An integrable hierarchy and Darboux transformations, bilinear Bäcklund transformations of a reduced equation

An integrable hierarchy and Darboux transformations, bilinear Bäcklund transformations of a reduced equation

Applied Mathematics and Computation 219 (2013) 5837–5848 Contents lists available at SciVerse ScienceDirect Applied Mathematics and Computation jour...

286KB Sizes 0 Downloads 122 Views

Applied Mathematics and Computation 219 (2013) 5837–5848

Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

An integrable hierarchy and Darboux transformations, bilinear Bäcklund transformations of a reduced equation Yufeng Zhang a,⇑, Zhong Han a, Hon-Wah Tam b a b

Center of Nonlinear Equations, College of Sciences, China University of Mining and Technology, Xuzhou 221116, PR China Department of Computer Science, Hong Kong Baptist University, Hong Kong, PR China

a r t i c l e

i n f o

a b s t r a c t A new integrable hierarchy of evolution equations is obtained by making use of a Lie algebra and Tu–Ma scheme, from which a new generalized Broer–Kaup (gBK) equation is produced. Then two kinds of Darboux transformations, the bilinear presentation, the bilinear Bäcklund transformation and the new Lax pair of the gBK equation are generated, respectively, by employing the Bell polynomials. Ó 2012 Elsevier Inc. All rights reserved.

Keywords: Integrable hierarchy Bäcklund transformation Bell polynomials

1. Introduction Tu [1] once employed Lie algebras as a tool for generating nonlinear-equation hierarchies and proposed a powerful approach for producing Hamiltonian structures of soliton hierarchies. Ma [2] called the method the Tu–Ma scheme. By following the way one has obtained some interesting integrable hierarchies of evolution type and their Hamiltonian structures, Darboux transformations, and some other properties [2–8]. Of course, the way for generating equation hierarchies is not unique. For example, papers [9–13] adopted the Lenard operators to generate nonlinear equations. Once an integrable hierarchy is obtained, the single nonlinear equation or coupled nonlinear equations are followed to present by reductions. For example, the well-known nonlinear Schrödinger equation can be derived from the reduction of the AKNS hierarchy. The KdV equation can be obtained by reduction of the AKNS hierarchy as well. Study of the algebraic properties of such the equations is an important aspect in soliton theory. Li et al. [14,15] proposed some ways for generating Darboux transformations of nonlinear soliton equations by starting from isospectral problems. In the paper, we shall introduce a Lie algebra based on the Lie algebra A1 . Then we adopt the Tu–Ma scheme to derive a new integrable soliton hierarchy which can reduce to a coupled generalized Broer–Kaup (gBK) equation, whose two kinds of Darboux transformations are obtained. Finally, the bilinear representation, the bilinear Bäcklund transformation and a new Lax pair of the gBK equation are given, respectively, with the help of the Bell polynomials. 2. An integrable hierarchy and its Hamiltonian structure A simple subalgebra of the Lie algebra A1 presents

a ¼ ff1 ; f2 ; f3 g;

ð1Þ

where

f1 ¼



 1 0 ; 0 1

f2 ¼



 0 1 ; 0 0

f3 ¼



 0 0 : 1 0

⇑ Corresponding author. E-mail addresses: [email protected], [email protected] (Y. Zhang). 0096-3003/$ - see front matter Ó 2012 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.amc.2012.11.086

5838

Y. Zhang et al. / Applied Mathematics and Computation 219 (2013) 5837–5848

along with the commutative relations

½f1 ; f2  ¼ 2f 2 ;

½f1 ; f3  ¼ 2f 3 ;

½f2 ; f3  ¼ f1 :

Make a linear transformation as follows

f : A1 ! A1 ;

ð2Þ

with that

t1 ¼ f2  2f 3 ;

t 2 ¼ 2f 3 ;

t3 ¼ f1 :

It is easy to see that the commutation operations among t 1 ; t 2 and t3 are as follows

½t 1 ; t2  ¼ 2t3 ;

½t 1 ; t 3  ¼ 2t 1  4t 2 ;

½t 2 ; t 3  ¼ 2t2 :

ð3Þ

Denote by b ¼ ft 1 ; t 2 ; t 3 g , it is easy to verify that it forms a Lie algebra with the commutators 3. A loop algebra of b can be defined as

~ ¼ ft1 ðnÞ; t2 ðnÞ; t3 ðnÞg; b

ð4Þ

where

ti ðnÞ ¼ t i kn ;

½t i ðmÞ; t j ðnÞ ¼ ½t i ; t j kmþn ;

1 6 i < j 6 3; m; n 2 Z:

With the help of (4), let us introduce an isospectral problem as follows

v

ux ¼ U u; U ¼ t3 ð1Þ þ t3 ð0Þ  wt2 ð0Þ þ t1 ð0Þ; 2

where

v ¼ v ðx; tÞ;

ð5Þ

w ¼ wðx; tÞ are derivative potential functions. If let

ut ¼ V u; V ¼

1 X ðam t 1 ðmÞ þ bm t2 ðmÞ þ cm t 3 ðmÞÞ;

ð6Þ

m¼0

then the stationary zero curvature equation

@ V ¼ ½U; V @x

ð7Þ

admits the following recursive relations

8 1 1 > < bmþ1 ¼ 2 ðbm;x  2am;x Þ þ 2 v bm þ wcm ; 1 1 amþ1 ¼  2 am;x þ 2 v am  cm ; > : cm;x ¼ 2wam þ 2bm :

ð8Þ

Eq. (8) is local. In fact, if set a0 ¼ b0 ¼ 0; c0 ¼ a – 0, then we have from Eq. (8) that

a1 ¼ a;

b1 ¼ aw;

a

a

a2 ¼  a3 ¼ b3 ¼

a

2

v;

b2 ¼

2

a

c1 ¼ 0; ðwx þ wv Þ;

a

c2 ¼

a 2

w;

