Amyloid imaging: Past, present and future perspectives

Amyloid imaging: Past, present and future perspectives

G Model ARTICLE IN PRESS ARR-636; No. of Pages 12 Ageing Research Reviews xxx (2016) xxx–xxx Contents lists available at ScienceDirect Ageing Res...

2MB Sizes 0 Downloads 162 Views

G Model

ARTICLE IN PRESS

ARR-636; No. of Pages 12

Ageing Research Reviews xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Ageing Research Reviews journal homepage: www.elsevier.com/locate/arr

Review

Amyloid imaging: Past, present and future perspectives Victor L. Villemagne a,b,c,∗ a

Department of Molecular Imaging & Therapy, Centre for PET, Austin Health, 145 Studley Road, Heidelberg, Victoria 3084, Australia The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia c Department of Medicine, The University of Melbourne, Victoria, Australia b

a r t i c l e

i n f o

Article history: Received 15 November 2015 Received in revised form 21 January 2016 Accepted 22 January 2016 Available online xxx Keywords: Alzheimer’s disease A␤ Positron emission tomography Neurodegenerative disorders Brain imaging

a b s t r a c t Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterised by the gradual onset of dementia. The pathological hallmarks of the disease are A␤ amyloid plaques, and tau neurofibrillary tangles, along dendritic and synaptic loss and reactive gliosis. Functional and molecular neuroimaging techniques such as positron emission tomography (PET) using functional and molecular tracers, in conjuction with other A␤ and tau biomarkers in CSF, are proving valuable in the differential diagnosis of AD, as well as in establishing disease prognosis. With the advent of new therapeutic strategies, there has been an increasing application of these techniques for the determination of A␤ burden in vivo in the patient selection, evaluation of target engagement and assessment of the efficacy of therapeutic approaches aimed at reducing A␤ in the brain. © 2016 Elsevier B.V. All rights reserved.

Contents 1. 2.

3. 4.

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 Molecular neuroimaging in AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 2.1. Functional neuroimaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 2.2. Amyloid imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 2.2.1. A␤ imaging BP (before PiB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 A␤ imaging AP (after PiB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 2.2.2. A␤ imaging in Alzheimer’s disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 Future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

1. Introduction Alzheimer’s disease (AD), the leading cause of dementia in the elderly, is an irreversible, progressive neurodegenerative disorder clinically characterized by memory loss and cognitive decline (Khachaturian, 1985), leading invariably to death, usually within 7–10 years after diagnosis. Age is the dominant risk factor in AD. The progressive nature of neurodegeneration suggests an agedependent process that ultimately leads to synaptic failure and neuronal damage (Isacson et al., 2002) in cortical areas of the

∗ Correspondence to: Department of Molecular Imaging & Therapy, Centre for PET, Austin Health, 145 Studley Road, Heidelberg, Vic. 3084, Australia. Fax: +61 3 9496 5663. E-mail address: [email protected]

brain essential for memory and higher mental functions, eventually affecting activities of daily living. From a neuropathological perspective, the typical macroscopic picture of an AD brain shows gross cortical atrophy. Microscopically, there is widespread cellular degeneration and neuronal loss that affects primarily the outer three layers of the cerebral cortex. These changes are accompanied by reactive gliosis, diffuse synaptic and neuronal loss, and by the presence of the pathological hallmarks of the disease, intracellular neurofibrillary tangles (NFT) and extracellular amyloid plaques. (Jellinger, 1990; Masters, 2005; Masters and Beyreuther, 2005) Neurofibrillary tangles are intraneuronal bundles of paired helical filaments constituted by an abnormally phosphorylated form of the tau protein (Jellinger and Bancher, 1998; Michaelis et al., 2002). Plaques consist of extracellular aggregates of a 4 kDa self-aggregating, 39–43 amino acid metallopeptide, amyloid ␤-peptide (A␤) (Masters et al., 1985),

http://dx.doi.org/10.1016/j.arr.2016.01.005 1568-1637/© 2016 Elsevier B.V. All rights reserved.

Please cite this article in press as: Villemagne, V.L., Amyloid imaging: Past, present and future perspectives. Ageing Res. Rev. (2016), http://dx.doi.org/10.1016/j.arr.2016.01.005

G Model ARR-636; No. of Pages 12

ARTICLE IN PRESS V.L. Villemagne / Ageing Research Reviews xxx (2016) xxx–xxx

2

derived from the proteolytic cleavage of the amyloid precursor protein (APP) by ␤ and ␥-secretases. (Cappai and White, 1999). For the last 20 years the clinical diagnosis of AD was based on progressive impairment of memory and decline in at least one other cognitive domain, and by excluding other diseases that might also present with dementia such as frontotemporal dementia (FTD), dementia with Lewy-bodies (DLB), stroke, brain tumor, normal pressure hydrocephalus or depression. (Cummings et al., 1998; Larson et al., 1996) In other words, dementia. (McKhann et al., 1984). Diagnostic accuracy for AD usually depends on the disease stage and can exceed 90% in academic settings in mid or late stages (Rasmusson et al., 1996). The new criteria for the diagnosis of AD introduces imaging and fluid biomarker information and does not require the presence of dementia (Dubois et al., 2010, 2007). A variable period of up to five years of prodromal decline in cognition characterized by a relatively isolated impairment in memory, known as Mild Cognitive Impairment (MCI), usually precedes the formal diagnosis of AD. (Petersen, 2000; Petersen et al., 1999, 2001) About 40–60% of carefully characterized subjects with MCI will subsequently progress to meet criteria for AD over a 3–4-year period (Petersen, 2000; Petersen et al., 1995, 1999). Despite all the tremendous corpus of knowledge of genetics, epidemiology, risk factors, and neuropathological mechanisms, there is still no cure for AD.

2. Molecular neuroimaging in AD 2.1. Functional neuroimaging The insight into the molecular mechanism of AD pathogenesis opened new avenues for the successful development of new neuroimaging approaches. (Selkoe, 2000) Modern functional neuroimaging techniques such as positron emission tomography (PET), tend to be more sensitive than structural imaging modalities, identifying subtle pathophysiologic changes in the brain, before structural changes are present (Bobinski et al., 1999; de Leon et al., 1997; De Toledo-Morrell et al., 2000; Dickerson et al., 2001; Juottonen et al., 1998; Killiany et al., 2000; Xu et al., 2000), therefore possessing greater potential for accurate and early diagnosis, monitoring disease progression, and better treatment follow-up (Silverman and Phelps, 2001; Villemagne et al., 2005). PET is a sensitive molecular imaging technique that allows in vivo quantification of radiotracer concentrations in the picomolar range, where either the radiotracer bears the same biochemical structure, is an analog or a substrate of the chemical process being evaluated, allowing the in vivo assessment of the molecular process at their sites of action, (Phelps, 2000) permitting detection of disease processes at asymptomatic stages when there is no evidence of anatomic changes on CT and MRI. Several radiolabeled PET tracers are already used to evaluate biological processes in vivo, (Camargo, 2001; Phelps, 2000; Silverman and Phelps, 2001; Van Heertum and Tikofsky, 2003) aiding in the differential diagnosis of AD from other conditions such as vascular dementia, frontotemporal dementia, DLB, and depression (Salmon et al., 1994; Van Heertum and Tikofsky, 2003). FDG PET is not only used in the differential diagnosis of AD, but also provides a diagnosis of prodromal AD two or more years before the full dementia picture is manifested. (Chang and Silverman, 2004; Silverman et al., 1999, 2001, 2002b) A pattern of reduced temporoparietal and posterior cingulate FDG uptake with sparing of the basal ganglia, thalamus, cerebellum, and primary sensorimotor cortex is the typical FDG ‘AD signature’ (Coleman, 2005; Devanand et al., 1997; Jagust et al., 2007; Salmon et al., 1994). Due to its high sensitivity (>90%) for detecting temporoparietal and posterior cingulate hypometabolism FDG–PET has improved diagnostic and prognostic accuracy in patients with probable AD (Kennedy et al., 1995;

Salmon et al., 1994; Silverman et al., 2002a, 2001; Small et al., 1995). A similar pattern of hypometabolism has been reported in normal elderly ApoE ␧4 carriers, (Reiman et al., 1996) MCI, (Chetelat et al., 2003; Chetelat et al., 2005; Mosconi et al., 2006a) asymptomatic subjects with mutations associated with familial AD, (Kennedy et al., 1995; Rossor et al., 1996) and in subjects with a strong family history of AD (Mosconi et al., 2006b). FDG hypometabolism is correlated with cognition (Furst et al., 2010; Landau et al., 2009) and is predictive of future cognitive decline (Drzezga et al., 2005, 2003; Mosconi et al., 2004). PET has also been used to assess neuroreceptor/neurotransmitter systems in vivo. Nicotinic acetylcholine receptors (nAChRs) have been implicated in a variety of central processes, such as memory and cognition (Nordberg et al., 1991; Villemagne et al., 1998). Abnormally low densities of nAChRs have been measured in vitro in autopsy brain tissue of AD patients. PET studies revealed a reduced uptake and binding of 11 C-nicotine in the temporal and frontal cortices of AD patients (Nordberg, 1993a,b; Nordberg et al., 1991). Though the main focus of neuroceptor studies in AD has been the study of nAChRs, several other neurotransmitter/neuroreceptor systems, such as the dopaminergic, opiate and histaminergic systems amomg others, were also evaluated in dementing neurodegenative conditions. (Cohen et al., 1997; Higuchi et al., 2000; Kemppainen et al., 2000; Kepe et al., 2006; Piggott et al., 2003; Sedvall et al., 1987; Small, 2004; Versijpt et al., 2003; Walker et al., 2002). Enzymes involved in the degradation of neurotransmitters, such as brain acetylcholinesterase, have also been the focus of several studies (Kikuchi et al., 2013; Okamura et al., 2008).

2.2. Amyloid imaging A␤ plaques and NFT are the hallmark brain lesions of AD. These microscopic aggregates are still well beyond the resolution of conventional neuroimaging techniques used for the clinical evaluation of patients with AD. Positron emission tomography (PET) is a sensitive molecular imaging technique that allows in vivo quantification of radiotracer concentrations in the picomolar range, allowing the non-invasive assessment of molecular processes at their sites of action, detecting disease processes at asymptomatic stages when there is no evidence of anatomic changes on computed tomography (CT) and magnetic resonance imaging (MRI) (Phelps, 2000). In the past most techniques focused on non-specific features derived mainly from dendritic and neuronal loss, which are relatively late and non-specific features in the progression of the AD, and secondary to the basic molecular dysfunction. While clinical criteria together with current structural neuroimaging techniques are sensitive and specific enough for the diagnosis of AD at the mid or late stages of the disease, the development of a reliable method of assessing A␤ burden in vivo has allowed early diagnosis at presymptomatic stages, more accurate differential diagnosis, as well as treatment follow up. (Villemagne et al., 2005). Moreover, Quantitative imaging of A␤ burden in vivo has provided insights into the relationship between A␤ burden and clinical and neuropsychological characteristics in the AD spectrum as well in other neurodegenerative conditions where A␤ plays a role. Furthermore, because new treatment strategies to prevent or slow disease progression through early-intervention are being evaluated, the accurate recognition of the underlying pathological process being targeted is essential. These fluid and imaging surrogate markers of pathology are being used for patient selection, target engagement and evaluation of efficacy of anti-A␤ therapy alongside clinical and neuropsychological tests.

Please cite this article in press as: Villemagne, V.L., Amyloid imaging: Past, present and future perspectives. Ageing Res. Rev. (2016), http://dx.doi.org/10.1016/j.arr.2016.01.005

G Model ARR-636; No. of Pages 12

ARTICLE IN PRESS V.L. Villemagne / Ageing Research Reviews xxx (2016) xxx–xxx

2.2.1. Aˇ imaging BP (before PiB) Since A␤ plays a central role in AD pathogenesis, many efforts were focused on generating radiotracers for imaging A␤ in vivo (for review see (Villemagne and Rowe, 2010)). The years spanning the last decade of the las century saw the development of several compounds evaluated with different fortune as potential A␤ probes: self-associating A␤ amyloid fragments, (Friedland et al., 2000; Ghilardi et al., 1996; Kurihara and Pardridge, 2000; Lee, 2002; Marshall et al., 2002; Saito et al., 1995) monoclonal and anti-A␤ antibodies fragments, (Majocha et al., 1992; Walker et al., 1994) serum amyloid P, and basic fibroblast growth factor. (Shi et al., 2002) Almost a decade of unsuccessful trials, A␤ imaging showed the first promising results with the report of successful imaging in an AD patient with 18F-FDDNP, a very lipophilic radiofluorinated NSAID derivative developed by Barrio and colleagues at UCLA (Barrio et al., 1999). 18 F-FDDNP has been reported to bind non-selectively to both extracellular A␤ plaques and intracellular NFT (Agdeppa et al., 2001a,b, 2003; Barrio et al., 1999; ShoghiJadid et al., 2002; Small et al., 2002; Smid et al., 2013), while also binding to prion plaques in Creutzfeld–Jakob disease (CJD) brain tissue (Bresjanac et al., 2003). Higher 18 F-FDDNP retention was observed in brain regions associated with memory performance, regional glucose hypometabolism and brain atrophy in AD (Small et al., 2002, 2006). A truly pan-amyloid tracer, 18F-FDDNP has been applied to the assessment of several neurodegenerative conditions not only AD (Small et al., 2006), but also in adult Down syndrome patients (Nelson et al., 2011), American football players suspected of CTE (Small et al., 2013), in non-AD tauopathies such as PSP (Kepe et al., 2013), and frontotemporal dementia; as well as in prion disorders such as Creutzfeld–Jakob disease (CJD) (Bresjanac et al., 2003) and Gerstmann–Straussler–Scheinker disease (Kepe et al., 2010). Head-to-head comparison of 18 F-FDDNP with 11 C–PIB in human (Shin et al., 2008; Tolboom et al., 2009) and non-human primates (Noda et al., 2008) highlighted the very limited dynamic range of 18 F-FDDNP, and FDDNP in concentrations similar to those achieved during a PET scan showed limited binding to both NFT and A␤ plaques in vitro. (Thompson et al., 2009) In a longitudinal study FDDNP was found be less useful than 11 C-PiB and 18 F-fluoro-deoxy glucose (FDG) for the assessment of disease progression (Ossenkoppele et al., 2012) but in contrast with other A␤ tracers it correlates with cerebrospinal fluid (CSF) tau (Tolboom et al., 2009). While FDDNP might be unable to identify which is the misfolded protein responsible for a specific condition, it does rely on the regional brain distribution of the tracer to identify retention patterns that are characteristic of those conditions. Some of the compounds developed as PET radiotracers were also evaluated as contrast agents for MR imaging of plaques. (Benveniste et al., 1999; Higuchi et al., 2005; Sato et al., 2004; Vanhoutte et al., 2005; Wadghiri et al., 2003, 2005) Furthermore, some MRI approaches are trying to capitalize on the high Cu or Fe content of plaques for imaging. (Falangola et al., 2005) 2.2.2. Aˇ imaging AP (after PiB) The quest for A␤ tracers led to the development of derivatives of histopathological dyes such as Congo red, Chrysamine-G, Thioflavin S and T, and acridine orange (Bacskai et al., 2003; Klunk et al., 2002, 2004, 2001, 2003; Kung et al., 2001, 2004, 2002, 2003; Lee et al., 2001; Link et al., 2001; Mathis et al., 2002, 2001, 2003; Ono et al., 2003; Shimadzu et al., 2003; Skovronsky et al., 2000; Zhang et al., 2005a; Zhuang et al., 2001). The removal of the methyl group eliminated the charged quaternary amine from the heterocycle portion of the ThT, resulting in a basic Benzothiazole-aniline scaffold. PiB is a derivative of Thioflavin T, a fluorescent dye commonly used to assess fibrillisation into ␤-sheet conformation, (LeVine, 1999) and as such PiB has been shown to bind to fibrillar A␤ in neuritic

