,SiCl, give the same silylated product [ 2681: Me ‘Si’ o/
‘0
ti
Formation of Me,Si when Me,SiCl is used supports the mechanism proposed for these reactions. It will be clear from this review that our work was essentially oriented towards organosilicon and organic synthesis, although investigations of reaction mechanisms and structural studies were also undertaken_ Our aim was to demonstrate that organosilicon chemistry today constitutes a large and interesting domain in itself and that organosilicon compounds can be versatile reagents or precursors in organic synthesis. The vast number of synthetic possibilities offered by organosilicon chemistry explains its extraordinary development during the last ten years. Our contribution is but one of many, and we see no signs of a slowing down in the future development of this field. References 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18
L.H. Somner. E.W. Pietrusza and F.C. Whitmore, J. Amer. Chem. Sot., 69 (1947) N. Duffaut and R. Cabs. Bull. Sec. Chim. Fr.. (1952) 241. R. Calas and N. Duffaut. Ol-kgineux. (1953) 21. R. Calas and N. Duffaut. Bull. Sot. Chim. Fr.. (1953) 250. R. C&s and N. Duffaut. Bull. hiens. Instit. Corps Gras. (1953) 438. R. Calasand N. Duffaut. Bull. Sot. Chim. Fr.. (1953) 792. N. Duffaut and R. Calas. Bull. Sot. Chim. Fr..(195%) 166. R. Calas. N. Duffaut and R. Ducasse. Bull. Sot. Chim. Fr.. (1954) 711_ R. Calas and N. Duffaut. Bull. Sot. Chim. Fr.. (1954) 896. R. Calas. N. Duffaut and Y. Ducasse. Rev. Fr. Corps Gras. (1951) 387. N. Duffaut and R. Calas. Bull. Sot. Chim. Fr.. (1955) 319. R. Cabs and N. Duffaut. Rev. Fr. Corps Gras. (1956) 5. N. Duffaut. R. Calas and Truong Van Thuong. Bull. Sot. Chim Fr.. (1955) 1387. J. Valade and R. Calas. CR. Acad. Sci.. Se%. C. 243 (1956) 386. J. VaIadeand R. Calas. Bull. Sot. Chim. Fr.. (1957) 282. J. Valade and R. Calas. Bull. Sot. Chim. Fr.. (1955) 1387. R. Calas. E. Frairmet and J. Valade. Bull. Sot. Cpim. Fr.. (1953) 793. J. VaIadeand R. Cabs, Bull. Sot. Chim. Fr.. (1958) 473.
108.
32 19 E. Frainnet.
Thesis.
Bordeaux
(1958)
61.
20 21 22
R. CaIas and E. Frainnet. Bull. Sot. Chim. Fr.. (1952) 241. R. Calas and E. Frainnet. C.R. Acad. Sci.. SCr. C, 243 (1956) E. Frainnet and R. Calas. BulI. Sot. Chim. Fr.. (1955) 760.
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
E. Frainnet and R. CaIas. CR. Acad. Sci. Ser. C.. 240 (1955) 203. M. Laguerre. G. F&I&. .I_ Dunogu& and R. Calas. J. Org. Chem., 44 (1979) 4275. R. Calas and N. DuffauL. CR. Acad. Sci.. Ser. C, 245 (1957) 906. N. DuffaEt and R. Calas, Rev. Fr. Ccrps Gras. (1958) 1. R. Calas. M.-L. Josien. J. Valade and M. Viieau, CR. Acad. Sci. Ser. C 247 (1958) 2007. R. Calas. hI.-b. Jo&n. J. Valade and M. Villaneau. Bull. Sot. Chim. Fr., (1959) 562. J. VaIade. R. Calas and J.