Mathematical and Computer Modelling 52 (2010) 241–246
Contents lists available at ScienceDirect
Mathematical and Computer Modelling journal homepage: www.elsevier.com/locate/mcm
Univalence criteria for a new integral operator Nicoleta Breaz a , Virgil Pescar b , Daniel Breaz a,∗ a
Department of Mathematics, ‘‘1 Decembrie 1918’’ University of Alba Iulia, 510009, Alba Iulia, Romania
b
Department of Mathematics, ‘‘Transilvania’’ University of Braşov, 500091 Braşov, Romania
article
abstract
info
Article history: Received 18 November 2009 Received in revised form 5 February 2010 Accepted 9 February 2010
In view of an integral operator Hγ1 ,γ2 ,...,γ|[Re η]| ,β,η for an analytic function f in the open unit disk U, sufficient conditions for univalence of this integral operator are discussed. © 2010 Elsevier Ltd. All rights reserved.
Keywords: Integral operator Univalence Starlike Real part Integer part
1. Introduction Let A be the class of functions f of the form f (z ) = z +
∞ X
an z n
n =2
which are analytic in the open unit disk U = {z ∈ C : |z | < 1}. Let S denote the subclass of A consisting of all univalent functions f in U. For f ∈ A, the integral operator Gα is defined by Gα (z ) =
Z z 0
f (u) u
α1 du
(1.1)
for some complex numbers α (α 6= 0). 1 ≤ In [1] Kim–Merkes have proved that the integral operator Gα is in the class S for |α| In [2] Pascu and Pescar defined the integral operator
1 4
and f ∈ S .
Z z α β1 β−1 f (u) Hα,β (z ) = β u du 0
u
for α, β being complex numbers, β 6= 0 and f ∈ A. In [2–5] we have the sufficient conditions of univalence for the integral operator Hα,β .
∗
Corresponding author. E-mail addresses:
[email protected] (N. Breaz),
[email protected] (V. Pescar),
[email protected],
[email protected] (D. Breaz).
0895-7177/$ – see front matter © 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.mcm.2010.02.013
(1.2)
242
N. Breaz et al. / Mathematical and Computer Modelling 52 (2010) 241–246
Also, the integral operator Jγ for f ∈ A is given by Mγ (z ) =
1
z
Z
γ
1
u−1 (f (u)) γ du
γ (1.3)
0
where γ is a complex number, γ 6= 0. Miller and Mocanu [6] have shown that the integral operator Mγ is in the class S for f ∈ S ∗ , γ > 0, S ∗ is the subclass of S consisting of all starlike functions f in U. We introduce the general integral operator
( Hγ1 ,γ2 ...,γ|[Re η]| ,β,η (z ) =
ηβ
z
Z
u
ηβ−1
f1 (u)
γ1
1
u
0
...
f|[Re η]| (u)
γ
) ηβ1
1
|[Re η]|
u
du
(1.4)
for fj ∈ A, γj , η, β complex numbers, where γj 6= 0, Re η 6∈ [0, 1), j = 1, |[Re η]|, β 6= 0, |[Re η]| is the modulus of integer part of η. If in (1.4) we take η = 1, γ1 = α1 , f1 = f we obtain the integral operator Hα,β . For ηβ = 1, |[Re η]| = 1, γ1 = α , f1 = f , for (1.4), we have the integral operator Gα . For ηβ = γ1 , γ1 = γ , |[Re η]| = 1, f1 = f , from (1.4) we obtain the integral operator Mγ . 2. Preliminary results We need the following lemmas. Lemma 2.1 ([7]). Let α be a complex number, Re α > 0 and f ∈ A. If 1 − |z |2Re α zf 00 (z )
f 0 (z ) ≤ 1
Re α
(2.1)
for all z ∈ U, then for any complex number β , Re β ≥ Re α the function z
Z
Fβ (z ) = β
uβ−1 f 0 (u)du
β1 (2.2)
0
is in the class S. Lemma 2.2 (Schwarz [8]). Let f be a function regular in the disk UR = {z ∈ C : |z | < R} with |f (z )| < M, M fixed. If f (z ) has one zero with multiplicity order bigger than m, for z = 0, then
|f (z )| ≤
M Rm
|z |m ,
z ∈ UR
(2.3)
the equality (in the inequality (2.3) for z 6= 0) can hold only if f (z ) = eiθ
M Rm
zm,
where θ is constant. 3. Main results Theorem 3.1. Let γj , β, η be complex numbers, β 6= 0, Re η 6∈ [0, 1), j = 1, |[Re η]|, a =
P|[Re η]| j =1
Re γ1 > 0 and j
fj ∈ A, fj (z ) = z + b2j z 2 + b3j z 3 + · · · , j = 1, |[Re η]|. If
0 2a+1 zfj (z ) (2a + 1) 2a ≤ γj , − 1 f (z ) 2 |[Re η]| j
j = 1, |[Re η]|,
(3.1)
for all z ∈ U, and Re ηβ ≥ a, then the function
( Hγ1 ,γ2 ,...,γ|[Re η]| ,β,η (z ) = is in the class S .