3

plaques and to a range of additional A␤ containing lesions including diffuse plaques and cerebral amyloid angiopathy (CAA), (Lockhart et al., 2007) as well as to A␤ oligomers—albeit with lower affinity. (Maezawa et al., 2008). The introduction of PiB was a game-changer. For the first time there was a selective A␤ tracer that allow the noninvasive assessment of A␤ pathology in vivo. Since then, human A␤ imaging studies have been conducted in AD patients, normal controls and patients with other dementias using 11 C-PiB (Klunk et al., 2004) (Fig. 1), as well as other 11 C or 18 F tracers, that can be classified as first generation tracers following very close on the steps of PiB such as 11 C-SB13 (Verhoeff et al., 2004), 11 C-ST1859 (Bauer et al., 2006), 11 C-BF227 (Kudo et al., 2007), 11 C-AZD2138 (Nyberg et al., 2009). A second generation of tracers labeled with 18 F such as 18 F-florbetaben (Rowe et al., 2008) 18 F-flutemetamol (Serdons et al., 2009a), and 18 F-florbetapir (Wong et al., 2010) (Fig. 1). These three tracers have already been approved for clinical application in the US and Europe by the FDA and EMA, respectively. The best characterized candidate of the third generation of A␤ PET tracers is 18 F-NAV4694-a.k.a. as AZD4694- (Cselenyi et al., 2012; Rowe et al., 2013b) (Fig. 1). The first generation: the life and times of PiB. 11 C-PiB, (PiB) the most successful and widely used of the A␤ tracers has high affinity and high selectivity for fibrillar A␤ in plaques and in other A␤ containing lesions (Cohen et al., 2012; Klunk et al., 2001; Mathis et al., 2002, 2005; Price et al., 2005; Ye et al., 2005). PiB also displays a much lower affinity toward other misfolded proteins with a similar ␤-sheet secondary structure such as ␣-synuclein (FoderoTavoletti et al., 2007; Ye et al., 2008) and tau (Ikonomovic et al., 2008; Lockhart et al., 2007). Most importantly, these studies have shown that, at the concentrations achieved during a PET scan, 11 CPiB cortical brain retention primarily reflects A␤-related cerebral amyloidosis and not binding to Lewy bodies (LB) or NFT (FoderoTavoletti et al., 2007; Ikonomovic et al., 2008; Klunk et al., 2003; Lockhart et al., 2007). 11 C-PiB has consistently provided quantitative information on A␤ burden in vivo, contributing new insights into A␤ deposition in the brain, allowing earlier detection of AD pathology (Cohen et al., 2012; Klunk et al., 2004; Mintun et al., 2006; Rowe et al., 2007) and accurate differential diagnosis of the dementias (Ng et al., 2007; Rabinovici et al., 2007; Rowe et al., 2007). Post mortem studies using [11 C]PiB revealed high correlations with regional A␤ retention as measured at autopsy (Ikonomovic et al., 2012), as well as with A␤1-42 in CSF (Zwan et al., 2014). The second generation: worldwide access to amyloid imaging. Unfortunately, the 20-min radioactive decay half-life of carbon-11 (11 C) limits the use of 11 C-PiB to centers with an on-site cyclotron and 11 C radiochemistry expertise, making routine clinical use very expensive. To overcome these limitations, several A␤ tracers labeled with fluorine-18 (18 F; half-life of 110 min) were developed allowing centralized production and regional distribution as is routinely done with FDG. This second generation of 8 F labeled A␤-specific radiotracers, 18 F-florbetapir, (Clark et al., 2011; Wong et al., 2010), 18 F-florbetaben, (Barthel et al., 2011; Rowe et al., 2008; Villemagne et al., 2011a) and 18 F-flutemetamol, (Nelissen et al., 2009; Vandenberghe et al., 2010) replicated the results obtained with 11 C-PiB and expanded the access to amyloid imaging around the world. 18 F-florbetaben. 18 F-florbetaben, (a.k.a. 18 F-AV-1, 18 F-BAY-949172, Neuraceq® ) synthesized by Kung et al. (Zhang et al., 2005b) and developed by Bayer Healthcare and market by Piramal Imaging, binds with high affinity to A␤ in plaques and CAA in post-mortem brain tissue sections with lack of binding to Lewy bodies or NFT at low nanomolar concentrations (Fodero-Tavoletti et al., 2012; Zhang et al., 2005b). Florbetaben accurately disriminated AD from clinically normal controls and FTLD patients with high sensitivity

Please cite this article in press as: Villemagne, V.L., Amyloid imaging: Past, present and future perspectives. Ageing Res. Rev. (2016), http://dx.doi.org/10.1016/j.arr.2016.01.005

G Model ARR-636; No. of Pages 12 4

ARTICLE IN PRESS V.L. Villemagne / Ageing Research Reviews xxx (2016) xxx–xxx

Fig. 1. A␤ ligands in Alzheimer’s disease. Chemical structure of first (PiB), second (florbetapir, florbetaben, flutemetamol), and third (NAV4694) generation of A␤ ligands that have been used in clinical studies (left column). Surface projection showing the typical regional distribution of A␤ in the brain of AD patients. High tracer retention is observed in prefrontal, temporal and parietal cortices as well as in the anterior and posterior cingulate/precuneus areas, with relative sparing of occipital and sensori-motor cortex (right column).

and specificity to detect high A␤ burden against clinical diagnosis (Barthel et al., 2011; Rowe et al., 2008) and was able to rule out the presence of AD pathology in a mixed population of cognitive impaired subjects (Villemagne et al., 2011a). In MCI patients, [18 F]florbetaben was correlated with episodic memory and showed a predictive accuracy of 83% for conversion to AD after 2 years, and up to 94% after 4 years (Ong et al.). Global and regional 18 F-florbetaben retention was highly correlated with [11 C]PiB retention (Villemagne et al., 2012a). A multicenter phase 3 trail confirmed that florbetaben PET was able to detect cortical fibrillar A␤ plaques as assessed by visual reading with 98% sensitivity and 89% specificity sensitivity against histopathology (Sabri et al., 2015). [18 F]florbetaben received FDA and EMA approval for clinical use in February and March 2014, respectively. 18 F-florbetapir. As 18 F-florbetaben, 18 F-florbetapir (18 F-AV-45, Amyvid® ), is a stilbene derivative, also synthesized by Kung et al. at the University of Pennsylvania, (Zhang et al., 2005a) and developed by Avid Radiopharmaceuticals. Initial in vitro evaluation showed binding to A␤ plaques in AD brain sections (Choi et al., 2009; Lin et al., 2009). Florbetapir is characterized by its rapid reversible binding characteristics allowing scanning at just 45–50 min after injection, similar to 11 C-PiB (Wong et al., 2010). In a direct comparison study, [18 F]florbetapir was highly correlated with PiB (Landau et al., 2014) and found suitable to discriminate AD from controls (Wong et al., 2010). Several multicenter phase I and II studies along the AD spectrum have shown the ability of 18 F-florbetapir to discriminate between subjects with high or low 18 F-florbetapir retention (Fleisher et al., 2011). Multicenter studies using 18 Fflorbetapir to assess the relationship between A␤ burden and cognition, showed that in clinically normal older individuals A␤ burden in the brain is associated with poorer memory performance (Sperling et al., 2013) while MCI subjects with high A␤ burden in the brain are at a significantly higher risk of cognitive decline over 3 years (Doraiswamy et al., 2012, 2014). An initial Phase III study demonstrated a 96% agreement between 18 F-florbetapir and neuropathology for the detection of brain A␤ in vivo, and no retention in young controls (Clark et al., 2011). An extension of the same Phase III established 18 F-florbetapir has a 92% sensitivity and a 100% specificity for the detection of A␤ pathology (Clark et al., 2012), similar to the finding using a semiquantitative approach

(Camus et al., 2012). [18 F]Florbetapir was the first radiotracer—and the first 18 F labeled radiotracer approved by since FDG- approved by the Food and Drug Administration (FDA; April 2012) and the European Medicines Agency (EMA; January 2013) 18 F-florbetapir (Lister-James et al., 2011) has become the most widely used A␤ radiotracer after 11 C-PiB, and has been adopted as the A␤ radiotracer for ADNI2, and also used in patient selection and to evaluate treatment response in a large number of multicenter therapeutic trials around the world (Reiman et al., 2011; Sperling et al., 2014). 18 F-flutemetamol. [18 F]flutemetamol (a.k.a. GE–067, Vizamyl® ) is another second generation A␤ tracer, a fluoroderivative of [11 C]PiB developed by GE Healthcare (Serdons et al., 2009a,b). Phase I and II studies, demonstrated that 18 Fflutemetamol can robustly differentiate between AD and HC with a sensitivity and specificity of 93% (Nelissen et al., 2009; Vandenberghe et al., 2010) and that when combined with brain atrophy it could accurately predict disease progression in MCI subjects (Duara et al., 2012; Thurfjell et al., 2012). 18 F-flutemetamol brain retention is also highly correlated with 11 C-PIB (Vandenberghe et al., 2010), and with A␤ burden as measured immunohistochemical assessment of brain biopsy tissue (Wolk et al., 2011; Wong et al., 2012). A recently completed a phase III study established 18 F-flutemetamol has a 88% sensitivity and specificity for the detection of A␤ pathology (Curtis et al., 2015). 18 F]flutemetamol received FDA approval in October 2013 and EMA approval in September 2014 under the brand name of Vizamyl® The third generation: ironing creases. While the cortical retention of second generation fluorinated tracers—18 F-florbetapir, 18 Fflorbetaben, and 18 F-flutemetamol- yield a robust separation of AD from HC, the actual degree of cortical retention with 18 F-florbetapir and 18 F-florbetaben is lower than with 11 C-PiB, (Villemagne et al., 2012a; Wolk et al., 2012b) showing a narrower dynamic range of semiquantitative values, that visually appears as a relatively higher degree of non-specific binding to white matter. While the cortical retention of 18 F-flutemetamol is similar to that of 11 C-PiB, the nonspecific retention in white matter is much higher (Vandenberghe et al., 2010). Due to this lower signal-to-noise ratio, visual readouts of the images are more challenging than with 11 C-PiB (Rowe and Villemagne, 2011). While PiB PET images in subjects with AD

Please cite this article in press as: Villemagne, V.L., Amyloid imaging: Past, present and future perspectives. Ageing Res. Rev. (2016), http://dx.doi.org/10.1016/j.arr.2016.01.005

G Model ARR-636; No. of Pages 12

ARTICLE IN PRESS V.L. Villemagne / Ageing Research Reviews xxx (2016) xxx–xxx

pathology usually clearly show high radiotracer retention in the gray matter in excess of that in subjacent white matter, early cortical A␤ deposition of these second generation fluorinated tracers usually appears as a loss of the normal gray–white matter demarcation (Rowe and Villemagne, 2011). For novel A␤ radiotracers to be adopted by the wider community, they do have to really outperform the currently available tracers, or provide something unique that the others cannot deliver or deliver but not in a completely satisfactorily way. To our knowledge, only one radiofluorinated tracer seems to perform better that those in the previous generation. 18 F-NAV4694. Developed by Astra-Zeneca and subsequently by Navidea, 18 F–NAV4694 (a.k.a. 18 F-AZD4694) main features are fast tracer kinetics reaching aparent steady state about 40 min after injection of the tracer and, more importantly, low non-specific binding to white matter, similar to the one observed with 11 C-PiB, suggesting it might be helpful for the detection of small A␤ cortical deposits at very early stages of the disease process (Jureus et al., 2010; Sundgren-Andersson et al., 2009). Initial clinical studies assessing six healthy controls and ten AD patients both by visual inspection and quantitative measures showed a robust distinction in 18 F-NAV4694 retention between groups (Cselenyi et al., 2012). Direct comparison with [11 C]PiB revealed that [18 F]NAV4694 showed almost identical binding kinetics, dynamic retention range, and low non-specific binding to white matter with an excellent correlation between [18 F]NAV4694 and [11 C]PiB cortical retention (Rowe et al., 2008). While another Astra-Zeneca developed A␤ radiotracer, 11 C–AZD2138, displayed very low non-specific binding to white matter (Johnson et al., 2009; Nyberg et al., 2009), being radiolabeled with C-11 precludes its widespread, exactly the same way as with PiB.

3. A␤ imaging in Alzheimer’s disease To date, the vast majority of the A␤ imaging literature is based on 11 C-PiB studies, but with the advent and more frequent use of second generation tracers the landscape is changing. On visual inspection, as well as in quantitative and semiquantitative PET studies of the different A␤ radiotracers there is a marked difference in tracer retention between AD patients and age-matched controls (Barthel et al., 2011; Camus et al., 2012; Cselenyi et al., 2012; Fleisher et al., 2011; Furst et al., 2010; Jack et al., 2008; Klunk et al., 2004; Kudo et al., 2007; Mintun et al., 2006; Morris et al., 2009; Pike et al., 2007; Price et al., 2005; Rabinovici et al., 2007; Rowe et al., 2010, 2007; Villemagne et al., 2011a), with more than 90% of AD patients showing high cortical tracer retention higher in frontal, cingulate, precuneus, striatum, parietal, and lateral temporal cortices, while occipital, sensorimotor and mesial temporal cortices are much less affected (Fig. 1). These PET images present a pattern of radiotracer retention that seems to replicate the sequence of A␤ deposition described in autopsy studies, (Braak and Braak, 1997) but also similar to the anatomy of the ‘default network’ (Drzezga et al., 2011; Sperling et al., 2009). The regional distribution of these tracers varies with the characteristics of A␤ distribution among the different genotypes and phenotypes. For example, carriers of mutations associated with familial AD, (Klunk et al., 2007; Villemagne et al., 2009a) subjects with posterior cortical atrophy, (Ng et al., 2007; Tenovuo et al., 2008), or CAA (Dierksen et al., 2010; Johnson et al., 2007) presenting a different pattern of tracer retention to the one observed in sporadic AD. (Klunk et al., 2004; Rowe et al., 2007) While the accuracy of clinical assessments for the diagnosis of AD ranges between 70-90%, the regional retention of A␤ radiotracers is highly correlated with regional A␤ plaques as reported at autopsy or biopsy (Clark et al., 2011; Ikonomovic et al., 2008; Sojkova et al., 2011; Wolk et al., 2011), with higher A␤ burden in