-C. Mileo. Bull. Sac. Chim. Fr.. (1961) 2213. R. Calas. N. Duffaut and J. Valade. BuII. Sot. Chim. Fr.. (1958) 751. R. C&as. N. Duffaut and C. Bardot. Bull. Sot. Chim. Fr.. (1959) 1440. R. Calas. N. Duffaut. C. Bardot and P. Bothorel, BulLSoc. Chim. Fr.. (1959) 1440. R. Calas. N. Duffaut and C. Bardot. CR. Acad. Sci.. Ser. C. 249 (1959) 1682. R. Calas. N. Dzlffaut and M.-F. MPnard. Bull. Sot. Chim. Fr.. (1959) 562. R. CaIas. N. Duffaut and M.-F. hl&nard. Rev. Fr. Corps Gras. (1959) 85. E. Frainnet. R. Calas and J. Bonastre. Bull. Sot. Chim. Fr.. (1962) 1533. E. Frainnet, J. Bonastre and R. Calas. BuU. Sot. Chim. Fr.. (1962) 1533. R. Calas. J.-P. Picard and F. Bemadou. J. Organometal. Chem.. 60 (1973) 49. R. Calas, E. Frainnet and J. Bonastre. CR. Acad. Sci.. Sir. C. 251 (1960) 2987: V. Siegfried. E. Frainnet. J.-C. BarthelBmy and R. Calas. Bull. Sot. Chim. Fr.. (1965) 698. R. Calas. CR. Acad. Sci.. Ser. C. 264 (1967) 1402. H. Giiman and D. Wittenberg. J. Org. Chem.. 23 (1958) 501. E. Frainnet. R. Calas. R. Bon&is. V. Siegfried-Martel and F. Moulines, see E. Frainnet. Pure Appl. Chem. 19 (1969) 489 and forthcoming papers such as R. Bourhis and E. Frainnet, J. Organometal. Chem.. 86 (1975) 205: E. Frainnet and R. Bourhis. J. Organometal. Chem.. 93 (1975) 309: E. Frainnet, R. Bourhis. F. Simonin and F. Moulines. J. Organometal. Chem.. 105 (1976) 17. J. VaIade. R. Calas and J.-C. hlil&. BuIl. Sot. Chim. Fr.. (1961) 2213. J. Valade. hl. Pereyre and R. Calas. CR. Acad. Sci.. Ser. C. 253 (1961) 1216. See the forthcoming Papers of J. VaIade. M. Pereyre and J.-C. Pommier. R. Calas, J. VaIade and J.-C. Pommier. CR. Acad. Sci.. Ser. C. 255 (1962) 1450. See the comments of ref _44. hl. Lesbre. P. hlazerolles and J. Satge. The Organic Compounds of Germanium. Interscience Publishers. John Wiley and Sons London. New-York. Sydney. Toronto. 1971. Chap IV and ref. herein. E. Fraimet. R. Calas and C. Esclarnadon. Bull. Sot. Chim. Fr.. (1960) 1480. E. Frainnet and C. Esclamadon. CR. Acad. Sci.. Ser. C. 254 (1962) 1814. E. Frainnet. R. Calas and A. Berthat&, Bull. SOC_ Chim. Fr.. (1964) 613. R. CaIas. E. Frairmet and A. Barouin. CR. _4cad. Sci.. Ser. C. 254 (1962) 2357. E. Frainnet. A. Bazouin and R. Calas. C.R. Acad. Sci.. Ser. C. 257 (1963) 1304. E. Frainnet. R. Calas and A. Bazouin. CR. Acad. Sci.. Ser. C. 252 (1961) 420. E. Frairmet. R. Calas and A. Berthault. Bull. Sot. Chim. Fr.. (1963) 200. See E. Frainnet, Pure Appl. Chem., 16 (1969) 489 and forthcoming papers of E. Frainnet. J-P. Conch and F. Duboudin. R. Calas. Pure Appl. Chem.. 13 (1966) 61. See the review of E. Lukevics. 2-V. Belyakova. M-G. Pomerantseva and hI.G. Voronkov. Hydrosilylation. Recent Achievements. J. Organometal. Chem. Library. 