ηβ
z
Z 0
uηβ−1
f1 (u) u
γ1
1
...
f|[Re η]| (u) u
γ
) ηβ1
1
|[Re η]|
du
(3.2)
N. Breaz et al. / Mathematical and Computer Modelling 52 (2010) 241–246
243
Proof. We consider the function g (z ) =
Z z
f 1 ( u)
γ1
1
...
u
0
f|[Re η]| (u)
γ
1
|[Re η]|
u
du.
The function g is regular in U. We define the function p(z ) = p(z ) =
zg 00 (z ) g 0 (z )
=
|[Re Xη]|
1
γj
j =1
zfj0 (z ) fj (z )
−1
,
(3.3) zg 00 (z ) g 0 (z )
, z ∈ U and we obtain
z ∈ U.
(3.4)
From (3.1) and (3.4) we have
|p(z )| ≤
(2a + 1)
2a+1 2a
(3.5)
2
for all z ∈ U and applying Lemma 2.2 we get
|p(z )| ≤
(2a + 1)
2a+1 2a
|z |, 2 From (3.4) and (3.6) we have
z ∈ U.
(3.6)
2a+1 2a 2a ≤ (1 − |z | )|z | · (2a + 1) g 0 (z ) a 2
1 − |z |2a zg 00 (z ) a
(3.7)
for all z ∈ U. Because max
(1 − |z |2a )|z |
|z |≤1
a
=
2
(2a + 1)
2a+1 2a
,
from (3.7) we have 1 − |z |2a zg 00 (z ) a
g 0 (z ) ≤ 1
(3.8)
for all z ∈ U. So, by the Lemma 2.1, the integral operator Hγ1 ,γ2 ,...,γ|[Re η]| ,β,η belongs to the class S .
Corollary 3.2. Let γ be a complex number, a = Re γ1 > 0 and f ∈ A, f (z ) = z + b21 z 2 + b31 z 3 + · · ·. If
0 2a+1 (2a + 1) 2a zf (z ) |γ | f (z ) − 1 ≤ 2
(3.9)
for all z ∈ U, then the integral operator Mγ defined by (1.3) belongs to the class S . Proof. We take η = 1, β = γ1 , γ1 = γ , f1 = f in Theorem 3.1.
Corollary 3.3. Let α, β be complex numbers, β 6= 0, a = Re α > 0, f ∈ A, f (z ) = z + b21 z 2 + b31 z 3 + · · ·. If
0 2a+1 zf (z ) (2a + 1) 2a ≤ − 1 f (z ) 2 |α|
(3.10)
for all z ∈ U, then for Re β ≥ Re α the integral operator Hα,β is in the class S . Proof. For η = 1, γ1 = α1 , f1 = f , from Theorem 3.1 we have Corollary 3.3.
Corollary 3.4. Let α be a complex number, a = Re α1 ∈ (0, 1], f ∈ A, f (z ) = z + b21 z 2 + b31 z 3 + · · ·. If
0 2a+1 zf (z ) (2a + 1) 2a ≤ |α| − 1 f (z ) 2 for all z ∈ U, then the integral operator Gα given by (1.1) is in the class S .
(3.11)
244
N. Breaz et al. / Mathematical and Computer Modelling 52 (2010) 241–246
Proof. We take ηβ = 1, |[Re η]| = 1, γ1 = α , f1 = f in Theorem 3.1.
Corollary 3.5. Let α, η be complex numbers a = |[Re η]|· Re α1 , Re η 6∈ [0, 1), a ∈ (0, 1] and fj ∈ A, fj (z ) = z + b2j z 2 +· · · , j = 1, |[Re η]|. If
0 2a+1 zfj (z ) (2a + 1) 2a ≤ |α|, − 1 f (z ) 2 |[Re η]| j
j = 1, |[Re η]|
(3.12)
for all z ∈ U, then the function Lα ( z ) =
Z z
f 1 ( u)
α1
u
0
...
f|[Re η]| (u)
α1 du
u
(3.13)
is in the class S . Proof. For ηβ = 1, γ1 = γ2 = · · · = γ|[Re η]| = α from Theorem 3.1. we obtain the Corollary 3.5.
Theorem 3.6. Let γj , α, β, η be complex numbers, γj 6= 0, Re η 6∈ [0, 1), β 6= 0, a = Re α > 0, j = 1, |[Re η]| and P∞ fj ∈ S , fj (z ) = z + k=2 bkj z k , j = 1, |[Re η]|. If |[Re Xη]|
1
j =1
|γj |
|[Re Xη]|
1
j =1
|γj |
≤
a 2
,
for 0 < a <
,
for a ≥
1
(3.14)
2
or
≤
1 4
1
(3.15)
2
then for Re ηβ ≥ a, the integral operator Hγ1 ,γ2 ,...,γ|[Re η]| ,β,η given by (1.4) is in the class S . Proof. We consider the function g (z ) =
Z z
f1 (u)
γ1
u
0
1
...
f|[Re η]| (u)
γ
1
|[Re η]|
u
du.