4

ðv x  v 2 Þ  w; 2

4

ðwxx þ ðwv Þx þ v wx þ wv 2 Þ þ ðv x þ w2 Þ; . . . 2

a

c3 ¼

2

wx þ aðwv þ v Þ;

a

Denote that

V ðnÞ þ ¼

n X ðam t1 ðn  mÞ þ bm t2 ðn  mÞ þ cm t 3 ðn  mÞÞ ¼ kn V  V ðnÞ  ; m¼0

then Eq. (7) can be decomposed into the following ðnÞ ðnÞ ðnÞ V ðnÞ þ;x þ ½U; V þ  ¼ V ;x  ½U; V  :

By calculation of the right-hand side of Eq. (9), we have ðnÞ V ðnÞ þ;x þ ½U; V þ  ¼ 2anþ1 t 1 ð0Þ þ ð4anþ1  2bnþ1 Þt 2 ð0Þ: ðnÞ Choose a modified term Dn of V ðnÞ by V ðnÞ ¼ V ðnÞ þ as Dn ¼ anþ1 t 3 ð0Þ, and denote V þ þ Dn , we find that

ðnÞ V ðnÞ  ¼ ð2bnþ1 þ 2wanþ1 Þt 2 ð0Þ  anþ1;x t 3 ð0Þ: x þ ½U; V

Thus, the compatibility condition of the following isospectral problems

ð9Þ

5839

Y. Zhang et al. / Applied Mathematics and Computation 219 (2013) 5837–5848

ux ¼ U u; ut ¼ V ðnÞ u

ð10Þ

gives rise to an integrable soliton hierarchy

utn ¼





v w

¼

2anþ1;x 2bnþ1  2wanþ1

tn

 :

ð11Þ

The Lax matrices U and V in Eqs. (5) and (6) can be written as



!

k þ v2

1

2w  2

kv

 ;



c

a

2a þ 2b c

2

 ;

ð12Þ

P P P where a ¼ mP0 am km ; b ¼ mP0 bm km ; c ¼ mP0 cm km . We remark that this spectral problem (12) introduced by using the loop algebra (4) can be transformed into the spectral problem presented in [12] which has more potentials. In what follows, we want to investigate the Hamiltonian structure of system (11). Denote ha; bi ¼ traceðabÞ ¼ ~ one infers that trðabÞ; a; b 2 b,

  @U ¼ c; V; @v

  @U V; ¼ 2a; @w

  @U V; ¼ 2c: @k

Substituting into the trace identity proposed by Tu [1] yields that

  c d @ ð2cÞ ¼ kc kc : du @k 2a

ð13Þ

Comparing the coefficients of kn1 of both sides in (13) reads

  cn d : ð2cnþ1 Þ ¼ ðn þ cÞ du 2an

ð14Þ

Applying the initial values in Eq. (8), one gets c ¼ 0. Thus, we have





cn

¼

2an

dHn ; du

Hn ¼

2cnþ1 : n

ð15Þ

The Hamiltonian form of the inregrable soliton hierarchy (11) is given by

 utn ¼



v w

¼

tn



2anþ1;x 2bnþ1  2wanþ1

 ¼

2anþ1;x cnþ1;x



 ¼

0

@

@

0



cnþ1 2anþ1



 ¼J

cnþ1 2anþ1



 ¼ JL

cn 2an

 ¼ JL

dHn ; du ð16Þ

where J is a Hamiltonian operator, and L is a recurrence operator which satisfies that





cnþ1 2anþ1

  cn ¼L ; 2an



1 1 @ 2

v @ þ 12

1 ð@ 1 w@ þ w þ 2 1 ð  @Þ 2

v

2



! ;

@ here @ ¼ @x ; @ 1 @ ¼ @@ 1 ¼ 1. Let a ¼ 2; n ¼ 2; t2 ¼ t, the integrable hierarchy (11) reduces to a generalized Broer–Kaup (gBK) equation as follows



v t ¼ v xx  2vv x  2wx ; wt ¼ wxx  2ðwv Þx  2v x ;

ð17Þ

whose Lax pair matrices present that

8 > > > > /x ¼ U/; > < > > > > > :V ¼

/t ¼ V/;



k þ v2

1

2w  2 k  v2

! ;

2k2 þ 12 ðv x  v 2 Þ

2k  v

4kð1 þ wÞ þ 2v þ 2wx þ 2wv

2k2 þ 12 ðv 2  v x Þ

That is, /xt ¼ /tx leads to

U t  V x þ ½U; V ¼ 0; which gives rise to the gBK Eq. (17).

! :

ð18Þ

5840

Y. Zhang et al. / Applied Mathematics and Computation 219 (2013) 5837–5848

3. Two kinds of Darboux transformations of the gBK equation Ma [16] investigated in detail the Darboux transformations for a Lax pair integrable system in 2n-dimensions in which the spectral problem can be able to give the spectral problem presented in the paper through a propewr gauge transformation. Based on this and Li, work, in the section we shall investigate the Darboux transformations of the gBK equation. Consider a Darboux transformation

 ¼ T/; /

ð19Þ

 and / satisfying a new spectral problem and require /

 /; x ¼ U  /

ð20Þ

 has the same form as U expect replacing w and v by w  and v  , respectively. It is easy to and the spectral problem 5, where U see that T meets

 T x þ TU ¼ UT:

ð21Þ

In what follows, we discuss two kinds of forms of matrix T. 3.1. The first Darboux transformation Assume that

 T ¼ a0

k þ a1

b1

c1

d1

 ;

