Analysis of the ν3 band of 14N16O2

Analysis of the ν3 band of 14N16O2

JOURNAL OF MOLECULAR SPECTROSCOPY Analysis s&246-2.56 of the (1974) v3 Band of 14N160, STEPHEN C. HURLOCK~ Department of Plz~~sics,Micizigan...

638KB Sizes 0 Downloads 55 Views

JOURNAL

OF MOLECULAR

SPECTROSCOPY

Analysis

s&246-2.56

of the

(1974)

v3

Band of 14N160,

STEPHEN C. HURLOCK~ Department

of Plz~~sics,Micizigan Slate University, East Lansing, Micltigan

48824

WALTER J. LAFFERTY National Bureau of Standards,

Wasltington,

D. C. 20234

AND K. NARAHARI RAO Department of Physics, The Ohio State University, Colwzbus, Ohio 43210

The rotational structure of the yg fundamental of 14iV’60~ has been recorded by employing a vacuum grating infrared spectrograph. The analysis has led to the assignment of over 500 Rand P-branch transitions in the spectral region 1650-1562 cm-‘. Molecular constants for the upper state, 001, have been presented. No Q-branch transitions were used in the evaluation of these constants. The presently obtained a3 A = 0.22517 cm-’ and the band center y0 = 1616.846 cm-’ differ significantly from previous determinations. Spin splitting was observed but no information was extracted about upper state spin splitting parameters.

This communication presents a detailed analysis of the vp band, 001-000, of 14NlR02. The vQband is by far the strongest vibration rotation band of NO2 and has been the subject of increasing interest since its identification in the solar spectrum established the presence of NO2 in the earth’s stratosphere (I). The analysis and constants presented here should be useful in the work associated with efforts to characterize the presence of NO* in the earth’s atmosphere. The vQband of NO2 is an A-type band which extends from about 1660 cm-’ to about 1550 cm-‘. Under high resolution it appears very complex and lacks any distinguishing features which would lead to an obvious line assignment. Because of this, a rather indirect route was followed in order to arrive at assignments. A set of vibrational constants for the levels involving zll and v3 was obtained by fitting band centers observed for the &(Z), 3~(3), ~1 + ~(4), v1 + 3~3(3), 2v1+ a(4),and 319 + ~(5) bands to the expression :

The values of us0 and xS3 obtained were then used to predict the band center of the v3 band. It was estimated to be 1616.70 cm-‘. Line positions for the ~3 band were calculated 1 Present

address:

Rocketdyne,

Canoga

Park,

California 246

Copyright

0

1974 by Academic

All rights of reproduction

Press,

Inc.

in any form reserved.

91304.

247 TABLE

I

GROUNDSTATEAND UPPER STATECOKSTANTS(EXPRESSED IN cKh’j FORTHE ~3BAND OF 1W160~ Constant”

(A) : (‘

(C)

(3.238 (-1.943 (2.684 (2.950 (1.832

Ax (-D,*) il.vIC (-D,*) c-a*)

8-v 6K

(-60,*) (-&*)

7.777200 0.4309593 0.4078448

8.002366 f 0.000016= 0.4337030+ 0.0000046 0.4104482 f O.OUOGO46

(B)

AK

(001)

(000) b

fJK (114)

f 0.066) f. 0.016) f 0.011) f 0.088) xk 2.4 )

(2.04

X X X x X

(3.263 (-2.254 (2.744 (3.556 (-5.252

1O-7 1O-5 1O-3 10-8 1O-6

(5.46 0.32 ) X 1O-6 Y,, = 1616.846 i. 0.0024

f

f 0.000742~ + 0.0000123 zk 0.0000115

zk f f. f zt

0.030) 0.010) 0.062) 0.268) 2.610)

X X x X X

1O-7 1O-5 1O-3 lo+ 10-G

f

1.21 ) X lo-”

a The notation appropriate to Eq. (2) is indicated in parentheses in the second column. The notation of the first column is appropriate to Ref. (91, Eq. (29). J has been replaced by N as required 1)~ Hund’s case (b) notation. b Ground state constants taken from Ref. (2). c Errors cited are standard deviations.

by using

ground

state

rotational

constants2

and the a! values

obtained

from

a study

of

the 2~3 band (Z), and the value for the band center estimated above. These calculations indicated that the QQZ branch (K-, = 2, AK-1 = 0, AY = 0) should form a head and be a more

or less distinctive

cm-’

was identified

mate

of the band

followed

center

and co-workers bands

subband distinctive

central

(3, 4, 5) have

outlined

spread

assignment

observed

was made,

of the I’ and

which

the spectral

is observed

is so severe

constants.

at 1615.892 a revised

R branch

for this band.

the value of i?’ -

of the P and R transitions observed

5). In the case of the ~3 band,

in several there

espected

spinless

estilines

thus

A-type

lines

there

is much over-

of the subbands.

bands

is some evidence

why no

of individual

to be of use in obtaining

‘4” is such that

of many

nuclei.

the individual

esplaining

The overlapping

for the

oxygen

and as a consequence,

that none of these lines was found

In addition,

has been

details

has a pair of equivalent

over a wide area of the spectrum

Q branch

and blending

Spin splitting (3,4,

and

A” is quite large for this band,

Q branches

in the Q branches rotational

The peak

Once this identification

was obtained

of the NO? molecule

The value of d’ -

iapping

of the spectrum.

readily.

