Analysis of the ν1 + ν3 band of 14N16O2

Analysis of the ν1 + ν3 band of 14N16O2

JOURNAL OF 3dOLECULAR SPECTROSCOPY Analysis 71, 1-14 (1978) of the vl+v3 Band of 14N1602 V. DANA Laboratoire de Spectroscopic Mokulaire, Univers...

1MB Sizes 0 Downloads 27 Views

JOURNAL OF 3dOLECULAR SPECTROSCOPY

Analysis

71,

1-14 (1978)

of the vl+v3

Band of 14N1602

V. DANA Laboratoire de Spectroscopic Mokulaire, Universiti Pierre et Marie 4, Place Jussieu, 75230 Paris Cedex 05 France

Curie,

AND

J. P. MAILLARD Laboratoire de Spectroscopic Infrarouge,

Observatoire

de Meudon,

92190 Meudon France

The infrared absorption spectrum of the vi + ~3 band of i4Nr602 has been recorded using a Fourier transform spectrometer with a resolution of 0.0033 cm-i. Doublets due to spinrotation interaction have been observed in every subband. For the excited state, the theoretical analysis has led to the determination of twelve vibro-rotational constants and of the three spin-rotatron constants e,,, eyy, and e,,.

I. INTRODUCTION

Nitrogen dioxide is of particular interest from both the stratospheric chemical equilibrium and the purely spectroscopic points of view. This latter interest arises because nitrogen dioxide is one of the few stable gases with a single unpaired electron; the interaction between the electronic spin S and the rotational angular momentum N gives rise to the J component splitting in vibro-rotational levels. In this work we present the analysis of the vi+ vs band ; this hand has been previously studied by Olman and Hause (1) from a spectrum recorded with a conventional spectrometer (resolution 0.03 cm-‘) but the spin-rotation constants were not reported. Thus, we have reanalyzed this band using a more accurate spectrum recorded by a Fourier transform spectrometer. Due to the very high resolution (0.0033 cm-i), we have observed the doublets resulting from the spin-rotation interaction for all the values of K, even for high values of N; from these doublets it has now been possible to determine the three constants involved in the spin-rotation interaction; beside these three constants, the fit of the vibro-rotational lines has led to the determination of twelve spectroscopic constants. Their new values reproduced our data with an overall standard deviation of 0.0011 cm-’ ; however, in this analysis we have not included lines of the subbands (120) level.

K, = 3,4,5,

6 which are perturbed

by a Coriolis resonance

with the

1 0022-2852/7&X/7113-0001$02.00/0 Copyright 0 1978 by Academic Press. Inc. All rights of reproduction in any form reserved.

DANA AND MAILLARD II. EXPERIMENTAL

PROCEDURE

The 2-m path-difference Fourier transform spectrometer at Meudon Observatory was used to record the NO2 spectra. The full limit of resolution provided by this instrument was required to resolve the spin splitting of the lines. A final path difference of 176 cm was achieved, giving an unapodized limit of resolution of 0.0033 cm-‘. A SO-cm-long absorption cell with quartz windows was used at room temperature. The VI+ v3 band being quite intense, only low pressure was needed. Two spectra were recorded with pressures of 2 and 4 Torr. A third spectrum was recorded at a pressure of 11 Torr to enhance higher K, lines; a large number of lines was then saturated. A cool narrow filter in front of each detector limited the spectral range. Unfortunately, the transmission peak of the filter was not well matched to the center of the vi + va band and the signal to noise ratio in that region of the band was about 40. Detection of NzO lines in the free spectral range indicated the presence of NzO in the gas sample. NO2 is known to react slowly to produce NzO. But no problem was encountered with overlapping lines from this molecule. III. THEORETICAL

CONSIDERATIONS

Hamiltonian

In a given vibrational state in the absence of resonance, the Hamiltonian which describes the vibration-rotation and the spin-rotation interaction can be written as : H=Hw+HsR

HW is a Watson-type

Hamiltonian (v-diagonal operator) (2). The Hamiltonian HSR, represents the interaction of the magnetic moment of the unpaired electron spin with the magnetic field induced by the molecular rotation. Vibro-Rotational Energies

To calculate the Hw matrix it is useful to work in an adapted basis in which this matrix is factorized into 4 submatrices corresponding to the 4 different symmetry types P = Al, AZ, Bi, or Bz. This adapted basis is defined by the vectors ) vl, v2, 03,N, K, I’) which are products of a vibrational and a rotational vector 181, v2, u3, N,

K,

r>

=

1%

212,v3)IN,

K,

0.

The 1N, K, I’) vectors are linear combinations of the eigenvectors 1N, K) of N2 and N, IN,K,I’)

= 1/2*{1N,K)+c

IN,-@).

(1)

The correspondence between the sign in this expression, the parity of the quantum numbers, and P is given in Table I. These symmetry considerations are developed by Camy-Peyret and Flaud in Ref. (3). For an asymmetric top molecule K, and K, are not good quantum numbers but may be used to label an eigenvector of Hw ; such an eigenvector can be noted ) VI,~2,213, N, K,, K,).

3

Y, + YSBAND OF “N’60z TABLE I Rotational Wavefunctions

(N, K, I’) to Use According to the Values of Do,N, l’

N

V3

even even odd

even odd odd

The expansion

of this eigenvector

K

I’

Sign

even odd even odd

A1 A2 Al A2

+ +

o+

-

EO-

even odd even odd

A2 ‘41 A2 A1

on the adapted

IVII,02, 213,N, K,, Kc) = I~1,

Usual notation

E+

-

-

EO_ E+ 0,

+ +

basis can be written

Cc/N, K, I').

7~2, vJC

K

The rotational

energies and the coefficients C K~ are obtained

by diagonalizing

the

HW

matrix. Interaction

Spin-Rotation

The first studies of the different magnetic interactions in polyatomic molecules were those of Van Vleck (4). More recently the effect of the electron spin coupling on the vibro-rotational spectra has been discussed by Lin (5) and Raynes (6). For NO2 we present here the calculation of the splitting of the rotational levels owing to the coupling of the spin S of the unpaired electron with the rotational angular momentum N. The Hamiltonian which describes this effect can be expressed as follows: HSR

=

C a,&,,&, fi*y

The total angular momentum of the molecule is J = N + S. Van Vleck (4) has shown that the commutation rules of the components of J, N, and S referred to the moleculefixed axes are of the form: where

CR,, R,] = --Rz,

R = J or N

and [S,, S,] = is,. This author has introduced the reversed spin angular momentum 8 = --S in order to obtain an operator which satisfies the same commutation rules as J and N. Therefore

or 6x

H

YR

+

=

2

%

NS +

+ %v e,, - '=, N,.% + =2

(N,S, 2

- N&).

4

DANA

AND

NAILLARD

In order to treat the effect of the spin-rotation interaction, it is useful to express the ZZsa matrix in the basis of 1I’~,v2, nq, N, K,, KL) vectors. These vectors are eigen vectors of J2 and B. For a given vibrational state (~4’2~3)\ve have thus: (vi, vz, ~13,N, Ku, Kc 1HSRI VI, vz,

~‘3,

N’,

K3c)

PA,

= C CC&K’~(S, K R’ Since NO2 is a very slightly asymmetric approximation :

top molecule, it is possible to write with a good

11~1, 2’2,2’3, N, Ka, Kc) = Iz’l, 2’2, Consequently,

the matris

~~3) /

with K = h’,.

N, K, r)

of HsR becomes :

element

(~1, 2’2,2’3, N, K,, Kc1 Hs~lvl,

K, I. / HsRI N’, fi’, I”).

9’2,1’3,N’, Ku’, K,‘) = (N, K, F / HSR~ N’, K’, I?‘).

According to Eq. (1) the matrix element of H so appears as a combination of elements (N, K IHSR~N’, K’). The vectors IN, K) are also eigenvectors of J’ and L? and can be noted 1J, S, N, K). In the representation 1J, S, N, K), HsR has nonzero matrix elements for AK = 0, &2. The first and the second term of the expression of HSR are diagonal in K. It is easier to calculate the matrix elements of HSR in the basis defined by the IJ,S,M.r,M s ) eigenvectors of J2S2J,S,. Thus, using the values of the Clebsch-Gordon coefficients for S = 3, one can easily determine all the matrix elements. These elements satisfy, in the /J, S, N, K) re p resentation, the relations : (J,S,N,K~HSR~J,S,N,K)=(J,S,N,-KIH~RIJ,S,N,-K), (J,S,N,K+~~HSRIJ,S,N,K)=(J,S,N,KIHSR(J,~‘,N,K+~). Each rotational level defined by N is split into two levels characterized by J = N + f and J = N - 4. The effect of the spin-rotation interaction is sufficiently weak to treat it by the perturbation theory. Including the significant terms of perturbation up to the second order, the correction to the energy can be written: for J = N + ij, AE

=

__!--

~zz +

%u

2

>

EZP -

2N + 1

K-,2 --

E,,4B ( -

bz

Ka2 -I-

-I- %I

ezz •l- %I 2 2

N(V + 1)

2

>(

K,2 l-

f (N + 1)2

for J = N - 4, ezz + %%I Ezz + %I AE = _ _A_ Ka2 + -- iV(N + 1) ezz - -___ 2 ) 2N [(

N Ezz - tyy -6K.,l; 4 2

5 TABLE Spectroscopic

II

Constants of the (101) Level of lrNIBO~(in cm-+ 2906.06912 7.853509 0.4286523 0.4049631 2.722 X lo+ -2.139 X 1O-5 3.061 X lo-’ 5.31 x 10-e 3.24 X 1O-8 3.91 x 10-e -4.8 x 10-Q x 10-S 2.4

uo A B C AK ANK AN 6x 6N HK HKN LK

0.17473

hz

f7.1 f1.9 f5.8 f6.0 zkl.5 f1.6 zkl.7

x x x X x X x

10-4 10-d lo-” 10-G 10-S 1O-1

G3.1

x

10-r

f1.7 f3.8 f2.7 f2.0 f1.5

x X x x x

10-g 1O-7 10-9 10-s 10-a

10-9

-0.1543

x 10-Z

11.2

x 10-s

-0.140

x 10-Z

fl.O

x 10-4

a The third column gives the statistical uncertainties (99% confidence intervals).

where 2BN = En(N, K,) - En(N - 1, K,) represents the rotational energy difference between two levels involved in the second-order perturbation formula. The last term in these two expressions exists only for K, = 1. When K, # 1 the fit of the splitting allows to calculate only eLPand (eZz + 4/2; but when K, = 1, the quantity (ezz - e,,)/2 occurs in the energy expression, and the fit of the doublets allows the determination of the three constants eZZ, +,, and eZZ.