ð22Þ

where a0 ; a1 ; b1 ; c1 ; d1 are functions in x and t. Inserting (22) into (21) reads that

 a0;x

k þ a1

b1

c1

d1

¼ a0



 þ a0

a1;x

b1;x

c1;x

d1;x

 þ a0

ðk þ v2 Þðk þ a1 Þ þ c1   2Þðk þ a1 Þ þ ðk  v2 Þc1 ð2w

ðk þ a1 Þðk þ v2Þ  ð2w þ 2Þb1 ðk þ v2Þc1  ð2w þ 2Þd1 ! ðk þ v2 Þb1 þ d1 :   2Þb1 þ ðk  v2 Þd1 ð2w

k þ a1 þ ðk  v2Þb1 c1 þ ðk  v2Þd1

! ð23Þ

Comparing the coefficients of kj ðj ¼ 2; 1; 0Þ in Eq. (23), we find that the case of j ¼ 2 is trivial. As for the case of j ¼ 1, we get that

a0;x þ

v 2

a0 ¼

v 2

a0 ;

ð24Þ

a0 þ a0 b1 ¼ a0 b1 ;

ð25Þ

  2Þ þ a0 c1 ; a0 c1 ¼ a0 ð2w

ð26Þ

a0 d1 ¼ a0 d1 :

ð27Þ

The case of j ¼ 0 leads to the following equations

a0;x a1 þ a0 a1;x þ

1 1 v a0 a1  ð2w þ 2Þa0 b1 ¼ v a0 a1 þ a0 c1 ; 2 2

a0;x b1 þ a0 b1;x þ a0 a1  a0;x c1 þ a0 c1;x þ

1 1 v a0 b1 ¼ a0 d1 þ v a0 b1 ; 2 2

1 1 v a0 c1  ðð2w þ 2Þa0 d1 ¼ ð2w þ 2Þa0 a1  v c1 a0 ; 2 2

a0;x d1 þ a0 d1;x þ a0 c1 

1 1 v a0 d1 ¼ ð2w þ 2Þa0 b1  v a0 d1 : 2 2

ð28Þ

ð29Þ

ð30Þ

ð31Þ

Substituting (24) into (28)–(31) gives

a1;x ¼ ð2w þ 2Þb1 þ c1 ;

ð32Þ

b1;x ¼ v b1 þ d1  a1 ;

ð33Þ

 þ 2Þa1  v c1 ; c1;x ¼ ð2w þ 2Þd1  ð2w

ð34Þ

5841

Y. Zhang et al. / Applied Mathematics and Computation 219 (2013) 5837–5848

 þ 2Þb1 : d1;x ¼ ðv  v Þd1  c1  ð2w

ð35Þ

Inserting (25) and (26) into (32)–(35), one infers that

  w; a1;x ¼ w

ð36Þ

v  2d1 þ 2a1 ¼ 0;

ð37Þ

 x ¼ 2ðw  wÞd  1  ðw  þ 1Þð2v  v Þ; w

ð38Þ

d1;x ¼ ðv  v Þd1 :

ð39Þ

 ¼ 0, we see that det U ¼ det U  of (5) and (20) are 2  2 matrices, and trU ¼ trU  ¼ 0. There exists a Since the solutions U and U constant k ¼ k1 and a solution / ¼ ð/1 ; /2 ÞT of the spectral problem (5) which satisfy that



a0 ðk1 þ a1 Þ/1 þ a0 b1 /2 ¼ 0; a0 c1 /1 þ a0 d1 /2 ¼ 0;

that is,

b1

/2 ¼ k1 þ a1 ; /1

c1 þ

/2 d1 ¼ 0: /1

Combining (25) and (26), we get

a1 ¼ k1 þ

 ¼wþ w

1 /2 ; 2 /1

ð40Þ

  1 /2 : 2 /1 x

ð41Þ

From (37), we obtain

v ¼ v 

d1;x ; d1

ð42Þ

here d1 satisfies

d1 ¼

1 1 1/ v  a1 ¼ v þ k1  2 : 2 2 2 /1

ð43Þ

 and v . After verifications we see that (36) and (38) hold automatically. Eqs. (41) and (42) manifest the new solutions w 3.2. The second Darboux transformation Suppose T has the following form

T ¼ d0



a2

b2

c2

k þ d2

 ;

ð44Þ

where d0 ; a2 ; b2 ; c2 ; d2 are all functions in x and t. Inserting (44) into (21) yields that

 d0;x



a2

b2

c2

k þ d2

¼ d0

 þ d0

a2;x

b2;x

c2;x

d2;x



ðk þ v2 Þa2 þ c2  þ 2Þa2 þ ðk  v2 Þc2 ð2w

ðk þ v2Þa2  ð2w þ 2Þb2 a2 þ ðk  v2Þb2 þ d0 v ðk þ 2Þc2  ð2w þ 2Þðk þ d2 Þ c2 þ ðk  v2Þðk þ d2 Þ ! ðk þ v2 Þb2 þ k þ d2 :  þ 2Þb2 þ ðk  v2 Þðk þ d2 Þ ð2w

! ð45Þ

Similar to the discussion as above, comparing the coefficients of kj ðj ¼ 2; 1; 0Þ of both sides in Eq. (45), we get a few cases. For the case of j ¼ 2, it is obviously trivial. The case j ¼ 1 shows

d0 ða2 Þ ¼ d0 a2 ; d0 b2 ¼ d0 ð1  b2 Þ;

ð46Þ

d0 ðc2  2w  2Þ ¼ d0 c2 ;