Hause d-type

feature

as this Q-branch.

by Hause for splitting

and co-workers of some of the

lower M lines of the higher K subbands. These lines are in general weak and blended and an insufficient number of them was observed to extract useful splitting parameters. The observational data were fit by- least-squares method using two separate programs.

2Another set of ground state rotational constants has been recently derived in a study of the ~2 band of SO2 (13). Those constants are presented in terms of a planar Hamiltonian but the data were also fit to a Watson Hamiltonian (11). The resulting constants were all within one or two standard deviations of those of Ref. (2) with two exceptions: (i) Poor agreement was found for 8x, which was not determinable in either case; (ii) an HK was not found necessary in the fit of Ref. (13).

5 4 3 1 4 6 5 3 2 0 4 6 2 3 1 1 6 4 5 3 2 0 6 4 2

40 42 45 46 47

43 39 45 44 45

46 38 42 40 43

44 45 37 41 43

2500 0 lOODO 10000 2500

0 0 2500 7.500 0

0 2500 0 D 0

1570.365 1570.488 1570.707 1570.957

1571.196

1571.304 1571.640 1571.903

1572.045 1572.192 1572.246 1572.512 1572.636

1572.854 1573.069 1573.240 1573.311 1573.499

289 290 292 294

296

297 299 301

303 304 305 307 309

310 311 313 314 316

276 280 283 287

44 45 46 47 44

270

0 0 10000 0 2500

1568.301

268

1569.009 1569.471 1569.798d 1570.101

1567.974

258

2500 2500 2500 2500 2500

2500 0 4 6 4 6 3

1566.893

249 251

47 43 46 42 47

LOO00 10000 0

0 0 2500 0 2500

1563.704 1564.754 1565.874 1566.088

6 6 6 6 5

1562.620

47 46 45 44 46

220 229 239

OF

43 45 31 37 41

46 33 39 36 40

39 33 43 42 44

35 38 42 45 47

40 41 44 46 41

43 37 43 37 44

41 41 39 39 42

[observed

ANALYSIS

1 6 4 5 3

47 39 43 41 44 2 0 6 4 2

4 6 2 3 1

44 40 46 45 46

45 46 38 42 44

6 5 3 2 0

5 4 3 1 4

45 46 47 48 45 41 43 46 47 48

4 6 4 6 3

6 6 6 6 5

48 44 47 43 48

48 47 46 45 47

44 46 32 38 42

47 34 40 37 41

40 34 44 43 45

36 39 43 46 48

41 42 45 47 42

44 38 44 38 45

42 42 40 40 43

-0.0200 -0.0216 0.0105 -0.0090 0.0068

0.0069 -0.0004 -0.0133 0.0733 -0.0123

0.0078 0.0458 -0.0046 0.0038 -0.0553

-0.0021 0.0415 0.0068 -0.0163 -0.0078

0.1131 -0.0265 -0.0007 0.0159 -0.0169

0.0311 -0.0385 0.0182 -0.0197 0.0091

-0.0126 -0.0108 -0.0381 0.0097 0.0561

and

II

IN

THE

(0 0

l)-(0

362 364 366 367 368

355 357 360

351 353

348 350

342 344 346

1578.559 1578.741 1579.023 1579.208 1579.346

1577.774 1578.002 1578.341

1577.301 1577.508 1577.695

1577.123

1576.487 1576.693 1576.907

1576.240

1575.905

338 341

1575.263 1575.428 1575.635

1574.387 1574.649 1574.782 1575.009 1575.185

1574.250

1573.597 1573.757 1574.114

are

OF

250:: 10000 2500

0

0 loo00 2500 2500 2500

: 10000 0

2500

0 0 10000 0 10000

2500 111000 2500 0 2500

250: 0 2500

10000

0 10000 2500 2500 10000

in vat.

0 0, BAND

332 334 336

324 326 327 329 331

323

317 319 322

Observe_' - Calculated

STRUCTURE

Position

ROTATIONAL

spectral

THE

TABLE

14d602

36 34 37 38 39

39 38 40 39 32

40 41 33 37 35

42 41 38 36 39

35 39 41 37 40

40 38 41 42 43

39 42 44 43 36

cm-')