IV. ANALYSIS

OF THE

ROTATIONAL

STRUCTURE

OF THE MOLECULAR

AND

EVALUATION

CONSTANTS

Description of the Rotational Structure

The VI + v3 band approximation by :

is an A-type

band.

The selection

rules are given with

AN = 0, fl,

if

K, # 0,

AN=fl,

if

K, = 0,

a good

A&=0, AJ = AN. Because of the zero spin of the oxygen nuclei, only one out of two vibro-rotational levels exists (K, + K, even in the ground state, K, + K, odd in the upper state). Figure 1 shows the rotational structure of the v1 + ua band in the spectral range 2889

DANA AND MAILLARD

6

B t.0 _

Ill Ill II II!I

, 5 2902

II

I

I

1

I

I Ilrn III!!1

2 8 ““““““““““““‘iSOj”‘l’ 2903

I

5

II III ’ %

llll!l,1;l

iI

,8

I r ’ r 182313 * ’

FIG. 1. Absorption spectrum transform spectrometer.



I I VI ’ Ill II s_

1 “‘I

of “NW2

I !I I I I!!

2 L

!I

I I

III

II

w

I I I! z

2306

II

%

I II!

1

a,

;,I

,s

I II I I

I I

ll!lIIIII 9

‘8 ’ 1 ’ 1’1 23lL



I II III

Ill1’

iltll . s

IIll II

7 “I 2925”

recorded in the 2889 to 2942-cm+

0

IIIIII

” 111111

7 I,

“I

I

c 23%

region with a Fourier

u,+ ~3BAND OF "N'eOt

II I I Ml1I

i

;

II

II

I 111111

I II

II 0

Ill I

I I I II

,.?,

II

a

u



, , ,,-

8

DANA

AND

MAILLARD

TABLE Observed

i : : : : :

13 13

lb -1,2 5 1P l1,2 5

16 16 14 15 lb 15 11 11

I7 I7 15 16 15 16 12 12

.I,2 -I,2 -112 -112 .1,2 l1,2 -112 lI,*

K 12 13 lb :: :: 17

17 1, :: :: :: :: 27 :: 29 :i :: :: :: 3* 39 10 :i b2 c3 u :: 47 :: :: :: :: 56 :: :: :: 63 :: :: :: :i ::

2 * 4 3 k 3 6 6

2*69.6*1* 2119.6917 2**9.7206 209.7206 21*9.9990 2119.9990 2*90.0055 2‘90.0055 2*90.052; 2*90.079* 2*90.3217 2‘90.3269 2.90.6666 2190.6795 2*90.6999 2190.7016 2*90.9*76 2190.9951 2*91.0020 2691.0020 2‘91.0020 2492.00‘0 2‘92.00‘0 2‘92.0512 **91.32*7 2‘91.33~2 2691.632b 2‘91.6539 2‘91.7290 2(91.733b 2191.9501 2‘92.96.6 2‘92.9767 2‘91.9962 2‘91.9991 2*91.999* 2‘92.315‘ 2*92.3203 2‘92.5911 2‘92.El56 2.92.7067 i‘9i.7039 2‘92.9350 2‘92.91‘1 2‘92.973b

2‘92.9790 2‘93.0151

2‘93.0251 2‘93.3lbl 2*93.31*9 2‘93.5360 2193.5671 2‘93.69¶5 2*93.7Ob6 2‘93.023 2‘93.90‘1 2‘¶3.9C25 2‘91.9509 2‘9..26‘0 2195.27,. 2‘9L.b702 2*99.5093 2‘91.6551 2‘91.6‘12 2‘94.‘393 2‘9b.‘593 2‘9b.9034 206.9119 N99.9761 2)9b.9‘21 2‘95.2539 2‘95.2597 2*95.3*73 2‘95.bbSO 2‘95.62‘9 2‘95.6325 2‘95.7731 2995.7994 2‘95.1501 2‘95.1612 2195.9611

28‘9.6‘79

2‘19.7019 2‘89.721b 2‘89.7200 2‘19.99,‘ 2‘90.0013

2‘90.0022 2190.001‘ 2‘90.0196 2190.0101 2‘90.3217 2‘90.3250 2‘90.6664 2‘96.FI35 2190.7020 2690.7037 2190.9‘50 2‘90.993, 2‘91.0032 2‘91.0053

2*91.0039 2‘91.0067 2‘91.0075 2*91.0c30 2191.3312 2‘91.3314 2191.63bl 2‘93.6551 2191.7312 2‘91.7332 2191.966‘ 2‘92.96.5 2‘91.9753 2‘91.993‘ 2691.9965 2192.99‘9 2‘92.3253 2*92.31*3 2*92.5906 2*92.616‘ 2192.7012 2192.7037 2‘92.9333 2‘92.9b66 2‘92.97U 2*92.9‘06 2‘93.0110 2*93.0150 2‘93.31.‘ 2*93.3152 2‘93.5356 2‘93.5690

and Calculated

-0.0031 -6.0032 -o.ooo* 0.0005 0.0012 -0.0023 0.0033 0.0007 0.003, -0.000~ :::019

0.0002 -0.0010 -0.0022 0.0009 0.0026 0.0012 -0.0012 -0.0023 -0.0019 0.0013 0.0006 0.0012 -0.0025 0.0021 -0.0017 -0.0022 -0.0022 0.0002 0.0033 0.0001 0.0011 o.oooc 0.003b 0.0009 0.0005 0.0020 0.0005 -0.0010 -0.0005 0.0062 0.0016 0.0025 -0.0010 -0.0016 0.0011 0.0001 -0.0007

III Wavenumbers

: I

2‘98.17‘~ : :

5

-:%: p::

2‘93.9077 2‘93.9b39 2‘93.9515 2‘9h.2691 2‘9..2710 2‘9...6‘3 2‘9..5119 2‘91.6570 2‘9S.CCO6 2191.*3*0 2‘91.85‘9

-0:001r -0.0006 -0.0011 0.*02. 0.0019 -0.0026 -0.0016 6.0006 0.0013

2‘94.9030 2‘9b.912b 2‘91.9776

2‘96.9‘16 2‘95.25‘. 2‘95.25‘9 2‘95.3‘76 2‘95.bC61 2‘95.6281

2*95.*332 2‘95.7732 2*95.*003 2‘95.8510 2‘95.862‘ 2‘95.9676

t"p::: -0:0005 -0.000‘ 0.0021 -0.0016 0.000‘ -0.0005 -*.**I3 0.0061 -0.0007 -0.0001 -0.0010 -0;0002 -6.OOl6 -0.0002

*‘9‘.1‘0, 2‘96.219, 21962.71 219f .2ni 2*9t.3391 2196.36‘?

2**6.3610 21196.371, 2196.373,

:

2096.4266

: I : : 3

2‘96 '623 2896.5115 2‘96.5563 2‘96.5693 2‘96.5755 2896.6977 2a96.7295 i19E.7175

2‘96.1020 :

2‘96.9050

2‘96.q0‘2 i 0 5 5 :

2‘97..627 **9,.1c2, 2197.1132 21197.295, 2197.515* 2*97.5225

ii3J.8%

2‘9f.blOO 2‘96.b649 2‘9f.515, 2‘96.3557

2896.5691 2‘96.51b7 2196.EOEJ 2‘96.7324 2‘96.7‘81 2‘96.‘032 2‘96.9031 2‘96.907‘ 2‘97.1619 2‘97.1E26

2*97.171* 2*97.295*

2‘97.7950 2‘98.01164 2‘98.0514 2‘98.0927

2*97.7959

: 1

2‘98.1111 2*9*.225* 2*9‘.2164 2‘9‘.34“ 2‘9‘.3702 219‘.k363 2*9*.,,62 2*9‘.&6Ok 2.98.b‘bk 2*9*.,9*1 2*9‘.56C2 2191.572b 2‘9‘.5“9

2‘9‘.110, 2‘98.2261 219*.2451

: : : : :

: : 3 7 : : : : 2 : : : 3 : 6 : : :

269‘.E266 2‘99.65b5 2‘91.6565 2‘9‘.6651 2691.7396 2‘9‘.7702 2696.7915 2999.1956 2999.9225 2‘9‘.950‘ 209.02b2 2‘99.0290 2699.557b 2699.3675 2699.5675 2699.4‘02 2‘99.b802 2699.9902 2999.5260 2999.56b6 2‘99.6956 2999.657‘ 2‘99.8005

2‘99.8116 2*99.‘662 2‘99.8725 2‘99.9.6, 2‘99.9512 2900.0‘11

-0.0005 -0.0*10 0.3127 -0.0623 -*.311. 0.662, -0.,*,: 0.,“1 -0.091, -0.003.

