Hamiltonian forms of the two new integrable systems and two kinds of Darboux transformations

Hamiltonian forms of the two new integrable systems and two kinds of Darboux transformations

Applied Mathematics and Computation 244 (2014) 261–273 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepag...

462KB Sizes 0 Downloads 21 Views

Applied Mathematics and Computation 244 (2014) 261–273

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

Hamiltonian forms of the two new integrable systems and two kinds of Darboux transformations Baiying He, Liangyun Chen ⇑ School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

a r t i c l e

i n f o

a b s t r a c t g a new Lax Based on the Lie algebra glð2Þ, taking a kind of corresponding loop algebra glð2Þ, integrable hierarchy can be obtained. Then, by means of the quadratic-form identity, the corresponding bi-Hamiltonian structure was worked out. Expanding Lie algebra glð2Þ, and making use of the new zero curvature equation Zhang (2008) [9], we obtain an integrable hierarchy and its Hamiltonian structure. At last, two kinds of Darboux transformations of the equation are generated. Ó 2014 Elsevier Inc. All rights reserved.

Keywords: Matrix Lie algebra Quadratic-form identity Bi-Hamiltonian structure Darboux transformation

1. Introduction By using some matrix Lie algebras, Guizhang [1] once introduced a powerful tool for generating integrable Hamiltonian systems [3–6], which was called Tu scheme. By employing the corresponding loop algebras, some interesting soliton hierarchies of evolution equations were worked out. However, we have found that some solitary hierarchy can be obtained by a kind of vector loop algebra [8]. P P ~ Let G be a s-dimensional Lie algebra with basis e1 ; e2 ; . . . ; es . Take a ¼ sk¼1 ak ek ; b ¼ sk¼1 bk ek 2 G. The loop algebra G generated by G has the basis ek ðmÞ ¼ ek km ; 1 6 k 6 s; m 2 Z, the commuting operations read ½ek ðmÞ; ej ðnÞ ¼ ½ek ; ej kmþn . ~ is given by The column vector form of G

~ ¼ a ¼ ða1 ; . . . ; as Þ; G

ak ¼

X ak;m km ;

½a; b ¼ c ¼ ðc1 ; . . . ; cs ÞT :

m

~ is as follows The linear isospectral problem established by G



w@ ¼ ½U; w; wt ¼ ½V; w;

kt ¼ 0;

ð1Þ

P where @ ¼ nk¼1 ak @x@ , ak are arbitrary constants, w@ denotes the derivative sum of w with aspect to xk ; k ¼ 1; 2; . . . ; n. k The compatibility condition of (1) is the zero curvature equation

U t  V @ þ ½U; V ¼ 0; its stationary zero curvature equation reads

V @ ¼ ½U; V: ⇑ Corresponding author. E-mail address: [email protected] (L. Chen). http://dx.doi.org/10.1016/j.amc.2014.07.006 0096-3003/Ó 2014 Elsevier Inc. All rights reserved.

ð2Þ

262

B. He, L. Chen / Applied Mathematics and Computation 244 (2014) 261–273

~ u ¼ ðu1 ; . . . ; up ÞT , assume rankU 0 ¼ rankðui U i Þ ¼ a; 1 6 i 6 p, then U is called Take U ¼ Uðk; uÞ ¼ U 0 þ Rpi¼1 ui U i ; U i 2 G; the same-rank, denote by

  @ ¼ a; rankðUÞ ¼ rankð@Þ ¼ rank @xk

1 6 k 6 n:

ð3Þ

Let two same-rank solutions V 1 and V 2 satisfy the relation V 1 ¼ cV 2 ; c ¼ constant, then we see that T ~ the constant matrix Theorem 1. Let (3) hold. Two same-rank solutions of (2) possess V 1 ¼ cV 2 . Set ½a; b ¼ aT RðbÞ; a; b 2 G, F ¼ ðfij Þss meets T

F ¼ FT ;

RðbÞF ¼ ðRðbÞFÞ :

ð4Þ

Define a quadratic functional as follows

fa; bg ¼ aT Fb;

~ 8a; b 2 G;

then the following identity holds

   d @ @U ; kc V; fV; U k g ¼ kc dui @k @ui

i ¼ 1; . . . ; p;

ð5Þ

where c is a constant to be determined, V is a same-rank solution of 2. 5 is called the quadratic-form identity. Zhang and Fan [2] proposed the Lie algebra glð2Þ ¼ spanfe1 ; e2 ; e3 g, where

e1 ¼



1

0

0 1

 ;

e2 ¼



0

0

1 0

 ;

e3 ¼



1 2 0

1

 ;

M1 ¼



1 0 1 1

 ;

along with the commutative relation



½e1 ; e2  ¼ 2e2 ; ½e1 ; e3  ¼ 2e2 þ 2e3 ; ½e2 ; e3  ¼ 2e1 ; ½ei ; ej  ¼ ei M 1 ej  ej M 1 ei ; ei ; ej 2 glð2Þ:

g a new Lax In this paper, we consider the known Lie algebra glð2Þ, and take a kind of corresponding loop algebra glð2Þ, integrable hierarchy can be obtained. Then, by means of the quadratic-form identity, the corresponding bi-Hamiltonian structure was worked out. In Section 3, we want to expand the Lie algebra glð2Þ into the Lie algebra G1 , and take a kind of loop algebra G~1 . Next, we start from an isospectral problem to obtain the integrable hierarchy (26), by making use of the zero curvature equation [9]. In addition, by using the quadratic-form identity, we can obtain a Hamiltonian structure. Study of the algebraic properties of the equations is an important aspect in soliton theory. Some ways for generating Darboux transformations of nonlinear soliton equations by starting from isospectral problems [10]. In Section 4, when n ¼ 2; b ¼ 2, the integrable hierarchy (26) can be reduced to a new Eq. (31). In [11] the Darboux transformations for a Lax pair integrable systems are investigated in detail. Based on this, we obtain two kinds of Darboux transformations of the new Eq. (31). 2. A new integrable hierarchy and its bi-Hamiltonian structure g Based on the known Lie algebra glð2Þ, we construct the following loop algebra glð2Þ:

8 ek ði; nÞ ¼ ek k2nþi ; k—spectral parameter; > > > > > ½e1 ði; mÞ; e2 ðj; nÞ ¼ 2e2 ðdij ; m þ n þ qij Þ; > > > > > > ½e1 ði; mÞ; e3 ðj; nÞ ¼ 2e2 ðdij ; m þ n þ qij Þ þ 2e3 ðdij ; m þ n þ qij Þ; > > > > > ½e < 2 ði; mÞ; e3 ðj; nÞ ¼ 2e1 ðdij ; m þ n þ qij Þ;  i þ j; i þ j < 2; > > d ¼ i;j > > 0; i þ j ¼ 2; > > >  > > 0; i þ j < 2; > > > q ¼ > > i;j 1; i þ j ¼ 2; > > : degðek ði; nÞÞ ¼ 2n þ i; k ¼ 1; 2; 3; i; j 2 f0; 1g: Consider an isospectral problem



ux ¼ U u; ut ¼ V u; kt ¼ 0;

where

U ¼ e1 ð1; 0Þ þ u1 e1 ð1; 1Þ þ u2 e2 ð0; 0Þ þ u3 e2 ð1; 1Þ þ u4 e3 ð0; 0Þ þ u5 e3 ð1; 1Þ