4 5 3 2 0

2 3 1 I 6

2 0 6 4 5

1 1 4 5 3

6 4 2 5 3

4 5 3 2 0

5 3 1 1 6

33 30 34 37 39

37 36 40 38 27

39 41 27 33 30

42 40 35 32 36

29 35 39 32 38

37 34 38 41 43

34 40 44 42 31

37 35 38 39 40

40 39 41 40 33

41 42 34 38 36

43 42 39 37 40

36 40 42 38 41

41 39 42 43 44

40 43 45 44 37

4 5 3 2 0

2 3 1 1 6

2 0 6 4 5

1 1 4 5 3

6 4 2 5 3

4 5 3 2 0

5 3 1 1 6

34 31 35 38 40

38 37 41 39 28

40 42 28 34 31

43 41 36 33 37

30 36 40 33 39

38 35 39 42 44

35 41 45 43 32

-0.0002 0.0792 0.0064 0.0008 -0.0075

-0.0228 -0.0041 0.0077 -0.0329 0.0008

0.0070 0.0160 -0.0270 -0.0130 0.0576

-0.0140 -0.0142 0.0071 0.0852 -0.0089

-0.0258 -0.0029 -0.0199 0.0618 0.0016

0.0070 0.1156 -0.0111 0.0041 -0.0124

0.1084 -0.0231 -0.0416 -0.0017 -0.0117

1 6 1 4 5 3 2 0 6 4 5 2 3 6 1 1 4 5 3 2 6 0 4 5 2 3 6 1 1 4 5 3 6 0 4

38 30 37 34 32

35 36 37 29 33

31 35 34 28 36

35 32 30 33 34

27 35 31 29 33

32 26 34 33 30

28 31 25 33 29

2500 2500 2500 10000 0

10000 0 0 0 0

0 2500 10000 2500 2500

0 0 0 10000 2500

2500 0 0

2500 0 2500 2500 2500

0 2500 0 2500 2500

1580.373

1580.471 1580.619 1580.755

1581.087 1581.287 1581.363

1581.626

1581.768 1581.991 1582.141 1582.332 1582.448

1582.566 1582.631 1582.750 1583.137 1583.319

1583.448 1583.654 1583.760 1584.096

1584.197 1584.317 1584.460 1584.646

1584.710 1585.182 1585.300 1585.403 1585.695

375

376 377 378

381 382 383

384

385 387 388 389 390

391 392 393 395 396

397 399 400 403

404 405 406 407

408 411 412 413 415

372 373

250:

6 4 5 2 3

31 35 33 37 36

2500

10000 0 2500 2500

1579.600 1579.757 1579.925 1580.049

370

371

24 28 19 33 25

10 21 34 32 27

21 35 27 24 31

34 29 26 30 33

26 33 32 23 36

32 35 37 23 29

38 25 36 31 28

25 31 28 35 34 1 6 1 4 5

39 31 38 35 33

5 2 3 6 1 I 4 5 3 2 6 0 4 5 2 3 6 1 1 4 5 3 6 0 4

32 36 35 29 37 36 33 31 34 35 28 36 32 30 34 33 27 35 34 31 29 32 26 34 30

3 2 0 6 4

4 5 2 3

36 37 38 30 34

6

32

36 34 38 37

26

25 29 20 34 26

31 22 35 33 28

22 36 28 25 32

35 30 27 31 34

27 34 33 24 37

33 36 38 24 30

39 26 37 32 29

32 29 36 35

0.0083 -0.0055 0.0153 -0.0426 n.0217

0.0068 0.0093 0.0047 0.0275 -0.0268

-0.0066 0.0143 -0.0124 0.0522 0.0010

0.0099 -0.0246 0.0412 -0.0153 -0.0109

0.0633 -0.0261 -0.0085 -0.0065 0.0140

-0.0084 0.0085 -0.0401 0.0165 -0.0127

-0.0203 0.0236 -0.0036 0.0012 0.0595

0.0758 0.0074 -0.0391

-0.0013 0.0098

UBLi:

II

1591.558 461

7.500

1591.357

1591.140

459 460

2500

1590.691 1591.048

l"OO0 10000 250" n

7.500 0 2500

455 458

10000 1590.390 1590.603

453 454

27 25 19

5

'I

I6

22

3

22

5

: 0 2 4

28 27 24

1 4 5 I 6

4 5 6 2 3

0

3 6 ?

26

23 28 20

25

29 18 26 13

21

28

9 ’ ;

5 1 6

26 24 21 28 27

30

18 22 29

5

23 31 3" 27 25

3

6 1 I 4

29

2 il 4 5 2

1 4 5 3 6

32 29 27 30 24 31 32 28 26 70

5 2 6 3 1

28 3? 25 31 33

21 18 15 25 24

‘9

24 15 '7

20

30 28 23

26 17

29 31 23 2" 27

30 25 22 26 17

22 29 19 28 32

25 27 26 ‘3

4

22 27 19

1 24

28

4 5 6 2 3

25 23 20 27 26 1589.621

446

0 7.500 2500

0

29

l"DO0

1589.371 1589.416

443 444

1590.113 1590.184

3 6 2

27 2, 28

450 451

5

24 0

2500 250" 0 2500

1589.185

1 1 4

30 29 26

442

? 6

28 22

2500 2500

10000 10000 10000

1588.196

436

1588.438 1588.658

2500 0 2500 " 2500

1587.356 1587.431 1587.668

429 430 431

438 439

2 0 4 5 4

30 31 27 25 29

2500 2500

1587.193

428

1 4 5 3 6

31 28 26 29 23

2500 250" 0

1586.680

424

0 0 0

1586.449

'1 24 30 32

0

1586.262

422

5 1 6 3 1

27

0

1586.148

419

420

(continued)

!7

28 26 2”

2?

29 22 19 27 14

22 19 16 26 25

3”