5 (1977) 1 and forthcoming papers. R. CaIas. N. Duffaut and A. CaIas. unpublished results. A. Rahm. M. Pereyre. J. Valade and R. CaIas. CR. Acad. Sci.. S&r. C 273 (1971) 518. R. Calas. N. Duffaut. J. Dunogut% and G. Marin. French Pat.. 2 049 652 (1969). R. Calas. N. Duffaut. J. Dunogw?s and G. hlarin, French Pat.. 2 054 498 (1969). R. Calas. J. Dunogues and N. Duffaut. J. Organometal. Chem.. 22 (1970) 561. R. Calas and P. Bourgeois. BuII. Sot. Chim. Fr.. (1971) 3263. P. Gerval, R. Calas. E. Frainnet and J. Dunoguts, J. Organometal. Chem.. 31 (1971) 329. R. Calas. J. Dunogu& and G. D&I&is. J. Organometal. Chem., 71 (1974) 371. R. Calas. G. Del&is. J. Dunogxes. M. Lefort and C. Simonnet. U.S. Pat 4 059 608 (1976). R- Czlas. G. DBl&is. J. DunoguCs, hl_ Lefort and C. Simonnet. J. Organometal. Chem.. 148 (1978) 119. N. Duffaut. J. Dunogu&, R. Calas. P. Riviere, J. Satgi and A_ Gazes. J. OrganometaI. Chem. 149 (1978) 57. J. Valade. R. Calas and J.C. Mil&. CR. Acad. Sci. SCr. C. 249 (1959) 1901. R. Calas. N. Duffaut and F. Hare, BulI. Sot. Chim. Fr.. (1960) 1481. N. Duffaut. R. Calas and J-C. Mace. Bull. Sot. Chim. Fr.. (1959) 1901. R. Calas. N. Duffaut, 5. Martel and C. Paris. Bull. Sot. Chim. Fr.. (1961) 886. B.N. DolgoV. Yu.1. Khudobin and N.P. Kharitonov. Izvest. Akad. Nauk. S.S.S.R.. Otdel. Khim. Nauk.
40 41 42
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 63 70 71
596.
33
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 99
(1958) 113: (1959) 1238. N.F. Orlov. R.A. Bog&kin. 2.1. Sergeeva and M-G. Vorookov. Zhur. Obshch. Khim.. 32 (1962) 2561; 33 (1963) 1934. E. Frainnet, R. Calas. J. Dunogu& and W. Bolchert. French. Pat. 1391833 (1964). French Addn. 87502 (1965). E. Franmet. V. Martel-Siegfried. E. Browse and .J. Dldier. J. Organometal. Chem.. 85 (1975) 297. (a) E. Frainnet. R. C&s and Y. Colleuille. French. Pat. 1.404, 588 (1964); (b) J.-P. Pill&. J. DunoguBs and R. Calas. Bull. Sot. Chim. Fr.. (1972) 2953. J. Dunogues. M. Paul. R. Cal=. E. Frainnet and A. Bazouin (Rhone-Poulenc). French Pat. 2.248.772 (1971). M. Paul. J_ Dunogues. R.. Calas and E. Frainnet. J. Organometal. Chem., 38 (1972) 267. R. Calas and P. Bourgeois. CR. Acad. Sci.. Sir. C, 268 (1969) 72. G. Deleris. J. Dunogues and R. Calas. J. Organometal. Chem.. 80 (1974) C45. R. Calas and J. DunoguBs, J. Organometal. Chem. Library. 2 (1976) 277. R. Calas. C. Biran. J. Dunogu& and N. Duffaut, C.R. Acad. Sci.. Ser. C. 269 (1969) 412. R. Cahas. J. Dunogues. J.-P. Pillot. C. Biran and N. Duffaut. J. Organometal. Chem. 25 (1970) 43. R. Calas. J. Dunogues. C. Biran and N. Duffaut. J. Organometal. Chem.. 20 (1969) P22. N. Duffaut. C. Biran. J. Dnnogues and R. Calas. J. Organometal. Chem.. 24 (1979) C51. C. Biran. N. Duffaut. J. Dunogues and R. Calas. J. Organometal. Chem.. 91 (1975) 279. J. Durwgw%. R. Calas and N. Duffaut. J. Organometal. Chem.. 49 (1973) C9. .I. Dunogues. A. Ekouya. R. Calas and N. Duffaut. J. Organometal. Chem.. 87 (1975) 151. See also J. Organometal. Chem.. 142 (1977) C35. R. Calas and J. Dunogues. CR. Acad. Sci.. Ser. C. 270 (1970) 855. R. Calas. J. Dunogues and M. Bolourtchian. J. Organometal. Chem.. 26 (1971) 195. R. Calas. hI. Bolourtchian. J. Dunogues and N. Duffaut. J. Organometal. Chem.. 34 (1972) 269. J. Dunogues. R. Calas. M. Bolourtchian. C. Biran and N. Duffaut. J. Organometal. Chem.. 57 (1973) 55.