5

the frontal cortex than in hippocampus, consistent with previous reports (Naslund et al., 2000). About 25–35% of cognitively unimpaired elderly subjects present with high A␤ burden (Aizenstein et al., 2008; Mintun et al., 2006; Rowe et al., 2010, 2007; Villemagne et al., 2008), in perfect agreement with post mortem reports (Davies et al., 1988; Morris and Price, 2001), and likely to reflect preclinical AD (Price and Morris, 1999). While neuropsychological examination show that individuals with high A␤ burden perform within the normal limits, they do perform worse, and have a higher risk for disease progression than those with low A␤ burden (Rowe et al., 2013a; Sperling et al., 2013). The detection of A␤ pathology at the presymptomatic stage is of crucial importance because if this group truly represents preclinical AD, (Price and Morris, 1999; Thal et al., 2004) it is precisely the group that may benefit the most from therapies aimed at reducing or eliminating A␤ from the brain (Sperling et al., 2011). Furthermore, and one of the most important conclusions to be drawn from all these A␤ imaging studies, is that the likelihood of a cognitively unimpaired individual with low A␤ burden in the brain developing AD dementia is extremely small (Rowe et al., 2013a; Villemagne et al., 2011b). A␤ imaging has proven useful in identifying AD pathology in about 50–70% of individuals fulfilling criteria for MCI (Forsberg et al., 2008; Kemppainen et al., 2007; Mormino et al., 2009; Petersen, 2000; Pike et al., 2007; Winblad et al., 2004). Most studies reported that subjects classified as non-amnestic MCI −and more specifically those classified as non-amnestic single domain MCI- show low A␤ burden in the brain, consistent with a non-AD underlying pathological process (Pike et al., 2007; Villemagne et al., 2011b). Although at the early MCI stages A␤ and hippocampal volume have independent effects on cognition(Ong et al., 2013), at the late MCI stage, is thought that the A␤-related impairment is mediated by hippocampal atrophy, (Mormino et al., 2009; Ong et al., 2014) and modulated by cognitive reserve (Rentz et al., 2010; Roe et al., 2008). Both post-mortem (Bennett et al., 2006; Price and Morris, 1999) and A␤ imaging studies (Jack et al., 2013; Villemagne et al., 2013) indicate that A␤ deposition starts decades before the dementia phenotype is manifested, and non-demented individuals with high A␤ burden in the brain are at a much greater risk of cognitive decline (Resnick et al., 2010; Rowe et al., 2013a; Villemagne et al., 2011b; Villemagne et al., 2008), highlighting the clinical relevance and potential impact in patient management of A␤ imaging. The fact that high A␤ burden relates to episodic memory impairment in non-demented individuals, and that is associated with a significant higher risk of cognitive impairment, emphasizes the non-benign nature of A␤, and supports the hypothesis that A␤ deposition occurs well before the onset of symptoms, further suggesting that early disease-specific therapeutic intervention at the presymptomatic stage might be the most promising approach to either delay onset or halt disease progression (Sperling et al., 2011). On the other hand, the prevalence of high A␤ deposition among nondemented individuals, added to the absence of a strong association between A␤ deposition and measures of cognition, synaptic activity and neurodegeneration in AD, suggests that A␤ is an early and necessary, though not sufficient, cause for cognitive decline in AD, (Sojkova and Resnick, 2011; Villemagne et al., 2008) indicating that other -A␤-dependent or independent- factors, such as acceleration and/or spreading of preexisting tau aggregation beyond the MTL, lead to synaptic failure and eventually neuronal loss in cortical association areas, play a crucial role in cognitive decline and disease progression. Other factors such as age, years of education, IQ, occupational level, and brain volume among others, under the umbrella of “cognitive reserve”, appear to play a modulatory role between A␤ deposition and cognition (Chetelat et al., 2010; Roe et al., 2008). In regards to some of these environmental variables, age is the strongest risk factor in sporadic AD, with the prevalence of the dis-

Please cite this article in press as: Villemagne, V.L., Amyloid imaging: Past, present and future perspectives. Ageing Res. Rev. (2016), http://dx.doi.org/10.1016/j.arr.2016.01.005

G Model ARR-636; No. of Pages 12 6

ARTICLE IN PRESS V.L. Villemagne / Ageing Research Reviews xxx (2016) xxx–xxx

ease increasing exponentially with age. These risks are increased in the presence of the most consistent genetic risk factor associated with sporadic AD, the ApoE ␧4 allele (Farrer et al., 1997). The presence of the ApoE ␧4 allele has been associated with an earlier age of onset, and a gene dose dependent higher risk of developing AD (Farrer et al., 1997). Examination of ApoE ␧4 allele status revealed that, independent of clinical classification, ␧4 carriers present with significantly higher A␤ burdens than non-␧4 carriers, further emphasizing the crucial role ApoE plays in A␤ metabolism (Morris et al., 2010; Reiman et al., 2009; Rowe et al., 2010). Although ApoE ␧4 carriage is associated with higher A␤ burdens and early disease onset, it has no effect on the rates of A␤ deposition (Villemagne et al., 2013). A␤ imaging is also proving useful in the characterization of autosomal mutations in APP or presenilin 1 or 2 genes that lead to the overproduction of A␤, where mutation carriers present with abnormal A␤ deposition up to 25 years before the onset of dementia (Bateman et al., 2012; Benzinger et al., 2013). These studies are helping validate the relevance and change over time of several biomarkers (Benzinger et al., 2013; Fagan et al., 2014), assessments that are being applied to better-targeted disease specific therapeutic strategies (Mills et al., 2013). A␤ imaging has also been applied to a wide spectrum of neurodegenerative conditions. Although lower than in AD, similar patterns of A␤ deposition are usually observed in Dementia with Lewy bodies (DLB) (Gomperts et al., 2008; Maetzler et al., 2009; Rowe et al., 2007). While there is usually no detectable A␤ burden in patients with sporadic CJD (Villemagne et al., 2009b) or those diagnosed with FTLD (Drzezga et al., 2008; Rabinovici et al., 2007; Rowe et al., 2007) with the exception of patients presenting with logopenic aphasia that do have high A␤ burden in the brain, and are thought to represent a language-onset variant of AD (Leyton et al., 2011; Rabinovici et al., 2008). In contrast with FTLD, and as confirmed by autopsy and A␤ imaging studies, more than half of DLB patients present with high A␤ deposition (McKeith et al., 2005; Rowe et al., 2008). Therefore, differential diagnosis from AD can be better accomplished by assessing the integrity of the dopaminergic nigrostriatal terminals (Villemagne et al., 2012b). A␤ imaging has also facilitated differential diagnosis in cases of in patients with atypical presentations of dementia (Ng et al., 2007; Wolk et al., 2012a). Another rapidly expanding area is the examination of potential association between fluid and imaging biomarkers of pathology or neurodegeneration, and how these biomarker constructs are used to establish the criteria for the different stages of the disease (Albert et al., 2011; Clark et al., 2008; McKhann et al., 2011; Morris et al., 2005; Storandt et al., 2012; Thal et al., 2006). Clinical criteria for appropriate use of A␤ imaging has been established emphasizing the need to integrate the result of A␤ imaging with a comprehensive cognitive and clinical evaluation performed by a dementia specialist, to ensure a adequate patient management (Johnson et al., 2013). The criteria clearly stipulate the specific cases where A␤ imaging should be used, such as patients with persistent or progressive unexplained cognitive impairment, progressive atypical or unclear clinical presentation of dementia, or dementia onset in individuals 65 years or younger (Johnson et al., 2013). It also outlines the inappropriate use of A␤ imaging, such as cases of probable AD with typical age of onset or to determine dementia severity, asymptomatic individuals or unconfirmed cognitive complaint, a family history of dementia or presence of the ApoE ␧4 allele, as well as non-medical use such in litigation of for insurance purposes (Johnson et al., 2013). A␤ imaging is also assisting to the evaluation of anti-A␤ therapies in several ways, allowing better subject selection, assessing target engagement and evaluating treatment response of patients for therapy trials and providing a means to measure their impact

on A␤ burden (Ostrowitzki et al., 2011; Rinne et al., 2010; Salloway et al., 2014). 4. Future perspectives Alzheimer’s disease is a neurodegenerative disorder characterized by a slow but relentless progressive cognitive decline and memory loss. It has a devastating effect not only on the sufferer but also on their caregivers, with a tremendous socioeconomic impact not only on families but also on the health system, which will only increase in the upcoming years. The neuropathologic hallmarks of the disease are extracellular deposits of A␤ in senile plaques, NFT, with selective neuronal and synaptic loss in cortical areas of the brain associated with cognitive and memory functions. A␤ is the main component of the amyloid plaques. All the available evidence points at the breakdown of the economy of A␤ as playing the key role in AD pathogenesis. Genetic studies have shed light into the pathogenesis and progression of AD. To date four genes have been linked to autosomal dominant, early onset familial AD: APP, PS1, PS2 and ApoE. All mutations linked to APP and PS proteins lead to an increase in A␤ production. A␤ not only aggregates into amyloid plaques but is toxic per se, while having an effect on intracellular tangle formation and other factors (e.g., cytokines, neurotoxins, etc.) that also play an important role in the neurotoxic progression of AD. A␤ is neurotoxic through a number of possible mechanisms including oxidative stress, excitotoxicity, energy depletion, inflammatory response and apoptosis, and while the exact mediated mechanism by which A␤ might produce synaptic loss and neuronal death is controversial, it is believed that a toxic oxidative interaction between various metal species and A␤ triggers an oxidative response with free radical production leading to progressive disruption of neuronal function and ultimately to cell death. At this point there is no cure for AD. A deeper understanding of the molecular mechanism of A␤ formation, degradation and neurotoxicity is being translated into new neuroimaging and therapeutic approaches. Most of the approved palliative treatments regimens involve the use of acetylcholinesterase inhibitors, glutamatergic agents, nonsteroidal antiinflammatory drugs, as well as antioxidants. The most promising approaches focus on either reducing A␤ formation through secretase inhibitors or increasing its removal either by immunotherapy or MPAC aiming at blocking the formation of A␤ oligomers and fibrils therefore inhibiting neurotoxicity. Currently, the clinical diagnosis of AD is based on progressive impairment of memory and decline in at least one other cognitive domain, and by excluding other diseases with structural neuroimaging techniques (CT or MRI). This approach is sensitive and specific enough for the diagnosis of AD only at the mid or late stages of the disease. The development of a reliable method of assessing A␤ amyloid burden in vivo may permit early diagnosis at presymptomatic stages, more accurate differential diagnosis, while also allowing treatment follow up. Because new treatment strategies to prevent or slow disease progression through early-intervention are being developed and implemented, there is an urgent need for early disease recognition, which is reflected in the necessity of developing sensitive and specific biomarkers, specific for a particular trait underlying the pathological process, as adjuncts to clinical and neuropsychological tests. Non-invasive in vivo amyloid imaging might be able to address some of these important issues. Acknowledgements This work was supported in part by grant 1071430 of the National Health and Medical Research Council (NHMRC) of

Please cite this article in press as: Villemagne, V.L., Amyloid imaging: Past, present and future perspectives. Ageing Res. Rev. (2016), http://dx.doi.org/10.1016/j.arr.2016.01.005

G Model ARR-636; No. of Pages 12

ARTICLE IN PRESS V.L. Villemagne / Ageing Research Reviews xxx (2016) xxx–xxx

Australia. VLV is supported by the NHMRC through a Senior Research Fellowship.

References Agdeppa, E.D., Kepe, V., Liu, J., Flores-Torres, S., Satyamurthy, N., Petric, A., Cloe, G.M., Small, G.W., Huang, S.C., Barrio, J.R., 2001a. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for ß-amyloid plaques in Alzheimer’s disease. J. Neurosci. 21, RC189. Agdeppa, E.D., Kepe, V., Shoghi-Jadid, K., et al., 2001b. In vivo and in vitro labeling of plaques and tangles in the brain of an Alzheimer’s disease patient: a case study. J. Nucl. Med. Agdeppa, E.D., Kepe, V., Petri, A., Satyamurthy, N., Liu, J., Huang, S.C., Small, G.W., Cole, G.M., Barrio, J.R., 2003. In vitro detection of (S)-naproxen and ibuprofen binding to plaques in the Alzheimer’s brain using the positron emission tomography molecular imaging probe 2-(1-[6-[(2-[(18)F]fluoroethyl)(methyl) amino]-2-naphthyl]ethylidene) malononitrile. Neuroscience 117, 723–730. Aizenstein, H.J., Nebes, R.D., Saxton, J.A., Price, J.C., Mathis, C.A., Tsopelas, N.D., Ziolko, S.K., James, J.A., Snitz, B.E., Houck, P.R., Bi, W., Cohen, A.D., Lopresti, B.J., Dekosky, S.T., Halligan, E.M., Klunk, W.E., 2008. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch. Neurol. 65, 1509–1517. Albert, M.S., Dekosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., Gamst, A., Holtzman, D.M., Jagust, W.J., Petersen, R.C., Snyder, P.J., Carrillo, M.C., Thies, B., Phelps, C.H., 2011. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Demen. 7, 270–279. Bacskai, B.J., Hickey, G.A., Skoch, J., Kajdasz, S.T., Wang, Y., Huang, G.F., Mathis, C.A., Klunk, W.E., Hyman, B.T., 2003. Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-beta ligand in transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 100, 12462–12467. Barrio, J.R., Huang, S.C., Cole, G., Satyamurthy, N., Petric, A., Phelps, M.E., Small, G., 1999. PET imaging of tangles and plaques in Alzheimer disease with a highly lipophilic probe. J. Labelled Compd. Radiopharm. 42, S194–S195. Barthel, H., Gertz, H.J., Dresel, S., Peters, O., Bartenstein, P., Buerger, K., Hiemeyer, F., Wittemer-Rump, S.M., Seibyl, J., Reininger, C., Sabri, O., 2011. Cerebral amyloid-beta PET with florbetaben ((18)F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 10, 424–435. Bateman, R.J., Xiong, C., Benzinger, T.L., Fagan, A.M., Goate, A., Fox, N.C., Marcus, D.S., Cairns, N.J., Xie, X., Blazey, T.M., Holtzman, D.M., Santacruz, A., Buckles, V., Oliver, A., Moulder, K., Aisen, P.S., Ghetti, B., Klunk, W.E., McDade, E., Martins, R.N., Masters, C.L., Mayeux, R., Ringman, J.M., Rossor, M.N., Schofield, P.R., Sperling, R.A., Salloway, S., Morris, J.C., 2012. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 367, 795–804. Bauer, M., Langer, O., Dal-Bianco, P., Karch, R., Brunner, M., Abrahim, A., Lanzenberger, R., Hofmann, A., Joukhadar, C., Carminati, P., Ghirardi, O., Piovesan, P., Forloni, G., Corrado, M.E., Lods, N., Dudczak, R., Auff, E., Kletter, K., Muller, M., 2006. A positron emission tomography microdosing study with a potential antiamyloid drug in healthy volunteers and patients with Alzheimer’s disease. Clin. Pharmacol. Ther. 80, 216–227. Bennett, D.A., Schneider, J.A., Arvanitakis, Z., Kelly, J.F., Aggarwal, N.T., Shah, R.C., Wilson, R.S., 2006. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66, 1837–1844. Benveniste, H., Einstein, G., Kim, K.R., Hulette, C., Johnson, G.A., 1999. Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc. Natl. Acad. Sci. U. S. A. 96, 14079–14084. Benzinger, T.L., Blazey, T., Jack Jr., C.R., Koeppe, R.A., Su, Y., Xiong, C., Raichle, M.E., Snyder, A.Z., Ances, B.M., Bateman, R.J., Cairns, N.J., Fagan, A.M., Goate, A., Marcus, D.S., Aisen, P.S., Christensen, J.J., Ercole, L., Hornbeck, R.C., Farrar, A.M., Aldea, P., Jasielec, M.S., Owen, C.J., Xie, X., Mayeux, R., Brickman, A., McDade, E., Klunk, W., Mathis, C.A., Ringman, J., Thompson, P.M., Ghetti, B., Saykin, A.J., Sperling, R.A., Johnson, K.A., Salloway, S., Correia, S., Schofield, P.R., Masters, C.L., Rowe, C., Villemagne, V.L., Martins, R., Ourselin, S., Rossor, M.N., Fox, N.C., Cash, D.M., Weiner, M.W., Holtzman, D.M., Buckles, V.D., Moulder, K., Morris, J.C., 2013. Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 110, E4502–4509. Bobinski, M., de Leon, M.J., Convit, A., De Santi, S., Wegiel, J., Tarshish, C.Y., Saint Louis, L.A., Wisniewski, H.M., 1999. MRI of entorhinal cortex in mild Alzheimer’s disease. Lancet 353, 38–40. Braak, H., Braak, E., 1997. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol. Aging 18, 351–357. Bresjanac, M., Smid, L.M., Vovko, T.D., Petric, A., Barrio, J.R., Popovic, M., 2003. Molecular-imaging probe 2-(1-[6-[(2-fluoroethyl)(methyl)amino]-2-naphthyl]ethylidene) malononitrile labels prion plaques in vitro. J. Neurosci. 23, 8029–8033. Camargo, E.E., 2001. Brain SPECT in neurology and psychiatry. J. Nucl. Med. 42, 611–623. Camus, V., Payoux, P., Barre, L., Desgranges, B., Voisin, T., Tauber, C., La Joie, R., Tafani, M., Hommet, C., Chetelat, G., Mondon, K., de La Sayette, V., Cottier, J.P., Beaufils, E., Ribeiro, M.J., Gissot, V., Vierron, E., Vercouillie, J., Vellas, B., Eustache, F., Guilloteau, D., 2012. Using PET with (18)F-AV-45 (florbetapir) to