-0.0027 -0.0009 O.OOOE 0.0002 o.ooo* 0.0011 -0.0029 -0.OOOf

-0.0012 0.0002 8%: 0:0001 0.0014

-0.0012 0.0013 O.OOlO 2*97.5215 o.oooc 2‘97.6057 2*?7.EJl‘ -0.0017 21197.6111, 0.00.~ 2197.6551 O.OOOf 2191.7131 -0.0007 2‘¶7.733? -0.0021

2‘97:6512 2897.6564 2*9,.,131 2*97.7312

-0.000‘ -0.0039

2191.51k5

: 7 h 3 3

2‘93.7009

2‘93.703‘ 2‘93.‘912

2‘96.1‘3I 2f96.217. 2‘96.2,52‘96.29. 2896.3269

2155."90, :*9‘.09*‘ 2‘96.1239 2L9~.1791

:

: KG: -0:0019

2‘95.1‘99 2‘96.69.9 2196.123,

2‘91.0.63 2‘9‘.oI‘t 2*9*.0931

2*9*.3U6 2‘91.3695 2‘9‘.4572 2‘9‘.4U2 28W.160‘ 2‘9‘.k‘3‘ 2‘98.b9‘3 2‘9*.5623 2‘91.5729 2‘9‘.5‘12 2‘9‘.62,. 2198.6532 2‘9*.65b6 2*9*.6‘30 219*.7333 2‘9‘.76*3 2‘9*.7*9b **9*.793. 2*9*.9210 201.9306 2*99.02s1 2*99.0259 2‘99.3570 2‘99.3659 2‘99.3691 2999.9*02 2‘99.6‘39 2l99.9912 2‘99.5279 2‘99.5‘66 2*99.6bS9 2‘99.657b 2‘99.‘022 2‘99.N32 2999.870‘ 2*99.‘lbb 2‘99.955‘ 2‘99.959‘ 2900.**02

-x: 0:0027 -o.oooc 0.0007 -0.0003 0.0023 0.0002 0.0007 -0.0009 -0.0161 -O.OOOk

o.oooc

-0.0002 0.0019 0.0005 0.0007 -o.ooo* 0.0011 -0.0003 o.oo*o 0.0611 0;001r

0.0011 0.0002

6.0025 0.0002 -x: p;: -0:OOlS 0.0 -0.0037 -0.0010 -O.OOlb -0.0019 -0.0002 0.000. ::::::t -0.00.6 -i.W: -Oh006 0.0016

to 2933 cm-‘. Absorption lines appear until J = 45 and K, = 8. The spin splitting can be observed for all the subbands. Data Reduction The experimental data and the assignment of the lines allow us to determine the constants in the upper state of the transition; in the ground state the rotational and

~1 + YS BAND TABLE

151 152 IS3 150 155 256 15, 150 159 160 161 16* 163 16, 165 166 161 16)

169 110 171 172 173 II.

12 11 11 5 5 10 10

12 11 11 6 6 10 10

-112 l1,2 -112 -I,2 .1,2 l1,2 -112

6 6 6 2 2 6 6

b 9

5 -I,2 9 .,I2

6

3

: I I

: :::: 9 .1,2 8 -1ii

: 6 6

1:;: :

:

:

5 5

6 -l/2 6 .I,2

1 I

1 10 .I/2 6 7 70 -2,2 6 5 6 -l/2 0 5 6 *I,* 0 b 5 -I,2 2 k 5 +I,2 2 3 I -I,2 3

115 115

3 c .I,2 lb 1k .1,2

, 5

176 117 17S 179 110 1.0 111 II? 163 1611 115 116 167

3, 13 13 b 12 L 12 11 11 10 10 9 9

5 5 5 1 5 1 5 5 5 5 5 5 5

1111

3

119 190 191 192 193 195 195 196

3 6 6 7 7 6 6 3

199 197 199 200 200 201 y;

: 3 3 3 1, 1;

2Ok 205 205 206 201 209 209 210 211 232 213

12 1;

:::

11 11 10 10 9 9 16 16 2

216 211 219 *I9 220 223

: 2 7 , 15 13

::: 22. 225 126 127

t 5 5 b 14

14 13 13 5 12 5 12 11 11 10 10 9 9

-I,2 .I,2 -I,? -I/Z .I,2 l*,* -112 .I,2 -*,2 .*,2 -I,2 +I/2 -I,?

2900.0926

2900.0912

2900.2os2 2900.2193

2900.2OIO 2900.2192 29OD.2593 2900.2761 2900.311b 2900.3351 2900.5102 2900.120. 2900.93S9 29OO.blll 2900.-125 2900.>336 2900.59bO 2900.1:SS 2900.6,36 2900.63SS 2900.6630 2900.6950 29oo.sblc 29OO.SbS6 2901.1522 2901.llSS 2902.2690 2901.,129 2901.31,7 29Ol.JS34 2901.5205 2901.5291 2901.651, 2901.6556 2901.65Sk 2901.6656 2901.7806 2901.1912 2901.99b9 2901.9065 2901.9997 2902.0115 2902.0259 2902.0693 2902.0919 2902.1062 2902.1151 2902.1909 2902.2962 2902.2651 2902.3069 2902.3513 2902.9331 2902.9b51 2902.6293 2902.6305 2902.6121 2902.121, 2902.S669 2*02.9r*1 2902.9511 2902.951‘ 2903.0136 2903.0606 2903.1SS5 2901.1961 2903.2930 2903.3012 290,.3,,1, 2903.3bll 2903.3119 2903.3SSS 2903.3960 2903.1026 2903..101 29OJ.b‘OS 2903.5150 2903.5111 2903.3h21 2903.3319 2903.6016 2903.6193 2903.L521 2903.6699

2900.2519 2900.21CJ 2900.3116 2900.3353 29OS..S1, 2900.9201 2900. uo1 2900.b101 2900.5136 2900.5361 2900.5959 2900.6210 2900.6352 2900.6bOO 2900.6655 2900.6960 2900.9.6. 2900.951b 2901.131. 2902.1115 2901.2621 2901.3110 2901.3?10 2901.3635 2901.5170 2901.5266 2901.6521 2901.6565 *PS1.6365 2901.6622

2901.7191 2901.1190 2901.6926 2901.9066 2901.9960 2902.0209 i -iii i 2902.0261 4 l1,2 * 2902.0661 * +1/2 5 2902.090s S -I,? 3 2902.1051 7 .x,2 5 2902.1153 7 -212 5 2902.1902 6 l1,2 5 2902.2uo 6 -212 5 2902.2639 3 .1/2 3 2902.3060 2902.3319 : :::: : 2902.bS31 6 +1,2 1 2902.bbS2 b -112 0 2902.6301 6 l2,2 0 2902.6301 1, .I,2 , 2902.116, 1; 4;; ; 2902.S221 2902.6651 12 illi ‘ 2¶02.9913 1; 4;: ; 2902.9512 2902.9512 11 l1/2 . 2903.01b0 11 -112 . 2903.OBlS 10 .1,2 , 2903.1S91 10 -112 (I 2903.1919 9 .2,2 . 2903.2929 9 -I,2 I, 2903.3016 26 .2,2 , 2903.3~29 16 -2,) 3 2903.3.61 3 -1iz 1 i901;3130 2903.3SSl : z:: : 2903.SJSY 3 .I,2 3 2903.1031 7 +1,2 4 2903.9695 , -II2 L 19II.h,9, 13 l1,2 3 2903.5110 23 -1i2 3 2903.3202 2903.5.16 : !I$: : 2903.5531 5 *I,2 9 2903.6012 5 -I,2 L 2903.6211 I l2,2 5 2903.6535 1. .I,2 3 2903.6725

___

III-Conhwed

221 221

4 e -112 1, lb -I,1

6 3

22‘ 229 230 231 23; 233 2,c 235 23E 237 236 239

1, 13 12 12 11 11 1 10 10 1 9 9

I3 *3 I2 22 11 11 2 10 20 2 9 9

.1,* -112 .I,2 -112 .l,I -112 -112 .i;i -112 .1,2 lI,2 -112

240

15

IS

*I,2

3 3 3 3 3 3 1 i , 1 3 3 z 2 0 0 3 3 3 3 3

*.0021 0.0016 0.0015 0.0021 0.0010 -0.0022 0.002‘ -0.000‘ -0.0005 -0.0019

2PO 15 15 -112 21rl 1 2 -112 2Cl 1 2 l1,2 242 * ‘ .I,2 2b2 6 6 -112 2113 7 7 .I,2 244 7 7 -I,2 215 6 6 .I,2