ð47Þ

d0;x þ d0 ð

  v þ d2 Þ ¼ d0  þ d2 : 2 2

v

ð48Þ

5842

Y. Zhang et al. / Applied Mathematics and Computation 219 (2013) 5837–5848

The case j ¼ 0 leads to the following equations

d0;x a2 þ d0 a2;x þ d0



1 v a2  ð2w þ 2Þb2 2



¼ d0

  1 v a2 þ c2 ; 2

ð49Þ

    1 1 d0;x b2 þ d0 b2;x þ d0 a2  v b2 ¼ d0 v b2 þ d2 ; 2 2 d0;x c2 þ d0 c2;x þ d0

ð50Þ

    1 1 v c2  ð2w þ 2Þd2 ¼ d0 ð2w þ 2Þa2  v c2 ; 2 2

ð51Þ

    1 1  þ 2Þb2  v d2 ; d0;x d2 þ d0 d2;x þ d0 c2  v d2 ¼ d0 ð2w 2 2

ð52Þ

Eqs. (46)–(48) are reduced to

1 ; 2

ð53Þ

c2 ¼ w  1;

ð54Þ

b2 ¼

d0;x ¼

1 ðv  v Þd0 : 2

ð55Þ

By employing (53)–(55), Eqs. (49)–(52) are reduced to again

1 1 a2;x ¼  ðv  v Þ þ ðv  v Þa2 ; 2 2 a2  d2 ¼

ð56Þ

1 v ; 2

ð57Þ

 þ 2Þa2 þ ðw þ 1Þðv  v Þ þ wx ¼ 0; ð2w þ 2Þd2 þ ð2w

ð58Þ

 d2;x ¼ w  w:

ð59Þ T

On the other hand, there exists a constant k ¼ k2 and a solution w ¼ ðw1 ; w2 Þ of Eq. (5), which satisfies that

d0 a2 w1 þ d0 b2 w2 ¼ 0;

d0 c2 w1 þ d0 ðk2 þ d2 Þw2 ¼ 0;

ð60Þ

that is,

a2 ¼

1 w2 ; 2 w1

ð61Þ

d2 ¼

1 w1 w  k2 : 2 w2

ð62Þ

From (57) and (59), we have a new solution to the gBK Eq. (17) as follows

(

v ¼  ww

2 1

 w ww12 þ 2k2 ;

 ¼ w  d2;x ; w

ð63Þ

where d2 is given by (62). It can be directly verified that Eqs. (56) and (58) are satisfied automatically. Next, we shall prove again that the transformations (22) and (44) map equation

/t ¼ V/;

ð64Þ

where V is presented in (18), into equation

 t ¼ V /;  /

ð65Þ

 has the same form as V in (64) except replacing w; v ; wx ; v x by w;  xt ¼ /  tx , that  v ; w  x; v  x . The compatibility condition / here V t  V  þ ½U;  V  ¼ 0 holds so that ðw;  v  Þ is a new solution of the gBK equation. For the sake, we should prove is, U

 T t þ TV ¼ VT:

ð66Þ

Y. Zhang et al. / Applied Mathematics and Computation 219 (2013) 5837–5848

5843

 v  Þ given by Proposition. If ðw; v Þ is a solution of Eq. (17), ð/1 ; /2 ÞT is a solution of (18) along with k ¼ k1 , then the functions ðw; 41 and 42 is a new solution of the gBK equation. Proof. It is enough to prove (66) holds. Substituting the transformation (22) into (66) along with



!

2k21 þ 12 ðv x  v 2 Þ

2k1  v

ð4 þ 4wÞk1 þ 2v þ 2wx þ 2wv

2k21  v2x þ 12 v 2

2k21 þ 12 ðv x  v 2 Þ

2k1  v

 1 þ 2v þ 2w  x þ 2w  v ð4 þ 4wÞk

2k21  v2x þ 12 v 2

ð67Þ

and

V ¼

! ð68Þ

yields that

a0;t



k1 þ a1

b1

c1

d1



þ a0



a1;t

b1;t

c1;t

d1;t



þ a0



a11 a21

a12 a22



¼ a0



b11

b12

b21

b22

 ;

ð69Þ

where

  1 1 a11 ðk1 þ a1 Þ 2k21 þ v x  v 2 þ b1 ½ð4 þ 4wÞk1 þ 2v þ 2wx þ 2wv ; 2 2   vx v2 a12 ¼ ð2k1  v Þðk1 þ a1 Þ þ b1 2k21  þ ; 2 2   vx v2 þ d1 ½ð4 þ 4wÞk1 þ 2v þ 2wx þ 2wv ; a21 ¼ c1 2k21 þ  2 2   vx v2 a22 ¼ ð2k1  v Þc1 þ d1 2k21  þ ; 2 2   v x v 2  c1 ð2k1 þ v Þ; b11 ¼ ðk1 þ a1 Þ 2k21 þ  2 2   v x v 2 b12 ¼ b1 2k21 þ   ð2k1 þ v Þd1 ; 2 2   v v 2  1 þ 2v þ 2w  x þ 2w  v  þ c1 2k21  x þ ; b21 ¼ ðk1 þ a1 Þ½ð4 þ 4wÞk 2 2   v v 2  1 þ 2v þ 2w  x þ 2w  v  þ d1 2k21  x þ b22 ¼ b1 ½ð4 þ 4wÞk : 2 2 Comparing the coefficients of kj ðj ¼ 3; 2; 1; 0Þ on both sides in Eq. (69), we get that

  2a0 c1 ; a0;t þ a0 w þ 4a0 ð1 þ wÞb1 ¼ a0 w

ð70Þ

a0 v  2a0 a1 ¼ 2a0 d1 ;