ð6Þ

263

B. He, L. Chen / Applied Mathematics and Computation 244 (2014) 261–273

and



X  a0m e1 ð0; mÞ þ b0m e2 ð0; mÞ þ c0m e3 ð0; mÞ  þa1m e1 ð1; mÞ þ b1m e2 ð1; mÞ þ c1m e3 ð1; mÞ

mP0

:

ð7Þ

The stationary zero curvature representation

V x ¼ ½U; V; gives

8 a0mx ¼ 2u2 c0m þ 2u3 c1m  2u4 b0m  2u5 b1m ; > > > > > a1mþ1x ¼ 2u2 c1mþ1 þ 2u3 c0m  2u4 b1mþ1  2u5 b0m ; > > > < b0mx ¼ 2b1mþ1 þ 2c1mþ1  2u1 b1m  2u1 c1m þ 2u2 a0m þ 2u3 a1m þ 2u4 a0m þ 2u5 a1m ; > b1mþ1x ¼ 2b0mþ1 þ 2c0mþ1  2u1 b0m  2u1 c0m þ 2u2 a1mþ1 þ 2u3 a0m þ 2u4 a1mþ1 þ 2u5 a0m ; > > > > > c > 0mx ¼ 2c1mþ1 þ 2u1 c1m  2u4 a0m  2u5 a1m ; > : c1mþ1x ¼ 2c0mþ1 þ 2u1 c0m  2u4 a1mþ1  2u5 a0m :

ð8Þ

Take the initial data as

a00 ¼ a;

b00 ¼ c00 ¼ a10 ¼ b10 ¼ c10 ¼ 0:

ð9Þ

From the recursion relation (8), we have

b11 ¼ au2 ;

a11 ¼ 0;

c11 ¼ au4 ;

a

b01 ¼  ðu2x þ u4x Þ  au3 2

ð10Þ

and

c01 ¼

a 2

a

a01 ¼ au2 u4 þ u24 : 2

u4x  au5 ;

ð11Þ

Denoting

8 ðnÞ n > < V þ ¼ Rm¼0 ða0m e1 ð0; n  mÞ þ b0m e2 ð0; n  mÞ þ c0m e3 ð0; n  mÞ þa1m e1 ð1; n  mÞ þ b1m e2 ð1; n  mÞ þ c1m e3 ð1; n  mÞÞ; > : ðnÞ V þ þ V ðnÞ ¼ k2n V: The stationary zero curvature representation V x ¼ ½U; V can be expressed as ðnÞ ðnÞ ðnÞ V ðnÞ þx þ ½U; V þ  ¼ V x  ½U; V  :

A direct calculation shows ðnÞ V ðnÞ þx þ ½U; V þ  ¼ ða1nþ1x  2u2 c 1nþ1 þ 2u4 b1nþ1 Þe1 ð1; 1Þ þ ð2b1nþ1  2c 1nþ1 Þe2 ð0; 0Þ þ ðb1nþ1x  2b0nþ1  2c0nþ1

 2u2 a1nþ1  2u4 a1nþ1 Þe2 ð1; 1Þ þ ð2c1nþ1 Þe3 ð0; 0Þ þ ðc1nþ1x þ 2c0nþ1 þ 2u4 a1nþ1 Þe3 ð1; 1Þ: Taking V

Ut 

ðnÞ

¼

V ðnÞ x

V ðnÞ þ ,

the zero curvature equation

þ ½U; V ðnÞ  ¼ 0;

leads to the following Lax integrable hierarchy 1 0 1 0 u1 @ a1nþ1x þ 2u2 c1nþ1  2u4 b1nþ1 C B B C B 0 2b1nþ1 þ 2c1nþ1 C B B u2 C B C B B C B C B B C B ut ¼ B u3 C ¼ B b1nþ1x þ 2b0nþ1 þ 2c0nþ1 þ 2u2 a1nþ1 þ 2u4 a1nþ1 C ¼ B 2u2 þ 2u4 C B B C B C B B C B 0 2c1nþ1 A @ @ u4 A @ 0

u5

c1nþ1x  2c0nþ1  2u4 a1nþ1

t

2u4

1 0 1 0 u1 0 2u3 c0n  2u5 b0n C B B C B 0 2b1nþ1 þ 2c1nþ1 C B B u2 C B C B B C B C B B C B ¼ J1 P 1nþ1 ¼ B u3 C ¼ B 2u3 a0n þ 2u5 a0n  2u1 b0n  2u1 c0n C ¼ B 2u3 þ 2u5 C B B C B C B B C B 0 2c1nþ1 A @ @ u4 A @ 0

u5

2u5 a0n þ 2u1 c0n

t

2u5

0 2u2  2u4 0

0

0

@

0

2

2

@

0 2u3  2u5 0

0

0

0

2

0

0

2u1

1 a1nþ1 CB C 0 2 CB c0nþ1 C CB C CB C 2 @ CB c1nþ1 C CB C CB C 0 0 A@ b0nþ1  c0nþ1 A 0 2u4

0

10

0

b1nþ1  c1nþ1

1 a0n CB C 2 0 CB c1nþ1 C CB C CB C 0 2u1 CB c0n C ¼ J 2 Q 1nþ1 ; CB C CB C 0 0 A@ b1nþ1  c1nþ1 A 0 2u5

0

0

10

b0n  c0n ð12Þ

where J 1 and J 2 satisfy with

J i

¼ J i ; i ¼ 1; 2. So J 1 and J 2 are the Hamiltonian operators.