::.:g: 0:0001 -0.0035 -0.JOO9

2117 2b7 217 2k‘ g",

0;oooi

0.0027 0.0001 -O.OO,P -0.0025 -0.0022 -0.0021 -0.0001 -0.0007 -0.0006 0.0003 -0.0012 -0.0011 -0.0011 0.0009 -0.0001 -0.0002 0.0001 -0.0010 0.0006 :.:005 0:000* -0.0001 0.0016 o.oosa -0.0012 -0.0006 0.0025 -O.OOOC 0.00011 0.0001 0.0012 0.0013 -0.0006 0.0006 -0.0010 -0.0010 O.OOll -;.gi; 0.0005 -0.0001 -O.OOOB -9.0010

0.0015 ::::::: -0.0034 -0.0022 0.000‘ 0.0026

9

OF “N’602

2P6

6

13 13 5 12 12 5 2119 P 250 1 251 3 252 3 253 11 253 11 251 10 251 10 255 9 256 9 257 9 251 9 256 7 259 1 260 6 261 6 262 5 262 5 263 . i63 4 269 J 265 3 266 2 267 2 266 ‘ 269 2 210 2 272 1 212 1 273 3 213 I 214 5 2711 3 271 9 215 12 276 7 217 1 216 12 ;;: IO 1 2.0 261 262 2SJ 2‘L 2‘5 266 2111 266 269 290

6

-1i2

13 .I,2 13 -I,? 5 ,112 12 .I,2 12 -l/2 5 -I,? 4 .I,2 I,-112 3 .I,2 3 -l/i 11 .I,2 11 -I,2 10 l1,2 10 -I,2 9 +1,2 9 -I,? ‘ .I,2 6 -I,? 7 .I,2 7 -l/2 6 +1,2 6 -l/2 5 .I,2 3 -l/2 I .I,2 4 -l/2 3 .I,2 , -I,2 2 .I,2 2 -112 7 -112 2 +1,2 2 -I,2 3 .1,2 2 -112 3 .I,2 , -112 5 l1/2 5 -112 6 .2,2 12 .I,2 1 l3,2 7 -112 11 -I,2 0 .I,2 9 +1,2

3

2 2 3 2 2 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 7 1 3 2 2 2 1 1 1 7 6 1 2 ‘ 0 1

1 0 -112 0 10 9 -112 7 13 12 -112 ‘ ‘ 7 +1,2 6 6 5 .I,2 5 6 7 -I,2 6 6 5 -I,2 5 2 1 .I,2 1 2 1 -112 1 12 10 .I,2 7 11 13 .I,2 ‘

2903.6I.25 2905.6725 2903.8159 2903.*2*2 2903.,&99 2903.9Skk 2991.07‘9 2901.0‘50 2901.1310 2906.1953 2901.1999 290L.2269 2901.,013 29Ob.JObI 2904.,6bC 2901.,6b6 290b.3739 2904.3709 2901.1951 2904.39511 29011.1771 2901.U3E 2901.5512 29011.557* 2904.El27 2901.6127 29011.6127 2904.6201 2904.6201 29011.6201 2904.66110 2901.675P 29011.7051 2901.7199 2904.6396 2904.6196 2904.6665 2901.9692 2905.03Cl 2905.010* 2?05.1033 2905.1013 2905.2015 2905.2077 2905.2662 2905.2116 2905.337, 2905.,373 2905.,6,3 2903.1‘1, 2903.12S9 2905.#351 2903.,59, 2905.5ElS 2903.1119 2903.12l7 29S3.‘*‘, 2903.9356 2905.9399 2906.0023 2906.0023 2906.1230 2906.1230 2906.1230 2906.2153 2906.2‘29 2906.291‘ 2906.3212 2906.SSOl 2906.90.1 2906.9091 2906.9930 2907.0219 2901.2312 2901.23‘7 2907.1620 2901.b250 2901.3b27 2901.6109 2901.6203 2907.6&51

*90,.c7** 0.0001 2')03.FI3, -Cl.‘)012 2903.618& -c.m25 *9*3.*22s 4.ma2 2903.9538 -0.0039 2903.9519 -0.0035 2931.0‘03 -0.001P 29OI.SSbt O.OSO1 *90..15c5 1.0015 2901.1953 0.0 290,.19+1 0.3 :9ob.2175 -0:aaot *9Sk.,cSI 0.000, 29DI.ID53 -3.0995 2901.3t2: 2.0923 2901.JfbC -0.0001 29DC.3697 0.0012 2fJDb.37lO -0.3001 0.001: 2*OP.J946 2909.1000 -o.oo,* 29OP.4795 -0.001: 29Ok.LSllb -0.0006 29011.551c -0.OOc4 29OP.5594 -O.OOOP 0.0013 29ob.tll4 2994.I1,7 -0.aa1-l 2'10!+.6142-0.0015 2904.61‘4 o.ao11 2904.6207 -o.oooc 2904.6222 -0.0011 290k.CE5, -0.001’1 2?04.67CO -o.oooc 290b.706, -0.0016 29011.7:05 -O.DOOI 2904.6-111k 0.00~4 2904.6110‘ -0.00~0 2904.6S76 0.0009 1901.1901 -0.000” 2905.0379 -0.0018 2905.0405 -0.0001 2905.1829 0.0001 2905.105t -0.002, 2905.2051 -0.0009 2905.20‘, -0.0006 2905.2661 O.OOOl 2905.2113 0.0025 2*05.,3t* 0.0005 2905.1405 -0.00,2 2903.,‘61 0.9009 2905.190‘ -0.0035 2905.P291 -d.OOS, 2905.1309 0.000, 2905.,593 -0.0002 2905..6‘3 -0.000, 2903.SCk6 0.0003 2905.1229 -0.0012 2905.*25* 0.00,7 2903.9312 -0.0016 2905.9,*1 -0.001, 29P6.002, 0.0 290t.0019 -0.0016 2906.12‘6 0.0011 2906.1199 0.0031 2906.1216 0.0012 2906.2159 -0.0006 2906.296, -0.0035 2906.2916 0.0012 2906.3269 -0.0031 2906.‘166 2906.9020 :.,"::: 2906.9093 -0:0002 2906.9962 -0.0032 2907.0316 -0.003, 2907.221s O.OOYl 2901.2312 0.0015 2907.3625 -0.0001 2907.11252 2901.3526 -xi:: 2907.CO96 0:0013 2907.61‘2 0.0021 2907.6C5S -O.OOcl,

spin-rotation constants are well known; a good set of rotational constants is given by Cabana et al. (7,s) and the spin-rotation parameters have been accurately determined by Lees et aE. (9). In our data analysis the ground state constants were held fixed at these values previously published and only the upper state constants were allowed to vary.

1907.7172 2907.715G 2907.719b 1907.9265 2907.¶519 2007.9957 1907.9995 290s.0570 2901.0b61

510 511 512 512 515 51b 515 y’;

s 6 20 b b 5 6 1:

i 5 9 5 5 b 7 :

.li2 -2/l *1/z *1/z -112 l1/2 0112 4;;

b I 6 2 2 5 5 ;

526 519 320 521 ;:;

6 16 25 1‘ 1:

7 25 22 15 1;

:2/z .I,2 l1/2 -112 . -;u:

5 6 7 6 ;

::: 52‘ 527

7 b

6 5 6 10 b 10

-112 +a/2 -1fZ .l,P l1;2 -l/Z

1b . 5 2 6

529

;;:

550 551

:::

7 12 5 11 : 6

: .‘::: : 5 *1/z 5

: : :::: :

55b 555 555 y;

17 17 lb 1:

l1/2 -l/Z *1/z 4;:

6 6 7 ;

556 559 5b0

5 b -112 6 7 *1/z 5 b r1t2 5 . -112 6 7 12 21 *1/z 12 21 -112 56 9 .5,2

6

5bO

511 5b2 565 5,.

1‘ 16 15 1:

1 b 6

-1115 6 6 5

2996.0¶17 2YV6.15bl 1906.165b 299,.5*52 2906_5b9? 2906. ,127 2966.bI56 290s .bVDl 29DI.bb66 2906.556V 2906.5569 2906.5752 2906.67b5 2906.7rbc 29Os.7bbI 2906.7¶96 2906.6076 2906.6205 29V6.61‘0 2906.66‘2 2996.9677 2999.6261 2909 .O‘h9

2909.os9c a909.1539

2907.71“ 2907.7262 1907.77‘0 2907.9276

2907.9509 2907.9911

1906.0006

2909.05‘2 2906.0b72 2906.0965 290..1525 2906.1659 irss:l\tr 29O6.5.79

2?06..262 2906.b227 2906.k500 2906.bb70 1906.5512 2906.55W 2906.575, *oo6.6756 2906.7415 2906.7b62 2901;7099

0.0010 O.OOlJ -0.0015 0.0006 -0.0010 -6.0006 0.001‘

-0.6025 -0.0091 0.0027 -P.SO,P i‘iiii 0:oOol -0.309: 0.6017 -0.6001 -0.0002 -0.6015 0.0055 -0.001f