91
G.
92
J-P. Picard. R. Calas. J. Dunogues and N. Duffaut. J. Organometal. Chem.. J-P. Picard. R. Calas. J. Dunogues. N. Duffaut. J. Gerval and P. Lapouyade. 420. J-P. Picard. J. Organometal. Chem.. 34 (1972) 297.
93 94
&fIirault.
Picard.
P. Bourgeois.
J. Dunoguv%
R.
and
Calas.
R.
J. Dunoguk
Calas.
and
J. Organometal.
N.
Duffaut.
Chem.
J.
77
OrganometaL
(1974)
Chem..
76
26 (1971) 183. J. Org. Chem..
(1974)
17.
44 (1979)
95
J-P.
96 97 98
J-P. Picard. A. Ekouya. J. Dunogues. N. Duffaut and R. Calas. J. Organometal. Chem. 73 (1975) 51. J-P. Picard. P. Bourgeois. J. Dunogues and R. Calas. J. Organometal. Chem.. 39 (1972) CS9_ J. Dunogues. M. Bolourtcbian. R. Calas. N. Duffaut and J-P. Picard. J. Organometal. Chem.. 43 (1972)
167.
99
3. DunopuBs.
157.
100 101
A. Ekouya. R. Calas. J-P- Picard and N. Duffaut. J. Organometal. N. Duffaut. J. Dunogues. C. Biran and R. Calas., J. Organometal. Chem.. 161 J.-P. Picard. Thesis. Bordeaux (1976) 49.
Chem.. 66 (1974) (1978) C23.
C39.
162 103 104 105
P. Bourgeois. R. Calas. N. Duffaut and J. Dunogues. J. Organometal. Chem., 32 (1971) P. Bourgeois and N. Duffaut, J. Organometal. Chem.. 35 (1972) 63. P. Bourgeois. J. Dunogues and N. Duffaut. J. Osganometal. Chem.. 80 (1974) C25. hr. Bolourtchian. P. Bourgeois. J. Dunogzes. N. Duffaut and R. Calas. J. Organometai. (1972) 139.
106 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
R. Calas. -4. Ekouya. J. Dunogues. C. Biran and N. Duffaut. J. Organometal. Chem.. 177 (1979) 137. C. Biran. R. Calas. J. Dunogues and N. Duffaut. J. Organometal. Chem.. 22 (1970) 557. P. Bourgeois. J. Organometal. Chem.. 76 (1974) Cl_ C. Biran. J. Dedier. J. Dunogues. R. Calas and N. Duffaut. J. Organometal. Chem.. 35 (1972) 263. M. Bolourtchian. R. Calas. J. Dunogues and N. Duffaut. J. Organometal. Chem.. 33 (1971) 303. A. Ekouya. J. Dunogues. N. Duffaut and R. Calas. J. Organometal. Chem.. 148 (1978) 225. A. Ekouya. Thesis, Bordeaux (1978) 43. P. Cazeau. E. Frainnet. J. Dunogues and R. Calas. French Pat. 2.163.874 (1971). P. Czeau. E. Frainnet. J. Dunogues and R. Calas. J. Organometal. Chem.. 35 (1972) Cll. J. Dunogues. R. Calas. N. Duffaut and J-P. Picard. J. Organometal. Chem.. 26 (1971) C13. C. Biran. J. Dunogues and R. Calas. to be published_ G. Dileris. J. Kowalski. J. Dunogues and R. Calas, Tetrahedron Lett.. (1977) 4211. ICI. Laguerre. J. Dunogues and R. Calas. J. Organometal. Chem.. 145 (1977) ~34. M. Grignon-Dubois. J. Dunogues and R. Calas. Can. J. Chem.. accepted for publication. M. Laguerre. MI. Grignon-Dubois. J. Dunogues and R. Calas. Tetrahedron. submitted for publication. G. Merault. P. Bourgeois and J. Dunogues. C.R. Acad. Sci. Ser. C 274 (1972) 1857. P. Bourgeois and R. Calas J. Organometal. Chem. 84 (1975) 165.