264

B. He, L. Chen / Applied Mathematics and Computation 244 (2014) 261–273

From (8), we can obtain a recurrence operator

0

0 B B l21 B L1 ¼ B B 0 B @ 0

l12 l22

l51

l13 l23

l14 l24

1

0

0

0

0

1

l52

l53

l54

1 l15 C l25 C C 0 C C; C 0 A l55

where

l12 ¼ 2@ 1 u2  2@ 1 u4 ; l15 l23

l13 ¼ 2@ 1 u3  2@ 1 u5 ;

l14 ¼ 2@ 1 u4 ; @ ¼ 2@ 1 u5 ; l21 ¼ u5 ; l22 ¼ 2u4 ð@ 1 u2 þ @ 1 u4 Þ þ ; 2 ¼ 2u4 ð@ 1 u3 þ @ 1 u5 Þ  u1 ; l24 ¼ 2u4 @ 1 u4 ; l25 ¼ 2u4 @ 1 u5 ; l52 ¼ 2ðu2 þ u4 Þð@ 1 u3 þ @ 1 u5 Þ; l53 ¼ u1 þ 2ðu2 þ u4 Þ@ 1 u5 ; @ ¼ 2ðu2 þ u4 Þ@ 1 u4 þ ; l55 ¼ u1 þ 2ðu2 þ u4 Þ@ 1 u5 : 2

l51 ¼ u3 þ u5 ; l54

After calculations, we get P 1nþ1 ¼ L1 Q 1nþ1 . When u1 ¼ u3 ¼ u5 ¼ 0, the hierarchy (12) can be reduce to

ut ¼



u2



u4

 ¼

2b1nþ1 þ 2c1nþ1



2c1nþ1

t

 ¼

0

2

2 0



c1nþ1 b1nþ1  c1nþ1

 :

ð13Þ

From (8), we have



b1nþ1 þ c1nþ1



c1nþ1

¼ L2



b0n þ c0n c0n

 ;

ð14Þ

where

L2 ¼



A

B

C

D



and



@ þ 2ðu2 þ u4 Þ@ 1 u4 ; 2

C ¼ 2u4 @ 1 u4 ;



@ þ 2ðu2 þ u4 Þ@ 1 ðu2 þ u4 Þ; 2

@ D ¼   2u4 @ 1 ðu2 þ u4 Þ: 2

From (6) and (7), it is easy to see that

 u1 u3 u5 T U ¼ k þ ; u2 þ ; u4 þ ; k k k

T

V ¼ ða0 þ ka1 ; b0 þ kb1 ; c0 þ kc1 Þ ;

P P P where ai ¼ mP0 aði; mÞk2m ; bi ¼ mP0 bði; mÞk2m ; ci ¼ mP0 cði; mÞk2m ; i ¼ 0; 1. Now we set a ¼ a1 e1 þ a2 e2 þ a3 e3 ; b ¼ b1 e1 þ b2 e2 þ b3 e3 ; a; b 2 glð2Þ. To construct Hamiltonian structures of the obtained integrable hierarchy, we need to transform the Lie algebra glð2Þ into a vector form through the mapping

f : glð2Þ ! R3 ;

a ! ða1 ; a2 ; a3 ÞT :

The mapping f induces a Lie algebraic structure on R3 , isomorphic to the matrix Lie algebra glð2Þ. The corresponding commutator ½:; : on R3 is given by T

½a; b ¼ aT R1 ðbÞ;

a ¼ ða1 ; a2 ; a3 ÞT ;

T

b ¼ ðb1 ; b2 ; b3 Þ 2 R3 :

So, we have T

½a; b ¼ ð2a2 b3  2a3 b2 ; 2a1 b2  2a1 b3 þ 2a2 b1 þ 2a3 b1 ; 2a1 b3  2a3 b1 Þ ¼ aT R1 ðbÞ; where

0

0

B R1 ðbÞ ¼ @ 2b3 2b2

2b2  2b3 2b1 2b1

2b3

1

C 0 A: 2b1

265

B. He, L. Chen / Applied Mathematics and Computation 244 (2014) 261–273

The matrix equation (4) gives a system of linear equations on the elements of F 1 . Solving the resulting system, we obtain

0

1

B F1 ¼ @ 0

0 0

0

1

C 1 A:

0 1 1 After calculations we have

fV; U u1 g ¼ a1 þ

a0 ; k

fV; U u2 g ¼ c0 þ kc1 ;

fV; U u5 g ¼ b1  c1 

b0 þ c 0 ; k

fV; U u3 g ¼ c1 þ

c0 ; k

fV; U u4 g ¼ b0  c0  kb1  kc1 ;

  u1 u3 u5 fV; U k g ¼ 1  2 ða0 þ ka1 Þ þ 2 ðc0 þ kc1 Þ þ 2 ðb0 þ c0 þ kb1 þ kc1 Þ: k k k

Inserting the above results into the quadratic-form identity (5), we get

0 d du

ða0 þ ka1 Þ  uk21 ða0 þ ka1 Þ þ uk23 ðc0 þ kc1 Þ

!

þ uk25 ðb0 þ c0 þ kðb1 þ c1 ÞÞ

c

¼k

a1 þ ak0

1

C B c0 þ kc1 C B C @ cB c0 C: B c1 þ k kB C @k B C @ b0  c0  kðb1 þ c1 Þ A

ð15Þ

0 b1  c1  b0 þc k

By comparing the coefficients of k2n3 and k2n2 in both sides of (15), we see that

d ða1nþ2  u1 a1nþ1 þ u3 c1nþ1 þ u5 ðb1nþ1 þ c1nþ1 ÞÞ ¼ ð2n  2 þ cÞP1nþ1 du

ð16Þ

d ða0nþ1  u1 a0n þ u3 c0n þ u5 ðb0n þ c0n ÞÞ ¼ ð2n  1 þ cÞQ 1nþ1 : du

ð17Þ

and

From (8)–(11), one infers c ¼ 0. Thus, the Eq. (16) and (17) give

a1nþ2  u1 a1nþ1 þ u3 c1nþ1 þ u5 ðb1nþ1 þ c1nþ1 Þ ; 2n þ 2

P1nþ1 ¼

dH1n ; du

H1n ¼ 

Q 1nþ1 ¼

dH2n ; du

H2n ¼ 

a0nþ1  u1 a0n þ u3 c0n þ u5 ðb0n þ c0n Þ : 2n þ 1

The integrable hierarchy (12) can be written as

ut ¼ J 1

dH1n dH2n ¼ J2 : du du

Therefore, the hierarchy (18) has bi-Hamiltonian structure. It is easy to verify that J 1 L1 ¼ the integrable in the Liouville sense.