7

quantify brain amyloid load in a clinical environment. Eur. J. Nucl. Med. Mol. Imaging. Cappai, R., White, A.R., 1999. Amyloid beta. Int. J. Biochem. Cell Biol. 31, 885–889. Chang, C.Y., Silverman, D.H., 2004. Accuracy of early diagnosis and its impact on the management and course of Alzheimer’s disease. Expert Rev. Mol. Diagn. 4, 63–69. Chetelat, G., Desgranges, B., de la Sayette, V., Viader, F., Berkouk, K., Landeau, B., Lalevee, C., Le Doze, F., Dupuy, B., Hannequin, D., Baron, J.C., Eustache, F., 2003. Dissociating atrophy and hypometabolism impact on episodic memory in mild cognitive impairment. Brain 126, 1955–1967. Chetelat, G., Eustache, F., Viader, F., De La Sayette, V., Pelerin, A., Mezenge, F., Hannequin, D., Dupuy, B., Baron, J.C., Desgranges, B., 2005. FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment. Neurocase 11, 14–25. Chetelat, G., Villemagne, V.L., Pike, K.E., Baron, J.C., Bourgeat, P., Jones, G., Faux, N.G., Ellis, K.A., Salvado, O., Szoeke, C., Martins, R.N., Ames, D., Masters, C.L., Rowe, C.C., 2010. Larger temporal volume in elderly with high versus low beta-amyloid deposition. Brain 133, 3349–3358. Choi, S.R., Golding, G., Zhuang, Z., Zhang, W., Lim, N., Hefti, F., Benedum, T.E., Kilbourn, M.R., Skovronsky, D., Kung, H.F., 2009. Preclinical properties of 18F-AV-45: a PET agent for Abeta plaques in the brain. J. Nucl. Med. 50, 1887–1894. Clark, C.M., Davatzikos, C., Borthakur, A., Newberg, A., Leight, S., Lee, V.M., Trojanowski, J.Q., 2008. Biomarkers for early detection of Alzheimer pathology. Neurosignals 16, 11–18. Clark, C.M., Schneider, J.A., Bedell, B.J., Beach, T.G., Bilker, W.B., Mintun, M.A., Pontecorvo, M.J., Hefti, F., Carpenter, A.P., Flitter, M.L., Krautkramer, M.J., Kung, H.F., Coleman, R.E., Doraiswamy, P.M., Fleisher, A.S., Sabbagh, M.N., Sadowsky, C.H., Reiman, E.P., Zehntner, S.P., Skovronsky, D.M., 2011. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA 305, 275–283. Clark, C.M., Pontecorvo, M.J., Beach, T.G., Bedell, B.J., Coleman, R.E., Doraiswamy, P.M., Fleisher, A.S., Reiman, E.M., Sabbagh, M.N., Sadowsky, C.H., Schneider, J.A., Arora, A., Carpenter, A.P., Flitter, M.L., Joshi, A.D., Krautkramer, M.J., Lu, M., Mintun, M.A., Skovronsky, D.M., 2012. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-beta plaques: a prospective cohort study. Lancet Neurol. 11, 669–678. Cohen, R.M., Andreason, P.J., Doudet, D.J., Carson, R.E., Sunderland, T., 1997. Opiate receptor avidity and cerebral blood flow in Alzheimer’s disease. J. Neurol. Sci. 148, 171–180. Cohen, A.D., Rabinovici, G.D., Mathis, C.A., Jagust, W.J., Klunk, W.E., Ikonomovic, M.D., 2012. Using Pittsburgh Compound B for in vivo PET imaging of fibrillar amyloid-beta. Adv. Pharmacol. 64, 27–81. Coleman, R.E., 2005. Positron emission tomography diagnosis of Alzheimer’s disease. Neuroimaging Clin. N. Am. 15, 837-846, x. Cselenyi, Z., Jonhagen, M.E., Forsberg, A., Halldin, C., Julin, P., Schou, M., Johnstrom, P., Varnas, K., Svensson, S., Farde, L., 2012. Clinical validation of 18F-AZD4694, an amyloid-beta-specific PET radioligand. J. Nucl. Med. 53, 415–424. Cummings, J.L., Vinters, H.V., Cole, G.M., Khachaturian, Z.S., 1998. Alzheimer’s disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 51, S2–S17, discussion S65–S17. Curtis, C., Gamez, J.E., Singh, U., Sadowsky, C.H., Villena, T., Sabbagh, M.N., Beach, T.G., Duara, R., Fleisher, A.S., Frey, K.A., Walker, Z., Hunjan, A., Holmes, C., Escovar, Y.M., Vera, C.X., Agronin, M.E., Ross, J., Bozoki, A., Akinola, M., Shi, J., Vandenberghe, R., Ikonomovic, M.D., Sherwin, P.F., Grachev, I.D., Farrar, G., Smith, A.P., Buckley, C.J., McLain, R., Salloway, S., 2015. Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol. 72, 287–294. Davies, L., Wolska, B., Hilbich, C., Multhaup, G., Martins, R., Simms, G., Beyreuther, K., Masters, C.L., 1988. A4 amyloid protein deposition and the diagnosis of Alzheimer’s disease: prevalence in aged brains determined by immunocytochemistry compared with conventional neuropathologic techniques. Neurology 38, 1688–1693. De Toledo-Morrell, L., Goncharova, I., Dickerson, B., Wilson, R.S., Bennett, D.A., 2000. From healthy aging to early Alzheimer’s disease: in vivo detection of entorhinal cortex atrophy. Ann. N. Y. Acad. Sci. 911, 240–253. Devanand, D.P., Jacobs, D.M., Tang, M.X., Del Castillo-Castaneda, C., Sano, M., Marder, K., Bell, K., Bylsma, F.W., Brandt, J., Albert, M., Stern, Y., 1997. The course of psychopathologic features in mild to moderate Alzheimer disease. Arch. Gen. Psychiatry 54, 257–263. Dickerson, B.C., Goncharova, I., Sullivan, M.P., Forchetti, C., Wilson, R.S., Bennett, D.A., Beckett, L.A., deToledo-Morrell, L., 2001. MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer’s disease. Neurobiol. Aging 22, 747–754. Dierksen, G.A., Skehan, M.E., Khan, M.A., Jeng, J., Nandigam, R.N., Becker, J.A., Kumar, A., Neal, K.L., Betensky, R.A., Frosch, M.P., Rosand, J., Johnson, K.A., Viswanathan, A., Salat, D.H., Greenberg, S.M., 2010. Spatial relation between microbleeds and amyloid deposits in amyloid angiopathy. Ann. Neurol. 68, 545–548. Doraiswamy, P.M., Sperling, R.A., Coleman, R.E., Johnson, K.A., Reiman, E.M., Davis, M.D., Grundman, M., Sabbagh, M.N., Sadowsky, C.H., Fleisher, A.S., Carpenter, A., Clark, C.M., Joshi, A.D., Mintun, M.A., Skovronsky, D.M., Pontecorvo, M.J., 2012. Amyloid-beta assessed by florbetapir F 18 PET and 18-month cognitive decline: a multicenter study. Neurology 79, 1636–1644. Doraiswamy, P.M., Sperling, R.A., Johnson, K., Reiman, E.M., Wong, T.Z., Sabbagh, M.N., Sadowsky, C.H., Fleisher, A.S., Carpenter, A., Joshi, A.D., Lu, M., Grundman,

Please cite this article in press as: Villemagne, V.L., Amyloid imaging: Past, present and future perspectives. Ageing Res. Rev. (2016), http://dx.doi.org/10.1016/j.arr.2016.01.005

G Model ARR-636; No. of Pages 12 8

ARTICLE IN PRESS V.L. Villemagne / Ageing Research Reviews xxx (2016) xxx–xxx

M., Mintun, M.A., Skovronsky, D.M., Pontecorvo, M.J., Group, A.A.S., Group, A.A.S., 2014. Florbetapir F 18 amyloid PET and 36-month cognitive decline: a prospective multicenter study. Mol. Psychiatry 19, 1044–1051. Drzezga, A., Lautenschlager, N., Siebner, H., Riemenschneider, M., Willoch, F., Minoshima, S., Schwaiger, M., Kurz, A., 2003. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur. J. Nucl. Med. Mol. Imaging 30, 1104–1113. Drzezga, A., Grimmer, T., Riemenschneider, M., Lautenschlager, N., Siebner, H., Alexopoulus, P., Minoshima, S., Schwaiger, M., Kurz, A., 2005. Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG PET. J. Nucl. Med. 46, 1625–1632. Drzezga, A., Grimmer, T., Henriksen, G., Stangier, I., Perneczky, R., Diehl-Schmid, J., Mathis, C.A., Klunk, W.E., Price, J., DeKosky, S., Wester, H.J., Schwaiger, M., Kurz, A., 2008. Imaging of amyloid plaques and cerebral glucose metabolism in semantic dementia and Alzheimer’s disease. Neuroimage 39, 619–633. Drzezga, A., Becker, J.A., Van Dijk, K.R., Sreenivasan, A., Talukdar, T., Sullivan, C., Schultz, A.P., Sepulcre, J., Putcha, D., Greve, D., Johnson, K.A., Sperling, R.A., 2011. Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain 134, 1635–1646. Duara, R., Loewenstein, D.A., Shen, Q., Barker, W., Potter, E., Varon, D., Heurlin, K., Vandenberghe, R., Buckley, C., 2012. Amyloid positron emission tomography with (18)F-flutemetamol and structural magnetic resonance imaging in the classification of mild cognitive impairment and Alzheimer’s disease. Alzheimers Demen. Dubois, B., Feldman, H.H., Jacova, C., Dekosky, S.T., Barberger-Gateau, P., Cummings, J., Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., Meguro, K., O’Brien, J., Pasquier, F., Robert, P., Rossor, M., Salloway, S., Stern, Y., Visser, P.J., Scheltens, P., 2007. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 6, 734–746. Dubois, B., Feldman, H.H., Jacova, C., Cummings, J.L., Dekosky, S.T., Barberger-Gateau, P., Delacourte, A., Frisoni, G., Fox, N.C., Galasko, D., Gauthier, S., Hampel, H., Jicha, G.A., Meguro, K., O’Brien, J., Pasquier, F., Robert, P., Rossor, M., Salloway, S., Sarazin, M., de Souza, L.C., Stern, Y., Visser, P.J., Scheltens, P., 2010. Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol. 9, 1118–1127. de Leon, M.J., Convit, A., DeSanti, S., Bobinski, M., George, A.E., Wisniewski, H.M., Rusinek, H., Carroll, R., Saint Louis, L.A., 1997. Contribution of structural neuroimaging to the early diagnosis of Alzheimer’s disease. Int. Psychogeriatr. 9, 183–190, discussion 247–152. Fagan, A.M., Xiong, C., Jasielec, M.S., Bateman, R.J., Goate, A.M., Benzinger, T.L., Ghetti, B., Martins, R.N., Masters, C.L., Mayeux, R., Ringman, J.M., Rossor, M.N., Salloway, S., Schofield, P.R., Sperling, R.A., Marcus, D., Cairns, N.J., Buckles, V.D., Ladenson, J.H., Morris, J.C., Holtzman, D.M., Dominantly Inherited Alzheimer, N., 2014. Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease. Sci. Transl. Med. 6, 226ra230. Falangola, M.F., Lee, S.P., Nixon, R.A., Duff, K., Helpern, J.A., 2005. Histological co-localization of iron in Abeta plaques of PS/APP transgenic mice. Neurochem. Res. 30, 201–205. Farrer, L.A., Cupples, L.A., Haines, J.L., Hyman, B., Kukull, W.A., Mayeux, R., Myers, R.H., Pericak-Vance, M.A., Risch, N., van Duijn, C.M., 1997. Effects of age sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278, 1349–1356. Fleisher, A.S., Chen, K., Liu, X., Roontiva, A., Thiyyagura, P., Ayutyanont, N., Joshi, A.D., Clark, C.M., Mintun, M.A., Pontecorvo, M.J., Doraiswamy, P.M., Johnson, K.A., Skovronsky, D.M., Reiman, E.M., 2011. Using positron emission tomography and florbetapir F18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease. Arch. Neurol. 68, 1404–1411. Fodero-Tavoletti, M.T., Smith, D.P., McLean, C.A., Adlard, P.A., Barnham, K.J., Foster, L.E., Leone, L., Perez, K., Cortes, M., Culvenor, J.G., Li, Q.X., Laughton, K.M., Rowe, C.C., Masters, C.L., Cappai, R., Villemagne, V.L., 2007. In vitro characterization of Pittsburgh compound-B binding to Lewy bodies. J. Neurosci. 27, 10365–10371. Fodero-Tavoletti, M.T., Brockschnieder, D., Villemagne, V.L., Martin, L., Connor, A.R., Thiele, A., Berndt, M., McLean, C.A., Krause, S., Rowe, C.C., Masters, C.L., Dinkelborg, L., Dyrks, T., Cappai, R., 2012. In vitro characterization of [(18)F]-florbetaben, an Abeta imaging radiotracer. Nucl. Med. Biol. 39, 1042–1048. Forsberg, A., Engler, H., Almkvist, O., Blomquist, G., Hagman, G., Wall, A., Ringheim, A., Langstrom, B., Nordberg, A., 2008. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol. Aging 29, 1456–1465. Friedland, R.P., Shi, J., Lamanna, J.C., Smith, M.A., Perry, G., 2000. Prospects for noninvasive imaging of brain amyloid beta in Alzheimer’s disease. Ann. N. Y. Acad. Sci. 903, 123–128. Furst, A.J., Rabinovici, G.D., Rostomian, A.H., Steed, T., Alkalay, A., Racine, C., Miller, B.L., Jagust, W.J., 2010. Cognition, glucose metabolism and amyloid burden in Alzheimer’s disease. Neurobiol. Aging. Ghilardi, J.R., Catton, M., Stimson, E.R., Rogers, S., Walker, L.C., Maggio, J.E., Mantyh, P.W., 1996. Intra-arterial infusion of [125I]A beta 1-40 labels amyloid deposits in the aged primate brain in vivo. Neuroreport 7, 2607–2611. Gomperts, S.N., Rentz, D.M., Moran, E., Becker, J.A., Locascio, J.J., Klunk, W.E., Mathis, C.A., Elmaleh, D.R., Shoup, T., Fischman, A.J., Hyman, B.T., Growdon, J.H., Johnson, K.A., 2008. Imaging amyloid deposition in Lewy body diseases. Neurology 71, 903–910. Higuchi, M., Yanai, K., Okamura, N., Meguro, K., Arai, H., Itoh, M., Iwata, R., Ido, T., Watanabe, T., Sasaki, H., 2000. Histamine H(1) receptors in patients with