7.5 16 28

21

18 31 29 24

27

30 32 24 21 28

31 26 23 27 18

23 10 20 29 33

-0.0232 -0.0139 0.0212 -0.0118 O.0417

-0.0126 0.0029 0.0449 0.0019 0.0064

-0.0040 0.0262 0.0183 -0.0127 -0.0037

10.0317 -0.0078 0.0423 Q.0067 "."020

-0.0173 0.0103 -0.0017 -0.0271 0.0130

-0.0169 -".0080 0.0084 0.0152 1.0109

0.0185 n.0107 0.0058 -0.0080 -0.0308

0.0518 -0.0082

0.0045 -,-I.““31 0.0053

?bs-calcb

2 4 5 6 3

24 21 19 16 *2

10000 10000 0 2506 2500 2 1 5 4 1 6 3 0 2 4 5 6 3 2 1 5 4 1 6 3 0 2 4 6 3

23 24 18 20 23

15 21 23 22 19

17 14 20 21 22

I.6 78 II 13 19

21 20 17 12 18

0 10000 0 0 10000

10000 2500 0 0 0

10000 2500 0 0

0 2500 10000 10000 10000

10000 10000 10000 2500 10000

1593.465

1593.845

1594.073

1594.130 1594.268 1594.392 1594.444 1594.634

1594.779 1595.031 1595.238

1595.374

1595.688

1596.000 1596.092 1596.174

1s96.25g4 1596.336 1596.595

1596.948

1597.142

1597.282 1597.536 1597.883

474

477 473

480 481 482 483 485

486 488 489

491

493 495 496 497

498 499 501

504

505

SO6 508 511

0

21 19 13 7 16

12 15 20 7 16

12 9 18 19 22

9 18 23 21 15

21 24 14 17 22

23 17 14 11 20

16 24 11 20 25

6 3 0 2 4

16 22 24 23 20

5 4 1 6 3 0 2 4 6 3

17 19 22 14 20 22 21 18 13 19

5 6 3 2 1

2 1 5 4 1

24 25 19 21 24

18 15 21 22 23

2 4 5 6 3

25 22 20 17 23

5 1 6 3 0

22 20 14 8 17

13 16 21 8 17

13 10 19 20 23

10 19 24 22 16

22 25 15 18 23

24 18 15 12 21

17 25 12 21 26

5 1 6 3 0

20 25 17 23 25

0

1592.670 1592.943 1593.114 1593.297

469 471 472 473

10000 10000 loo00 10000

1592.340 1592.518 21 26 18 24 26

14 24 23 27 20

6 2 3 1 4

19 26 25 27 23

13 23 22 26 19

18 25 24 26 22

2500 2500 2500 10000 10000

6 2 3 1 4

KY1

N" K-1

Transition

N' KL1 Kll

Weight’

468

461

1592.165

1592.013

465 466

Positionb

ObSer”d

ser1a1 Numbera

0.0081 0.0128 0.0025 0.0070 -0.0093

0.0282 -0.0049 0.0122 -0.0224 0.0021

0.0759 -0.0127 0.0024 -0.0027 0.0005

0.0000 -0.0087 0.0072 0.0198 -0.0230

-0.0217 -0.0015 0.0317 -0.0040 -0.0041

554 555 556

546 548 549 550

542

1603.464 1603.541 1603.620

1602.291 1602.542 1602.632 1602.765

L601.893

1601.619 1601.761

1600.983 1601.118

536 537 540 541

1600.874

L600.058 1600.246 1600.411 1600.696

1599.143 1599.328 1599.763 1599.917

1598.496 1598.827 1599.023

1598.218 1598.442

1598.052

15 13 95 15 14

2500 2500 0 0 0

2500 2500

0

11 12 85 14 13

14 16 15 10 12

10000 10000 10000 0 2500

0 0

17 16 11 13 86

1 2

4 3

0 2

1 3

3 1 2 5 4

0 2 5 4

7 1c 4 14 11

14 10 4 15 13

12 16 13 6 9

17 15 6 9 3

8 11 3 16 12

12 5 14 4 96 17 1 15 3

0 10000 10000 loo00 10000 2500 2500 0 2500 0

11 5 14 18 15

4 6 3 1 2

15 10 16 18 17

2500 2500 10000 10000 10000

1 3 0 2 5

19 17 19 18 13

18 14 19 17 8

20 17 10 13 5

20 19 14 16 11

I. 2 5 4 6

K;l

0 2 5 4

18 17 12 14 96

12 13 35 15 14

1 2

4 3

1 3 5 0 2

5 4 6 1 3

13 15 10 18 16

16 14 10 16 15

4 6 3 1 2

16 11 17 19 18

3 1 2 5 4

1 3 0 2 5

20 18 20 19 14

15 17 16 11 13

1 2 5 4 6

21 20 15 17 12

N" K"1

Transition N' KI1

0 10000 2500 2500 0

2500 0 10000 0

2500

ObSfSi?"ed POSitionb WeightC

535

530 531 532 534

522 524 528 529

0.0099 -0.0288 0.0466 -0.0072 -0.0089

513 515 516 519 521

512

0.0295

-0.0207 0.0198 -0.0059 -0.0164 0.0486 -0.0035 0.0227 0.0019 -0.0128

Serial Numbera

Obs-Caleb

8 11 5 15 12

15 11 5 16 14

13 17 14 7 10

18 16 7 10 4

1; 13

9 12

12 6 15 19 16

19 15 20 18 9

21 18 11 14 6

Xi1

v

-0.0373 0.0136 0.0334 0.0294 -0.0150

-0.0052 0.0051 0.0161 0.0289 0.0248

0.0003 -0.0053 -0.0236 0.0418 -a:0019

-0.0127 -0.0162 0.0567 0.0008 -0.0070

0.0068 -0.0063 0.0124 -0.0010 0.0016

0.0017 -0.0092 -0.0030 -0.0049 0.0058

-0.0115 -0.0038 0.0037 0.0031 0.0250

-0.0056 0.0374 -0.0287 0.0050 0.0064

Ohs-Calc'

1603.685 1604.160 1604.365 1604.571

1605.262 1605.403 1605.471

1606.004 1606.152 1606.377

1607.03Ed 1607.173d 1607.247 1607.830 1607.916

1608.167

1608.943 1609.04ii

1609.642 1609.935

1610.686 1610.806

1611.416

1611.686

1612.427

1612.553 1613.179 1611.445

1614.138

557 56, 562 564

569 571 572

578 580 581

585 586 587 592 593

595

601 ll"L

605 607

613 614

619

620

626

627 632 633

638

0

0

0 0

0

0

0

loo00

" 3

25')O 0

10000 10000

loo00

2500

2500 10000 10000

0 2500 _!500

2500 2500

2500 2500 2500

3500

2500 10000 10000 10000

2500 2500

2500

2

3 1 2

4 1 3 0 2

30 22 212

514 33 50 ! :