(3.16)
The function g is regular in U. We have
2a |[Re Xη]| 1 zfj0 (z ) ≤ 1 − |z | . − 1 g 0 (z ) a |γ | f ( z ) j j j =1
1 − |z |2a zg 00 (z ) a
(3.17)
Since fj ∈ S , j = 1, |[Re η]| we have
0 zfj (z ) 1 + |z | f (z ) ≤ 1 − |z | , j
z ∈ U, j = 1, |[Re η]|.
(3.18)
From (3.17) and (3.18) we obtain
|[Re 2a Xη]| 1 2 1 − |z | g 0 (z ) ≤ a 1 − |z | j=1 |γj |
1 − |z |2a zg 00 (z ) a for all z ∈ U. For 0 < a < max |z |≤1
1 2
(3.19)
we have
1 − |z | 2a 1 − |z |
=1
and from (3.14), (3.19) we get 1 − |z |2a zg 00 (z ) a
g 0 (z ) ≤ 1,
z ∈ U.
(3.20)
N. Breaz et al. / Mathematical and Computer Modelling 52 (2010) 241–246
For a ≥ max |z |≤1
1 2
245
we have
1 − |z | 2a 1 − |z |
= 2a
and from (3.15), (3.19) we obtain (3.20). From (3.20) and Lemma 2.1 it results that the integral operator Hγ1 ,γ2 ,...,γ|[Re η]| ,β,η belongs to the class S . Corollary 3.7. Let α, γ be complex numbers, a = Re α > 0 and f ∈ S , f (z ) = z + If 1
|γ |
≤
a 2
,
for 0 < a <
,
for a ≥
P∞
k =2
bk1 z k .
1
(3.21)
2
or 1
|γ |
≤
1 4
1
(3.22)
2
then for Re γ1 ≥ a, the integral operator Mγ given by (1.3) is in the class S . Proof. We take in Theorem 3.6, ηβ = γ1 , |[Re η]| = 1, γ1 = γ , f1 = f .
Corollary 3.8. Let α, β, γ be complex numbers, a = Re γ > 0 and f ∈ S , f (z ) = z + If
|α| ≤
a 2
,
for 0 < a <
,
for a ≥
P∞
k=2
bk1 z k .
1
(3.23)
2
or
|α| ≤
1 4
1
(3.24)
2
then for Re β ≥ a, the integral operator Hα,β given by (1.2) belongs to the class S . Proof. For η = 1, f1 = f , γ1 = α1 , from Theorem 3.6 we obtain Corollary 3.8.
Corollary 3.9. Let α, γ be complex numbers, a = Re γ ∈ (0, 1] and f ∈ S , f (z ) = z + If 1
|α|
≤
a 2
,
for 0 < a <
,
for a ≥
P∞
k=2
bk1 z k .
1
(3.25)
2
or 1
|α|
≤
1 4
1
(3.26)
2
then the integral operator Gα given by (1.1) is in the class S . Proof. For ηβ = 1, |[Re η]| = 1, γ1 = α , f1 = f , from Theorem 3.6 we obtain Corollary 3.9.
Corollary 3.10. Let α, η, γ be complex numbers, Re η 6∈ [0, 1), a = Re γ ∈ (0, 1], fj ∈ S , fj (z ) = z + j = 1, |[Re η]|. If
|[Re η]| a ≤ , |α| 2
for 0 < a <
|[Re η]| 1 ≤ , |α| 4
for a ≥
P∞
k =2
1
bkj z k ,
(3.27)
2
or 1
(3.28)
2
then the integral operator Lα given by (3.13) is in the class S . Proof. For ηβ = 1, Re η 6∈ [0, 1), γ1 = γ2 = · · · = γ|[Re η]| = α , from Theorem 3.6. we obtain the Corollary 3.10.
246
N. Breaz et al. / Mathematical and Computer Modelling 52 (2010) 241–246
References [1] Y.J. Kim, E.P. Merkes, On an integral of powers of a spirallike function, Kyungpook Mathematical Journal 12 (1972) 249–253. [2] N.N. Pascu, V. Pescar, On the integral operators of Kim–Merkes and Pfaltzgraff, 32 (55), 2, Mathematica, Univ. Babeş-Bolyai, Cluj-Napoca, 1990, pp. 185–192. [3] V. Pescar, Univalence conditions for certain integral operators, Journal of Inequalities in Pure and Applied Mathematics 7 (4) (2006) Article 147. [4] V. Pescar, Integral operators on a certain class of analytic functions, Libertas Mathematica XXVII (2007) 95–98. [5] V. Pescar, S. Owa, Univalence problems for integral operators by Kim–Merkes and Pfaltzgraff, Journal of Approximation Theory and Applications 3 (1–2) (2007) 17–21. [6] S.S. Miller, P.T. Mocanu, Differential Subordinations, Theory and Applications, in: Monographs and Text Books in Pure and Applied Mathematics, vol. 225, Marcel Dekker, New York, 2000. [7] N.N. Pascu, An improvement of Becker’s univalence criterion, in: Proceedings of the Commemorative Session Simion Stoilow, University of Braşov, 1987, pp. 43–48. [8] O. Mayer, The Functions Theory of One Variable Complex, Bucureşti, 1981.