JOURNAL
OF MOLECULAR
SPECTROSCOPY
Analysis
s&246-2.56
of the
(1974)
v3
Band of 14N160,
STEPHEN C. HURLOCK~ Department
of Plz~~sics,Micizigan Slate University, East Lansing, Micltigan
48824
WALTER J. LAFFERTY National Bureau of Standards,
Wasltington,
D. C. 20234
AND K. NARAHARI RAO Department of Physics, The Ohio State University, Colwzbus, Ohio 43210
The rotational structure of the yg fundamental of 14iV’60~ has been recorded by employing a vacuum grating infrared spectrograph. The analysis has led to the assignment of over 500 Rand P-branch transitions in the spectral region 1650-1562 cm-‘. Molecular constants for the upper state, 001, have been presented. No Q-branch transitions were used in the evaluation of these constants. The presently obtained a3 A = 0.22517 cm-’ and the band center y0 = 1616.846 cm-’ differ significantly from previous determinations. Spin splitting was observed but no information was extracted about upper state spin splitting parameters.
This communication presents a detailed analysis of the vp band, 001-000, of 14NlR02. The vQband is by far the strongest vibration rotation band of NO2 and has been the subject of increasing interest since its identification in the solar spectrum established the presence of NO2 in the earth’s stratosphere (I). The analysis and constants presented here should be useful in the work associated with efforts to characterize the presence of NO* in the earth’s atmosphere. The vQband of NO2 is an A-type band which extends from about 1660 cm-’ to about 1550 cm-‘. Under high resolution it appears very complex and lacks any distinguishing features which would lead to an obvious line assignment. Because of this, a rather indirect route was followed in order to arrive at assignments. A set of vibrational constants for the levels involving zll and v3 was obtained by fitting band centers observed for the &(Z), 3~(3), ~1 + ~(4), v1 + 3~3(3), 2v1+ a(4),and 319 + ~(5) bands to the expression :
The values of us0 and xS3 obtained were then used to predict the band center of the v3 band. It was estimated to be 1616.70 cm-‘. Line positions for the ~3 band were calculated 1 Present
address:
Rocketdyne,
Canoga
Park,
California 246
Copyright
0
1974 by Academic
All rights of reproduction
Press,
Inc.
in any form reserved.
91304.
247 TABLE
I
GROUNDSTATEAND UPPER STATECOKSTANTS(EXPRESSED IN cKh’j FORTHE ~3BAND OF 1W160~ Constant”
(A) : (‘
(C)
(3.238 (-1.943 (2.684 (2.950 (1.832
Ax (-D,*) il.vIC (-D,*) c-a*)
8-v 6K
(-60,*) (-&*)
7.777200 0.4309593 0.4078448
8.002366 f 0.000016= 0.4337030+ 0.0000046 0.4104482 f O.OUOGO46
(B)
AK
(001)
(000) b
fJK (114)
f 0.066) f. 0.016) f 0.011) f 0.088) xk 2.4 )
(2.04
X X X x X
(3.263 (-2.254 (2.744 (3.556 (-5.252
1O-7 1O-5 1O-3 10-8 1O-6
(5.46 0.32 ) X 1O-6 Y,, = 1616.846 i. 0.0024
f
f 0.000742~ + 0.0000123 zk 0.0000115
zk f f. f zt
0.030) 0.010) 0.062) 0.268) 2.610)
X X x X X
1O-7 1O-5 1O-3 lo+ 10-G
f
1.21 ) X lo-”
a The notation appropriate to Eq. (2) is indicated in parentheses in the second column. The notation of the first column is appropriate to Ref. (91, Eq. (29). J has been replaced by N as required 1)~ Hund’s case (b) notation. b Ground state constants taken from Ref. (2). c Errors cited are standard deviations.
by using
ground
state
rotational
constants2
and the a! values
obtained
from
a study
of
the 2~3 band (Z), and the value for the band center estimated above. These calculations indicated that the QQZ branch (K-, = 2, AK-1 = 0, AY = 0) should form a head and be a more
or less distinctive
cm-’
was identified
mate
of the band
followed
center
and co-workers bands
subband distinctive
central
(3, 4, 5) have
outlined
spread
assignment
observed
was made,
of the I’ and
which
the spectral
is observed
is so severe
constants.
at 1615.892 a revised
R branch
for this band.
the value of i?’ -
of the P and R transitions observed
5). In the case of the ~3 band,
in several there
espected
spinless
estilines
thus
A-type
lines
there
is much over-
of the subbands.
bands
is some evidence
why no
of individual
to be of use in obtaining
‘4” is such that
of many
nuclei.
the individual
esplaining
The overlapping
for the
oxygen
and as a consequence,
that none of these lines was found
In addition,
has been
details
has a pair of equivalent
over a wide area of the spectrum
Q branch
and blending
Spin splitting (3,4,
and
A” is quite large for this band,
Q branches
in the Q branches rotational
The peak
Once this identification
was obtained
of the NO? molecule
The value of d’ -
iapping
of the spectrum.
readily.