Alzheimer’s disease assessed by positron emission tomography. Neuroscience 99, 721–729. Higuchi, M., Iwata, N., Matsuba, Y., Sato, K., Sasamoto, K., Saido, T.C., 2005. (19)F and (1)H MRI detection of amyloid beta plaques in vivo. Nat. Neurosci. 8, 527–533. Ikonomovic, M.D., Klunk, W.E., Abrahamson, E.E., Mathis, C.A., Price, J.C., Tsopelas, N.D., Lopresti, B.J., Ziolko, S., Bi, W., Paljug, W.R., Debnath, M.L., Hope, C.E., Isanski, B.A., Hamilton, R.L., DeKosky, S.T., 2008. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 131, 1630–1645. Ikonomovic, M.D., Abrahamson, E.E., Price, J.C., Hamilton, R.L., Mathis, C.A., Paljug, W.R., Debnath, M.L., Cohen, A.D., Mizukami, K., Dekosky, S.T., Lopez, O.L., Klunk, W.E., 2012. Early AD pathology in a [C-11]PiB-negative case: a PiB-amyloid imaging, biochemical, and immunohistochemical study. Acta Neuropathol. 123 (3), 433–447. Isacson, O., Seo, H., Lin, L., Albeck, D., Granholm, A.C., 2002. Alzheimers disease and Down’s syndrome: roles of APP, trophic factors and ACh. Trends Neurosci. 25, 79–84. Jack Jr., C.R., Lowe, V.J., Senjem, M.L., Weigand, S.D., Kemp, B.J., Shiung, M.M., Knopman, D.S., Boeve, B.F., Klunk, W.E., Mathis, C.A., Petersen, R.C., 2008. 11C PiB and structural MRI provide complementary information in imaging of Alzheimers disease and amnestic mild cognitive impairment. Brain 131, 665–680. Jack Jr., C.R., Wiste, H.J., Lesnick, T.G., Weigand, S.D., Knopman, D.S., Vemuri, P., Pankratz, V.S., Senjem, M.L., Gunter, J.L., Mielke, M.M., Lowe, V.J., Boeve, B.F., Petersen, R.C., 2013. Brain beta-amyloid load approaches a plateau. Neurology 80, 890–896. Jagust, W., Reed, B., Mungas, D., Ellis, W., Decarli, C., 2007. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology 69, 871–877. Jellinger, K.A., Bancher, C., 1998. Neuropathology of Alzheimer’s disease: a critical update. J. Neural Transm. Suppl. 54, 77–95. Jellinger, K., 1990. Morphology of Alzheimer disease and related disorders. In: Maurer, K., Riederer, P., Beckmann, H. (Eds.), Alzheimer Disease: Epidemiology, Neuropathology, Neurochemistry, and Clinics. Springer-Verlag, Berlin, pp. 61–77. Johnson, K.A., Gregas, M., Becker, J.A., Kinnecom, C., Salat, D.H., Moran, E.K., Smith, E.E., Rosand, J., Rentz, D.M., Klunk, W.E., Mathis, C.A., Price, J.C., Dekosky, S.T., Fischman, A.J., Greenberg, S.M., 2007. Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Ann. Neurol 62, 229–234. Johnson, A.E., Jeppsson, F., Sandell, J., Wensbo, D., Neelissen, J.A., Jureus, A., Strom, P., Norman, H., Farde, L., Svensson, S.P., 2009. AZD2184: a radioligand for sensitive detection of beta-amyloid deposits. J. Neurochem. 108, 1177–1186. Johnson, K.A., Minoshima, S., Bohnen, N.I., Donohoe, K.J., Foster, N.L., Herscovitch, P., Karlawish, J.H., Rowe, C.C., Carrillo, M.C., Hartley, D.M., Hedrick, S., Pappas, V., Thies, W.H., 2013. Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. Alzheimers Demen., e-1-16. Juottonen, K., Laakso, M.P., Insausti, R., Lehtovirta, M., Pitkanen, A., Patanen, K., Soininen, H., 1998. Volumes of the entorhinal and perirhinal cortices in Alzheimer’s disease. Neurobiol. Aging 19, 15–22. Jureus, A., Swahn, B.M., Sandell, J., Jeppsson, F., Johnson, A.E., Johnstrom, P., Neelissen, J.A., Sunnemark, D., Farde, L., Svensson, S.P., 2010. Characterization of AZD4694, a novel fluorinated Abeta plaque neuroimaging PET radioligand. J. Neurochem. 114, 784–794. Kemppainen, N., Ruottinen, H., Nagren, K., Rinne, J.O., 2000. PET shows that striatal dopamine D1 and D2 receptors are differentially affected in AD. Neurology 55, 205–209. Kemppainen, N.M., Aalto, S., Wilson, I.A., Nagren, K., Helin, S., Bruck, A., Oikonen, V., Kailajarvi, M., Scheinin, M., Viitanen, M., Parkkola, R., Rinne, J.O., 2007. PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology 68, 1603–1606. Kennedy, A.M., Frackowiak, R.S., Newman, S.K., Bloomfield, P.M., Seaward, J., Roques, P., Lewington, G., Cunningham, V.J., Rossor, M.N., 1995. Deficits in cerebral glucose metabolism demonstrated by positron emission tomography in individuals at risk of familial Alzheimer’s disease. Neurosci. Lett. 186, 17–20. Kepe, V., Barrio, J.R., Huang, S.C., Ercoli, L., Siddarth, P., Shoghi-Jadid, K., Cole, G.M., Satyamurthy, N., Cummings, J.L., Small, G.W., Phelps, M.E., 2006. Serotonin 1A receptors in the living brain of Alzheimer’s disease patients. Proc. Natl. Acad. Sci. U. S. A. 103, 702–707. Kepe, V., Ghetti, B., Farlow, M.R., Bresjanac, M., Miller, K., Huang, S.C., Wong, K.P., Murrell, J.R., Piccardo, P., Epperson, F., Repovs, G., Smid, L.M., Petric, A., Siddarth, P., Liu, J., Satyamurthy, N., Small, G.W., Barrio, J.R., 2010. PET of brain prion protein amyloid in Gerstmann-Straussler-Scheinker disease. Brain Pathol. 20, 419–430. Kepe, V., Bordelon, Y., Boxer, A., Huang, S.C., Liu, J., Thiede, F.C., Mazziotta, J.C., Mendez, M.F., Donoghue, N., Small, G.W., Barrio, J.R., 2013. PET imaging of neuropathology in tauopathies: progressive supranuclear palsy. J. Alzheimers Dis. 36, 145–153. Khachaturian, Z.S., 1985. Diagnosis of Alzheimer’s disease. Arch. Neurol. 42, 1097–1105. Kikuchi, T., Okamura, T., Zhang, M.R., Irie, T., 2013. PET probes for imaging brain acetylcholinesterase. J. Labelled Compd. Radiopharm. 56, 172–179. Killiany, R.J., Gomez-Isla, T., Moss, M., Kikinis, R., Sandor, T., Jolesz, F., Tanzi, R., Jones, K., Hyman, B.T., Albert, M.S., 2000. Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease. Ann. Neurol. 47, 430–439.

Please cite this article in press as: Villemagne, V.L., Amyloid imaging: Past, present and future perspectives. Ageing Res. Rev. (2016), http://dx.doi.org/10.1016/j.arr.2016.01.005

G Model ARR-636; No. of Pages 12

ARTICLE IN PRESS V.L. Villemagne / Ageing Research Reviews xxx (2016) xxx–xxx

Klunk, W.E., Wang, Y., Huang, G.F., Debnath, M.L., Holt, D.P., Mathis, C.A., 2001. Uncharged thioflavin-T derivatives bind to amyloid-beta protein with high affinity and readily enter the brain. Life Sci. 69, 1471–1484. Klunk, W.E., Bacskai, B.J., Mathis, C.A., Kajdasz, S.T., McLellan, M.E., Frosch, M.P., Debnath, M.L., Holt, D.P., Wang, Y., Hyman, B.T., 2002. Imaging Aß plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative. J. Neuropath Exp. Neurol. 61, 797–805. Klunk, W.E., Wang, Y., Huang, G.F., Debnath, M.L., Holt, D.P., Shao, L., Hamilton, R.L., Ikonomovic, M.D., DeKosky, S.T., Mathis, C.A., 2003. The binding of 2-(4 -methylaminophenyl) benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J. Neurosci. 23, 2086–2092. Klunk, W.E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D.P., Bergström, M., Savitcheva, I., Huang, G.F., Estrada, S., Ausén, B., Debnath, M.L., Barletta, J., Price, J.C., Sandell, J., Lopresti, B.J., Wall, A., Koivisto, P., Antoni, G., Mathis, C.A., Långström, B., 2004. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann. Neurol. 55, 306–319. Klunk, W.E., Price, J.C., Mathis, C.A., Tsopelas, N.D., Lopresti, B.J., Ziolko, S.K., Bi, W., Hoge, J.A., Cohen, A.D., Ikonomovic, M.D., Saxton, J.A., Snitz, B.E., Pollen, D.A., Moonis, M., Lippa, C.F., Swearer, J.M., Johnson, K.A., Rentz, D.M., Fischman, A.J., Aizenstein, H.J., DeKosky, S.T., 2007. Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. J. Neurosci. 27, 6174–6184. Kudo, Y., Okamura, N., Furumoto, S., Tashiro, M., Furukawa, K., Maruyama, M., Itoh, M., Iwata, R., Yanai, K., Arai, H., 2007. 2-(2-[2-Dimethylaminothiazol-5-yl]ethenyl)-6- (2-[fluoro]ethoxy) benzoxazole: a novel pet agent for in vivo detection of dense amyloid plaques in Alzheimer’s disease patients. J. Nucl. Med. 48, 553–561. Kung, H.F., Lee, C.W., Zhuang, Z.P., Kung, M.P., Hou, C., Plossl, K., 2001. Novel stilbenes as probes for amyloid plaques. J. Am. Chem. Soc. 123, 12740–12741. Kung, M.P., Hou, C., Zhuang, Z.P., Zhang, B., Skovronsky, D., Trojanowski, J.Q., Lee, V.M., Kung, H.F., 2002. IMPY: an improved thioflavin-T derivative for in vivo labeling of beta-amyloid plaques. Brain Res. Bull. 956, 202–210. Kung, M.P., Skovronsky, D.M., Hou, C., Zhuang, Z.P., Gur, T.L., Zhang, B., Trojanowski, J.Q., Lee, V.M., Kung, H.F., 2003. Detection of amyloid plaques by radioligands for Abeta40 and Abeta42: potential imaging agents in Alzheimer’s patients. J. Mol. Neurosci. 20, 15–24. Kung, M.P., Hou, C., Zhuang, Z.P., Skovronsky, D., Kung, H.F., 2004. Binding of two potential imaging agents targeting amyloid plaques in postmortem brain tissues of patients with Alzheimer’s disease. Brain Res. 1025, 98–105. Kurihara, A., Pardridge, W.M., 2000. Abeta(1-40) peptide radiopharmaceuticals for brain amyloid imaging: (111)in chelation, conjugation to poly(ethylene glycol)-biotin linkers, and autoradiography with Alzheimer’s disease brain sections. Bioconjug. Chem. 11, 380–386. Landau, S.M., Harvey, D., Madison, C.M., Koeppe, R.A., Reiman, E.M., Foster, N.L., Weiner, M.W., Jagust, W.J., 2009. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol. Aging. Landau, S.M., Thomas, B.A., Thurfjell, L., Schmidt, M., Margolin, R., Mintun, M., Pontecorvo, M., Baker, S.L., Jagust, W.J., the Alzheimer’s Disease Neuroimaging, I, 2014. Amyloid PET imaging in Alzheimer’s disease: a comparison of three radiotracers. Eur. J. Nucl. Med. Mol. Imaging. Larson, E.B., Edwards, J.K., O’Meara, E., Nochlin, D., Sumi, S.M., 1996. Neuropathologic diagnostic outcomes from a cohort of outpatients with suspected dementia. J. Gerontol. A Biol. Sci. Med. Sci. 51 (Suppl. 6), M313–M318. LeVine 3rd, H., 1999. Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol. 309, 274–284. Lee, C.W., Zhuang, Z.P., Kung, M.P., Plossl, K., Skovronsky, D., Gur, T., Hou, C., Trojanowski, J.Q., Lee, V.M., Kung, H.F., 2001. Isomerization of (Z,Z) to (E,E) 1-bromo-2,5-bis-(3-hydroxycarbonyl-4-hydroxy) styrylbenzene in strong base: probes for amyloid plaques in the brain. J. Med. Chem. 44, 2270–2275. Lee, V.M., 2002. Related Amyloid binding ligands as Alzheimer’s disease therapies. Neurobiol. Aging 23, 1039–1042. Leyton, C.E., Villemagne, V.L., Savage, S., Pike, K.E., Ballard, K.J., Piguet, O., Burrell, J.R., Rowe, C.C., Hodges, J.R., 2011. Subtypes of progressive aphasia: application of the International Consensus Criteria and validation using beta-amyloid imaging. Brain 134, 3030–3043. Lin, K.S., Debnath, M.L., Mathis, C.A., Klunk, W.E., 2009. Synthesis and beta-amyloid binding properties of rhenium 2-phenylbenzothiazoles. Bioorg. Med. Chem. Lett 19, 2258–2262. Link, C.D., Johnson, C.J., Fonte, V., Paupard, M., Hall, D.H., Styren, S., Mathis, C.A., Klunk, W.E., 2001. Visualization of fibrillar amyloid deposits in living, transgenic Caenorhabditis elegans animals using the sensitive amyloid dye, X-34. Neurobiol. Aging 22, 217–226. Lister-James, J., Pontecorvo, M.J., Clark, C., Joshi, A.D., Mintun, M.A., Zhang, W., Lim, N., Zhuang, Z., Golding, G., Choi, S.R., Benedum, T.E., Kennedy, P., Hefti, F., Carpenter, A.P., Kung, H.F., Skovronsky, D.M., 2011. Florbetapir f-18: a histopathologically validated Beta-amyloid positron emission tomography imaging agent. Semin. Nucl. Med. 41, 300–304. Lockhart, A., Lamb, J.R., Osredkar, T., Sue, L.I., Joyce, J.N., Ye, L., Libri, V., Leppert, D., Beach, T.G., 2007. PIB is a non-specific imaging marker of amyloid-beta (Abeta) peptide-related cerebral amyloidosis. Brain 130, 2607–2615. Maetzler, W., Liepelt, I., Reimold, M., Reischl, G., Solbach, C., Becker, C., Schulte, C., Leyhe, T., Keller, S., Melms, A., Gasser, T., Berg, D., 2009. Cortical PIB binding in Lewy body disease is associated with Alzheimer-like characteristics. Neurobiol. Dis. 34, 107–112.

