30.4-nm He(II) Photoelectron spectra of organic molecules

30.4-nm He(II) Photoelectron spectra of organic molecules

and Related Phenomena, 21 (1980) 93-101 0 Elsevler Sclentlflc Pubhshmg Company, Amsterdam - Pnnted in The Netherlands Journal of Electron Spectroscop...

363KB Sizes 63 Downloads 292 Views

and Related Phenomena, 21 (1980) 93-101 0 Elsevler Sclentlflc Pubhshmg Company, Amsterdam - Pnnted in The Netherlands

Journal of Electron Spectroscopy

Data bank

30.4~nm He(D) PHOTOELECTRON SPECTRA OF ORGANIC MOLECULES Part II. Azacompounds

(C, H, N)*

LEIF &BRINK

The Royal Instatute of Technology, Phystcs Department, S-1 00 44 Stockholm (Sweden) WOLFGANG

70

VON NXESSEN

Instltut fur Phystkalache Chemie, Technrsche Unlversatat Bmunschwelg, HansSommer-strasse 10. D-3300 Bmunschwegg (W Germany) GERHARD

BIERI?

PhysakabchChemrsches Instrtut der Unwersltat Bagel, Klmgelbergatrasae 80, CH-4056 Base1 (Swrtzerland) (Received 2 May 1980)

REMARKS

Part II of this Data bank 1s restrrcted to He(II) photoelectron spectra of nltrrles and lsonltriles The assrgnment of all of the mam bands m the spectra 1s strarghtforward because of the hrgh symmetry of the molecules However, there IS evidence for the appearance of addrtronal, weak bands m all spectra, which cannot be explamed wrthm the framework of a one-electron model on the basis of Koopmans’ theorem [Z] . A possible mterpretatlon of these “shake-up” bands 1s obtamed from the many-body Tamm-Dancoff Green’s fun&on calculations [3,4] compiled m the Tables The 30 4-nm He(I1) photoelectron spectra which have been obtamed for the selected azacompounds are shown m the following Figures (abscissa scale in eV, ordinate gives count-rate m arbitrary units) * For Part I, see ref 1 t Present address The Royal Instk-ute of Technology,

Stockholm,

Sweden

94

CH3-CN

I

I

1

I,

25

I

I

,

,

I!,

20

,

8

I

I

I

,

15

10

15

10

CH,-NC

25

20

95

25

20

15

10

96

CH@C-C=N

I1

1

II

I

25

k

I

I,

r

I,

,,I,

I

I

T

11

I

20

,

,

15

20

I

r

I

I

II

10

11

15

,



,f

97

With the exception of acetomtde (Merck, Uvasol), all samples were prepared by standard chemical procedures [5] and were punfled by bulbto-bulb d&llatlons For other detmls, see ref 1 TABLES VALENCE IONISATION ENERGIES GRESSIONS (cm-’ )

(eV)

AND OBSERVED VIBRATIONAL PRO-

For better characterlsatlon of the molecular orbltals q,, the followmg supplementary orbital-notation 1s gwen axial nitrogen-, (carbon-) lone-pan orbital nN, 0%) acetylemc Ir-orbital =cc cyan0 r-orbital =CN referring to the locahsed molecular orbital which contnbutes most to the canonical molecular orbital q, For molecules with Dooh symmetry, the sign + or - speclfles the correspondmg lmear combmatlon, respectively The experimental lomsatlon energy for the nitrogen 2s-type orbital of the cyano group (2sN )-’ has been determined to he m the energy regon around 30 eV [6] The correspondmg lomsatlon energy obtained from the HAM/3 method [ 7 ] 1s calculated -4 eV too low All erroneous values m the Tables are marked by an asterisk (*) The references m the footnotes below each section of the Table are complied m the Supplementary References (alphabetical by author), pp 100101 Acetomtrrle C2H3N (Cs,) GFa HAM/3 EXP @ (p1-l

2

2e (TCN)

12 17

12 23

ii

7al(nN)

13 10

13 07

B

le

15 30

15 85

c

6a,

16 88

17 08

5

5a,

23 16

25 3Bb 2590 2602 26 53b 3163 3185 34 98

E 4ial

a Ref 3,

25 97*

12 46 (12 21)=‘d

2010d 1430 810 1 290d

13 17 (13 14)C’d 15 7e 1440d (15 13)C*d 860 -16 2e 174 (0 055) (061) (0 17) (0 069) (0 073) (0 21) (0 069)