2909.9090

-Eo14

2906.62‘2

-0.0002

::l:::t:l

3:88fl

2909.s2000.0001 1909;0501 2909.0‘59 2909.09S? 2909.1552

2909.1b27 2909.15f‘ I999.>Sl52909.5S71 l909.lr2‘ 1109.x570

2909.b160 2999.b797 2909.5bb9

299o.5500 299V.5760 2609.5760 2999.5VIZ 290V.‘b97 2909.6507 2909.7055 2909.7706 2909.7706 2909.6512 291O.Ob56 2910.05b5 2910.1229 2910.1511 2920.1511 2910.1799 2910.1ObS 2910.2‘52 1960.52‘9 2916.5269 2920.5522 25ao.5752 2910.5197 2910.5767 2910.b159 69lO.bZV7 292D.bVb‘ 2910.5162 2910.6VD7 2910.6V65 2910.67V‘ 29lO.VIJI 2910.02bl 2910.9‘02 2911.02bb 2011.35‘6 2911.072b 2011.1057 2o11.1057 2311.1225 2311.1175

2969..29, 2909.b765 29OO.Sb52 2909.5bVl 2000.576f 2909.5791 2009.5905 2909.6b95 2900.6552 2909.7056 2009.76b0 2909.7‘95 2909.651‘ 29lO.Ob55 i91o;o5r1 2910.12b‘ 2910.1295 :910.151b

2910.1605 2910.2056 2910.2‘56 2920.52b‘ 2910;52r5

2910.5525 2926.5706 2910.5755 2910.5625 292O.bl51 2920.b25C 2910.b65f 2910.1166 2910.6925 2910.696‘ 2910.6715 2910.917‘ 2610.02b0 2910.9605 2012.0251 2Ol1.6567 2911.075b 2911.1Ob5 2911.207: 2111.122c 2911.11o4

5CI IS5 566 ,[I ICI 167

1;

1‘1

c -112 1 4 -ii2 k 1% 1, -I/l 6 70 I? a112 I

5f9

370 ;;; 571 ,I2 575 17, ,7b 575

1;

w:

;

1‘ 15 -l/2 7 lb I5 -112 f 1; ; . 4;; ; 7

;a

: 26 12 17 1:

; t:;: 1'1-I/f 12 -111 ,c .112 1; 4;:

aP 6 5 1 !

* ‘ ,IL 1; 1; 4;; ;

377 376 570

1 I

e .111 3 6 -112 5

560 561

6 II

I

562 565 56b

j,, 36. 365 ,I6 567 $66 569 500 501 191 532 595 59b 505 5VL 547 59l 50’) bO6 401 co2 bO5 Mb bob bO5 1oc 407 kO7 co, bO9 bl0 411 .I2 .l, .** b,.

b25 L16 bl7 bl7 b1S bl, 620 b21 b21 b22 b25 b2b b25 12‘ ‘27 b26 b29 b50 b51

.I/2

7 -1t2 21 20 *l/l 15 lk .1/z 21 I6 -112 ii 14 -112 11 10 -112 11 10 -112 16 17 .I/2 ,, 12 -II2 16 17 -112 1: 1; 4;; . 0 6 -l/2 10 o -112 10 o -II2 22 21 -1t2 27 71 -212 7c 15 -112 16 15 -?I2 22 II .1/2 12 12 -112 1: 1; 4;; . o 6 -112 1; 1: 4;; . 9 6 -112 lb 15 -111 lb 25 -l/2 10 9 .1/2 10 9 -l/2 I, 16 .I/2 11 10 -112 2, 22 .1/I 2, 22 -l/2 10 , -l/2 10 o -112 I7 19 -112 55 55 .112 57 26 -212 26 19 .1/2 25 12 .I/2 2o 10 -l/2 15 12 -2t2 15 2b .I/2 15 2. -212 12 I, .1/2 11 26 .I/2 12 11 -212 11 16 -l/l 2. 25 .I/2 2, 25 -112 16 17 .I/2 1s I7 -112 21 26 -2/l 21 20 -l/2 ,lr 15 .1/l 14 15 -512 16 15 -112

1

1 6 c

6 G L 4 7 5 7 5 i 3 5 6 6 t c b L ; 1

: 0

5 5 2 2 5 5 6 6 1 1 I 1

6 7 h 7 h 5 5 5 2 5 2 6 6 G 6 7 7 b I 5

29ll.l,7L 2011.1‘0L 2911.1555 y;.;:;; .2 2911.f227 2?ll.f266 2911.f596 2911.6f55 2911.6655 :9ll.f71‘ 2011.c70c 2911.1115 2,,1.77?2 1511.62Gl 2911.6201 20~1.6fO1 2511.5f2~ *911.:750 2011.6905 2911.01f1 :912.1975 2012.1095 2o12.5022 2912.5121 2922.5551, 2912.1551 2912.555L 2912.S6C~ 2')12.1625 2912.1000 2a12.5225 2912.5257 291:.6161 2912.f512 2012.C312 2912.fS2C 2922.9240 2912.,f27 2o12.0921 2925.02?1 2915.07f9 2915.1O~C 2915.1551 2915.1595 2015.1c51 :015.1705 2015.1656 2015.1662 2o15.1662 2015.2217 2915.5511 2915.5615 2915.5‘15 2915.1605 2915.556? 2915.5757 2915.6557 2925.659G 2915.6757 29*5.,9\5 2915.69b5 2915.772b 2919.7970

2915.1102 2915.6102 2915.6795 291:.9071 2011.0625 291b.091b 291b.100b

29lb.lOOb 291b.1595 291b.172‘ 291b.5210 19lb.5515 291V.1022 2Olb.b559 29lb.b661 291b.507‘ 2916.5575

1911.11110

2o11.17oc ;s11.10‘5 :911.6205 2"ll.L.?C 2011.L2~1 ;~;~.~~V~ 2911:6656 2”11.6C66 2911.c715 2911.cca; 2111.7152 2911.7625 2911.61?5 2”11.*:26 2Vll.IC20 2’112.6CSl 1911.57~7 :V11.6016 2011.9172 2~12.1950 2912.2002 2o12.5020 2022.5119 2022.5151 2012.5521 2012.511rb 2o12.5655 2012.P815 2,12.1?26 2Vl?.52,? 2,22..5263 2Vl?.ClQ5 2”lz.c5lr 2912.6529 2012.63bZ 2912.?Zb( 2912.9r29 2112.““27 2915.02’1 2*15.0751 2115.1320 :915.1521 2915.1562 2015.162s 2V2,.2‘V1 2115.1626 2015.1650

2915.1o55 2915.2252 2915.550s 2915.5c15 2015.5c5I 2915.5616 2015.55‘6 2915.572‘ 2ol5.fI.I 2915.6566 2915.9,(27 201Y.C355 2915.6956 2915.772o 2915.76b0 2915.6072 2015.6065 2915.6629 2015.9115 29lb.062‘ 291b.0926 291b.0919

zolb.1021 2916.15S5 291b.1721 29lb.5221 291b.5525 29l~.bO26 291b.b5b7 29lb.b656 291b.5019 291b.5116

0.0011 -0.9001 0.0091

V.0110 -V.DVVI -0.0615 -0.VOV5 0.6621 O.OD,O

0.0017

-s.oP~b -0.0057 -0.0005 -0.000* 0.0016 -0.0017 O.OOOV 0.0065 Mf~ -0.0006 i:::::

-V.oobI

At first we have adjusted the three spin-rotation parameters to fit on the observed splittings; in our computation were included all the unoverlapped doublets with the same statistical weight; 330 doublets were included in the fit. The differences between observed and calculated splittings are not larger than 0.0015 cm-‘.

Y, + YQBAND TABLE SERIAL HVHBE”

TR*WS,,IOW N’ H’ .I’4

‘b

OK.LRVEO MSIIIOW

CALCULATEC POSIT,“”

2911.5156 2914.587, 2911.6525 291b.W2b 291&.6bk9 29111.6,93 291b.6507 *Jlr.E5.* 291b.6559 291b.7519 291..729*