123 124
J. Dunogues. E. Jousseaume and R. Calas. J. Organometal. Chem. 71 (1974) Rhone-Potienc Society (G. Bakassian and A. Bazouin) French Pat. 2.079.814
107
(1970).
79.
Chem.,
377. and 2.192.3gl
43
34 125 126
J. Dunogu&. E. Jousseaume. J-P. Pillot and R. Calas. J. Organometal. Chem.. 52 (1373)
Cll.
128 129 130 131 132 133 134 135 137 138 139 140 14i 142 143 144 145
M. Birot. R. Calas, G. Dr%+is. .I. Dunoguds. M. Lefort. C. Simonnet
146 147 148 149 150
M. Laguerre. G. Felix. J. Dunogu& and R. Calas, to be published. J. DunoguPs. R. Calas and N. Ardoin. J. Organometal. Chem.. 43 (1972) 127. J. Dunogu&. J-P. Piilot. N. Duffaut and R. Calas. CR. Acad. Sci.. S&r. C. 278 (19-4) 467. S. Brownstein. J. Dunogui%. D. Lindsay and K.U. Ingold. J. Amer. Chem. Sot.. 93 (1977) 2073. R. Calas. P. Bourgeois and N. Duffaut. CR. _4cad. Sci.. Sir. C. 263 (1366) 243.
151 152
R. Calas and J. Valade. Bull. Sot. Chim. Fr.. (1358) 1314. N. Duffaut. J. Valade and R. Calas. Bull. Sot. Cbim. Fr., (1956) 554. J. Valade and R. Calas. C.R. Acad. Sci.. Ser. C. 246 (1358) 352.
127
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
R. Calas. N. Duffaut and J. Valade. Bull. Sot. Chim. J?r.. (1954) 433. R. Calas, N. Duffaut and J. Valade. Bull. Sot. Chim. Fr.. (1954) 896. R. Calas. N. Duffaut and J. Valade. Bull. Sot. Chim. R.. (1955) 730. J. Valade zd R. Calas. Bull. Sot. Chim. Fr.. (1957) 282. R. Calas and J. Valade. Bull. Sot. Chim. Fr.. (1357) 282. R. Calas and J. Valade. Bull. Sot. Chim. Fr.. (1957) 624. J. V&de and R. Calas, Bull. Sot. Chim. Fr., (1958) 919. R. Cal=. J. Valade and M.-L. Josien. CR. Acad. Sci.. S&r. C. 249 (1959) 826. R. Calas. J. Valade and M-L. Josien. gull. Sot. Chim. Fr.. (1959) 1141. R. Calas. J. Vaiade and &I. Biensan. Bull. Sot. Cbim. Fr.. (1360) 212. J. kyalade. P. Bothorel. J. Hoareau and R. Calas, Bull. Sot. Chim. FT.. (1362) 396. A. Marchand. J. Valade. M-T. Forel. M.-L. Josien and R. Calas. J. Phys. Chem.. (1362) 1442. P. ?Jauret. A. Abadie. R. Calas and J. Valade. Bull. Sot. Chim. Fr.. (1967) 1221. N. Duffaut. J.-P. Dupin. J.J. Vergnolles and R. Calas. Bull. Sot. Chim. Fr.. (1363) 2007. (a) R. Calas. N- Duffaut and J.-P. D-pin. Bull. Sot. Cbim. Fr.. (1964) 449; (b) N. Duffaut. R. Calas and A. Morvan. Bull. Sot. Chim. Fr.. (1965) 269;
174
F. Mitras and J. Valade. Bull. Sot. Chim. Fr.. (1965) 1257. N. Duffaut. R. Calas and J. Dunogu&. Bull. Sot. Cbim. Fr.. (1960) 597. N. Duffact. R. Calas and J. Dunoguk. Bull. Sot. Cbim. Fr.. (1363) 512. N. Duffaut. R. Calas and J. DunoguBs. Bull. Sot. Cbim. Fr.. (1961) 886. R. Calas. P. Bourgeois and N. Duffaut. 3rd Intern. Symp. on Organometal. Chem.. Munich. 1967. Abstr. p. 360. (a) R. Calas, N. Duffaut. C. Biran. P. Bourgeois. F. Pisciotti and J. Dunogu&. C.R. Acad. Sci., Ser. C.