ð18Þ L1 J 1

¼ J 2 . So, the system (18) is

3. The generalized zero curvature equation and the application of the Lie algebra G In terms of the bilinear operator m n n 0 0 0 Dm t Dx f  g ¼ ð@ t  @ t Þ ð@ x  @ x0 Þ f ðt; xÞgðt ; x Þjt 0 ¼t;x0 ¼x ;

where Dt , Dx are differential operators, f ðt; xÞ, gðt; xÞ are differentiable functions on variations t; x. We consider the isospectral problems in [9] as follows:



ðDx þ Dt Þu  1 ¼ U u; ðDx  Dt Þu  1 ¼ V u:

ð19Þ

From (19) and the properties of the bilinear operator, it follows that



ð@ x þ @ t Þu  1 ¼ U u; ð@ x  @ t Þu  1 ¼ V u:

Eq. (20) is equivalent to



ux þ ut ¼ U u; ux  ut ¼ V u:

ð20Þ

266

B. He, L. Chen / Applied Mathematics and Computation 244 (2014) 261–273

Based on their compatibility conditions utx ¼ uxt , we have the zero curvature equation

U x  U t  ðV x þ V t Þ þ ½V; U ¼ 0:

ð21Þ

By using of the zero curvature Eq. (21), we can obtain some new integrable hierarchies. Consider the matrix Lie algebra G1 , which is expanded by glð2Þ

G1 ¼ spanfg 1 ; g 2 ; g 3 ; g 4 ; g 5 ; g 6 g; where

0

1

0

0

0

1

0

B 0 1 0 0 C B C g1 ¼ B C; @0 0 1 0 A 0 0 0 1 1 0 0 1 0 B 0 0 0 1 C C B g4 ¼ B C; @0 0 0 0 A 0

0 0 0

0 0

0 0

1

0

B1 0 0 0C B C g2 ¼ B C; @0 0 0 0A 0 0 1 0 1 0 0 0 0 B0 0 1 0C C B g5 ¼ B C; @0 0 0 0A 0

0

0 0

1 2 0

B0 B g3 ¼ B @0 0

1 0 0

0

0 C C C; 1 2 A 0 1 0

1 0 0 1 2 B0 0 0 1 C C B g6 ¼ B C; @0 0 0 0 A 0

0 0

0 0 0

1

1 1 0 0 0 B1 1 0 0C C B M2 ¼ B C; @0 0 1 0A

0

0

0

0 1 1

along with the following commutative relations

8 ½g 1 ; g 2  ¼ 2g 2 ; ½g 1 ; g 3  ¼ 2g 2 þ 2g 3 ; ½g 1 ; g 4  ¼ 0; ½g 1 ; g 5  ¼ 2g 5 ; > > > > > > < ½g 1 ; g 6  ¼ 2g 5 þ 2g 6 ; ½g 2 ; g 3  ¼ 2g 1 ; ½g 2 ; g 4  ¼ 2g 5 ; ½g 2 ; g 5  ¼ 0; ½g 2 ; g 6  ¼ 2g 4 ; ½g 3 ; g 4  ¼ 2g 5  2g 6 ; ½g 3 ; g 5  ¼ 2g 4 ; ½g 3 ; g 6  ¼ 0; > > > > ½g 4 ; g 5  ¼ ½g 4 ; g 6  ¼ ½g 5 ; g 6  ¼ 0; > > : ½g i ; g j  ¼ g i M 2 g j  g j M 2 g i ; g i ; g j 2 G1 : We can construct the following loop algebra G~1 ¼ spanfg 1 ðnÞ; g 2 ðnÞ; g 3 ðnÞ; g 4 ðnÞ; g 5 ðnÞ; g 6 ðnÞg, where g i ðnÞ ¼ g i kn ; i ¼ 1; 2; 3; 4; 5; 6, along with ½g i ðmÞ; g j ðnÞ ¼ ½g i ; g j kmþn ; i; j ¼ 1; 2; 3; 4; 5; 6. Consider the following isospectral problem



ðDx þ Dt Þu  1 ¼ U u; U ¼ g 1 ð1Þ þ u1 g 2 ð0Þ þ u2 g 3 ð0Þ þ u3 g 5 ð0Þ þ u4 g 6 ð0Þ:

ð22Þ

Set



X

ðam g 1 ðmÞ þ bm g 2 ðmÞ þ cm g 3 ðmÞ þ dm g 4 ðmÞ þ em g 5 ðmÞ þ fm g 6 ðmÞÞ:

mP0

The stationary zero curvature equation

V x þ V t ¼ ½V; U;

ð23Þ

gives rise to

8 amz ¼ 2u2 bm  2u1 cm ; > > > > > bmz ¼ 2u1 am  2u2 am þ 2bmþ1 þ 2cmþ1 ; > > > > > > < cmz ¼ 2u2 am  2cmþ1 ; dmz ¼ 2u4 bm  2u3 cm þ 2u2 em  2u1 fm ; > > > > emz ¼ 2u3 am  2u4 am  2u1 dm  2u2 dm þ 2emþ1 þ 2f mþ1 ; > > > > > fmz ¼ 2u4 am þ 2u2 dm  2f mþ1 ; > > :@ @ ¼ @x þ @t@ : @z

ð24Þ

Take the initial data as

a0 ¼ b;

b0 ¼ c0 ¼ d0 ¼ e0 ¼ f0 ¼ 0:

ð25Þ

Then the recursion relation (24) uniquely determines the sequence of sets of ai ; bi ; ci ; di ; ei ; f i , i P 1. The first few sets are listed as follows:

a1 ¼ 0; b1 ¼ bu1 ; b a2 ¼ bu1 u2 þ u22 ; 2

c1 ¼ bu2 ; b2 ¼

d1 ¼ 0;

b ðu1z þ u2z Þ; 2

e1 ¼ bu3 ;

f 1 ¼ bu4 :

b c2 ¼  u2z ; 2

B. He, L. Chen / Applied Mathematics and Computation 244 (2014) 261–273

 d2 ¼ b u1 u4 þ u2 u3 þ u2 u4 ;

 b ðu3z þ u4z Þ; 2

e2 ¼

267

b f 2 ¼  u4z : 2

Denoting n V ðnÞ þ ¼ Rm¼0 ðam g 1 ðn  mÞ þ bm g 2 ðn  mÞ þ c m g 3 ðn  mÞ þ dm g 4 ðn  mÞ þ em g 5 ðn  mÞ þ fm g 6 ðn  mÞÞ:

A direct calculation reads ðnÞ ðnÞ ðV ðnÞ þx þ V þt Þ þ ½V þ ; U ¼ ð2bmþ1  2c mþ1 Þg 2 ð0Þ þ ð2c mþ1 Þg 3 ð0Þ þ ð2emþ1  2f mþ1 Þg 5 ð0Þ þ ð2f mþ1 Þg 6 ð0Þ:

Taking V ðnÞ ¼ V ðnÞ þ , the zero curvature equation ðnÞ ðnÞ U x  U t  ðV ðnÞ ; U ¼ 0; x þ V t Þ þ ½V

leads to the following Lax integrable hierarchy

1 u1 Bu C B 2C B C @ u3 A

1 1 0 2bnþ1 þ 2cnþ1 cnþ1  fnþ1 C C B B 2cnþ1 C B B bnþ1  cnþ1  enþ1  fnþ1 C ¼B C ¼ J3 B C ¼ J 3 P 2nþ1 ; A @ 2enþ1 þ 2f nþ1 A @ cnþ1