ð71Þ

 1: 2a0 c1 ¼ 4a0 ð1 þ wÞb

ð72Þ

The case of j ¼ 0 leads to

  v c1 Þ; a0;t a1 þ a0 a1;t þ a0 ða1 w þ 2wx b1 Þ þ 2a0 v ð1 þ wÞb1 ¼ a0 ða1 w

ð73Þ

 1  v d1 Þ; a0;t b1 þ a0 b1;t þ a0 ðv a1  b1 wÞ ¼ a0 ðwb

ð74Þ

  wc  1 ;  x þ 2a1 v ð1 þ wÞ a0;t c1 þ a0 c1;t þ a0 ½wc1 þ 2wx d1 þ 2v ð1 þ wÞd1  ¼ a0 ½2a1 w

ð75Þ

 x b1 þ 2v ð1 þ wÞb  1 þ wd  1 : a0;t d1 þ a0 d1;t þ a0 ðv c1  wd1 Þ ¼ a0 ½2w

ð76Þ

Eq. (71) is just right Eq. (37). Eq. (72) is the same with Eq. (26). By using Eqs. (25) and (26), we see that Eqs. (73)–(76) can be reduced to

1 1  v a0 þ a0 a1 ðv x  v 2 Þ; a0;t a1 þ a0 a1;t þ ðv x  v 2 Þa0 a1  ðv þ wx þ wv Þa0 ¼ ð1 þ wÞ 2 2    

1 1 1 2 v  v x  v d1 a0 ;  a0;t þ v a1 þ ðv x  v 2 Þ a0 ¼ 2 4 4

ð77Þ

ð78Þ

5844

Y. Zhang et al. / Applied Mathematics and Computation 219 (2013) 5837–5848

1  0;t þ w  x a0 þ ð1 þ wÞð  v x  v 2 Þa0 þ ð2v þ 2wx þ 2wv Þa0 d1 ð1 þ wÞa 2 1 x þ w  v Þa0 a1 þ ð1 þ wÞð  v 2  v x Þa0 ; ¼ 2ðv þ w 2

ð79Þ

1 1  0 þ a0 d1 ðv 2  v x Þ ¼ ðv þ w x þ w  v Þa0  a0 d1 ðv x  v 2 Þ: a0;t d1 þ a0 d1;t  v ð1 þ wÞa 2 2

ð80Þ

From (24) and (39) we get that

M a0 ¼ pffiffiffiffiffi ; d1

ð81Þ

where M is a constant. In terms of Eq. (18) with k ¼ k1 , one infers that

8 2

/2 > < //2 ¼  //2 þ 2 k1  v2 /1 þ 2w  2; 1 x 1

2 > : /2 ¼ ð4 þ 4wÞk þ 2v þ 2w þ 2wv  ð4k2 þ v  v 2 Þ /2 þ ð2k þ v Þ /2 : 1 x x 1 1 /1 /1 /1

ð82Þ

t

By using (24)–(26), (71), (36)–(39) and (81), (82), we can verify that (77) holds. Similarly, Eqs. (78)–(80)can be proved. Through taking the above similar ways, the results for the transformations 44 can also be proved, here we omit them. h Remark. By the Darboux transformation (19) along with (22), we obtained the new solutions (41) and (42) of the gBK Eq.  of Eq. (17) is obviously different from its original solution ðv ; wÞ. Obviously, v ¼ 0; w ¼ 0 is a set of  ; wÞ (17). The solution ðv trivial solutions of (17), it follows from (41) and (42) that a set of new solutions of Eq. (17) presents that

v ¼

/2;x /1  /2 /1;x ; 2ð2k1 /1  /2 Þ/1

 ¼ w

  1 /2 ; 2 /1 x

where the functions /1 ; /2 satisfy the Eq. (18) when take v ¼ 0; w ¼ 0. Similarly, it is easy to see that the new solution (63) of Eq. (17) differs from its original solution v ; w. 4. Integrable properties of the gBK equation In this section, we shall use the Bell polynomials to investigate the bilinear representation, the bilinear Bäcklund transformations and the new Lax pair of the gBK equation. We first briefly recall some known results on the Bell polynomials. The recursion equation

Y nþ1 ¼

n X ckn Y nk ykþ1

ð83Þ

k¼0

for n ¼ 0; 1; 2; . . . along with the initial condition

Y0 ¼ 1 is called the Bell polynomials [17]. Denote k ¼ ðk1 ; k2 ; . . . ; kn Þ; ki P 0; i ¼ 1; 2; . . . ; n k! ¼ k1 !k2 ! . . . kn !; jkj ¼ k1 þ    þ kn ; kkk ¼ k1 þ 2k2 þ    þ nkn . There holds for n P 1:

Y n ðy1 ; . . . ; yn Þ ¼

y kn X n! y k1 y k2 1 2 ... n : k! 1! 2! n! kkk¼n

and

set

ð84Þ

A simple form of the Bell polynomials presents [18]:

Y nt ðyÞ ¼ Y n ðyt ; . . . ; ynt Þ ¼ ey @ nt ey ; eat

1 2!

ð85Þ @ kt y.

2

where y ¼  a0  a1 t þ a2 t þ . . . ; ykt ¼ Recently, Lambert et al. [19,20] proposed a general generalization of the Bell polynomials. Set nk P 0; k ¼ 1; 2 . . . ; l denote arbitrary integers, f ¼ f ðx1 ; . . . ; xl Þ be a c1 multi-variable function, the following

Y n1 x1 ;...;nl xl ðf Þ  ef @ nx11 . . . @ nxll ef

ð86Þ

is called multi-dimensional Bell polynomials, or Y-polynomials. As for the case of f ¼ f ðx; tÞ, the related two-dimensional Bell polynomials are inferred as follows

Y x ðf Þ ¼ fx ;

Y 2x ðf Þ ¼ f2x þ fx2 ;

Y 2x;t ¼ f2x;t þ f2x ft þ 2f x;t fx þ

Y 3x ðf Þ ¼ f3x þ 3f x f2x þ fx3 ;

fx2 ft ; . . .