71 70 62 616 5 2

9 0 82 54 818 72

91 73

9

83

94 10 11 I1 84

10 13 11 13 12

3 1

0 5 4'

3

6 7 5

5

9 7 1

7 8 4

6

5 8 12 9 5

7 17 8 13 11

2 1

3 1 2

4 1 3 0 2

40 3 ?1

615 43 60 515 52

RI 80 72 71 6;:

2

LO 0 9 2 64 919 8 2

10 10 83

104 11 13 12 94

11 ?.I 12 14 13

4 2 3

1 6 4

7 8 6 7 4

6

10 8 ?

8 9 5

6 9 13 10 6

8 1: 9 14 12

0.0071 0.0109 0.0070 0.0384 0.0279

0.0076 -0.0156 -0.0171 0.0051 0.0187

0.0144 -0.0131 0.0007 -0.0167 -0.0024

-0.0066 ".OOO? 0.0293 0.0125 -0.0008

-0.0124 -0.0059 -0.0199 0.0042 -0.021:

679

0.0008 -0.0062 -0.0028 -0.0016 -0.0031

1621.521 1622.213

162>.011

1622.593d

1622.497

1621.732

697 700

1621.400 1621.449 1621.509

6Q2 693 694 696

1621.018

1620.611 1620.909

1620.104 1620.256

1619.797 1619.889

1619.473

1618.421 1618.656 1618.950 1619.280 1619.332

1615.149 lt16.35: 1617.687 1617.930 1618.243

690

687 689

683 684

681 682

669 671 673 677 678

645 653 663 665 667

-0.0307 0.0011 0.0081 0.0087 -0.0225

-0.0196 O.O""O 0.0069 0.0038 0.0013

2500

10000 1000"

10000

10000

6

0 0 0 0

2 6 5 3 4 2 6 c 5 3

7 16 13 9 11 8 17 7 14 10

" 6 3 4 1

5 15 8 10 6 0 0 0 0 0 0 0 0

2 5 6 3 *

5 6 3 1 4

2 6 3 2 0

5 11 14 7 0

10 13 6 4 8

3 12 5 4 3

0 6 4

0

1 1 11 6

3

0 0 0 0

0 0 i)

0 0

9 9 0

Q 0

9 8 7 LO

7 LI 7 LO 8

72 16 6" 13 93

62 15 12 a3 10

5

6

4

6 5

6 10 6 9 7

4 1" 7 5 6

4 8 5 6

40 14 6 73 94 515 5 9 6 7 6 5 L1 8 6 7

2 5 8 3 4

5 6 3 3 4 2 5 6

6

4 *

2 I

4 10 13 63 52

95 12 53 31 74

20 86 00" 10 6 54

3 6 9 4 5

6 7 4 4 5

3 3

1 7 2

i 5 3

1

-0.0198 -1,.0068 -0.0088 ?.""91 0.0158

O.0132 -0.0143 0.'1089 O.0093 -3.0172

0.0326 'Q.0344 -t!.n"68 9.0056 0.0017

0.0061 0.0035 0.0404 0.0063 O.flOOl

0.0082 10.0306 -fl.o003 -0.1118 lI."350

-0.0356 -0.0080 -0.0345 0.0007 -0.0142

-0.0035 0.0595 n.0021 0.0497 -0.0003

0 2500 2500 0 2500

1624.210 1624.556

1624.671 1624.752

715 716

13 16 18 24 14

0 0

1626.216

1626.423 1626.841

1626.911 1627.117 1627.238

1627.305 1627.63"

1627.728

1627.833' 1628.""" 1628.369

726

727 729

73" 731 732

733 735

736

737 738 740

0 1000" 25"" 2500 2500

0

0 0

21 15 17 19 25

17 23 2" 13 14

2500 0 0 0

1625.777 1626.113

722 725

0

16 12 22 19 15

250" 2500 2500 0 2500

1625.666d

721

5 2 3 4 6

0 3 4 G 1

4 6 5 1 2

4 1 6 5 3

16 13 14 15 19

13 14 15 19 14

13 17 16 12 13

13 12 17 14 12

10 11 14 11 12

1 2 5 0 3

11 12 18 11 14

0 0 0 2500 2500

1625.467

72"

9 12 10 11 15

2 5 3 4 6

10000 0 25"" 25"" 2500

1624.902

1625.339

719

11 17 13 15 21

9 13 8 9 12 9 10 11 10 15

2 5

4 6

90 12 3 14 4 10 1 20 6

13 19 91 10 16

717

0

713 714

10000 2500 0 0

1624.006 1624.106

711 712

20 14 16 18 24

12 15 17 23 13

16 22 19 12 13

15 11 21 18 14

1" 11 17 1" 13

10 16 12 14 20

5 2 3 4 6

0 3 4 6 1

4 6 5 1 2

4 1 6 5 3

1 2 5 0 3

2 5 3 4 6

80 11 3 13 4 91 19 6

15 12 13 14 18

12 13 14 18 13

12 16 15 11 12

12 11 16 13 11

9 10 13 10 11

8 I.1 9 10 14

8 9 10 9 14

-0.0056 -0.0034 -0.0187 0.0359 -0.0047

-0.0045 -0.0025 0.0411 -0.0285 0.013"