0

u4

0

bnþ1  cnþ1

2f nþ1

xt

ð26Þ

where

0

0

0

2

1

2 0

0 2

C C C: A

2

0

0

B0 0 B J3 ¼ B @ 0 2 2

0

From (24), we are easy to obtain the recurrence relation

0

0

l11

B l0 B P2nþ1 ¼ L3 P2n ¼ B 21 @ 0 0

l12

0

l13

0

l22 0

0

l23 0 l33

0

l43

0

l14

1

0

0 l24 C C 0 CP 2n l34 A

0

l44

0

and

@ 0 0 l11 ¼ l33 ¼   2u2 @ 1 u1  2u2 @ 1 u2 ; 2 0

0

0

0

l21 ¼ l43 ¼ 2u1 @ 1 u1  2u2 @ 1 u1  l22 ¼ l44 ¼

0

0

l12 ¼ l34 ¼ 2u2 @ 1 u2 ;

@  2u1 @ 1 u2  2u2 @ 1 u2 ; 2

@ þ 2u1 @ 1 u2 þ 2u2 @ 1 u2 ; 2

0

l14 ¼ 2u4 @ 1 u2 þ 2u2 @ 1 u4 ;

0

l13 ¼ 2u4 @ 1 u1  2u2 @ 1 u3  2u4 @ 1 u2  2u2 @ 1 u4 ; 0

l23 ¼ 2u3 @ 1 u1  2u1 @ 1 u1  2u1 @ 1 u3  2u2 @ 1 u3  2u3 @ 1 u2  2u4 @ 1 u2  2u1 @ 1 u4  2u2 @ 1 u4 ; 0

l24 ¼ 2u3 @ 1 u2 þ 2u4 @ 1 u2 þ 2u1 @ 1 u4 þ 2u2 @ 1 u4 : Therefore, the system (26) can be written as

1 u1 Bu C B 2C ¼B C @ u3 A 0

uxt

u4

1 ðu2 þ u4 Þb B ðu þ u þ u þ u Þb C 1 2 3 4 C B ¼ J3 Ln3 B C: A @ u2 b 0

ðu1 þ u2 Þb

xt

When u3 ¼ u4 ¼ 0, then hierarchy (26) can reduce to

 uxt ¼

u1 u2



 ¼ xt

2bnþ1 þ 2cnþ1 2cnþ1



 ¼

0

2

2 0



cnþ1 bnþ1  cnþ1

 :

ð27Þ

268

B. He, L. Chen / Applied Mathematics and Computation 244 (2014) 261–273

From (24), we have



bnþ1 þ cnþ1 cnþ1



@ 2

¼

þ 2ðu1 þ u2 Þ@ 1 u2

@ 2

þ 2ðu1 þ u2 Þ@ 1 ðu1 þ u2 Þ

2u2 @ 1 u2

@ 2

!

þ 2u2 @ 1 ðu1 þ u2 Þ

 bn þ c n : cn

ð28Þ

This form is similar to the AKNS hierarchy, but not the AKNS hierarchy. Based on the above calculations, it is not difficult to show the following theorem: Theorem 2. Suppose that xðkÞ is the polynomial of degree n, which is independent of x. If k is not rely on t, that is kt ¼ 0, and the matrix V meets the following boundary condition

0 2cnþ1  B  @V  B 2bnþ1 þ 2cnþ1 ¼B @z ðu1 ;u2 ;u3 ;u4 Þ¼ð0;0;0;0Þ @ 0

2f nþ1

2cnþ1 0

2enþ1 þ 2f nþ1 2cnþ1

2f nþ1 C C C: 4cnþ1 A

0

2bnþ1 þ 2cnþ1

2cnþ1

0

4f nþ1

1

4cnþ1

Then from (21), (22), (23) and (25), we can only determine the matrix V, and the isospectral hierarchy

1 u1 Bu C B 2C B C @ u3 A

1 ðu2 þ u4 Þb B ðu þ u þ u þ u Þb C 1 2 3 4 C B ¼ xðL3 ÞB C; A @ u2 b

0

u4

0

ðu1 þ u2 Þb

xt

where L3 is a recurrence operator. Next, we will establish the Hamiltonian structure of the integrable system by using the quadratic-form identity. Set

a ¼ a1 g 1 þ a2 g 2 þ a3 g 3 þ a4 g 4 þ a5 g 5 þ a6 g 6 ;

b ¼ b1 g 1 þ b2 g 2 þ b3 g 3 þ b4 g 4 þ b5 g 5 þ b6 g 6 ;

a; b 2 G1

To construct Hamiltonian structures of the obtained integrable hierarchy, we need to transform the Lie algebra G1 into a rector form through the mapping

a ! ða1 ; a2 ; a3 ; a4 ; a5 ; a6 ÞT :

f2 : G1 ! R6 ;

The mapping f2 induces a Lie algebraic structure on R6 , isomorphic to the matrix Lie algebra G1 . The corresponding commutator [.,.] on R6 is given by T

½a; b ¼ aT R2 ðbÞ;

a ¼ ða1 ; . . . ; a6 ÞT ;

T

b ¼ ðb1 ; . . . ; b6 Þ 2 R6

and T

½a; b ¼ð2a2 b3  2a3 b2 ;

2a1 b2  2a1 b3 þ 2a2 b1 þ 2a3 b1 ;

2a1 b3  2a3 b1 ;

2a1 b5  2a1 b6 þ 2a2 b4 þ 2a3 b4  2a4 b2  2a4 b3 þ 2a5 b1 þ 2a6 b1 ;

2a2 b6  2a3 b5 þ 2a5 b2  2a6 b2 ; T

2a1 b6  2a3 b4 þ 2a4 b3  2a6 b1 Þ ¼ aT R2 ðbÞ;

where

0

0

2b2  2b3

2b3

0

2b5  2b6

2b1

0

2b6

2b4

2b1

2b1

2b5

2b4

0

0

0

2b2  2b3

0 0

0 0

2b3 2b2

2b1 2b1

B 2b 3 B B B 2b2 R2 ðbÞ ¼ B B 0 B B @ 0 0

2b6

1

C C C 2b4 C C: 2b3 C C C 0 A 0

2b1

From [7], we know that R2 ðbÞ is required to satisfy with

F 2 ¼ F T2 ;

T

R2 ðbÞF 2 ¼ F 2 ðR2 ðbÞÞ :

This matrix equation gives a system of linear equations on the elements of F 2 . Solving the resulting system, we obtain

0

1 0 0 B 0 0 1 B B B 0 1 1 F2 ¼ B B1 0 0 B B @ 0 0 1 0 1 1

1

0

0

1

1 C C C 0 1 1 C C: 0 0 0 C C C 0 0 0 A 0 0 0 0

0

In order to the Hamiltonian structure of the Lax integrable system, we define a linear functional fa; bg as follows: fa; bg ¼ aT F 2 b.