9

Maezawa, I., Hong, H.S., Liu, R., Wu, C.Y., Cheng, R.H., Kung, M.P., Kung, H.F., Lam, K.S., Oddo, S., Laferla, F.M., Jin, L.W., 2008. Congo red and thioflavin-T analogs detect Abeta oligomers. J. Neurochem. 104, 457–468. Majocha, R.E., Reno, J.M., Friedland, R.P., Van Haight, C., Lyle, L.R., Marotta, C.A., 1992. Development of a monoclonal antibody specific for ß/A4 amyloid in Alzheimer’s disease brain for application to in vivo imaging of amyloid angiopathy. J. Nucl. Med. 33, 2184–2189. Marshall, J.R., Stimson, E.R., Ghilardi, J.R., Vinters, H.V., Mantyh, P.W., Maggio, J.E., 2002. Noninvasive imaging of peripherally injected Alzheimer’s disease type synthetic A beta amyloid in vivo. Bioconjug. Chem. 13, 276–284. Masters, C.L., Beyreuther, K., 2005. The neuropathology of Alzheimer’s disease in the year 2005. In: Beal, M.F., Lang, A.E., Ludolph, A.C. (Eds.), Neurodegenerative Diseases: Neurobiology, Pathogenesis and Therapeutics. Cambridge University Press, Cambridge, pp. 433–440. Masters, C.L., Simms, G., Weinman, N.A., Multhaup, G., McDonald, B.L., Beyreuther, K., 1985. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. U. S. A. 82, 4245–4249. Masters, C.L., 2005. Neuropathology of Alzheimer’s disease. In: Burns, A., O’Brien, J., Ames, D. (Eds.), Dementia. , 3rd ed. Hodder Arnold, London, pp. 393–407. Mathis, C.A., Holt, D.P., Wang, Y., Huang, G.F., Debnath, M.L., Klunk, W.E., 2001. Lipophilic 11C-labelled thioflavin-T analogues for imaging amyloid plaques in Alzheimer’s disease. J. Labelled Cpd. Radiopharm. 44, S26–S28. Mathis, C.A., Bacskai, B.J., Kajdasz, S.T., McLellan, M.E., Frosch, M.P., Hyman, B.T., Holt, D.P., Wang, Y., Huang, G.F., Debnath, M.L., Klunk, W.E., 2002. A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg. Med. Chem. Lett. 12, 295–298. Mathis, C.A., Wang, Y., Holt, D.P., Huang, G.F., Debnath, M.L., Klunk, W.E., 2003. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J. Med. Chem. 46, 2740–2754. Mathis, C.A., Klunk, W.E., Price, J.C., DeKosky, S.T., 2005. Imaging technology for neurodegenerative diseases: progress toward detection of specific pathologies. Arch. Neurol. 62, 196–200. McKeith, I.G., Dickson, D.W., Lowe, J., Emre, M., O’Brien, J.T., Feldman, H., Cummings, J., Duda, J.E., Lippa, C., Perry, E.K., Aarsland, D., Arai, H., Ballard, C.G., Boeve, B., Burn, D.J., Costa, D., Del Ser, T., Dubois, B., Galasko, D., Gauthier, S., Goetz, C.G., Gomez-Tortosa, E., Halliday, G., Hansen, L.A., Hardy, J., Iwatsubo, T., Kalaria, R.N., Kaufer, D., Kenny, R.A., Korczyn, A., Kosaka, K., Lee, V.M., Lees, A., Litvan, I., Londos, E., Lopez, O.L., Minoshima, S., Mizuno, Y., Molina, J.A., Mukaetova-Ladinska, E.B., Pasquier, F., Perry, R.H., Schulz, J.B., Trojanowski, J.Q., Yamada, M., 2005. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65 (12), 1863–1872. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M., 1984. Clinical Diagnosis of Alzheimers Disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34, 939–944. McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack Jr., C.R., Kawas, C.H., Klunk, W.E., Koroshetz, W.J., Manly, J.J., Mayeux, R., Mohs, R.C., Morris, J.C., Rossor, M.N., Scheltens, P., Carrillo, M.C., Thies, B., Weintraub, S., Phelps, C.H., 2011. The diagnosis of dementia due to Alzheimers disease: recommendations from the National Institute on Aging-Alzheimers Association workgroups on diagnostic guidelines for Alzheimers disease. Alzheimers Demen. 7, 263–269. Michaelis, M.L., Dobrowsky, R.T., Li, G., 2002. Tau neurofibrillary pathology and microtubule stability. J. Mol. Neurosci. 19, 289–293. Mills, S.M., Mallmann, J., Santacruz, A.M., Fuqua, A., Carril, M., Aisen, P.S., Althage, M.C., Belyew, S., Benzinger, T.L., Brooks, W.S., Buckles, V.D., Cairns, N.J., Clifford, D., Danek, A., Fagan, A.M., Farlow, M., Fox, N., Ghetti, B., Goate, A.M., Heinrichs, D., Hornbeck, R., Jack, C., Jucker, M., Klunk, W.E., Marcus, D.S., Martins, R.N., Masters, C.M., Mayeux, R., McDade, E., Morris, J.C., Oliver, A., Ringman, J.M., Rossor, M.N., Salloway, S., Schofield, P.R., Snider, J., Snyder, P., Sperling, R.A., Stewart, C., Thomas, R.G., Xiong, C., Bateman, R.J., 2013. Preclinical trials in autosomal dominant AD: implementation of the DIAN-TU trial. Rev. Neurol. (Paris) 169, 737–743. Mintun, M.A., Larossa, G.N., Sheline, Y.I., Dence, C.S., Lee, S.Y., Mach, R.H., Klunk, W.E., Mathis, C.A., DeKosky, S.T., Morris, J.C., 2006. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 67, 446–452. Mormino, E.C., Kluth, J.T., Madison, C.M., Rabinovici, G.D., Baker, S.L., Miller, B.L., Koeppe, R.A., Mathis, C.A., Weiner, M.W., Jagust, W.J., 2009. Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. Brain 132, 1310–1323. Morris, J.C., Price, A.L., 2001. Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimers disease. J. Mol. Neurosci. 17, 101–118. Morris, J.C., Kimberly, A., Quaid, K., Holtzman, D.M., Kantarci, K., Kaye, J., Reiman, E.M., Klunk, W.E., Siemers, E.R., 2005. Role of biomarkers in studies of presymptomatic Alzheimers disease. Alzheimers Demen. 1, 145–151. Morris, J.C., Roe, C.M., Grant, E.A., Head, D., Storandt, M., Goate, A.M., Fagan, A.M., Holtzman, D.M., Mintun, M.A., 2009. Pittsburgh Compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Arch. Neurol. 66, 1469–1475. Morris, J.C., Roe, C.M., Xiong, C., Fagan, A.M., Goate, A.M., Holtzman, D.M., Mintun, M.A., 2010. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann. Neurol. 67, 122–131. Mosconi, L., Perani, D., Sorbi, S., Herholz, K., Nacmias, B., Holthoff, V., Salmon, E., Baron, J.C., De Cristofaro, M.T., Padovani, A., Borroni, B., Franceschi, M., Bracco,

Please cite this article in press as: Villemagne, V.L., Amyloid imaging: Past, present and future perspectives. Ageing Res. Rev. (2016), http://dx.doi.org/10.1016/j.arr.2016.01.005

G Model ARR-636; No. of Pages 12 10

ARTICLE IN PRESS V.L. Villemagne / Ageing Research Reviews xxx (2016) xxx–xxx

L., Pupi, A., 2004. MCI conversion to dementia and the APOE genotype: a prediction study with FDG-PET. Neurology 63, 2332–2340. Mosconi, L., De Santi, S., Li, Y., Li, J., Zhan, J., Tsui, W.H., Boppana, M., Pupi, A., de Leon, M.J., 2006a. Visual rating of medial temporal lobe metabolism in mild cognitive impairment and Alzheimers disease using FDG-PET. Eur. J. Nucl. Med. Mol. Imaging 33, 210–221. Mosconi, L., Sorbi, S., de Leon, M.J., Li, Y., Nacmias, B., Myoung, P.S., Tsui, W., Ginestroni, A., Bessi, V., Fayyazz, M., Caffarra, P., Pupi, A., 2006b. Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimers disease. J. Nucl. Med. 47, 1778–1786. Naslund, J., Haroutunian, V., Mohs, R., Davis, K.L., Davies, P., Greengard, P., Buxbaum, J.D., 2000. Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 283, 1571–1577. Nelissen, N., Van Laere, K., Thurfjell, L., Owenius, R., Vandenbulcke, M., Koole, M., Bormans, G., Brooks, D.J., Vandenberghe, R., 2009. Phase 1 study of the Pittsburgh compound B derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J. Nucl. Med. 50, 1251–1259. Nelson, L.D., Siddarth, P., Kepe, V., Scheibel, K.E., Huang, S.C., Barrio, J.R., Small, G.W., 2011. Positron emission tomography of brain beta-amyloid and tau levels in adults with Down syndrome. Arch. Neurol. 68, 768–774. Ng, S.Y., Villemagne, V.L., Masters, C.L., Rowe, C.C., 2007. Evaluating atypical dementia syndromes using positron emission tomography with carbon 11 labeled Pittsburgh Compound B. Arch. Neurol. 64, 1140–1144. Noda, A., Murakami, Y., Nishiyama, S., Fukumoto, D., Miyoshi, S., Tsukada, H., Nishimura, S., 2008. Amyloid imaging in aged and young macaques with [11C]PIB and [18F]FDDNP. Synapse 62, 472–475. Nordberg, A., Hartvig, P., Lilja, A., Viitanen, M., Amberla, K., Lundqvist, H., Andersson, J., Nyback, H., Ulin, J., Anderson, Y., et al., 1991. Nicotine receptors in the brain of patients with Alzheimers disease. Studies with 11C-nicotine and positron emission tomography. Acta Radiol. Suppl. 376, 165–166. Nordberg, A., 1993a. Clinical studies in Alzheimer patients with positron emission tomography. Behav. Brain Res. 57, 215–224. Nordberg, A., 1993b. In vivo detection of neurotransmitter changes in Alzheimers disease. Ann. N. Y. Acad. Sci. 695, 27–33. Nyberg, S., Jonhagen, M.E., Cselenyi, Z., Halldin, C., Julin, P., Olsson, H., Freund-Levi, Y., Andersson, J., Varnas, K., Svensson, S., Farde, L., 2009. Detection of amyloid in Alzheimer’s disease with positron emission tomography using [11C]AZD2184. Eur. J. Nucl. Med. Mol. Imaging 36, 1859–1863. Okamura, N., Funaki, Y., Tashiro, M., Kato, M., Ishikawa, Y., Maruyama, M., Ishikawa, H., Meguro, K., Iwata, R., Yanai, K., 2008. In vivo visualization of donepezil binding in the brain of patients with Alzheimers disease. Br. J. Clin. Pharmacol. 65, 472–479. Ong, K., Villemagne, V.L., Bahar-Fuchs, A., Lamb, F., Chetelat, G., Raniga, P., Mulligan, R.S., Salvado, O., Putz, B., Roth, K., Masters, C.L., Reininger, C.B., Rowe, C.C., 2013. (18)F-florbetaben Abeta imaging in mild cognitive impairment. Alzheimers Res. Ther. 5, 4. Ong, K.T., Villemagne, V.L., Bahar-Fuchs, A., Lamb, F., Langdon, N., Catafau, A.M., Stephens, A.W., Seibyl, J., Dinkelborg, L.M., Reininger, C.B., Putz, B., Rohde, B., Masters, C.L., Rowe, C.C., 2014. Abeta imaging with 18F-florbetaben in prodromal Alzheimers disease: a prospective outcome study. J. Neurol. Neurosurg. Psychiatry. Ono, M., Wilson, A., Nobrega, J., Westaway, D., Verhoeff, P., Zhuang, Z.P., Kung, M.P., Kung, H.F., 2003. 11C-labeled stilbene derivatives as Abeta-aggregate-specific PET imaging agents for Alzheimers disease. Nucl. Med. Biol. 30, 565–571. Ossenkoppele, R., Tolboom, N., Foster-Dingley, J.C., Adriaanse, S.F., Boellaard, R., Yaqub, M., Windhorst, A.D., Barkhof, F., Lammertsma, A.A., Scheltens, P., van der Flier, W.M., van Berckel, B.N., 2012. Longitudinal imaging of Alzheimer pathology using [11C]PIB, [18F]FDDNP and [18F]FDG PET. Eur. J. Nucl. Med. Mol. Imaging 39, 990–1000. Ostrowitzki, S., Deptula, D., Thurfjell, L., Barkhof, F., Bohrmann, B., Brooks, D.J., Klunk, W.E., Ashford, E., Yoo, K., Xu, Z.X., Loetscher, H., Santarelli, L., 2011. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch. Neurol. Petersen, R.C., Smith, G.E., Ivnik, R.J., Tangalos, E.G., Schaid, D.J., Thibodeau, S.N., Kokmen, E., Waring, S.C., Kurland, L.T., 1995. Apolipoprotein E status as a predictor of the development of Alzheimers disease in memory-impaired individuals. JAMA 273, 1274–1278. Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., Kokmen, E., 1999. Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56, 303–308. Petersen, R.C., Stevens, J.C., Ganguli, M., Tangalos, E.G., Cummings, J.L., DeKosky, S.T., 2001. Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review)-report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56, 1133–1142. Petersen, R.C., 2000. Mild cognitive impairment: transition between aging and Alzheimers disease. Neurologia 15, 93–101. Phelps, M.E., 2000. PET: the merging of biology and imaging into molecular imaging. J. Nucl. Med. 41, 661–681. Piggott, M.A., Owens, J., O’Brien, J., Colloby, S., Fenwick, J., Wyper, D., Jaros, E., Johnson, M., Perry, R.H., Perry, E.K., 2003. Muscarinic receptors in basal ganglia in dementia with Lewy bodies, Parkinsons disease and Alzheimers disease. J. Chem. Neuroanat. 25, 161–173. Pike, K.E., Savage, G., Villemagne, V.L., Ng, S., Moss, S.A., Maruff, P., Mathis, C.A., Klunk, W.E., Masters, C.L., Rowe, C.C., 2007. Beta-amyloid imaging and memory