Hause d-type
feature
as this Q-branch.
by Hause for splitting
and co-workers of some of the
lower M lines of the higher K subbands. These lines are in general weak and blended and an insufficient number of them was observed to extract useful splitting parameters. The observational data were fit by- least-squares method using two separate programs.
2Another set of ground state rotational constants has been recently derived in a study of the ~2 band of SO2 (13). Those constants are presented in terms of a planar Hamiltonian but the data were also fit to a Watson Hamiltonian (11). The resulting constants were all within one or two standard deviations of those of Ref. (2) with two exceptions: (i) Poor agreement was found for 8x, which was not determinable in either case; (ii) an HK was not found necessary in the fit of Ref. (13).
5 4 3 1 4 6 5 3 2 0 4 6 2 3 1 1 6 4 5 3 2 0 6 4 2
40 42 45 46 47
43 39 45 44 45
46 38 42 40 43
44 45 37 41 43
2500 0 lOODO 10000 2500
0 0 2500 7.500 0
0 2500 0 D 0
1570.365 1570.488 1570.707 1570.957
1571.196
1571.304 1571.640 1571.903
1572.045 1572.192 1572.246 1572.512 1572.636
1572.854 1573.069 1573.240 1573.311 1573.499
289 290 292 294
296
297 299 301
303 304 305 307 309
310 311 313 314 316
276 280 283 287
44 45 46 47 44
270
0 0 10000 0 2500
1568.301
268
1569.009 1569.471 1569.798d 1570.101
1567.974
258
2500 2500 2500 2500 2500
2500 0 4 6 4 6 3
1566.893
249 251
47 43 46 42 47
LOO00 10000 0
0 0 2500 0 2500
1563.704 1564.754 1565.874 1566.088
6 6 6 6 5
1562.620
47 46 45 44 46
220 229 239
OF
43 45 31 37 41
46 33 39 36 40
39 33 43 42 44
35 38 42 45 47
40 41 44 46 41
43 37 43 37 44
41 41 39 39 42
[observed
ANALYSIS
1 6 4 5 3
47 39 43 41 44 2 0 6 4 2
4 6 2 3 1
44 40 46 45 46
45 46 38 42 44
6 5 3 2 0
5 4 3 1 4
45 46 47 48 45 41 43 46 47 48
4 6 4 6 3
6 6 6 6 5
48 44 47 43 48
48 47 46 45 47
44 46 32 38 42
47 34 40 37 41
40 34 44 43 45
36 39 43 46 48
41 42 45 47 42
44 38 44 38 45
42 42 40 40 43
-0.0200 -0.0216 0.0105 -0.0090 0.0068
0.0069 -0.0004 -0.0133 0.0733 -0.0123
0.0078 0.0458 -0.0046 0.0038 -0.0553
-0.0021 0.0415 0.0068 -0.0163 -0.0078
0.1131 -0.0265 -0.0007 0.0159 -0.0169
0.0311 -0.0385 0.0182 -0.0197 0.0091
-0.0126 -0.0108 -0.0381 0.0097 0.0561
and
II
IN
THE
(0 0
l)-(0
362 364 366 367 368
355 357 360
351 353
348 350
342 344 346
1578.559 1578.741 1579.023 1579.208 1579.346
1577.774 1578.002 1578.341
1577.301 1577.508 1577.695
1577.123
1576.487 1576.693 1576.907
1576.240
1575.905
338 341
1575.263 1575.428 1575.635
1574.387 1574.649 1574.782 1575.009 1575.185
1574.250
1573.597 1573.757 1574.114
are
OF
250:: 10000 2500
0
0 loo00 2500 2500 2500
: 10000 0
2500
0 0 10000 0 10000
2500 111000 2500 0 2500
250: 0 2500
10000
0 10000 2500 2500 10000
in vat.