269

B. He, L. Chen / Applied Mathematics and Computation 244 (2014) 261–273

By a direct calculation, we have

  @U V; ¼ c  f ; @r

  @U V; ¼ b  c  e  f ; @u1



V;

@U @u3

 ¼ c;

  @U V; ¼ b  c; @u4



V;

@U @k



¼ a þ d:

Inserting the above result into the quadratic-form identity (5), we get

0

c  f B b  c  e  f d @ B ða þ dÞ ¼ kc kc B du @k @ c

1 C C C: A

ð29Þ

b  c By comparing the coefficients of kn2 in (29), we see that

0

cn  fn

1

B b  c  e  f C d n n nC B n ðanþ2 þ dnþ2 Þ ¼ ðn  1 þ cÞB C ¼ ðn  1 þ cÞP2n : @ A du cn bn  cn It is easy to see that c ¼ 0, thus we have

P2nþ1 ¼

dH3nþ1 ; du

H3nþ1 ¼ 

anþ2 þ dnþ2 : nþ1

The integrable hierarchy (26) can be written as

uxt ¼ J 3

dH3nþ1 : du

ð30Þ

Which is the Hamiltonian structure of the hierarchy (26). After tedious computations, we have J 3 L3 ¼ L3 J 3 . So, the hierarchy (30) is integrable in the Liouville sense. 4. Two kinds of Darboux transformations of the Eq. (31) Let b ¼ 2; n ¼ 2, the hierarchy (26) reduces to a new equation as follows

8 u1;xt > > > > < u2;xt > > u3;xt > > : u4;xt

¼ 2b ðu1zz þ u2zz Þ þ 2bu21 u2 þ 3bu1 u22 þ bu32 ; ¼  2b u2zz  2bu1 u22  bu32 ; ¼ 2b ðu3zz þ u4zz Þ þ 4bu1 u2 u3 þ 3bu3 u22 þ 6bu1 u2 u4 þ 3bu22 u4 þ 2bu21 u4 ;

ð31Þ

¼  2b u4zz  4bu1 u2 u4  3bu22 u4  2bu22 u3 ;

whose Lax pair matrices present that



ux þ ut ¼ U u; ux  ut ¼ V u;

where

0 B B U¼B @

1

k þ u2

2u2

u4

2u4

u1

k þ u2

u3

u4

0

0

k þ u2

2u2

0

0

u1

k þ u2

C C C A

and

0

V 11 BV B 21 V ¼B @ 0 0

1

V 12

V 13

V 14

V 22

V 23

0

V 11

V 24 C C C; V 12 A

0

V 21

V 22

V 11 ¼ 2k2 þ 2u1 u2 þ u22 þ 2ku2  u2z ; V 22 ¼ 2k2  2u1 u2  u22 þ 2ku2  u2z ;

ð32Þ

V 12 ¼ 4ku2 þ 2u2z ;

V 21 ¼ 2ku1 þ u1z þ u2z ;

V 23 ¼ 2ku3 þ u3z þ u4z ;

V 13 ¼ 2ðu1 u4 þ u2 u3 þ u2 u4 Þ þ 2ku4  u4z ;

V 14 ¼ 4ku4 þ 2u4z ;

V 24 ¼ 2ðu1 u4 þ u2 u3 þ u2 u4 Þ þ 2ku4  u4z :

270

B. He, L. Chen / Applied Mathematics and Computation 244 (2014) 261–273

In this section, we will investigate the Dardoux transformations of the Eq. (31). Consider a Darboux transformation

/0 ¼ T/ and require /0 and / satisfying the spectral problem



/x ¼ U/;

ð33Þ

/0x ¼ U 0 /0

and the spectral problem (22), where U 0 has the same form as U expect replacing u1 ; u2 ; u3 ; u4 by u01 ; u02 ; u03 ; u04 . It is easy to see that T meets

T x þ TU ¼ U 0 T:

ð34Þ

In what follows, we discuss two kinds of forms of matrix T. Assume that

0 T ¼ kT 1 þ T 0 ;

1

0

a1

b1

e1

f1

Bc B 1 T1 ¼ B @0

d1

s1

0

a1

t1 C C C; b1 A

0

0

c1

d1

a

b

e

1

f

Bc d s t C B C T0 ¼ B C; @0 0 a bA 0 0

c

d

where a1 ; b1 ; c1 ; d1 ; e1 ; f 1 ; s1 ; t1 and a; b; c; d; e; f ; s; t are functions in x and t. From the spectral problem (22), we have

0

k þ u2

2u2

u4

2u4

1

0

0

1

u1 0

k þ u2 0

u3 k þ u2

u4 2u2

C B 0 1 0 C B C ¼ kB A @0 0 1

0 0

0

0

u1

k þ u2

0

k þ u02

2u02

u04

2u04

u01

k þ u02

u03

0

0

k þ u02

0

0

u01

B B U¼B @

0

1

0

0

0

u2

1

2u2

u4

2u4

C Bu C B 1 CþB A @0

u2 0

u3 u2

u4 C C C ¼ kE0 þ U 0 2u2 A

0

0

u1

0 1

u2

and

0 B B U0 ¼ B @

1

u04 C C 0 C ¼ kE0 þ U 0 : 2u02 A k þ u02

Based on the Eq. (34), we obtain 0

a1x b1x Bc d B 1x 1x T x ¼ kB @ 0 0 0 0 0

a1 B 2 B c1 k B @0 0

e1x s1x a1x c1x b1 d1 0 0

e1 s1 a1 c1

1 0 f1x ax bx ex B t 1x C C B cx dx sx CþB b1x A @ 0 0 ax d1x 0 0 cx 1 0 f1 a 1 b1 C Bc d t1 C B 1 1 CE0  kB @0 0 b1 A d1 0 0

1 0 fx a 1 b1 C Bc d tx C B 1 1 2 C ¼ k E0 B @0 0 bx A dx 0 0 e1 s1 a1 c1

e1 s1 a1 c1

1 0 1 0 f1 a b e f a1 C B C B t1 C Bc d s t C 0 B c1 C þ kE0 B C þ kU B @0 0 a bA @0 b1 A d1 0 0 0 c d

1 0 1 0 f1 a b e f a C B C Bc t1 C Bc d s t C B CU  kB CE  B @0 0 a bA 0 @0 b1 A d1 0 0 c d 0

b d 0 0

e s a c

b1 d1 0 0

e1 s1 a1 c1

1 0 1 f1 a b e f C B C t1 C 0B c d s t C CþU B C @0 0 a bA b1 A d1 0 0 c d

1 f tC C CU: bA d ð35Þ

j

Comparing the coefficients of k ðj ¼ 0; 1; 2Þ in Eq. (35). As for the case of j ¼ 2, we get that



a1  a1 ¼ 0;

b1 þ b1 ¼ 0;

e1  e1 ¼ 0;

f 1 þ f1 ¼ 0;

c1  c1 ¼ 0; s1  s1 ¼ 0;

d1 þ d1 ¼ 0; t 1 þ t 1 ¼ 0:

So we can obtain that

b1 ¼ 0;

c1 ¼ 0;

f 1 ¼ 0;

s1 ¼ 0:

ð36Þ

The case of j ¼ 1 leads to the following equations

8 a1x ¼ a þ u02 a1  2u02 c1  u2 a1  u1 b1  a; > > > > > b1x ¼ b þ u02 b1  2u02 d1 þ 2u2 a1  u2 b1 þ b; > > > > > c1x ¼ c þ u01 a1 þ u02 c1  u2 c1  u1 d1  c; > > > < d1x ¼ d þ u01 b1 þ u02 d1 þ 2u2 c1  u2 d1 þ d; > e1x ¼ e þ u02 e1  2u02 s1 þ u04 a1  2u04 c1  u4 a1  u3 b1  u2 e1  u1 f1  e; > > > > 0 0 0 0 > > f1x ¼ f þ u2 f1  2u2 t1 þ u4 b1  2u4 d1 þ 2u4 a1  u4 b1 þ 2u2 e1  u2 f1 þ f ; > > > 0 0 0 0 > s ¼ s þ u e þ u s þ u a þ u > 1x 1 1 2 1 3 1 4 c 1  u4 c 1  u3 d1  u2 s1  u1 t 1  s; > : 0 0 0 0 t1x ¼ t þ u1 f1 þ u2 t 1 þ u3 b1 þ u4 d1 þ 2u4 c1  u4 d1 þ 2u2 s1  u2 t 1 þ t

ð37Þ

B. He, L. Chen / Applied Mathematics and Computation 244 (2014) 261–273

271

And the case of j ¼ 0 leads to the following equations

8 ax ¼ u02 a  2u02 c  u2 a  u1 b; > > > > > bx ¼ u02 b  2u02 d þ 2u2 a  u2 b; > > > > > cx ¼ u01 a þ u02 c  u2 c  u1 d; > > > < d ¼ u0 b þ u0 d þ 2u c  u d; x 2 2 1 2 > ex ¼ u02 e  2u02 s þ u04 a  2u04 c  u4 a  u3 b  u2 e  u1 f ; > > > > > fx ¼ u02 f  2u02 t þ u04 b  2u04 d þ 2u4 a  u4 b þ 2u2 e  u2 f ; > > > > > > sx ¼ u01 e þ u02 s þ u03 a þ u04 c  u4 c  u3 d  u2 s  u1 t; > : t x ¼ u01 f þ u02 t þ u03 b þ u04 d þ 2u4 c  u4 d þ 2u2 s  u2 t: Substituting (36) into (37) gives

(

a1 ¼ d1 ; f ¼

ðu04

e1 ¼ t1 ;

 u4 Þa1 þ

c ¼ 12 ðu01  u1 Þa1 ;

b ¼ ðu02  u1 Þa1 ;

ðu02

 u2 Þe1 ;



1 ½ðu03 2

ð38Þ

 u3 Þa1 þ ðu01  u1 Þe1 :

4.1. The first Darboux transformation Set a1 ¼ d1 ¼ 0; e1 ¼ t1 ¼ 1. From (38), it is easy to see that b ¼ 0; c ¼ 0; f ¼ u02  u2 ; s ¼ 12 ðu01  u1 Þ. The matrix T can be written to the following form

0

0 0 1 0

1

0

a

0

B0 0 0 1C B0 d C B B T ¼ kB CþB @0 0 0 0A @0 0 0 0 0

0

0 0

u02  u2

e 1 ðu01 2

 u1 Þ

t

a

0

0

d

1

C C C: A

0

Since / and / of (33) are 4  4 matrices, we need that det/0 ¼ 0. There exists a constant k ¼ k1 and a solution / ¼ ð/1 ; /2 ; /3 ; /4 ÞT of the spectral problem (22) which satisfy that

8 a/3 ¼ 0; > > > > < d/4 ¼ 0;

) a ¼ 0; ) d ¼ 0;

k1 /3 þ a/1 þ e/3 þ ðu02  u2 Þ/4 ¼ 0; ) e ¼ k1  ðu02  u2 Þ //43 ; > > > > : k / þ d/ þ 1 ðu0  u Þ/ þ t/ ¼ 0; ) t ¼ k  1 ðu0  u Þ /3 : 1 4 1 1 1 / 2 3 4 1 1 2 2 4 We are easy to get the Darboux transformation T:

1 00 0 0 1 0 B0 0 0 1C B 0 C B B T ¼ k1 B CþB @0 0 0 0A B @0 0 0 0 0 0 0

0 k1  ðu02  u2 Þ //43 0 0 0

1 ðu01 2

 u1 Þ 0 0

u02  u2

1

C k1  12 ðu01  u1 Þ //34 C C: C A 0 0

4.2. The second Darboux transformation Set a1 ¼ d1 ¼ 1; e1 ¼ t 1 ¼ 0. We have the following form of the Darboux transformation T:

T ¼ kI  S;

ð39Þ

where I is a 4  4 unit matrix. From the Eq. (34), we have

Sx þ ðkI  SÞU ¼ U 0 ðkI  SÞ;

) Sx þ ðkI  SÞðkE0 þ U 0 Þ ¼ ðkE0 þ U 00 ÞðkI  SÞ:

ð40Þ

j

Comparing the coefficients of k ðj ¼ 0; 1; 2Þ in Eq. (40), we get

8 2 > < k : E0 ¼ E0 ; k1 : U 0  SE0 ¼ U 00  E0 S; ) U 00 ¼ U 0  SE0 þ E0 S; > : 0 k : Sx ¼ SU 0  U 00 S: ) Sx ¼ U 00 S  SU 0 :

ð41Þ

From (41), we have

Sx ¼ ðU 0  SE0 þ E0 SÞS  SU 0 ¼ U 0 S  SE0 S þ E0 S2  SU 0 :

ð42Þ

272

B. He, L. Chen / Applied Mathematics and Computation 244 (2014) 261–273

Now, we need to find the matrix S, which can be expressed by the eigenfunction of (33). Assume that H is the solution of (33), that is

Hx ¼ UH ¼ E0 H ^ þU 0 H;

ð43Þ

where ^ ¼ diagðk1 ; k1 ; k1 ; k1 Þ. Set

S ¼ H ^ H1 :

ð44Þ

From (43), we have

Sx ¼ Hx ^ H1  H ^ H1 Hx H1 ¼ ðE0 H ^ þU 0 HÞ ^ H1  SðE0 H ^ þU 0 HÞH1 ¼ E0 S2 þ U 0 S  SE0 S  SU 0 :

ð45Þ

It is easy to see that (45) is equivalent to (42). Next, we shall prove again that the transformations (39) map equation