175 176 177
267 (1968) 322; (b) H. Gongora, SocZtC Nationale des P&roles d’Aquitaine, unpublished J-P. mot. J. Dunogw%. R. Calas and N. Duffaut. Bull. Sot. Chim. Fr.. (1372) 3490. A.G. Brook. J. Amer. Chem. Sot.. 79 (1957) 4373. A.J. Birch. Quaterly Rev.. 4 (1350) 69.
178 173 160 181 182 183
Reports concerning this compound are mentioned in ref. 143. J. Normant 2nd Y. Gendreau. private communication. ht. Laguerre. J. Dunogu& and R. Calas. unpublished results. A.G. Brook. Adv. Organometal. Chem.. 7 (1968) 95. R. Cala% P. Bourgeois and N. Duffaut. CR. Acad. Sci.. Ser. C. 269 (1366) 243. J.-P. i’illot. J. Dunogues and R. Calas, CR. Acad. Sci. Ser. C. 278 (1974) 789.
169
170 171 172 173
R- Cda% J. Plazanet.
results.
35 184
J.-P. Pillot. J_ Dunoguds
185 186 187
J.-P. Pillot. J. Dunogu& and R. Calas. Bull. Sot. Chim. Fr.. (1975) 2143. J.-P. Pill&. J. DunoguPs and R. Calas. Synthesis. (1977) 469. 54. (b) L. Birkofer. A. Ritter and (a) J.-P. Picard. J. Dunogut?s and R. Calas . 2. Chem. Res.. (1977) H. Wieden. Chem. Ber.. 95 (1962) 433. (c) G. D~?l&is. D.-Ing. Thesis, Bordeaux (1976) 39. J.-P. Pillot. J. Dunog&s and R. Calas. J. Chem. Res.. (1977) 269. M. Grignon-Dub&s, J. Dunogu& and R. Calas, Tetrahedron Lett.. (1976) 1197. M. Grignon-Dubois. J. Dunogues and R. Calas. synthesis, (1976) 737. M. Grignon-Dubois. J. Dunogu& and R. Calas. J. Chem. Res.. (1978) 379. M. G&non-Dubois. J. Dunogu&s and R. Calas. to be published. see M. Grignon-Dubois. Thesis. Bordeaux (1979). ht. Laguerre. ht. Grignon-Dubois. J. Dunogu& and R. Calas. Tetrahedron. submitted for publication. M. Grignon-Dubois, J.-P_ Pill&. J. Dunogu&. N. Duffaut. R. Calas and B. Henner. J. Organometzl. Chem.. 124 (1977) 135. M. Grignon-Dubois, J. Dl;nogu& and R. Calas. J. Organometal. Cbem.. 181 (1979) 285. M. Grignon-Dubois. J. Dunogues N. Duffaut and R. Calas. J. Organometal. Chem.. 188 (1980) 311. L. Birkofer, A. Ritter and H. Uhlenbrauck. Chem. Ber.. 96 (1963) 3280. (a) P. Bourgeois. G. hlirault and R. Calas. J. Organometal. Chem.. 59 <1973) C4_ (b) P. Bourgeois. G. Merault and R. Calas, see G. Merault Thesis Bordeaux (1974) 29. G. Merault. P. Bourgeois and N. Duffaut. Bull. Sot. Cbim. Fr.. (1974) 1949_ R- Calas and P. Bourgeois. CR. Acad. Sci.. S&r_ C. 268 (1969) 1525. P. Bourgeois and R. Calas. J. Organometal. Chem.. 22 (1970) 89_ P. Bourgeois and G. hlCrault. CR. Acad. Sci.. SCr. C. 273 (1971) 714. P. Bourgeois. G. Merault. N. Duffaut and R. Calas. J. Organometal. Chem.. 59 (1973) 145. G. XI&z+ult. P. Bourgeois. R. Calas and N. Duffaut. see G. Merault. Thesis. Bordeaux (1974) 51. P. Bourgeois, R. Calas and G. M8rault. J. Organometal. Chem.. 141 (1977) 23. P. Bourgeois. CR. Acad. Sci. SCr. C. 279 (1974) 569.