Y x;t ðf Þ ¼ fx;t þ fx ft ;

Y. Zhang et al. / Applied Mathematics and Computation 219 (2013) 5837–5848

5845

With the help of (86), the multi-dimensional binary Bell polynomials (also denoted by !polynomials) can be defined as

(

!n1 x1 ;...;nl xl ðv ; wÞ ¼ Y n1 x1 ;...;nl xl ðf Þjfr

1 x1 ;...;r l xl

¼

v r x ;...;r x ;

r1 þ    rl

wr1 x1 ;...;rl xl ;

r 1 þ    þ r l xl

1 1

l l

is odd; is even;

ð87Þ

where k ¼ 0; 1; . . . ; l. The first few lowest order Bell polynomials are presented as follows

(

!x ðv Þ ¼ v x ; !2x ðv ; wÞ ¼ w2x þ v 2x ; !x;t ðv ; wÞ ¼ wx;t þ v x v t ; !3x ðv ; wÞ ¼ v 3x þ 3v x w2x þ v 2x ; . . .

ð88Þ

A beautiful relation between the binary Bell polynomials !n1 x1 ;...;nl xl ðv ; wÞ and the standard Hirota bilinear operator Dnx11    Dnxll F  G is given by [18]:

!n1 x1 ;...;nl xl ðv ¼ ln F=G; w ¼ ln FGÞ ¼ ðFGÞ1 Dnx11    Dnxll F  G:

ð89Þ

specially, when F ¼ G, 89 reduces to

( G2 Dnx11 . . . Dnxll G  G ¼ !n1 x1 ;...;nl xl ð0; q ¼ 2 ln GÞ ¼

0; n1 þ    þ nl

is odd;

Pn1 x1 ;...;nl xl ðqÞ; n1 þ . . . þ nl

is even:

ð90Þ

The first few Ppolynomials are given by 88 as follows

(

P2x ðqÞ ¼ q2x ; Px;t ðqÞ ¼ qx;t ; P4x ðqÞ ¼ q4x þ 3q22x ; P6x ðqÞ ¼ q6x þ 15q2x q4x þ 15q22x ; . . .

ð91Þ

Fan, et al. [21,22] extended the bell polynomials to investigate the integrable properties of some variable-coefficient nonlinear partial differential equations, including the bilinear Bäcklund transformations, Lax pairs, and so on. Furthermore, Fan [23,24] extended the Bell polynomials to the case of the super-Bell polynomials and obtained some interesting results. Based on the method and theory mentioned as above, we want to investigate the bilinear Bäcklund transformation and the new Lax pair of the gBK Eq. (17), Set v ¼ c1 V x ; w ¼ c2 W 2x ; c1 and c2 are constants to be determined. Substituting into the gBK Eq. (17) yields

(

c1 V x;t  c1 V 3x þ 2c21 V x V 2x þ 2c2 W 3x ¼ 0; c2 W 2x;t þ c2 W 4x þ 2c1 c2 ðW 2x V x Þx þ 2c1 V 2x ¼ 0:

ð92Þ

Integrating once time with respect to x gives

(

c1 V t  c1 V 2x þ c21 ðV x Þ2 þ 2c2 W 2x ¼ 0; c2 W x;t þ c2 W 3x þ 2c1 c2 W 2x V x þ 2c1 V x ¼ 0:

ð93Þ

The first equation in (93) can be cast into

  c1 c1 V t þ 2c2 W  V þ c21 V 2x ¼ 0: 2c2 2x

ð94Þ

 ¼ W  2cc1 V; V ¼ v  , then W ¼ w  þ 2cc1 v  . Thus, Eq. (94) becomes that Set w 2 2

 2x þ c21 v 2x ¼ 0: c1 v t þ 2c2 w

ð95Þ

The second equation in (93) is cast into

      c c c  þ 1 v  þ 1 v  þ 1 v c2 w þ c2 w þ 2c1 c2 w v x þ 2c1 v x ¼ 0: 2c2 2c2 2c2 x;t 3x 2x

ð96Þ

Set 2c2 ¼ c21 ¼ 1, then Eqs. (95) and (96) reduce to, respectively

v t þ w 2x þ v 2x ¼ 0;

ð97Þ

 3x þ v 3x þ 2w  2x v x þ 2v 2x v x þ 4v x ¼ 0;  x;t þ v x;t þ w w

ð98Þ

which can be expressed by the Bell polynomials as follows

 ¼ 0; !t ðv Þ þ !2x ðv ; wÞ  þ !3x ðv ; wÞ  þ 4!x ðv Þ ¼ 0: !x;t ðv ; wÞ  ¼ lnðF=GÞ; w  ¼ lnðFGÞ, we get the bilinear representation of the gBK equation Let v

ð99Þ ð100Þ

5846

Y. Zhang et al. / Applied Mathematics and Computation 219 (2013) 5837–5848

(

ðDt þ D2x ÞF  G ¼ 0;

ð101Þ

ðDx Dt þ D3x þ 4Dx ÞF  G ¼ 0: For the sake of simplicity, we rewrite Eqs. (99) and (100) in the following

v t þ w2x þ v 2x ¼ 0;

ð102Þ

wx;t þ v 3x þ 2w2x v x þ 4v x ¼ 0:

ð103Þ

; w  are solutions to Eqs. (102) and (103). Thus, we have that From (97), (98), we know v

  wÞ2x þ ðv  v Þx ðv þ v Þx ¼ 0; ðv  v Þt þ ðw

ð104Þ

  wÞx;t þ ðv  v Þ3x þ ðv x  v x Þðw  2x þ w2x Þ þ ðw  2x  w2x Þðv x þ v x Þ þ 4ðv  v Þx ¼ 0: ðw

ð105Þ

Set

(

v ¼ lnðF=GÞ; ~ v 2 ¼ lnðF=FÞ;