III-Continued

OBSERVEDCALCULATEC

SERIAL NURBE,

-0.001~

2911.Cb24

-o.oooi

2911.7E2C

-0.0026 -3.00111 -0.0001 0.0012 0.0009

29111.7615

11

OF ‘rN’60t

79lb.7905 2914.7916 291b.7903 291b.7961 :;."o"o:: 291b.8053 291h.8016 0:0007 291b.8053 2911.8059 -0.0006 2914.9692 2916.9707 -0.0015 2911.9978 291C.9986 -0.oooi 2915.0217 2915.0221 2915.0519 2915.0519 2915.0695 2915.0698 -x002 2915.07u 2915.0738 0:0010 2915.1757 2915.1721 0.0036 2915.19bO 2915.1911 0.0029 2915.2252 2915.2300 -O.OObI 2915.2556 -0.0050 2915.2U6 2915.3109 2915.SlOL 0.0003 2915.3bl8 2915.3,06 0.0012 2915..1*3 2915.b8911 -0.0011 2915.5012 2915.502s -0.0021 0.0010 2915.5269 2915.5259 0.0001 2915.5137 2915.5136 2915.EOll 2915.608, -0.0013 0.0018 2925.6327 2915.6309 2915.6327 2915.6316 -0.0019 2915.6582 2915.6589 -0.0007 0.0039 2915.8535 2915.8196 2915.866, 2915.8670 -0.000, 2915.8826 2915.8810 0.0016 2915.882E 2915.8875 -0.0019 0.0011 2915.9106 2915.9092 0.0011 2915.9106 2915.9095 0.0026 2916.0591 2916.0565 2916.0591 291r.0591 0.0 0.0 2916.1006 2916.1006 0.0005 2916.1051 2916.1015 2916.1769 2916.1771 -0.0005 2916.1860 2916.1892 -0.0022 0.0001 2916.1982 2916.1910 2916.2051 2916.2051 -0.0001 2916.2297 2916.2291 0.0006 2916.2Sb5 2916.2361 -O.OOlC 2916.2581 2816.2555 0;00ii 2916.25811 2916.2602 -0.0028 29lE.Oklk 2916.lClO 0.0005 2916.~510 O.OOc‘1 2916.hblk 2916.11161, 2916.111118 0.0016 2916.4691 2916.k681 0.0013 2916.5216 2916.5166 0.0050 2916.5285 2916.5126 -0.00111 2916.5379 2916.511, 0.00,6 2916.5118, 2*16.55&h -0.0062 2916.6166 2916.8269 -0.0003 2916.8121 2916.8.18 0.0066 2916.8525 2916.8529 -0.0004 2916.8525 zPlG.t53t -0.0011 2916.8637 2916.8615 -Ll.ooot 2916.8742 2916.8755 2916.9190 2916.9192 2916.9260 2916.9260 0:o 0.002, 2916.*921 2916.9905 291,.019P 2917.0165 0;002* 2917.1611 2'117.1705 -0.0071 2917.1790 2917.1728 0.0062 2917.1825 2917.1*77 -0.0052 2911.1931 2917.2893 0.0019 2917.3916 2917.3911 -0.0005 0.0012 2917.02k9 2*17.417? 2917.1299 2917.12rr, 2917.P287 2917.11276 0.0017 2917.b5C8 2917.1592 -0,002, 2917.1781 2917.k805 -0.0021 2917.5092 2917.5062 O.JOlO 2917.50?2 2917.5101 -0.0012 2917.5209 2*17.5210 -0.0001 2111.5310 2*17.52*7 0.001,

-0.00011

:“o.“o”o::

o.oooc

500 501 501 502 503 5OC 505 506 507 508 509 510 511 512 51, 515 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 53, 533 531 5,I 535 536 53, 518 538 539 539 519 i,o 541 5P2 543 544 545 546 546 547 51r7 ICI 5k7 5k8 5b8 509 550 551 552 553 55k 555 556 557 557 558 519 559 560 561 562 562 563 56b 565 566

TR,.ws,T,“” H’ N” J’-rr’

r,

17 16 JO 29 16 15 16 15 16 I5 16 15 21 20 21 20 1'118 19 18 27 26 27 76 24 23 31 30 24 23 ,I 30 18 17 18 17 I7 16 17 16 22 21 22 21 20 19 20 19 28 27 28 27 32 31 32 31 25 24 25 24 I7 16 I7 1E 1'1I8 19 I6 18 I7 I7 16 17 16 18 I7 2, 22 23 22 1* 17 18 1, 29 28 21 20 29 28 33 32 21 20 33 ,2 26 25 2t 25 20 19 20 39 II 33 19 38 19 I8 30 29 3, 33 21 23 30 29 21 I3 22 21 22 21 27 26 27 26 13 18 19 18 35 31 21 20 35 II 21 20 31 30 3, 30 20 19 20 19 25 ?I 19 18 19 16 25 24 20 19 20 39 2, 22

3 8 2 2 1 1 3 5 1 I 7 7 6 8 6 8 3 3 2 2 5 5 I 6 7 7 8 8 6 6 0 0 3 3 2 1 1 2 5 5 1 1 7 I, I 8 I B 6 6 3 3 8 2 2 7 8 5 7 5 I I 6 6 0 0 8 3 8 , 7 7 2 2 5 1 1 3 1 1 ',

-l/2 -112 .I,2 -112 *I,2 -112 .1,2 -312 .x,2 -112 .I,2 -112 tl,? t1,2 -l/2 -l/2 .I,2 -112 *l/2 -I,2 .1/t -112 .I,2 -1,2 *I,2 -112 *l/2 -112 .I,2 -112 .1,2 -I,2 +1,2 -l/2 1112 .I,2 -I,2 -112 .1,2 -I,2 .1,2 -I,2 l1,2 .1,2 -I,2 .1/z -I,2 -,I2 l1,2 -I,2 .1/z -l/2 .1,2 .1,2 -112 .1,2 -l/2 l1,2 -I,2 -112 l1,2 -112 .I,2 -112 .1,2 -112 .1,2 +I,2 -1,) -l/2 +1,2 -l/2 *x,2 -112 .1,2 .1,2 -I,2 -,,2 .1,2 -112 ,112

ObSE?VIP POSl,l”l 2917.5310

CALCULATEP POSITION

2917.5s12 2917.55115 2917.5563 2917.5c27 2417.7C71 '2917.7723 2917.7962 2917.8338 2917.8185 2917.832b 2917.9608 2917.9833 2318.0518 2911.0581 2918.5750 2918.0822 2*18.1755 2918.1851 2918.2735 2918.2796 2918.LO26 2918.lr112 2918.L1198 Z916.@276 2918.lr618 2918.1536 291*.DIc3 2918.4667 2911.5255 291S.5270 2918.53?9 2916.5385 2918.5732 2316.5766 2918.6017 2918.5996 2918.6371 2*18.63** 2918.6557 2111.6590 291*.7ri* 2Ql6.7k50 2911.7497 2918.7bln 2918.6222 2918.8227 2918.1322 2*1*.8318 2918.8700 2918.2711 291s.1700 2918.8726 2918.8763 2918.87~3 2318.8763 2*1S.6771 2919.0070 2919.3156 2919.0227 291*.0313 2919.Ok89 291*.0,9c 2919.055, 2919.0512 291P.0553 2919.0626 2919.016, 2919.5782 2319.0867 291E.J833 2919.0667 2919.01.5 2919.0933 2919.0905 291*.1097 2919.1066 2'119.2205 291*.2*+4 2913.2289 2919.2327 2919.c557 2919.1352 2919.C6.0 291*..631 2919.590, 2r19.5119 2919.530~ 2919.5891 2919.59,, 2919.59,* 2919.59.7 2919.5978 2919.59.I 2919.6033 2919.5367 2919.EO'JI 2919.6150 2919.6176 2919.6150 2919.62U 2919.702, 2919.6920 2919.7162 2919.7038 2919.7760 2919.77.b 291¶.7921 2919.7958 2920.0111 2920.0180 2920.0222 2920.0210 2920.0707 2920.0688 2920.0835 2920.0626 2a20;0116 2¶20.06¶6 2920.0916 2,20.0,10 2¶20.1220 2920.122b 2920.1k19 2120.1416 2920.1kl9 29?.9.*.22 2¶20.146I 2Y20.1172 2920.1919 2920.1,27 2920.1¶29 2910.1920 2920.1329 2920.1916 2920.1965 *920.2070 2920.2862 2920.287b 2920.2889 2920.2911 2920.,068 2920.2955 2*1,.53,5 2917.5575 2317.5632 2917.7670 2917.7728 2917.7890 2917.806, 2917.6256 2917.1395 2317.9591 2917.36111 2918.0516 2918.0581 2918.0720 2318.0635 29111.1718 2918.1EI7 2918.2729 2918.2790

OCSESVE*CbLCULAlE” -0.0002 0.0030 0.0012 0.0005 -0.0001 3.0005

-0.0072 -0.0075 O.DO71 0.31,1 -O.OOlk 0.0901

%“” -0.0030

0.0013 -0.0007 -0.0001 -P.OOOC -0.0006 -0.008C -0.0080 C.0082 0.0076 -0.0025 -O.OOOG :::K -0.6021 :;:J";:: 0.0011 -0.0005 O.OOOb :00:5811 0.0020 -0.0008

-O."OP7 -0.00s X%: -0.0073 0.0085 O.lOjl 0.3022 5.0011 0.0031 -0.0039 -D.O638 0.0005 0.0002 0.0085 0.0013 -“.COO2 -0.00,1

-0.OOP6 -0.0117 -0.002c -0.009, 0.3103 0.0101 -0.0011

-0.0037 0.0001 0.0012 x:: 0:0020 0.0006 -O.OOOb 9.0003 -o.wos -O.OOlb -0.010, 0.0009 -0.0007 -0.0105 -0.0012 -0.0022 0.011,

Using these values of the spin-rotation parameters it was possible to calculate the pure rotational energies and consequently to adjust the rotational constants and the band center. As it was done in the previous calculation, only the unblended lines with the same statistical weight were taken into account; but it appeared that the lines of the subbands K, = 3,4, .5,6 are perturbed by a Coriolis resonance. We have been unable

DANA AND MAILLARD TABLE III-Continued

ES 615 636 637 6511 653 660 6** 662 6I3 6115 6b5 645 6b6 Fb, GL8 603 ‘5(1 651 652 652 653 656 655 E5C 657 656 653 660 C61 66l 661 662 661 666 6G5 GG6 6C7 666 665 6CY 669 670 6,X 672 C75 6711 C75 676 677 6711 678 673 673 680 C81 612 6112 6ll5 66, 6i5 686 6,7 6** 61, 663 639 631 692 C,J 631 695 636 696 636 637 638 636 683 700 701