in non-demented individuals: evidence for preclinical Alzheimers disease. Brain 130, 2837–2844. Price, J.L., Morris, J.C., 1999. Tangles and plaques in nondemented aging and preclinical Alzheimers disease. Ann. Neurol. 45, 358–368. Price, J.C., Klunk, W.E., Lopresti, B.J., Lu, X., Hoge, J.A., Ziolko, S.K., Holt, D.P., Meltzer, C.C., DeKosky, S.T., Mathis, C.A., 2005. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J. Cereb. Blood Flow Metab. 25, 1528–1547. Rabinovici, G.D., Furst, A.J., O’Neil, J.P., Racine, C.A., Mormino, E.C., Baker, S.L., Chetty, S., Patel, P., Pagliaro, T.A., Klunk, W.E., Mathis, C.A., Rosen, H.J., Miller, B.L., Jagust, W.J., 2007. 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology 68, 1205–1212. Rabinovici, G.D., Jagust, W.J., Furst, A.J., Ogar, J.M., Racine, C.A., Mormino, E.C., O’Neil, J.P., Lal, R.A., Dronkers, N.F., Miller, B.L., Gorno-Tempini, M.L., 2008. Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia. Ann. Neurol. 64, 388–401. Rasmusson, D.X., Brandt, J., Steele, C., Hedreen, J.C., Troncoso, J.C., Folstein, M.F., 1996. Accuracy of clinical diagnosis of Alzheimer disease and clinical features of patients with non-Alzheimer disease neuropathology. Alzheimer Dis. Assoc. Disord. 10, 180–188. Reiman, E.M., Caselli, R.J., Yun, L.S., Chen, K., Bandy, D., Minoshima, S., Thibodeau, S.N., Osborne, D., 1996. Preclinical evidence of Alzheimers disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N. Engl. J. Med. 334, 752–758. Reiman, E.M., Chen, K., Liu, X., Bandy, D., Yu, M., Lee, W., Ayutyanont, N., Keppler, J., Reeder, S.A., Langbaum, J.B., Alexander, G.E., Klunk, W.E., Mathis, C.A., Price, J.C., Aizenstein, H.J., DeKosky, S.T., Caselli, R.J., 2009. Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimers disease. Proc. Natl. Acad. Sci. U. S. A. 106, 6820–6825. Reiman, E.M., Langbaum, J.B., Fleisher, A.S., Caselli, R.J., Chen, K., Ayutyanont, N., Quiroz, Y.T., Kosik, K.S., Lopera, F., Tariot, P.N., 2011. Alzheimers Prevention Initiative: a plan to accelerate the evaluation of presymptomatic treatments. J. Alzheimers Dis. 26 (Suppl. 3), 321–329. Rentz, D.M., Locascio, J.J., Becker, J.A., Moran, E.K., Eng, E., Buckner, R.L., Sperling, R.A., Johnson, K.A., 2010. Cognition, reserve, and amyloid deposition in normal aging. Ann. Neurol. 67, 353–364. Resnick, S.M., Sojkova, J., Zhou, Y., An, Y., Ye, W., Holt, D.P., Dannals, R.F., Mathis, C.A., Klunk, W.E., Ferrucci, L., Kraut, M.A., Wong, D.F., 2010. Longitudinal cognitive decline is associated with fibrillar amyloid-beta measured by [11C]PiB. Neurology 74, 807–815. Rinne, J.O., Brooks, D.J., Rossor, M.N., Fox, N.C., Bullock, R., Klunk, W.E., Mathis, C.A., Blennow, K., Barakos, J., Okello, A.A., Rodriguez Martinez de Liano, S., Liu, E., Koller, M., Gregg, K.M., Schenk, D., Black, R., Grundman, M., 2010. 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimers disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 9, 363–372. Roe, C.M., Mintun, M.A., D’Angelo, G., Xiong, C., Grant, E.A., Morris, J.C., 2008. Alzheimer disease and cognitive reserve: variation of education effect with carbon 11-labeled Pittsburgh Compound B uptake. Arch. Neurol. 65, 1467–1471. Rossor, M.N., Kennedy, A.M., Frackowiak, R.S., 1996. Clinical and neuroimaging features of familial Alzheimers disease. Ann. N. Y. Acad. Sci. 777, 49–56. Rowe, C.C., Villemagne, V.L., 2011. Brain amyloid imaging. J. Nucl. Med. 52, 1733–1740. Rowe, C.C., Ng, S., Ackermann, U., Gong, S.J., Pike, K., Savage, G., Cowie, T.F., Dickinson, K.L., Maruff, P., Darby, D., Smith, C., Woodward, M., Merory, J., Tochon-Danguy, H., O’Keefe, G., Klunk, W.E., Mathis, C.A., Price, J.C., Masters, C.L., Villemagne, V.L., 2007. Imaging beta-amyloid burden in aging and dementia. Neurology 68, 1718–1725. Rowe, C.C., Ackerman, U., Browne, W., Mulligan, R., Pike, K.L., O’Keefe, G., Tochon-Danguy, H., Chan, G., Berlangieri, S.U., Jones, G., Dickinson-Rowe, K.L., Kung, H.P., Zhang, W., Kung, M.P., Skovronsky, D., Dyrks, T., Holl, G., Krause, S., Friebe, M., Lehman, L., Lindemann, S., Dinkelborg, L.M., Masters, C.L., Villemagne, V.L., 2008. Imaging of amyloid beta in Alzheimers disease with (18)F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol. 7, 129–135. Rowe, C.C., Ellis, K.A., Rimajova, M., Bourgeat, P., Pike, K.E., Jones, G., Fripp, J., Tochon-Danguy, H., Morandeau, L., O’Keefe, G., Price, R., Raniga, P., Robins, P., Acosta, O., Lenzo, N., Szoeke, C., Salvado, O., Head, R., Martins, R., Masters, C.L., Ames, D., Villemagne, V.L., 2010. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol. Aging 31, 1275–1283. Rowe, C.C., Bourgeat, P., Ellis, K.A., Brown, B., Lim, Y.Y., Mulligan, R., Jones, G., Maruff, P., Woodward, M., Price, R., Robins, P., Tochon-Danguy, H., O’Keefe, G., Pike, K.E., Yates, P., Szoeke, C., Salvado, O., Macaulay, S.L., O’Meara, T., Head, R., Cobiac, L., Savage, G., Martins, R., Masters, C.L., Ames, D., Villemagne, V.L., 2013a. Predicting Alzheimer disease with beta-amyloid imaging: results from the Australian imaging, biomarkers, and lifestyle study of ageing. Ann. Neurol. 74, 905–913. Rowe, C.C., Pejoska, S., Mulligan, R.S., Jones, G., Chan, J.G., Svensson, S., Cselenyi, Z., Masters, C.L., Villemagne, V.L., 2013b. Head-to-head comparison of 11C-PiB and 18F-AZD4694 (NAV4694) for beta-amyloid imaging in aging and dementia. J. Nucl. Med. 54, 880–886. Sabri, O., Sabbagh, M.N., Seibyl, J., Barthel, H., Akatsu, H., Ouchi, Y., Senda, K., Murayama, S., Ishii, K., Takao, M., Beach, T.G., Rowe, C.C., Leverenz, J.B., Ghetti, B., Ironside, J.W., Catafau, A.M., Stephens, A.W., Mueller, A., Koglin, N.,

Please cite this article in press as: Villemagne, V.L., Amyloid imaging: Past, present and future perspectives. Ageing Res. Rev. (2016), http://dx.doi.org/10.1016/j.arr.2016.01.005

G Model ARR-636; No. of Pages 12

ARTICLE IN PRESS V.L. Villemagne / Ageing Research Reviews xxx (2016) xxx–xxx

Hoffmann, A., Roth, K., Reininger, C., Schulz-Schaeffer, W.J., 2015. Florbetaben Phase 3 Study, G., 2015. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Demen. 11, 964–974. Saito, Y., Buciak, J., Yang, J., Pardridge, W.M., 1995. Vector-mediated delivery of 125I-labeled beta-amyloid peptide A beta 1–40 through the blood–brain barrier and binding to Alzheimer disease amyloid of the A beta 1–0/vector complex. Proc. Natl. Acad. Sci. U. S. A. 92, 10227–10231. Salloway, S., Sperling, R., Fox, N.C., Blennow, K., Klunk, W., Raskind, M., Sabbagh, M., Honig, L.S., Porsteinsson, A.P., Ferris, S., Reichert, M., Ketter, N., Nejadnik, B., Guenzler, V., Miloslavsky, M., Wang, D., Lu, Y., Lull, J., Tudor, I.C., Liu, E.C., Grundman, M., Yuen, E., Black, R., Brashear, H.R., Clinical, B., 2014. Two Phase 3 Trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370, 322–333. Salmon, E., Sadzot, B., Maquet, P., Degueldre, C., Lemaire, C., Rigo, P., Comar, D., Franck, G., 1994. Differential diagnosis of Alzheimer”s disease with PET. J. Nucl.Med. 35, 391–398. Sato, K., Higuchi, M., Iwata, N., Saido, T.C., Sasamoto, K., 2004. Fluoro-substituted and 13C-labeled styrylbenzene derivatives for detecting brain amyloid plaques. Eur. J. Med. Chem. 39, 573–578. Sedvall, G., Nyback, H., Farde, L., Persson, A., 1987. Neurotransmitter receptor imaging in Alzheimer’s disease. J. Neural Transm. Suppl. 24, 43–48. Selkoe, D.J., 2000. The early diagnosis of Alzheimer’s disease. In: Scinto, L.F.M., Daffner, K.R. (Eds.), The Pathophysiology of Alzheimer’s Disease. Humana, Totowa, NJ, pp. 83–104. Serdons, K., Terwinghe, C., Vermaelen, P., Van Laere, K., Kung, H., Mortelmans, L., Bormans, G., Verbruggen, A., 2009a. Synthesis and evaluation of (18)F-labeled 2-phenylbenzothiazoles as positron emission tomography imaging agents for amyloid plaques in Alzheimer’s disease. J. Med. Chem. Serdons, K., Verduyckt, T., Vanderghinste, D., Cleynhens, J., Borghgraef, P., Vermaelen, P., Terwinghe, C., Van Leuven, F., Van Laere, K., Kung, H., Bormans, G., Verbruggen, A., 2009b. Synthesis of 18F-labelled 2-(4 -fluorophenyl)-1,3-benzothiazole and evaluation as amyloid imaging agent in comparison with [11C]PIB. Bioorg. Med. Chem. Let. 19, 602–605. Shi, J., Perry, G., Berridge, M.S., Aliev, G., Siedlak, S.L., Smith, M.A., LaManna, J.C., Friedland, R.P., 2002. Labeling of cerebral amyloid beta deposits in vivo using intranasal basic fibroblast growth factor and serum amyloid P component in mice. J. Nucl. Med. 43, 1044–1051. Shimadzu, H., Suemoto, T., Suzuki, M., Shiomitsu, T., Okamura, N., Kudo, Y., Sawada, T., 2003. A novel probe for imaging amyloid-b: Synthesis of F-18 labelled BF-108, an Acridine Orange analog. J. Labelled Compd. Radiopharm. 46, 765–772. Shin, J., Lee, S.Y., Kim, S.H., Kim, Y.B., Cho, S.J., 2008. Multitracer PET imaging of amyloid plaques and neurofibrillary tangles in Alzheimer’s disease. Neuroimage 43, 236–244. Shoghi-Jadid, K., Small, G.W., Agdeppa, E.D., Kepe, V., Ercoli, L.M., Siddarth, P., Read, S., Satyamurthy, N., Petric, A., Huang, S.C., Barrio, J.R., 2002. Localisation of neurofibrillary tangles and ß-amyloid plaques in the brains of living patients with Alzheimer’s disease. Am. J. Geriatr. Psychiatry 10, 24–35. Silverman, D.H., Phelps, M.E., 2001. Application of positron emission tomography for evaluation of metabolism and blood flow in human brain: normal development, aging, dementia, and stroke. Mol. Genet. Metab. 74, 128–138. Silverman, D.H., Chang, C.Y., Cummings, J.L., Kowell, A.P., Czernin, J., Small, G.W., Gambhir, S.S., Hoh, C.K., Phelps, M.E., 1999. Prognostic value of regional brain metabolism in evaluation of dementia. J. Nucl. Med. 40, 71P. Silverman, D.H., Small, G.W., Chang, C.Y., Lu, C.S., Kung De Aburto, M.A., Chen, W., Czernin, J., Rapoport, S.I., Pietrini, P., Alexander, G.E., Schapiro, M.B., Jagust, W.J., Hoffman, J.M., Welsh-Bohmer, K.A., Alavi, A., Clark, C.M., Salmon, E., de Leon, M.J., Mielke, R., Cummings, J.L., Kowell, A.P., Gambhir, S.S., Hoh, C.K., Phelps, M.E., 2001. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA 286, 2120–2127. Silverman, D.H., Cummings, J.L., Small, G.W., Gambhir, S.S., Chen, W., Czernin, J., Phelps, M.E., 2002a. Added clinical benefit of incorporating 2-deoxy-2-[18F]fluoro-D-glucose with positron emission tomography into the clinical evaluation of patients with cognitive impairment. Mol. Imaging Biol. 4, 283–293. Silverman, D.H., Gambhir, S.S., Huang, H.W., Schwimmer, J., Kim, S., Small, G.W., Chodosh, J., Czernin, J., Phelps, M.E., 2002b. Evaluating early dementia with and without assessment of regional cerebral metabolism by PET: a comparison of predicted costs and benefits. J. Nucl. Med. 43, 253–266. Skovronsky, D.M., Zhang, B., Kung, M.P., Kung, H.F., Trojanowski, J.Q., Lee, V.M., 2000. In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 97, 7609–7614. Small G.W., Mazziotta J.C., Collins M.T., Baxter L.R., Phelps M.E., Mandelkern M.A., Kaplan A., La Rue A., Adamson C.F., Chang, L., al., e., 1995. Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 273, 942–947. Small, G.W., Agdeppa, E.D., Kepe, V., Satyamurthy, N., Huang, S.C., Barrio, J.R., 2002. In vivo brain imaging of tangle burden in humans. J. Mol. Neurosci. 19, 323–327. Small, G.W., Kepe, V., Ercoli, L.M., Siddarth, P., Bookheimer, S.Y., Miller, K.J., Lavretsky, H., Burggren, A.C., Cole, G.M., Vinters, H.V., Thompson, P.M., Huang, S.C., Satyamurthy, N., Phelps, M.E., Barrio, J.R., 2006. PET of brain amyloid and tau in mild cognitive impairment. N. Engl. J. Med. 355, 2652–2663. Small, G.W., Kepe, V., Siddarth, P., Ercoli, L.M., Merrill, D.A., Donoghue, N., Bookheimer, S.Y., Martinez, J., Omalu, B., Bailes, J., Barrio, J.R., 2013. PET