~ ~ ~ ~ ~ GÞ;  ¼ lnðF~GÞ; w ¼ lnðFGÞ; v ¼ lnðF= w v 1 ¼ lnðG=GÞ; w1 ¼ lnðGGÞ; ~ ~ ~ ~ ~ w2 ¼ lnðFFÞ; v 3 ¼ lnðF=GÞ; w3 ¼ lnðFGÞ; v 4 ¼ lnðG=FÞ; w4 ¼ lnðGFÞ;

ð106Þ

we find that



v  v ¼ v 2  v 1 ;

  w ¼ v 1 þ v 2 ¼ v 3 þ v 4 ¼ w1  w2 þ 2v 3 ; w

 þ w ¼ w1 þ w2 ; w

v 2  v 1 ¼ 2w3  w1  w2 ; v 4 ¼ v 1  v ;

v þ v ¼ v 3  v 4 ¼ 2v 3  v 1  v 2 ; v 3 ¼ v 2 þ v ; w3 ¼ w2  v ; w4 ¼ w1 þ v : ð107Þ

With the help of (108), Eq. (105) becomes

ðv 2  v 1 Þt þ ðw1  w2 Þ2x þ 2v 3;2x þ 2v 3;x ðv 2  v 1 Þx  ðv 22;x  v 21;x Þ ¼ 0; that is,

ðv 2  v 1 Þt þ w1;2x þ v 21;x  ðw2;2x þ v 22;x Þ þ 2v 3;2x þ 2v 3;x ðv 2  v 1 Þx ¼ 0: Set

ð108Þ

v 3;2x þ v 3;x ðv 2  v 1 Þx ¼ 0, we get

v 3;x ¼ cev

v :

1 2

ð109Þ

Thus, Eq. (108) can be written as

v 2;t  v 1;t þ w1;2x þ v 21;x  ðw2;2x þ v 22;x Þ ¼ 0; which can be written as by using the Bell polynomials

!t ðv 2 Þ  !2x ðv 2 ; w2 Þ  !t ðv 1 Þ þ !2x ðv 1 ; w1 Þ ¼ 0:

ð110Þ

Under the constraint (109), Eq. (110) can be decomposed into

!t ðv 1 Þ  !2x ðv 1 ; w1 Þ ¼ 0;

!t ðv 2 Þ  !2x ðv 2 ; w2 Þ ¼ 0:

ð111Þ

By using (108) and (111), Eq. (105) becomes

w3;3x þ w3;2x ðv 2  v 1 Þx þ v 3;x ðv 1 þ v 2 Þ2x þ 2ðv 2  v 1 Þx ¼ 0:

ð112Þ

Eq. (109) can lead to

v 3;2x ¼ ðv 1  v 2 Þx v 3;x ; thus, Eq. (112) can be cast into

  w3;2x

v 3;x

þ ðv 1 þ v 2 Þ2x þ

2ðv 2  v 1 Þx

x

v 3;x

¼ 0;

ð113Þ

again by using (107), we get

  w3;2x

v 3;x

x

þ ðv 1 þ v 2 Þ2x  2

v 3;2x ¼ 0: v 23;x

ð114Þ

Integrating with respect to x yields that

w3;2x þ v 23;x þ v 3;x v 4;x  av 3;x þ 2 ¼ 0; here a is an integration constant, which can be expressed by the Bell polynomials

ð115Þ

Y. Zhang et al. / Applied Mathematics and Computation 219 (2013) 5837–5848

!2x ðv 3 ; w3 Þ þ !x ðv 3 Þ!x ðv 4 Þ  a!x ðv 3 Þ þ 2 ¼ 0:

5847

ð116Þ

By employing (107), we have from Eq. (116) that

~  F ¼ 0: ðD2x  aDx þ 2ÞF~  G þ Dx G

ð117Þ

Eq. (112) can be written as

ðDt  D2x ÞF~  F ¼ 0;

~  G ¼ 0: ðDt  D2x ÞG

ð118Þ

Through using (107), Eq. (109) is cast into

~ Dx F~  G ¼ cF G:

ð119Þ

Therefore, Eqs. (117)–(119) constitute the bilinear Bäcklund transformation of the gBK Eq. (17). In what follows, we discuss the new Lax pair of the gBK equation with the help of the Bell polynomials. Introducing the new variables v i ¼ ln wi ; i ¼ 1; 2; 3; 4. Eq. (109) is equivalent to

w3;x ¼ c

w1 w3 : w2

ð120Þ

Due to w2 ¼ ev 2 ; w3 ¼ ev 3 , Eq. (120) becomes that

w3;x ¼ cev w1 :

ð121Þ

Since

!2x ðv 3 ; w3 Þ ¼ ðw  v Þ2x þ

w3;2x ; w3

w4;x ¼

w1;x  vx; w1

Eq. (115) is cast into

½ðw  v Þ2x þ 2

w3 @ þ cev ðln w21 Þ  acev ¼ 0: @x w1

ð122Þ

Hence, Eqs. (121) and (122) constitute the space part of the Lax pair of the gBK equation. In order to deduce the time part of the Lax pair, we have from (107) that w1  v 1 ¼ w  v . Hence, the first equation in Eq. (112) becomes

v 1;t  v 1;2x  ðw  v Þ2x  v 21;x ¼ 0; that is,

w1;t w1 þ w1;2x w1  w21;x  ðw  v Þ2x w21  w21;x ¼ 0:

ð123Þ

Since

v 2;t ¼

w3;t w3;2x w3;x  v t ; !2x ðv 2 ; w2 Þ ¼ w2x þ  2v x þ v 2x ; w3 w3 w3

the second equation in Eq. (112) becomes

w3;t w3;2x w3;x  v t  w2x  þ 2v x  v 2x ¼ 0; w3 w3 w3 that is,

@ 2 ðw Þ  2w3;2x þ 4v x w3;x ¼ 0: @t 3

ð124Þ

Eqs. (123) and (124) are just the time part of the Lax pais of the gBK equation. 5. Conclusion In the paper we derived the gBK Eq. (17) by reduction of the new integrable system (16). Furthermore, the Darboux transformations and the bilinear Bäcklund transformation of the gBK Eq. (17) were obtained, respectively. We have known the fact that Darboux transformations and Bäcklund transformations are powerful tools for investigating solutions to nonlinear equations. As long as see solutions are presented, a series of new solutions could be produced. While the approaches for seeking see solutions have many ways, such as the rational-function method for constructing traveling wave solutions, the multiple exp-function method for multiple wave solutions [25,26], and so on. Recently, the linear supperposition principle method [27,28] for constructing linear-subspaces of solutions was proposed, which provides us a new way for investigating exact solutions of equations. With the help of these ways mentioned as above, we could obtain some exact solutions of the gBK equation. This problem will be treated in another paper.

5848

Y. Zhang et al. / Applied Mathematics and Computation 219 (2013) 5837–5848

However, it is remarkable that since the gBK Eq. (17) is a new generalized equation of the known original BK equation, we conclude that its solutions are not the same with the BK equation at all. Acknowledgements This work was supported by the Fundamental Research Funds for the Central Universities (2012 LWB51). References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28]

G.Z. Tu, The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems, J. Math. Phys. 30 (2) (1989) 330–338. W.X. Ma, A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction, Chin. J. Contemp. Math. 13 (1) (1992) 79–89. W.X. Ma, The algebraic structure related to L-A-B triad representations of integrable system, Chin. Sci. Bull. 37 (14) (1992) 1249–1253. W.X. Ma, The Lie algebra structures of time-dependent symmetries of evolution equations, Acta Math. Sci. 14 (4) (1994) 388–392. X.B. Hu, A powerful approach to generate new integrable systems, J. Phys. A 27 (1994) 2497–2514. E.G. Fan, A family of completely integrable multi-Hamiltonian systems explicitly related to some celebrated equation, J. Math. Phys. 42 (2001) 4327– 4344. E.G. Fan, Integrable evolution systems based on Gerdjikov–Ivanov equations, bi-Hamiltonian strutcure, finiti-dimensional integrable systems and Nfold Darboux transformation, J. Math. Phys. 47 (2000) 7769–7782. Y.F. Zhang, H.Q. Zhang, A method for integrable coupling of TD hierarchy, J. Math. Phys. 43 (1) (2002) 466–472. X.G. Geng, W.X. Ma, A mulitpotential generalization of the nonlinear diffusion equation, J. Phys. Soc. Jpn. 69 (4) (2000) 985–986. X.G. Geng, H.H. Dai, Decomposition and straightening out of the coupled mixed nonlinear Schroding flows, Phys. Lett. A 20 (2004) 311–321. Zhijun Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys. 47 (2006) 112701. 09. Zhijun Qiao, Integrable hierarchy, 3  3 constrained systems, and parametric solutions, Acta Appl. Math. 83 (2004) 199–220. Zhijun Qiao, S. Li, A new integrable hierarchy, parametric solutions and traveling wave solutions, Math. Phys. Anal. Geomet. 7 (2004) 289–308. YiShen Li, Jin E. Zhang, Darboux transformations of classical Boussinesq system and its multi-soliton solutions, Phys. Lett. A 284 (2001) 253–258. Yishen Li, Wen-Xiu Ma, Jin E. Zhang, Darboux transformations of classical Boussinesq system and its new solutions, Phys. Lett. A 275 (2000) 60–66. W.X. Ma, Darboux transformations for a Lax integrable system in 2n-dimensions, Lett. Math. Phys. 39 (1997) 33–49. E.T. Bell, Exponential polynomials, Ann. Math. 35 (1934) 258–277. F. Lambert, I. Loris, J. Springael, Classical Darboux transformations and the KP hierarchy, Inverse Probl. 17 (2001) 1067–1074. C. Gilson, F. Lambert, J. Nimmo, R. Willox, On the combinatorics of the Hirota–Doperators, Proc. R. Soc. Lond. A 452 (1996) 223–234. F. Lmabert, J. Springael, Soliton equations and simple combinatorics, Acta Appl. Math. 102 (2008) 147–178. E.G. Fan, The integrability of nonisospectral and variable-coefficient KdV equation with binary Bell polynomials, Phys. Lett. A 375 (3) (2011) 493–497. E.G. Fan, K.W. Chow, Darboux covariant Lax pairs and infinite conservation laws of the (2 + 1)-dimensional breaking soliton equation, J. Math. Phys. 52 (2011) 023504. pp. 1–10. E.G. Fan, New bilinear Backlund transformation and Lax pair for the supersymmetric two-Boson equation, Stud. Appl. Math. 127 (2011) 284–301. E.G. Fan, Super extension of Bell polynomials with applications to supersymmetric equation, J. Math. Phys. 53 (2012) 013503. pp. 1–8. W.X. Ma et al, Nonlinear continuous integrable Hamiltonian couplings, Appl. Math. Comput. 217 (2011) 7238–7277. E.G. Fan, Quasi-periodic waves and asymptotic property for the asymmetrical Nizhnik–Norikov–Veselov equation, J. Phys. A 42 (095206) (2009) 1751– 8113. W.X. Ma, E.G. Fan, Linear superposition principle applying to Hirota bilinear equations, Comput. Math. Appl. 61 (2011) 950–959. W.X. Ma et al, Hirota bilinear equations with linear subspaces of solutions, Appl. Math. Comput. 218 (2012) 7174–7183.