24 9

29 7f

bus set II (9s5pldl4slp) b Tamm-Dancoff Green’s fun&on results, basis set (985p/4s), relatwe mtensltles gwen m parentheses ’ Adlabatlc lonuratlon ener@es d Ref 14 e Maxima of Jahn--Teller distorted 2E band f Refs 8 and 9 Further references He(I), refs 7, 11

98 Methylwonztrrle Cz H3 N (CJ,) G (V)-’

HAM/3

GFa

2

701 (w)

1180

10 95

i

2e (TNC)

12 23

12 54

15 75

16 54

17 64

18 63 21 06b 21 21 2145 25 06b 26 29 26 92 31 92b 33 19

B le

22 84

E

28 40*

4al

EXP

(0 (0 (0 (0 (0 (0 (0 (0

2280 1132 (11 2qc*d 1410 12 5 1770 (12 24)CVd 16 le (15 59jCVd -16 7e 18 2 19 3f

013) 024) 026) 053) 71) 080) 059) 56)

25 0

a Basis set (9s5pldI4slp) b Tamm-Dancoff Green’s function results, basis set (9s5p/4s), relative mtensltles gwen m parentheses ’ Adlabatlc lomsatlon energies d Ref I4 e Band maxima of Jahn-Teller dIstorted 2E band f “Shake-up” band Further references He(I), ref 12

Cyonogen

C2 N2 (R.~) HAl~l/3~

GFb

RHF( AE)d

EXP

13 20

13 20

13 08

2 50, (nN+) B” 4a, (rzN_)

14 53 14 96

14 40 14 80

15 76 16 21

13 51 (13 36)e’f 14 4ge 14 86e

C In; (??N+)

1507

15 56

15 92

0” 40,

21 93

22 59’ (0 82)

E 30,

26 27*

F 30,

28 ll*

25 59’ 3071 33 24 34 34 3167’ 3556

3 2

(VP ln,

(%X-)

(0 (0 (0 (0 (0 (0

05) 38) 15) 13) 52) 13)

156 (15 47)e*f 22 gaQg 23 7a*g

2120* 1860f 2020’ 710

Green’s function results, relaaRef 6 b Ref 3, see also ref 4 ’ Ref 5, Tamm-Dancoff tive mtensltles aven m parentheses d Ref 2, lomsatlon enerses (hE values) from ab u&o RHF calculations e Adlabatlc lonlsatlon enerpes f Refs 1 and I4 g See ref 5 for a dlscusslon of the band shape Further references He(I), ref 10

99

Cyanoacetylene

CsHN

(C,,)

% w-’

HAM/3

GFa

EXP

2

11 52

11 50

2180e 1175 (11 60)d*e 13 54 860e 14 18 1940e (14 03)d1e 810 18 3 1320e (17 62)d’e 20 2b 21 3 25 0

27r (flee)

if

1n ('ITCN)

13 80 13 77

13 27 14 22

e

$a

17 93

1846

20 52 24 25

21 28’ 26 10’ 28 75 30 67 29 61’ 3206 33 30

ii 90 (RN)

20 95b’C (0 060)

(1N i? 7a J? 60

26 82*

(0 81) (0 36) (0 059) (0 040) (0 20) (015) (0 053)

a Ref 3, basis set (9eSp14s) b Satelhte hne ’ Tamm-Dancoff Green’s function results, basis set (9s5p/4s), relatwe mtensltles gwen m parentheses d Adwbatlc lotus&on energnes e Refs 1, 14

!i’etrolonltrrlea f

w-’

-C

3e (~cc)

ii llal g

6

(nN)

2e (TCN)

5

le lOal

g

9al

a 2-Butynemtrde

CqH3N

(C&j HAM/3

GFb

10 49

10 75

12 92 12 82

13 25 13 86

14 15 18 22 26 24

15 59 16 12 2102

78 44 92 15 14 37*

b Ref 3, basslsset (9s5p)

EXP 10 (10 13 13 (13 15 -16 20 23

95 78)C’d 06 52 37)= 2 5 5 7

2100d 930 560d 1100 700

’ Adlabatw lonlsatlon energies d Ref 3

100 Dlcyanoacetylene 5

(q)-’