0.0016 -"."?70 0.0131 -".OllO 0.0295

0.0285 0.0199 0.0038 0.0591 -0.0325

-0.0100 -0.00"8 0.0475 0.0126 0.0050 1630.772 1631.041 1631.201 1631.259 1631.357 1631.47" lh31.704 1631.838

759' 760 761 762 763 764 766 767

773 774 775 776

772

1632.689 1632.801 1632.879 1633.176

1632.535

1631.981 1632.089 1632.158

1630.610 1630.698

757 758

768 769 770

1630.529

1630.071 1630.229 1630.334

756

1629.844

753 754 755

1629.209 1629.325 1629.523

1629.119

1628.610 1628.736 1628.814

752

747 748 75"

0.015" -0.0063 -0.0028 0.0159 0.0073 0.0018 0.0342 0."""9 0.0147 -0.0141

746

742 743 744

0.0041 0.0030 0.0258 0.0031 -0.0058

Ohs-Calc'

0 0 0

loon0 0 0

31 25 23 28 22

24 22 2" 27 21

100"" 0 0 0 l""O0 10000 100""

26 20 19 19 30

25 19 29 23 21

17 22 28 20 18

19 21 24 18 17

20 26 16 23 17

22 16 15 15 18

" 1O""O 0 0 0

0 10000 2500 0 lOO0"

25"0 2500 2500 0 "

2500 25""

1000:

0 0 0

0 0 0 0 0

6 4 3 5 2

4 3 1 5 2

5 2 0 1 6

5 2 6 4 3

1 4 6 3 1

3 4 5 2 0

4 6 I 5 2

5 2 0 1 3

25 21 20 24 21

21 20 2" 22 19

22 19 19 18 25

20 17 23 19 18

18

ia

16 19 23

16 17 20 17 17

17 21 16 18 15

18 15 15 14 16

30 24 22 27 21

23 21 19 26 20

25 19 18 18 29

24 18 28 22 2"

16 21 27 19 17

18 20 23 17 16

19 25 15 22 16

21 15 14 14 17

Transition

6 4 3 5 2

4 3 1 5 2

5 2 0 1 6

5 2 6 4 3

1 4 6 3 1

3 4 5 2 0

4 6 1 5 2

5 2 0 1 3

24 2" 19 23 20

20 19 19 21 18

21 18 18 17 24

19 16 22 18 17

15 18 22 17 17

15 16 19 16 16

16 20 15 17 14

17 14 14 13 15

-0.0172 0.0034 -0.0028 0.0478 0.0264

0.0074 0.012" 0.0210 0.0239 0.0186

0.0383 0.0054 0.0448 0.0091 -0.0312

0.0482 0.0102 0.0201 0.0027 0.0042

0.0082 -0.0045 0.0419 -0.0070 0.0125

-0.0368 0.0385 0.0605 0.0044 0.0097

0.0471 0.0355 -0.0025 0.0331 -0.0035

0.0421 0.0081 -0.0156 0.0150 -0.0165

Ohs-Calrb

35

lOODO lOO"0 0 lo"00 10000

1636.342

16Ji."LI

1636.535 1636.851

10000 0 0 10000 1000"

1635.896 1635.992 1636.041 163G.187

16?5.653c1

1635.248 1635.456

10000 2500 2500 0 0

1 4 L 3 5

23 28 24 26 31

1634.961d

1634.779

29 23

2

4 7 5 6

2 0 1 4

16

26 25 25 io

25 15 24 27

31

25 24 28

6

25

22 25 24 24 26

23

22 26 2 ~~ 29

22 7.4 27 '1 23

29 27 32

0

I"000 10000 0 0 0

3 5 2 6

25 30 24 34

?I

1634.666

1634.585

1OOOO 0 0 0 0

3 5 6 2 4

24 29 33 23 27

1634.24"

0 0

250” 2500 2500

1633.883 1633.995 1634."78

1633.554

16::. 101 1633.396

1631.236

35

25 24 24 29

30

6 2 0 1 4 24 24 ?! 26

28 22 24 ?? 27

21 24 23 33 25

21 25 22 28 22

21 23 16 20 22

6 2 4 3 5

1 4 1 3 5

22 2i 23 25 30 34 24 28 26 31

3 5 2 6 0

3 5 6 * 4

24 29 2.3 33 22

23 28 32 22 26

“.“OO’.

-1J.0125 0.0150 0.1069 -0.0011 -0.0098

0.0102 0.0100 -0.0002 -0.0067 0.0232

0.0181 0.0244 -0.0235 n.o,o, 0.0878

0.0158 -0.0098 -0.0105 0.0294 0.0711

0.0062 0.0309 0.0075 0.0163 0.0142

0.0388 0.0311 -0.0189 0.0116 -0.0154

0.0062 -0.0072 0.0040 -0.0117

lG41.460

829 83" R31

1641.543 !641.672

1641.155

1641.029

1640.924

lG40.81”

164fl.349"

1640.161

1640.067

1639.507 1639.682

1639.048

1638.870 1638.997

8?R

827

825 826

823

822

821

819 820

81R

816 817

1638.738

1638.414

814

815

1637.818 1638.202d 1638.284

lb37.523'i 1637.641 1637.694

810 812 El?

809

807 308

0

2500 1"""" IOllO" 10000

2500

10000 I""00 10000 10000

l”O”0

1000”

i

" n

4 6 1 : ?