188 189 190 191 192 193 IS4 195 196 197 198 199 200 201 202 203 204 205 206 207
208 209 210 211 212 213 214 215
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
and R. Cabs.
Synth.
Commun..
(1979)
395.
(a) G. Del&is. J. Dunogues and R. Calas, Tetrahedron Lett. (1976) 2449. (b) A. Laporterie. J. Dubac and M. Lesbre. J. Organometal. Chem. 101 (1975) 187 and Ref. herein. (c) A. Laporterie. J. Dubac. G. hlanuel. G. Del&is. J. Koaalski. J. Dunogu& and R. Calas. Tetrahedron. 34 (1978) 2669. See P. Bourgeois, Thesis, Bordeaux. 1970 115. (a) R. Calas and J. Dunogu&. J. Organometal. Chem.. 27 (1971) C21. (b) J. Dunogu&. J.-P. Pillot and R. Calas. to be published_ R. Calas. J. Dunogu&. J.-P. Pillot. C. B&n. F. Pisciotti and B. Arriguy. J. Organometal. Chem.. 85 (1975) 149. J.-P. PiBot. J. Dunogu& and R. Calas. Tetrahedron Lett.. (1976) 1871. J.-P. Pillot. G. D&l&is. J. Dunogu& and R. Calas. J. Org. Chem.. 44 (1979) 3397. hI_ Laguerre. J. Dunogues and R. Calas. Tetrahedron Lett., (1980) 000. hl. Grignon-Dubois. J. Dunogues and R. Calas. J. Organometal. Chem., 97 (1975) 31. R. Calas. J. Dunogu&s. G. D&l&is and F- Pisciotti. J. Organometal. Chem. 69 (1974) C15; G. DBleris. J. Dunogu& and R. Calas, J. Organometal. Chem.. 93 (1975) 43. Extension of these results was reported in the Vth Intern. Symp. of Organometal. Chem. hIoscow (July 1975) Abstr. Vol. I. p_ 121 (see ref. [ 207 I)_ (a) G. D&l&is. J. Dunoguk and R. Calas. J. Organometal. Chem.. 116 (1976) Ci6. ;b) idem, to be published. P. Bourgeois and G. MIdrault. .I- Organometal. Chem.. 39 <1972) C44. J.-P. Pillot. J. DunoguiZs and R. Calas. to be published. C. Eabom. Jkre A~pl. Chem.. 19 (19691 375: see also the review of C. Eaborn. J. Organometal. Chem. 100 (1975) 43. G. Felix. J. DunoguLs. F. Pisciotti and R. Calas. Angew. Chem.. 89 (1977) 502. Intern. Ed. En&. 16 (1977) 488. G. Felix. J. Dunogu& and R. Calas, Xngew. Chem.. Intern. Ed.. 18 (1979) 402. G. Felix. M. Laguerre. J. Dunoguts and R. Calas. J. Chem. Res.. submitted for publication. G. Felix. h1. Laguerre. J. Dunogues and R. Calas. to be published. G. Del&is. J. Dunogues, P. Babin. R. Calas in collaboration with Rhdne-Poulenc Society, to be published. R. Calas, E. Frainnet and Y. Dentone. Bull. Sot. Chim. Fr.. (1965) 574. E. Frainnet. R. Calas. P. Gerval. Y. Dentone and J. Bonastre. Bull. Sot. Chim. Fr.. (1965) 1259. E. Frainnet. R. Calas and P. Gerval. CR. Acad. Sci. Sir. C. 261 (1965) 1329. P. Bourgeois, R. Calas and N. Duffaut. Bull. Sot. Chim. Fr.. (1965) 2694. R. Calas and P. Bourgeois, Bull. Sot. Chim. Fr., (1968) 4678. h1. Birot. J. Dunogu&. N. Duffaut. R. Calas and hl. Lefort. Bull. Sot. Chim. Fr.. 1978 (1442). G. D&+is. J. Dunogues and R. Calas. Bull. Sot. Chim. Fr.. (1974) 672. P. Cazeau. F. hloulines. E. Rainnet and R. Calas. Bull. Sot. Chim. Fr.. (1966) 3365.