11

Scanning of Brain Tau in Retired National Football League Players: Preliminary Findings. Am. J. Geriatr. Psychiatry 21, 138–144. Small, G.W., 2004. Neuroimaging as a diagnostic tool in dementia with Lewy bodies. Demen. Geriatr. Cogn. Disord. 17 (Suppl. 1), 25–31. Smid, L.M., Kepe, V., Vinters, H.V., Bresjanac, M., Toyokuni, T., Satyamurthy, N., Wong, K.P., Huang, S.C., Silverman, D.H., Miller, K., Small, G.W., Barrio, J.R., 2013. Postmortem 3-D brain hemisphere cortical tau and amyloid-beta pathology mapping and quantification as a validation method of neuropathology imaging. J. Alzheimers Dis. 36, 261–274. Sojkova, J., Resnick, S.M., 2011. In vivo human amyloid imaging. Curr. Alzheimer Res. 8, 366–372. Sojkova, J., Driscoll, I., Iacono, D., Zhou, Y., Codispoti, K.E., Kraut, M.A., Ferrucci, L., Pletnikova, O., Mathis, C.A., Klunk, W.E., O’Brien, R.J., Wong, D.F., Troncoso, J.C., Resnick, S.M., 2011. In vivo fibrillar beta-amyloid detected using [11C]PiB positron emission tomography and neuropathologic assessment in older adults. Arch. Neurol. 68, 232–240. Sperling, R.A., Laviolette, P.S., O’Keefe, K., O’Brien, J., Rentz, D.M., Pihlajamaki, M., Marshall, G., Hyman, B.T., Selkoe, D.J., Hedden, T., Buckner, R.L., Becker, J.A., Johnson, K.A., 2009. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 63, 178–188. Sperling, R.A., Jack Jr., C.R., Aisen, P.S., 2011. Testing the right target and right drug at the right stage. Sci. Transl. Med. 3, 111cm133. Sperling, R.A., Johnson, K.A., Doraiswamy, P.M., Reiman, E.M., Fleisher, A.S., Sabbagh, M.N., Sadowsky, C.H., Carpenter, A., Davis, M.D., Lu, M., Flitter, M., Joshi, A.D., Clark, C.M., Grundman, M., Mintun, M.A., Skovronsky, D.M., Pontecorvo, M.J., 2013. Amyloid deposition detected with florbetapir F 18 ((18)F-AV-45) is related to lower episodic memory performance in clinically normal older individuals. Neurobiol. Aging 34, 822–831. Sperling, R.A., Rentz, D.M., Johnson, K.A., Karlawish, J., Donohue, M., Salmon, D.P., Aisen, P., 2014. The A4 study: stopping AD before symptoms begin? Sci. Transl. Med. 6, 228fs213. Storandt, M., Head, D., Fagan, A.M., Holtzman, D.M., Morris, J.C., 2012. Toward a multifactorial model of Alzheimer disease. Neurobiol. Aging. Sundgren-Andersson, A.K., Svensson, S.P.S., Swahn, B.M., Juréus, A., Sandell, J., Johnson, A.E., Jeppsson, F., Neelissen, J.A.M., Halldin, C., Johnström, P., Schou, M., Cselényi, Z., Farde, L., 2009. AZD4694: Fluorinated Positron Emission Tomography (PET) radioligand for detection of beta-amyloid deposits. Alzheimers Demen. 5, P267–P268 [abstract]. Tenovuo, O., Kemppainen, N., Aalto, S., Nagren, K., Rinne, J.O., 2008. Posterior cortical atrophy: a rare form of dementia with in vivo evidence of amyloid-beta accumulation. J. Alzheimers Dis. 15, 351–355. Thal, D.R., Del Tredici, K., Braak, H., 2004. Neurodegeneration in normal brain aging and disease. Sc.i Aging Knowledge Environ. 2004, pe26. Thal, L.J., Kantarci, K., Reiman, E.M., Klunk, W.E., Weiner, M.W., Zetterberg, H., Galasko, D., Pratico, D., Griffin, S., Schenk, D., Siemers, E., 2006. The Role of Biomarkers in Clinical Trials for Alzheimer Disease. Alzheimer Dis. Assoc. Disord. 20, 6–15. Thompson, P.W., Ye, L., Morgenstern, J.L., Sue, L., Beach, T.G., Judd, D.J., Shipley, N.J., Libri, V., Lockhart, A., 2009. Interaction of the amyloid imaging tracer FDDNP with hallmark Alzheimer’s disease pathologies. J. Neurochem. 109, 623–630. Thurfjell, L., Lotjonen, J., Lundqvist, R., Koikkalainen, J., Soininen, H., Waldemar, G., Brooks, D.J., Vandenberghe, R., 2012. Combination of biomarkers: PET [18F]flutemetamol imaging and structural MRI in dementia and mild cognitive impairment. Neurodegener. Dis. 10 (1–4), 246–249. Tolboom, N., Yaqub, M., van der Flier, W.M., Boellaard, R., Luurtsema, G., Windhorst, A.D., Barkhof, F., Scheltens, P., Lammertsma, A.A., van Berckel, B.N., 2009. Detection of Alzheimer pathology in vivo using both 11C-PIB and 18F-FDDNP PET. J. Nucl. Med. 50, 191–197. Van Heertum, R.L., Tikofsky, R.S., 2003. Positron emission tomography and single-photon emission computed tomography brain imaging in the evaluation of dementia. Semin. Nucl. Med. 33, 77–85. Vandenberghe, R., Van Laere, K., Ivanoiu, A., Salmon, E., Bastin, C., Triau, E., Hasselbalch, S., Law, I., Andersen, A., Korner, A., Minthon, L., Garraux, G., Nelissen, N., Bormans, G., Buckley, C., Owenius, R., Thurfjell, L., Farrar, G., Brooks, D.J., 2010. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann. Neurol. 68, 319–329. Vanhoutte, G., Dewachter, I., Borghgraef, P., Van Leuven, F., Van der Linden, A., 2005. Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP[V717I] transgenic mice, a model for Alzheimer’s disease. Magn. Reson. Med. 53, 607–613. Verhoeff, N.P., Wilson, A.A., Takeshita, S., Trop, L., Hussey, D., Singh, K., Kung, H.F., Kung, M.P., Houle, S., 2004. In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am. J. Geriatr. Psychiatry 12, 584–595. Versijpt, J., Van Laere, K.J., Dumont, F., Decoo, D., Vandecapelle, M., Santens, P., Goethals, I., Audenaert, K., Slegers, G., Dierckx, R.A., Korf, J., 2003. Imaging of the 5-HT2A system: age-, gender-, and Alzheimer’s disease-related findings. Neurobiol. Aging 24, 553–561. Villemagne, V.L., Rowe, C.C., 2010. Amyloid ligands for dementia. PET Clin. 5, 33–53. Villemagne, V.L., Musachio, J.L., Scheffel, U., 1998. In: Arneric, S.P., Brioni, J.D. (Eds.), Nicotine and Related Compounds as PET and SPECT Ligands. In Neuronal Nicotinic Receptors: Pharmacology and Therapeutic Opportunities. John Wiley & Sons, New York, pp. 235–250. Villemagne, V.L., Rowe, C.C., Macfarlane, S., Novakovic, K., Masters, C.L., 2005. Imaginem Oblivionis: the prospects of neuroimaging for early detection of Alzheimer’s disease. J. Clin. Neurosci. 12, 221–230.

Please cite this article in press as: Villemagne, V.L., Amyloid imaging: Past, present and future perspectives. Ageing Res. Rev. (2016), http://dx.doi.org/10.1016/j.arr.2016.01.005

G Model ARR-636; No. of Pages 12 12

ARTICLE IN PRESS V.L. Villemagne / Ageing Research Reviews xxx (2016) xxx–xxx

Villemagne, V.L., Pike, K.E., Darby, D., Maruff, P., Savage, G., Ng, S., Ackermann, U., Cowie, T.F., Currie, J., Chan, S.G., Jones, G., Tochon-Danguy, H., O’Keefe, G., Masters, C.L., Rowe, C.C., 2008. A␤ deposits in older non-demented individuals with cognitive decline are indicative of preclinical Alzheimer’s disease. Neuropsychologia 46, 1688–1697. Villemagne, V.L., Ataka, S., Mizuno, T., Brooks, W.S., Wada, Y., Kondo, M., Jones, G., Watanabe, Y., Mulligan, R., Nakagawa, M., Miki, T., Shimada, H., O’Keefe, G.J., Masters, C.L., Mori, H., Rowe, C.C., 2009a. High striatal amyloid beta-peptide deposition across different autosomal Alzheimer disease mutation types. Arch. Neurol. 66, 1537–1544. Villemagne, V.L., McLean, C.A., Reardon, K., Boyd, A., Lewis, V., Klug, G., Jones, G., Baxendale, D., Masters, C.L., Rowe, C.C., Collins, S.J., 2009b. 11C-PiB PET studies in typical sporadic Creutzfeldt–Jakob disease. J. Neurol. Neurosurg. Psychiatry 80, 998–1001. Villemagne, V.L., Ong, K., Mulligan, R.S., Holl, G., Pejoska, S., Jones, G., O’Keefe, G., Ackerman, U., Tochon-Danguy, H., Chan, J.G., Reininger, C.B., Fels, L., Putz, B., Rohde, B., Masters, C.L., Rowe, C.C., 2011a. Amyloid imaging with 18F-florbetaben in alzheimer disease and other dementias. J. Nucl. Med. 52, 1210–1217. Villemagne, V.L., Pike, K.E., Chetelat, G., Ellis, K.A., Mulligan, R.S., Bourgeat, P., Ackermann, U., Jones, G., Szoeke, C., Salvado, O., Martins, R., O’Keefe, G., Mathis, C.A., Klunk, W.E., Ames, D., Masters, C.L., Rowe, C.C., 2011b. Longitudinal assessment of A␤ and cognition in aging and Alzheimer disease. Ann. Neurol. 69, 181–192. Villemagne, V.L., Mulligan, R.S., Pejoska, S., Ong, K., Jones, G., O’Keefe, G., Chan, J.G., Young, K., Tochon-Danguy, H., Masters, C.L., Rowe, C.C., 2012a. Comparison of (11)C-PiB and (18)F-florbetaben for A␤ imaging in ageing and Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 39, 983–989. Villemagne, V.L., Okamura, N., Pejoska, S., Drago, J., Mulligan, R.S., Chetelat, G., O’Keefe, G., Jones, G., Kung, H.F., Pontecorvo, M., Masters, C.L., Skovronsky, D.M., Rowe, C.C., 2012b. Differential diagnosis in Alzheimer’s disease and dementia with lewy bodies via VMAT2 and amyloid imaging. Neurodegener. Dis. 10, 161–165. Villemagne, V.L., Burnham, S., Bourgeat, P., Brown, B., Ellis, K.A., Salvado, O., Szoeke, C., Macaulay, S.L., Martins, R., Maruff, P., Ames, D., Rowe, C.C., Masters, C.L., 2013. Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 12, 357–367. Wadghiri, Y.Z., Sigurdsson, E.M., Sadowski, M., Elliott, J.I., Li, Y., Scholtzova, H., Tang, C.Y., Aguinaldo, G., Pappolla, M., Duff, K., Wisniewski, T., Turnbull, D.H., 2003. Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn. Reson. Med. 50, 293–302. Wadghiri, Y.Z., Sigurdsson, E.M., Wisniewski, T., Turnbull, D.H., 2005. Magnetic resonance imaging of amyloid plaques in transgenic mice. Methods Mol. Biol. 299, 365–379. Walker, L.C., Price, D.L., Voytko, M.L., Schenk, D.B., 1994. Labelling of cerebral amyloid in vivo with a monoclonal antibody. J. Neuropathol. Exp. Neurol. 53, 377–383. Walker, Z., Costa, D.C., Walker, R.W., Shaw, K., Gacinovic, S., Stevens, T., Livingston, G., Ince, P., McKeith, I.G., Katona, C.L., 2002. Differentiation of dementia with Lewy bodies from Alzheimer’s disease using a dopaminergic presynaptic ligand. J. Neurol. Neurosurg. Psychiatry 73, 134–140. Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.O., Nordberg, A., Backman, L., Albert, M., Almkvist, O., Arai, H., Basun, H., Blennow, K., de Leon, M., DeCarli, C., Erkinjuntti, T., Giacobini, E., Graff, C., Hardy, J., Jack,

C., Jorm, A., Ritchie, K., van Duijn, C., Visser, P., Petersen, R.C., 2004. Mild cognitive impairment–beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 256, 240–246. Wolk, D.A., Grachev, I.D., Buckley, C., Kazi, H., Grady, M.S., Trojanowski, J.Q., Hamilton, R.H., Sherwin, P., McLain, R., Arnold, S.E., 2011. Association between in vivo fluorine 18-labeled flutemetamol amyloid positron emission tomography imaging and in vivo cerebral cortical histopathology. Arch. Neurol. 68, 1398–1403. Wolk, D.A., Price, J.C., Madeira, C., Saxton, J.A., Snitz, B.E., Lopez, O.L., Mathis, C.A., Klunk, W.E., Dekosky, S.T., 2012a. Amyloid imaging in dementias with atypical presentation. Alzheimers Demen. Wolk, D.A., Zhang, Z., Boudhar, S., Clark, C.M., Pontecorvo, M.J., Arnold, S.E., 2012b. Amyloid imaging in Alzheimer’s disease: comparison of florbetapir and Pittsburgh compound-B positron emission tomography. J. Neurol. Neurosurg. Psychiatry 83, 923–926. Wong, D.F., Rosenberg, P.B., Zhou, Y., Kumar, A., Raymont, V., Ravert, H.T., Dannals, R.F., Nandi, A., Brasic, J.R., Ye, W., Hilton, J., Lyketsos, C., Kung, H.F., Joshi, A.D., Skovronsky, D.M., Pontecorvo, M.J., 2010. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18). J. Nucl. Med. 51, 913–920. Wong, D.F., Moghekar, A.R., Rigamonti, D., Brasic, J.R., Rousset, O., Willis, W., Buckley, C., Smith, A., Gok, B., Sherwin, P., Grachev, I.D., 2012. An in vivo evaluation of cerebral cortical amyloid with [(18)F]flutemetamol using positron emission tomography compared with parietal biopsy samples in living normal pressure hydrocephalus patients. Mol. Imaging Biol. Xu, Y., Jack, C.R.J., O’Brien, P.C., Kokmen, E., Smith, G.E., Ivnik, R.J., Boeve, B.F., Tangalos, R.G., Petersen, R.C., 2000. Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 54, 1760–1767. Ye, L., Morgenstern, J.L., Gee, A.D., Hong, G., Brown, J., Lockhart, A., 2005. Delineation of positron emission tomography imaging agent binding sites on beta-amyloid peptide fibrils. J. Biol. Chem. 280, 23599–23604. Ye, L., Velasco, A., Fraser, G., Beach, T.G., Sue, L., Osredkar, T., Libri, V., Spillantini, M.G., Goedert, M., Lockhart, A., 2008. In vitro high affinity alpha-synuclein binding sites for the amyloid imaging agent PIB are not matched by binding to Lewy bodies in postmortem human brain. J. Neurochem. 105, 1428–1437. Zhang, W., Oya, S., Kung, M.P., Hou, C., Maier, D.L., Kung, H.F., 2005a. F-18 Polyethyleneglycol stilbenes as PET imaging agents targeting Abeta aggregates in the brain. Nucl. Med. Biol. 32, 799–809. Zhang, W., Oya, S., Kung, M.P., Hou, C., Maier, D.L., Kung, H.F., 2005b. F-18 stilbenes as PET imaging agents for detecting beta-amyloid plaques in the brain. J. Med. Chem. 48, 5980–5988. Zhuang, Z.P., Kung, M.P., Hou, C., Plossl, K., Skovronsky, D., Gur, T.L., Trojanowski, J.Q., Lee, V.M., Kung, H.F., 2001. IBOX(2-(4 -dimethylaminophenyl)-6-iodobenzoxazole): a ligand for imaging amyloid plaques in the brain. Nucl. Med. Biol. 28, 887–894. Zwan, M., van Harten, A., Ossenkoppele, R., Bouwman, F., Teunissen, C., Adriaanse, S., Lammertsma, A., Scheltens, P., van Berckel, B., van der Flier, W., 2014. Concordance between cerebrospinal fluid biomarkers and [11C]PIB PET in a memory clinic cohort. J. Alzheimers Dis. 41, 801–807.

Please cite this article in press as: Villemagne, V.L., Amyloid imaging: Past, present and future perspectives. Ageing Res. Rev. (2016), http://dx.doi.org/10.1016/j.arr.2016.01.005