6 2 3 n 2

44 33 35 33 34 38 45 14 3: !G

I 1 i 4 5

5 6 n 2 4 32 31 34 37 40

38 42 31 31 36

1 3 4 2 3

10 32 35 31 33

0 0 1"OOO 0 n

n 25"" 250q 2500

: 3 4 5

6 4 2 5 3

2 4 5 1 3

:: 30 34 37

39 33 29 36 31

28 32 ?', 28 30

1000: 10000 2500 0

2500

0

'5"D 2500 2500

2500 2500 0 0 0

35 39 14 32 34

39 31 32 33 33

32 30 12 33 36

34 37 31 31 33

30 30 31 29 30

:; 29 31 32

33 29 27 32 28

27 LP 30 28 28

1 3 4 2 3 5 6 0 2 4 1 1 3 4 5 6 2 3 0 2

29 31 34 30 32 37 41 ?n 31 35 31 30 33 36 39 43 32 34 32 33

4 6 1 I :

31 29 31 32 35

6 0 2 4 5

39 28 79 33 36

37 44 13 32 35

33 36 30 3" 32

6 4 2 5 3

38 32 28 35 30

26

31 34 27 29

14 38 33 7, II

38 30 31 32 32

24 *9 3il 28 29

34 28 28 30 31

32 28 26 31 27

28 20 27 27

2

4 1 1 3

27

0.0155 cl.0027 0.0166 1.0105 -".0082

-0.0102 0.0204 -0.0236 0.0206 -0.0080

-0.0159 0.0156 -0.0266 ".0038 0.1538

0.1799 -0.0233 0.0169 0.0133 0.0035

-0.0032 -0.0002 -".0003 0.0221 -0.0639

-0.0402 -0.0021 0.0177 0.0217 0.1373

-0.0023 0.0155 0.0136 0.0722 0.0152

0.0320 0.0060 3.0826 -0.0204 -0.0043

1644.215

1644.586 1644.936 1645.033

1645.157

1645.388 1645.479

1645.808

846

848 850 851

852

853 854

856

d.

c.

These

were

NO2

taken

lines

were

the

blended

2 4 1 1 3 4 6 2 3 0 2 4 1 1 3 4 3 0 2 2 4 1 1 3 4

35 39 35 34 37 40 47 36 38 36 37 41 37 36 39 42 40 38 38 39 43 39 38 41 44

40 39 37 39 40

38 37 38 36 38

36 38 37 35 37

36 42 34 35 36

34 36 35 33 35

34 40 32 33 34

are

with

lines

text.

reciprocals

places

of the

useful

for

2 1 1 3 0 2 1 2 1

46 46 45 48 47 48 48 47 47

2500 10000 2500 2500 2500 2500 0 0 2500

spectrum

0.005 certain

than

1 3 0 3 2

43 46 45 47 45

0 0 2500 2500 2500

-1

for the

uncertainties.

applications.

cm

47 47 46 46

45 45 44 47 46

2 1 2 1

2 1 I 3 0

1 3 0 3 2

3 2 2 4 1

44 42 43 47 43 42 45 44 46 44

1 1 3 4 0

0 3 2 2 4

41 40 43 46 42

40 42 40 41 45

In the

0.0016 -0.0454 0.0480 0.0005

0.0360 0.0100 -0.0003 0.0385 0.0000

0.0029 0.0428 0.0084 0.0110 -0.0124

0.0012 0.0202 0.0054 0.0057 -0.0047

0.0115 -0.0110 0.0255 0.0239 0.0146

-0.0259 0.0224 -0.0099 0.0229 0.0107

Obs-Caleb

uncertainties

lines.

These

12.

46 47 44 45

44 45 43 45 46

41 43 44 43 42

41 40 42 44 43

41 39 41 42 42

40 39 38 40 42

different

in Ref. from best

appears

47 48 45 46

45 46 44 46 47

42 44 45 44 43

42 41 43 45 44

42 40 42 43 43

41 40 39 41 43

Transition

obtained

which

3 2 2 4 1

45 43 44 48 44

0 0 0 0 10000

1 1 3 4 0

42 41 44 47 43

2500 2500 2500 0 0 2500 0

0 3 2 2 4

41 43 41 42 46

0

measurements

measurement

better

independent

of the

1650.186

882

of estimated

of H20.

squares

prove

typically

and may

was

of up to six

\2 band

of the

retained

values

as averages

1649.842 1649.998

1649.653

880 881

879

1648.541 1648.621 1648.740

871 872 873

1648.924 1649.053

1647.895

868

874 875

1647.757

867

1647.54Sd

1646.995d 1647.405

863 865

866

1646.598 1646.691

1646.267d 1646.379

1646.200

861 862

859 860

858

Serial Numbera

on a reproduction

-0.0143 -0.0004 -0.0045 0.0243 0.0258

0.0148 0.0046 -0.0057 0.0323 0.0122

0.0213 -0.0216 0.0479 -0.0219 -0.0050

0.0028 0.0162 -0.0169 0.0178 0.0189

-0.0281 0.0077 0.0351 -0.0048 -0.0037

0.0265

-0.0020

0.0258 -0.0317 0.0014

Obs-Caleb

to be identified

4 6 2 3 0

38 15 34 36 34

KY1

the different

in the

as the

decmal

lines

41 40 38 40 41

39 38 39 37 39

37 39 38 36 38

37 43 35 36 37

35 37 36 34 36

35 41 33 34 35

determined

among

were

as described

were

assigned

four

agreement

values,

The

The weights

Ohs-Calc

records.

positions

allow

4 1 1 3 4

44 40 39 42 45

2 4 1 1 3

38 42 38 37 40

2500 2500 2500 2500 2500

4 6 2 3 0

41 48 37 39 37

4 3 0 2 2

2 4 1 1 3

36 40 36 35 38

43 41 39 39 40

4 6 2 3 0

39 46 35 37 35

N" K;l

Transition

N' KLl K;l

2500 2500 2500 2500 2500

0

0

numbers

serial

1643.930

845

observed

1643.847

844

The

1643.683

843

The

2500 2500 0 0

1643.341

840

b.