C, N2 (D-h) HAM/3

GF’

1151

1188

13 13 13 14

13 13 14 15

80 81 43 21

2117 27 49

22 79b 27 40b 2792 31 64b 3196 32 03 33 87 3604 31 04b 3109 32 44 32 67 3283

a Ref 3, basis set (9&p) b Tamm-Dancoff gnren m parentheses ’ Adlabatlc lomsatlon band f Refs 1,14

2210d 1930 570

13 14 14 15

65 68 41 39

20 7gb (0 84)

26 25*

1 2 3

11 99 (11 84)=

19 02

24 35*

Supplementary

EXP

(0 78) (0 28) (032) (0 052) (028) (0 10) (0 059) (0 05) (0 12) (0 051) (0 047) (0 047) (0 27)

91Cqd 0OC.d 16C’d OOCvd 2100f 590 20 8 21 ge 23 0 -26 1

Green’s function results, relative intensities energies d Ref 13 e Probably “shake-up”

References

C Baker and D W Turner, Proc R Sot London, Ser A, 308 (1968) 19 S Bell, Chem Phys Lett ,67 (1979)498 G Bieri, E Hedbronner, V Hornung, E KlosterJensen, J P Maxer, F Thommen and W von Nlessen, Chem Phys (36 (1979) 1 4 L S Cederbaum, W Domcke and W von Nlessen, Chem Phys (10 (1975) 459 5 L S Cederbaum, W Domcke, J Schlrmer and H Koppel, J Chem Phys , 72 (1980) 1348 6 C Fndh, L &sbrmk and E Lmdholm, Chem Phys ,27 (1978) 169 7 D C Frost, F G Herring, C A McDowell and I A Stenhouse, Chem Phys L&t, 4 (1970) 633 8 T Fupkawa, T Ohta and H Kuroda, Chem Phys Lett ,28 (1974) 43 9 T Fqikawa, T Ohta and H Kuroda, Bull Chem Sot Jpn ,49 (1976) 1486 10 J M Hollas and T A Sutherley, Mol Phys , 24 (1972) 1123

101 11 12

13 14

R F Lake and H Thompson, Proc R Sot London, Ser A, 317 (1970) 187 R F Lake and H Thompson, Spectrochlm Acta, 27A (1971) 783 J P Maler, 0 Marthaler and F Thommen, Chem Phys Lett ,60 (1979) 193 D W Turner, C Baker, A D Baker and C R Brundle, Molecular Photoelectron Spectroscopy, Wiley-Intersclence, London, 1970

ACKNOWLEDGEMENTS

This work has been supported by the Swiss National Science Foundation (Part 133 of ProJect No 2 011-O 79, for Part 132, see ref 1) and by the Swedish Natural Science Research Council One of us (G B ) would lrke to express his gratitude to the Swiss National Science Foundation for the grant of a fellowship. Fmanclal support by Clba-Gelgy SA, F HoffmannLa Roche & Cle, Sandoz SA, and the Fonds der Deutschen Chemlschen Industne is gratefully acknowledged

REFERENCES 1 G Blen and L kbrmk, J Electron Spectrosc Relat Phenom ,20 (1980) 149 2 T Koopmans, Physica, 1(1933/34) 104 3 L S Cederbaum, Theor Chum Acta, 31(1973) 239, J Phys B, 8 (1975) 290 4 L S Cederbaum and W Domcke, Adv Chem Phys , 36 (1977) 205, J Schmner, Thesis, Technical Unlverslty of Mumch, 1977, J Schmner and L S Cederbaum, J Phys B, 11 (1978) 1889 5 A Gautler, Ann Chem , 142 (1867) 289,146 (1868) 119,C Moureu and J C Bongrand, Ann Chnn, 14 (1920) 5, A J Samomo, J 0x-g Chem, 22 (1957) 1171, F Thommen, Dlplomarbelt., Umverslty of Basel, 1977 6 C Frldh and L kbrmk, J Electron Spectrosc Relat Phenom , 7 (1975) 119; T Fujlkawa, T Ohta and H Kuroda, Chem Phys Lett ,28 (1974) 433 7 L Asbrmk, C Frldh and E Lmdhohn, Chem Phys Lett ,52 (1977) 63, Chem Phys Lett , 52 (1977) 69