/t ¼ V/; into equation

/0t ¼ V 0 /0 ; where V is presented in (32), and V 0 has the same form as V except replacing u1 ; u2 ; u3 ; u4 ; u1z ; u2z , u3z ; u4z by u01 ; u02 ; u03 ; u04 ; u01z ; u02z ; u03z ; u04z . To find a new solution of the soliton equations, we should prove

T t þ TV ¼ V 0 T:

ð46Þ

Proof. From (32), we get

V ¼ 2k2 E0 þ 2kU 0 þ V 0 ; where

0

v 11 v 12 v 13 Bv B 21 v 22 v 23 V0 ¼ B @ 0 0 v 11 0 0 v 21

v 14 1 v 24 C C C; v 12 A v 22

v 11 ¼ 2u1 u2 þ u22  u2z ; v 12 ¼ 2u2z ; v 13 ¼ 2ðu1 u4 þ u2 u3 þ u2 u4 Þ  u4z ; v 21 ¼ u1z þ u2z ; v 14 ¼ 2u4z ; v 22 ¼ 2u1 u2  u22  u2z ; v 23 ¼ u3z þ u4z ; v 24 ¼ 2ðu1 u4 þ u2 u3 þ u2 u4 Þ  u4z : After the Darboux transformation /0 ¼ T/, we have

/0t ¼ V 0 /0 ¼ ð2k2 E0 þ 2kU 00 þ V 00 Þ/0 ; Assume H satisfies that



Hx ¼ UH; , we are easy to see that Ht ¼ VH;

Ht ¼ VH ¼ 2E0 H^2 þ 2U 0 H ^ þV 0 H: From (46), we get

St þ ðkI  SÞð2k2 E0 þ 2kU 0 þ V 0 Þ ¼ ð2k2 E0 þ 2kU 00 þ V 00 ÞðkI  SÞ:

ð47Þ

j

Comparing the coefficients of k ðj ¼ 0; 1; 2; 3Þ in Eq. (47), we get

8 3 > k > > > < k2 > k1 > > > : 0 k

: 2E0 ¼ 2E0 ; : 2U 0  2SE0 ¼ 2U 00  2E0 S; : V 0  2SU 0 ¼ V 00  2U 00 S; : St  SV 0 ¼ V 00 S:

) U 00 ¼ U 0  SE0 þ E0 S; ) V 00 ¼ V 0  2SU 0 þ 2U 00 S;

) St ¼ V 00 S  SV 0 :

From (44) and (48), we have

St ¼ Ht ^ H1  H ^ H1 Ht H1 ¼ ð2E0 H^2 þ 2U 0 H ^ þV 0 HÞ ^ H1  Sð2E0 H^2 þ 2U 0 H ^ þV 0 HÞH1 ¼ 2E0 S3 þ 2U 0 S2 þ V 0 S  2SE0 S2  2SU 0 S  SV 0 And

St ¼ V 00 S  SV 0 ¼ ðV 0  2SU 0 þ 2U 00 SÞS  SV 0 ¼ V 0 S  2SU 0 S þ 2ðU 0  SE0 þ E0 SÞS2  SV 0 ¼ V 0 S  2SU 0 S þ 2U 0 S2  2SE0 S2 þ 2E0 S3  SV 0 :



ð48Þ

B. He, L. Chen / Applied Mathematics and Computation 244 (2014) 261–273

273

5. Conclusion Based on a pair of the isospectral problem



ux ¼ U u ut ¼ V u , in terms of the compatibility conditions: uxt ¼ utx , we are usually

easy to obtain the zero curvature equation U t  V x þ ½U; V ¼ 0. Then making use of the corresponding stationary zero curvature equation and the commutative operation, the Lax integrable hierarchy can be obtained. In addition, taking advantage of the trace identity or the quadratic-form identity, the Hamiltonian structure can be worked out. At last, we get two kinds of Darboux transformations of Eq. (31). In this article, according to the properties of the bilinear operator and the zero curvature Eq. (21), we consider the isospectral problem (22), integrable hierarchy (26) can be obtained. Ultimately, by making use of the quadratic-form identity, we obtain the Hamiltonian structure of the hierarchy (26). From Sections 2 and 3 of this paper, we find that Eq. (13) and (14) are equivalent to Eq. (27) and (28). In other words, the hierarchy (12) and hierarchy (26) can reduce to the same hierarchy. In Section 4, we let b ¼ 2; n ¼ 2, the integrable hierarchy (26) can be reduced to Eq. (31). In terms of the investigation of Darboux transformations [11], we get two kinds of Darboux transformations of Eq. (31). Acknowledgments The authors would like to thank the referee for valuable comments and suggestions on this article. This work was supported by the National Natural Science Foundation of China (No. 11171055), the Natural Science Foundation of Jilin province (Nos. 201115006 and 20130101068JC), Scientific Research Foundation for Returned Scholars Ministry of Education of China. References [1] Tu. Guizhang, The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems, J. Math. Phys. 30 (2) (1989) 330– 338. [2] Honwah Tam, Yufeng Zhang, Spectral radius analysis of matrices and the associated with integrable systems, Int. J. Modern Phys. B 23 (24) (2009) 4855–4879. [3] Zhang Yufeng, Liu Jing, Induced Lie algebras of a six-dimensional matrix Lie algebra, Commun. Theor. Phys. (Beijing, China) 50 (2008) 289–294. [4] Yufeng Zhang, Qingyou Yan, Integrable couplings of the hierarchies of evolution equations, Chaos Solitons Fractals 16 (2003) 263–269. [5] Wen-Xiu Ma, Multi-component bi-Hamiltonian Dirac integrable equations, Chaos Solitons Fractals 39 (2009) 282–287. [6] Wen-Xiu Ma, A multi-component Lax integrable hierarchy with Hamiltonian structure, Pac. J. Appl. Math. 1 (2) (2008) 191–197. [7] Fu-Kui Guo, Huan-He Dong, A new loop algebra and corresponding computing formula of constant in quadratic-form identity, Commun. Theor. Phys. (Beijing) 47 (6) (2007) 981–986. [8] Fukui Guo, Yufeng Zhang, The integrable coupling of the AKNS hierarchy and its Hamiltonian structure, Chaos Solitons Fractals 32 (2007) 1898–1902. [9] Yufeng Zhang, A complex higher-dimensional Lie algebra with real and imaginary structure constants as well as its decomposition, Commun. Theor. Phys. (Beijing) 50 (5) (2008) 1021–1026. [10] Yufeng Zhang, Zhong Han, Hon-Wah Tam, An integrable hierarchy and Darboux transformations, bilinear Backlund transformations of a reduced equation, Appl. Math. Comput. 219 (2013) 5837–5848. [11] Li Yishen, Solitons and Integrable Systems, Shanghai Science and Technology Education Publishing House, 1999.