II JO 11 JO 38 51 JL 37 25 2b 25 20 27 26 27 *c 26 25 2E 25 23 28 23 28 26 25 26 25 25 21 *5 21 ,5 ,b 55 ,b 53 38 32 31 53 ,8 52 52 28 27 26 27 50 23 50 21 If 3s 3C 55 53 52 27 *t 27 2‘ ,5 J? 27 2E 27 26 23 28 23 28 11 50 51 JO 28 27 28 27 2* 27 28 27 57 56 I7 JC II 3, 5L 55 27 26 27 26 JO 23 50 23 12 51 56 5, 52 II 58 57 55 54 55 54 23 28 23 ?I *3 28 *3 29 33 I* 53 M 51 50 ,1 50 55 52 55 52 JO 29 50 23 50 19 50 23 36 55 56 55 23 26 13 21 40 59 40 59 52 51 ,* 31 54 55 III 55 57 56

l1/2 -l/2 *1/z -l/2 .1,2 -1;z l*,2 -l/2 .1,2 -l/2 .*,* -112 .1,2 -212 .I,2 -212 .I,2 -l/2 l1/2 .1,2 -112 -112 .I,2 -112 +I,? -*,* .1,2 -I,2 .*,2 .I,2 -112 -2,: .I,2 -112 +I,* -l/2 l1,2 -I,2 +*,* l1,2 -112 -212 .2,2 -I,2 .I,2 -l/2 .*,2 -112 l1,2 -112 .I,2 .1,* -112 -112 .I,2 -112 l1,2 -112 *I,2 -l/2 .I,2 -112 l2,2 -l/2 l1,* -112 l*,2 -111 .*,2 -l/2 l1,2 -112 l1/2 -112 l1,2 -112 .*,* -112 +1/2 -112 l*,2

s I 7 7 0 0 5 5 2 21 0 k 1 * 1 * 6 6 7 5 7 5 3 1 P 4 ‘ 6 5 2 2 5 D 5 I 3 4 II : 1 1 * C 6 5 5 1 2 I 5 II 6 5 ‘ 5 5 2 2 D 0 6 6 3 3 k I. 1 * 2 2 5 5 1 * L 6 5 3 k I 5

%%!

-0.0032 2923.5116 2321.5158 -0.CO22 2923.514~ 2323.5550 -0.0006 2325.5501 2921.5486 9.0015 3.00*c 2923.6155 2Y:J.C133 292,.6221 2323.C2IJ O.JO11 0.9 292S.6914 2?25.631L 2925.6961 2925.6YCC -0.0005 2323.7152 1325.C?k2 0.0210 0.0*39 2921.72c5 2025.7015 292S.7265 2315.7277 -0.0012 2923.75b2 2923.7551 -O.?OO? 292,.***3 iY23.86'15 -0.JOl2 0.0017 2325.8322 2325.8305 2323.3015 2323.30~5 -0.0060 2323.91k5 2325.9?33 -O.W6> 292S.YS77 z?ll.qloc -o.oo** 2923.YP25 2321.3730 -0.02(5 OOCC 2325.3625 2325.3559 2321.9717 *?*1.3?04 -0.0167 0.3025 2?2!+.15,0 C.7001 232k.1511 0.025l 23211.21162 0.1222 2324.2555 -O.OOT 292L.5t67 -0.c.330 2324.>5*5 -C.3175 2924.PCO1 0.3010 :324.4715 -0.0042 2324.k715 -0.3112 2324.4715 -9.7C13 232P.‘?ll 0.0024 i924.6275 3.9021 29211.71111 O.Cil‘ 2924.7172 5.3251 ?32&.7C7S 6.3257 2321.711, -0.000s 2321.76116 232P.78lrL 232ti.7645 J.0005 292L1.7315 2120.731: -0.0305 9.3005 232k.731, 2021.7903 2924.8272 2921.?5r5 -0.1035 -O.B0?4 23211.1000 232k..511911 -O.ol;* 2921.3470 2,2rr,9G*~ 2321.9577 232b.Y,C5 -0.0166 2925.0516 2325.0550 -0.co1: 2325.0555 2925.0555 -0.0002 0.005C 2325.2255 2325.2115 2325.2215 2125.225, -O.ODOF 0.0271 2325.2773 2325.2502 2925.277, 2925.21141 -o.ooc* o.o*,c 2315.2961 2325.2530 2325.2367 -O.CIOI ;;;s.;m; 2?25.Lb50 -0.3135 *32:.1510 2325.&557 -0.013, 2325:5983 ;;*y& 0.0026 -0.0025 : 2925.5963 2925.61176 2325:trsa -0.0022 D.OOOC 23*5.t502 2325.6516 23*5.70,* 2325.7210 -0.CII2 29*5.72b, 2325.7515 -0.0032 2325.7662 2325.7632 0.0050 0.0016 2925.7713 2925.7700 0.3291 2325.7763 2925.7191 0.0297 2925.7674 2925.7577 0.0006 2925.7955 2925.73~9 2325.90:7 2925.6032 -0.0005 2325.9352 2325.3352 0.0 29*5.*400 2925.84011 -o.ooo\ 2925.6630 2325.9097 -0.9207 1925.9936 2325.3202 2926.1266 2926.1292 :;.;:"o: 2326.1266 2926.1291 pi; 2326.1266 2326.1b75 1326.1.67 2926.1537 -0:0110 0.0015 2926.2191 2926.2b56 *,26.2.9* 2326.2505 -0.0012 O.OJ26 292C.2677 2326.2351 0.0525 2926.2759 232C.IP56 2326.5k5* 2926.5653 -0.0216

to study this resonance because of lack of data for the perturbing level (120). Also we have neglected in our computation all the lines noticeably shifted by this resonance. (Shift 2 0.002 cm-l). Finally 600 lines were included in the fit. Twelve constants are obtained by the rotational fit; (the contribution of HNK is too small to be included in the computation and HN is fixed to its ground state value). All the upper state constants

PI + va BAND TABLE

ZCk 705 IOL 70, 70, 708 70, 709 7,o 711 71, 711 ,:2 71, 7111 715

7ii

72k 725 725 726 726 72, ,I7

12f 121 72s 750 751

712 I,, 7,. 7,s 716 157 7,7 7,1 7,s 110 761 142 7h, 7k, 1&b 7‘5 7kS 7,s 7c, 7hI 761 719 750 751 752 75, 7SP ,15 tii ,5t ,s, 75* 75* ,(!I 1‘1 I‘2

II ,I ,I ,6 16 3s ,, ,I ii 112 12 16 ,* ,‘ 19 ,, I, ,6 ,‘ ,I ,I b, .I Ilo 10 ,I 1, 15 15 14 h* ,I I7 ,t lb $1

b0 ,I I7 15 ,I I2 ,2 111 16 1, 111 ,I ,I I5 ,I I6 16 15 ,I ,‘ ,k ‘2 ‘2 I9 ,* $7 I7 14 ,k ‘, b, ,c ,t ,7 ,I PO

-I/2 .I,2 -I,2 .1,2 -112 -111 .I,2 .I,2 -iii .,,2 -,,: .I,2 .I12 -I,2 -I,2 .2,2 -112 *iii -I,2 .I,2 -112 .I,2 -ii2 0112 -112 l1/2 -112 -112 1112 rll2 -112 +112 -112 .,I? -112 .I/?

5 b b 1 , 1 1 P i 5 5 1 4 1 k , , i 2 2 2 5 5 I, 5 1 3 1 1 5 5 0 0 1 1 k

2926.35,, 2926.5510 2s2t.5t31 242L.6262 2926.CS32 2926.68% 2926.6831, 2926.7516 2926.7600 2*Zi.7600 29zr..7c:1 2926.7838 2*26.7C,I 2926.7838 2*2L.7918 2*2t.s,*2 :*:rl.1450 2926.,5,5 2?2C.9C73 2*27.17*2 2927.1,*2 2127.2170 2?27.2252 2127.2252 2927.2126 2927.2,2f 2927.2326 2927.5546 2927.5C26 2927.6IIO iS27.6551 :*27.6,*1 2S27.6791 2S27.6871) 2S22.L17* 2927.7,06 2S27.7306 2S27.7161 2927.7168 2927.7SO 2927.1011 2S21.057b 2S26.0671 2s21.1227 2921.12S8 2928.161, 192S.17b7 29ZS.lIS5 292~.lSS5 2’)28.6,52 2$2,.b,,2 lSll.hlSI 2$2:.467P 20:.3S,b 2921.1625 2921.3625 2521.5699 2921.692‘ 1921.692s 2S2:.7125 2921.71B6 2921.737G 2StC.7,76 2,28.,501 2SiI.llP7 2s21.sas, 2*2I.P*bS 1929.0t50 292s.0715 2*29.1,91 2*29.1,91 2929.2301 2929.2,w 2929.26C9 2*2*.275C 2,2P.,803 2929.,691 2*29.41s*

2926.,762 2926.5652 2P2C.S7S2 2S26.6210 2P26.6,20 2926.6811 2926.6171 2926.713C 2926.7211 2926.760, 2926.7619 2I2C.7771 292c.7a,a 2926.1114 2,2‘.8216 2’)26.3,,11 2126.1.50 2*2c.9681 2*2c .s102 2127.1101 2*27.1618 2*27.1,76 2?27.225* 2*:7.185* 2*27.2,2s 2927.246b 2927.2565 2927.5572 2927.561b 2$27.[706 2P27.C.806 2927.6794 2927.6157 2927.016 2S27.6,,9 2S27.7286 2S27.733$ 2S27.7511