36 233 234 235
N. Duffaut. J. Dunogues and R. Calas. CR. Acad. Sci.. Sir. C. 268 (1969) 967. J. DunonuBs. R. Calas and N. Duffaut. Bull. Sot. Chim. FL. (1970) 2016. M. Iaguerre. J. Dunogu& and R. C&s. J. Chem. Sot. Chem. Commun.. (1978)
236 237 238 239 240
R. R. P. P. R.
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 2.57 258 259 260 261 262 263 264 265 266 267
R. Calas. A. Marchand. E. Rainnet and P. Gerval. Bull. Sot. Chim. FL. (1968) 2478. M. Birot. M. Lefort. C. Simonnet. J. Dunogues. G. Del&is and R. Calas. to be published. R. Calas and E. Frainnet. Bull. Sot. Chim. FL. (1959) 779. N. Duffaut and R. Calas. Bull. Sot. Cbim. Fr.. (1957) 105. R. Calas. P. Bourgeois. J. Dunogu&, F. Pisciotti and B. Arr&uy. Bull. Sot. Chim. R.. (1974) E. Frafnnet. R. Calas and C. Fritsch. Bull. Sot. Chim. FL. (1960) 480. See ref. [1651. See also M. Lebedeff. Thesis (3eme cycle) Bordeaux (1969) 91. N. Duffaut. P. Bourgeois, J. Dunogues and R. Calas. J. Organometal. Chem.. 46 (1972) C41. J.-C. Pommier. J. Valade and R. Calas. Mim. Sot. Sci. Phys. et Nat. (Bordeaux) (1968) 25. R. Calas and P. Nicou, C.R. Acad. Sci. Ser. C, 249 (1959) 1011. J.-C. Pommier, R. Calas and J. Valade. Bull. Sot. CHim. Fr.. (1968) 1475. N. Duffaut. J.-P_ Picard and R. Calas. hiem. Sot. Sci. Phys. Nat. (Bordeaux). (1968) 23. J. Valade. R. Calasand F. M&as. Bull. Sot. Chim. R.. (1962) 1532. E. Rainnet, R. Calas and C. Esclamadon. Bull. Sot. Chim. Fr.. (1961) 886. J. Valade. F. M&as and R. Calas. Bull. Sot. Chim. Fr.. (1962) 397. B. Martel. N. Duffaut. J. PeUaroque and R. Calas. Bull. Sot. Chim. FL. (1963) 2007. N. Duffaut. R. Calas and B. Martel. Bull. Sot. Chim. Fr.. (1960) 597. N. Duffaut. B. _Martel. A. Viiemiane and R. Calas. Bull. Sot. Chim. Fr.. (1962) 1533. 5. Martel. N. Duffaut and R. C&s. Bull. Sot. Chim. Fr.. (1964) 9. B. Martel. N. Duffaut and R. Calas. CR. Acad. Sci. Ser. C. 264 (1967) 2160. J. Valade. F. Mitras and R. Calas. Bull. Sot. Chim. Fr.. (1061) 2213. J. Valade. F. M&ras. J.-C. Pommier and R. Calas. Bull. Sot. Chim. R.. (1963) 1549. R. Calas and P. Bourgeois. CR. Acad. Sci. Ser. C. 267 (1968) 540. R. Calas and N. Duffaut. Bull. Sot. Chim. Fr.. (1954) 896. E. Frainnet. C. Bardot and R. Calas. BuB. Sot. Chim. Fr.. (1957) 283. P. Bothorel. R. Calas. N. Duffaut and A. Pacault. Bull. Sot. Chim. Fr.. (1959) 562. A. Ekouya. J. Dunogues ad R. Calas, J. Chem. Res. (1978) 296.
272.
Calas. E. Rainnet and Y. Dentone. C.R. Acad. Sci. Ser. C. 259 (1964) 3777. Calas. E. Fminnet and Y. Dentone, Bull. Sot. Chim. FL. (1965) 574. Gerval. R. Calas and E. Rainnet. Bull. Sot. Cbim. FL. (1966) 2138. Bourgeois, R. Calas. N. Duffaut and C. Hou. Bull. Sot. Chim. Fr.. (1965) 1255. Calas. N. Duffaut and R. Puthet (RhBne-Poulenc) French. Pat. 1.507.272 (1968).
556.