10000 10000 10000 10000 2500

1642.717 1642.958

837 839

a.

2500 2500 2500 2500

1642.620

836

2500 2500 0

0

1642.377'

2500

1642.109

WeiahtC

835

observed P,,itionb

833

Serial Numbera

v8 BAND

OF 14N1602

255

One was a slightly modified version of a program written by Johns et al. (6,7) and based on the Watson Hamiltonian (8,9). The other program was written by Willson (10) and is based on the Yallabandi and Parker (11) formulation of Watson’s Hamiltonian. Both programs gave essentially identical results for the upper state constants of the YSband in a preliminary fit. The final fit was made by using the Willson program based on the following Hamiltonian : j?:=Jz,,+sts+&+& (2) where

,3&= &*P4 + &*P?P,2+ i&*p,4 + DA*PyPz?- P,")+ D)s"[P,yPzz - P,2) +(Pz"- P,2)Pz2] ,f&= lYIP" +A?PJPZ2+Rpp," +R,P," +RjP4(Pzz- P,2) +177(P2[P,2(Pz? - P,") + (PI'- P,")P,"]j - P,")+ (Pz'- P$/qP,4]. (3) +H*[P,4(P,2 The following constants

were set equal to zero for upper and lower states: R, = Rx = RS = A, = Br = I_i = 0.

(-1)

The band center is defined as follows. IJg = h”’ - h,“.

(5)

The constants determined in the final tit are listed in Table I. The fit was to 300 transitions having A7as high as 48 and K-1 as high as 6. The standard deviation of the fit was 0.013 cm-‘. Using the convention in Ref. (6), where a standard deviation of 1.0 indicates proper weighting and no model errors, the standard deviation of the fit was 0.967. Table I also indicates the relationships between the constants of Eq. (2) and those of Eq. (29)) Ref. (9). The uncertainties in the upper state constants are based on assumed zero uncertainties in the ground state constants. Table II lists the observed wave numbers, assignments, weights, and deviations. The serial numbers included in Table II may be used to identify the lines on a detailed reproduction of the band available in Ref. (12). The experimental conditions are also given in this reference. The superscript (I’in Table II indicates lines which are blended with HsO absorptions. Because of much overlapping in the spectrum, it was necessary to include in the fitting lines that were highly blended. Lines that appeared single even if multiassigned were assigned an uncertainty of ~0.01 cm-’ while lines which were blended were assigned an uncer,ainty of ho.02 cm-r. Weights used in the fitting were taken as the reciprocal of the square of the uncertainty. The lines of the K-1 = 5 subband were found to be slightly shifted by a Coriolis resonance with the K-1 = 6 levels of the (020) state. These lines were omitted from the calculations. ACKNOWLEDGMENTS This research was supported, in part, by the Xational Science Foundation through grants made to the Michigan State University and The Ohio State University. One of us (KNR) would also like to

HURLOCK,

256

LAFFERTY,

AND RAO

acknowledge the support by the Department of Transportation, in completing aspects of this research. RECEIVED:

August

Climatic Impact Assessment Program

15, 1973 REFERENCES

1. A. GOLDMAN,D. G. MURCRAY, F. H. MURCRAY, W. J. WILLIAMS,AND F. S. BONOMO,Nature 225, 443 (1970). 2. W. J. LAFFERTYAND R. L. SAMS,paper J7, Symposium on Molecular Structure and Spectroscopy, Columbus, Ohio, 1973; to be published. 3. R. E. BLANK, M. D. OLMAN, AND C. D. HAUSE, J. Mol. Spectrosc. 33, 109 (1970). 4. M. D. OLMANAND C. D. HAUSE, J. 2Mol. Sfectrosc. 26, 241 (1968). 5. R. E. BLANK AND C. D. HAUSE, J. Mol. Spectrosc. 34, 478 (1968). 6. J. W. C. JOHNSAND W. B. OLSON,J. Mol. Spectrosc. 39, 479 (1971). 7. J. W. C. JOHNS,J. M. R. STONE,AND G. WINNEWISSER,J. Mol. Spectrosc. 42, 523 (1972). 8. J. K. G. WATSON,J. Chem. Phys. 46, 1935 (1967). 9. J. K. G. WATSON, J. Chem. Phys. 48, 4517 (1968). 10. P. D. WILLSON, Ph.D. Dissertation, Michigan State University, 1973. II. K. K. YALLABANDIAND P. M. PARKER, J. Chem. Phys. 49, 410 (1968). 12. S. C. HURLOCK,Ph.D. Dissertation, The Ohio State University, 1970. University Microfilms Nr. 70-19, 322. 13. S. C. HURLOCK,K. NARAHARI RAO, L. A. WELLER, AND P. K. L. YIN, J. Mol. Spectrosc. 48, 372 (1973).