2927.1517 2927.7ss2

2'127.9Ob5 292S.OSb5 2¶2O.O?b1 2,21.07,7 2928.0159 2S28.lC51 2921.171: ZSZI.l8b, 2’121.1.5b5 2$2#.bJ77 2921...21 2928.btii 292*.,972 ;:2:.:;;; : 29i562k 2421.5240 2Slb.615, 292c.bsl* 292,.71,, 292,.71*6 2S28.735, 2*28.7bOC 1921.~101 2Sl8.1897 2021.eS55 2928.9‘15 1*25.0612 2929.067D 2929.141: 2*2*.lb,‘ is2*.2clf 2J2S.2712 292’.2701 2929.274C 292’.,807 2,:?.1?07 :*2*.,511

-0.0211 -0.0122 -O.Ol,b -S.ool* 0.0012 o.oo,c -0.00,7 O.O,S? o.c,*2 -0.000, -0.000~ O.OOC7 0.: -0.0276 -0.022& -0.00OL 0.J -0.3,bL -o.o1,2 -0.0016 -0.0017 o.>,** -0.0007 O.J,9, 0.0001 -o.oi,a -0.021’1 -0.CO26 0.0012 -0.02GC -0.025s 0.0001 O.ObIO -0.0007 O.OIbO 0.0020 -0.001, 0.0057 -0.0009 -i$OOb -o:or71 -0.0272 O.Ob50 k%:: 0:002o -0.000~ -0.0010 -0.0025 0.00,1 -0.0279 -0.029, 0.000, O.ObC6 cl.0001 O.OLSP 0.0072 0.0005 -O.OOOb 0.0 0.002,

-O.OSOl 0.051, 0.051, 0.0036 0.0016 :“o.g:: -0:3,12

-O.OI,‘ o:lss~

13

OF 1’N’60z

III-Continued

7Gf 7C7 ICI 7r1 71” 770 711 112 77i ,711 771 ,7P 775 77C ,,I 7lf 77, 110 78, 732 71, 764 785 786 71, II8 711 ::: IS1 792 IS, 7s. 7Sb 7Sb 795 ::: II,

111 811 812 11, 116 815 816

aii 119 110 119 820 121 a22 82, I?*

b1 ,D ,* ,L 19 ii 45 ,I ,I I2 62 LO b0

*o ,7 ,a I7 ;s II k* ,6 16 b1 Pl I’) ;c

-112 +112 +1,2 -112 -112 .I,2 -I,2 +,,2 -1,I .I,2 -112 .I,2 -112 .t,2 11 b5 -2,: ,7 ,C .1,2 I7 ,C -t/2 r1,2 1’) ,8 -l/2 PO J? .I,2 $0 ,* -112 42 .I,2 I, 12 -I/i

b 2 I 2 J I 5 2 2 e Ir I

I

4645

5 5 1

,9 ,I

0 0 1

63 4, kc .I,2 I, IL -I,? ho19.I,2 co 3s-112 11 I1 111 4, ,* 19 II2 b2 41 k1 b2 12

ho 40 b, I, ,I ,* b, k2 ho 40 61 bl

5s 39

,s b5 4s b2 .2 b3 b, w b6 b, bb 4, 6. I1 kl .II .‘ .I bl bb bb *5 b5 L5 b5 4‘ 46 66 46 4, 4, ‘1 ., ‘6 ‘6 II7 47

1, b, .I b, bl 42 42 b5 @I 42 b, b2 b, co co ‘I $1 .o ‘0 b, b5 5‘ ‘L 4b ‘b b5 b5 ‘5 .I 42 I2 L2 k2 ‘5 *5 4‘ bf

.t,2 -112 lt,2 -2,) .1,2 -112 .1,2 -I,2 0212 -112 bll2 -112 -112 .1,2 .I,2 -112 l1/2 -112 l1/2 -112 l1/2 -112 1112 .1,2 -112 -112 +112 -112 l1/2 -112 -I,2 0112 l1/2 -112 l1/2 -112 *1/l -I,2 rll2 -112 .I,2 -112 .I,2 -112 -112 +,I2 1112 -112 .1,2 -112

1

1 I 1 5 I 1

2 , , 4 L, 2 2 1 , 0 0 2

1

1 1 b b 2 2 , I 4 4 0 , 0 , 2 2 1 1 1 1 2 2 1 1 0 0 , , , 1 2 2 1 1 2 2 0 0

IS2S.61,0 2*2*.5L2(1 2925.::20 2’129.5670 242’1.5170 2*2*.coo, 2129.6100 292,.702* 292*.7021 212’).,1kS 2929.3171 2*2*.*,:c 2*:9.921.5 212*.?Lo1 7?2*.*LtO 2P,3:0502 2*,0.3502 2,,0.,502 2’15.5C1, 2*30.1c11 2,,5.170* 2,,0.21*, 2’113.22h” 29,0.,07[ 29,O.ilSI 2*,J.k050 29,O.k076 29,O.lrbll 2*,0.*.5* 2*,0.5*ot 2,,0.5476 2910.6256 2930.6251 2s10.7211 2$,0,7,b2 29,0.78S, 2150.7972 29,0.8972 2S,O.SOLI 2S,O.S061 29,0.3067 2910.911. 2S10.9,65 2S31.1162 2911.1162 2911.25sa 2911.26b1 2911.11~~ 291l.,bb5 2S,l.b101

2Pll.b922 2S,l.‘S22 2951..,22 1931.5062 2931.5062 29,X.5:61 29,X.5962 2931.7152 2s51.7293 293l.SOBS 193l.Sl50 2931.0101 1952.ObO8 2S32.lltl 2912.115, 2,3Z.i12, zs,l.zl7D 1ssz.11*7 ZS52.25SJ 2SS2.,b25 2SS2.,b25 2S32.b759 19,2.‘lOb 2S,2.5$28 2931.6001 29,2.7262 is,2.7,7,

2929.,‘22 2$2*.511S 2?2*.s*G2 2t29.5270 2*29,51t* 2*29.CS31 2,2’J.(k27 2920.7007 2S:*.76[2 2921.7507 2,2n.7588 2*2”.91,1 ;*2*.s20* 2*:*.**,, 2,,O.J02L 2,,O.SIL? 7913.0501

2*,O;i50, :s,o.,,Ls 2,;o.,ll,, 29,C.,5,1 2*3O.rGlO 29,0,10*t 29,O.h,91 2*,0.14211 2*,0;52,5 2*,0.5,1, 29,0.62bl 2930.6297 2910.7227 20,0.72*, 2930.7$29 2$,0.7*71 2s30.197: 29,o.*obl 2S,rl.909( 2910 *,os 29so.so50 2s,o.s1,0 2SYl.llOb 2S11.1161 2931.25,, 2911.2600 lS31.25,6 2S11.2616

2911.bfbb 2$5l.b97f 2$5l.h99b 2951.b9bb 2951.5OII 2951.SlOO 2932.517s 2951.59a5 2931.71s5 2931.720s 2931.9106 2S3l.SlEb 2S32.0321 2S32.030 2932.1300 2S32.1352 2932.208b 2W2.2152 2S,2.2300 29,2.2b20 29,2.5bOL 2932.3563 29s2.uo5 2932.b115 2S32.19bS 2932.COOY 2932.7,oo 2’1,2.7,5,

ii.1506

2.0005 o.oo**

oo::oo:

-O.O,,C -0.3,2? 0.30:: -o.co:i 5.31): O.,I,O 0.33&5 ,.OPIl -0.:,,2 -0.OIL6 ~.OOO~ -O.JOOI -0.5048 0.3096 -3.0002 -C.501, 0.308 0.01[1 -0.3,Ll -C.O,77 O.ODlO -0.00111 0.0070 0.20:: C.OC.7, O.CCCl 0.30:1 -3.001, 0.005‘ 0.0011 -o.oo,c -0.ooot ll.OOOl -O.OOli -0.0021 -O.?O,C 0.076. 0.07,5 0.0056 0.0001 0.0065

oloori

o.o:st 0.0829 x:: 0:001c -x:: -0:ootr -o.oo,b :“p+::: -o:oo12 -0.0017 -0.OOlb 0.090 0.001s x:: 0:0037 0.0017 1::;::; 0.0019 -0.0031 :::::::

and the band center are given in Table II. These parameters allow us to reproduce the data included in the fit with an overall standard deviation of 0.0011 cm-‘. The assignment of the lines, the experimental data, and the calculated wavenumbers are listed in Table III. RECEIVED:

July 12, 1977

14

DANA AND MAILLARD REFERENCES

1. M. D. OLMANAND C. D. HAUSE, J. Mol. Sjectrosc. 26, 241 (1968). 2. J. K. G. WATSON, /. Chem. Phys. 46, 1935 (1967). 3. C. CAYY-PEYRET AND J. M. FLAUD, These de Doctorat d’Etat, Universitt Pierre et Marie Curie, Paris, France (1975). 4. J. H. VAN VLECK, Rev. Mod. Phys. 23, 213 (1951). 5. C. C. LIN, Phys. Rev. 116,903 (1959). 6. W. T. RAYNES, J. Chem. Phys. 41,302O (1964). 7. A. CABANA, M. LAURIN, W. J. LAFFERTY,AND R. L. SASS, Can. J. Phys. 53, 1902 (1975). 8. A. CABANA, M. LAURIN, C. PEPIN, ANDW. J. LAFFERTY,J. Mol. Spectrosc. 59, 13 (1976). 9. R. M. LEES, R. F. CURL, ANDJ. G. RAKER, J. Chem. Phys. 45,2037 (1966).