0 0, BAND
332 334 336
324 326 327 329 331
323
317 319 322
Observe_' - Calculated
STRUCTURE
Position
ROTATIONAL
spectral
THE
TABLE
14d602
36 34 37 38 39
39 38 40 39 32
40 41 33 37 35
42 41 38 36 39
35 39 41 37 40
40 38 41 42 43
39 42 44 43 36
cm-')
4 5 3 2 0
2 3 1 I 6
2 0 6 4 5
1 1 4 5 3
6 4 2 5 3
4 5 3 2 0
5 3 1 1 6
33 30 34 37 39
37 36 40 38 27
39 41 27 33 30
42 40 35 32 36
29 35 39 32 38
37 34 38 41 43
34 40 44 42 31
37 35 38 39 40
40 39 41 40 33
41 42 34 38 36
43 42 39 37 40
36 40 42 38 41
41 39 42 43 44
40 43 45 44 37
4 5 3 2 0
2 3 1 1 6
2 0 6 4 5
1 1 4 5 3
6 4 2 5 3
4 5 3 2 0
5 3 1 1 6
34 31 35 38 40
38 37 41 39 28
40 42 28 34 31
43 41 36 33 37
30 36 40 33 39
38 35 39 42 44
35 41 45 43 32
-0.0002 0.0792 0.0064 0.0008 -0.0075
-0.0228 -0.0041 0.0077 -0.0329 0.0008
0.0070 0.0160 -0.0270 -0.0130 0.0576
-0.0140 -0.0142 0.0071 0.0852 -0.0089
-0.0258 -0.0029 -0.0199 0.0618 0.0016
0.0070 0.1156 -0.0111 0.0041 -0.0124
0.1084 -0.0231 -0.0416 -0.0017 -0.0117
1 6 1 4 5 3 2 0 6 4 5 2 3 6 1 1 4 5 3 2 6 0 4 5 2 3 6 1 1 4 5 3 6 0 4
38 30 37 34 32
35 36 37 29 33
31 35 34 28 36
35 32 30 33 34
27 35 31 29 33
32 26 34 33 30
28 31 25 33 29
2500 2500 2500 10000 0
10000 0 0 0 0
0 2500 10000 2500 2500
0 0 0 10000 2500
2500 0 0
2500 0 2500 2500 2500
0 2500 0 2500 2500
1580.373
1580.471 1580.619 1580.755
1581.087 1581.287 1581.363
1581.626
1581.768 1581.991 1582.141 1582.332 1582.448
1582.566 1582.631 1582.750 1583.137 1583.319
1583.448 1583.654 1583.760 1584.096
1584.197 1584.317 1584.460 1584.646
1584.710 1585.182 1585.300 1585.403 1585.695
375
376 377 378
381 382 383
384
385 387 388 389 390
391 392 393 395 396
397 399 400 403
404 405 406 407
408 411 412 413 415
372 373
250:
6 4 5 2 3
31 35 33 37 36
2500
10000 0 2500 2500
1579.600 1579.757 1579.925 1580.049
370
371
24 28 19 33 25
10 21 34 32 27
21 35 27 24 31
34 29 26 30 33
26 33 32 23 36
32 35 37 23 29
38 25 36 31 28
25 31 28 35 34 1 6 1 4 5
39 31 38 35 33
5 2 3 6 1 I 4 5 3 2 6 0 4 5 2 3 6 1 1 4 5 3 6 0 4
32 36 35 29 37 36 33 31 34 35 28 36 32 30 34 33 27 35 34 31 29 32 26 34 30
3 2 0 6 4
4 5 2 3
36 37 38 30 34
6
32
36 34 38 37
26
25 29 20 34 26
31 22 35 33 28
22 36 28 25 32
35 30 27 31 34
27 34 33 24 37
33 36 38 24 30
39 26 37 32 29
32 29 36 35
0.0083 -0.0055 0.0153 -0.0426 n.0217
0.0068 0.0093 0.0047 0.0275 -0.0268
-0.0066 0.0143 -0.0124 0.0522 0.0010
0.0099 -0.0246 0.0412 -0.0153 -0.0109
0.0633 -0.0261 -0.0085 -0.0065 0.0140
-0.0084 0.0085 -0.0401 0.0165 -0.0127
-0.0203 0.0236 -0.0036 0.0012 0.0595
0.0758 0.0074 -0.0391
-0.0013 0.0098
UBLi:
II
1591.558 461
7.500
1591.357
1591.140
459 460
2500
1590.691 1591.048
l"OO0 10000 250" n
7.500 0 2500
455 458
10000 1590.390 1590.603
453 454
27 25 19
5
'I
I6
22
3
22
5
: 0 2 4
28 27 24
1 4 5 I 6
4 5 6 2 3
0
3 6 ?
26
23 28 20
25
29 18 26 13
21
28
9 ’ ;
5 1 6
26 24 21 28 27
30
18 22 29
5
23 31 3" 27 25
3
6 1 I 4
29
2 il 4 5 2
1 4 5 3 6
32 29 27 30 24 31 32 28 26 70
5 2 6 3 1
28 3? 25 31 33
21 18 15 25 24
‘9
24 15 '7
20
30 28 23
26 17
29 31 23 2" 27
30 25 22 26 17
22 29 19 28 32
25 27 26 ‘3
4
22 27 19
1 24
28
4 5 6 2 3
25 23 20 27 26 1589.621
446
0 7.500 2500
0
29
l"DO0
1589.371 1589.416
443 444
1590.113 1590.184
3 6 2
27 2, 28
450 451
5
24 0
2500 250" 0 2500
1589.185
1 1 4
30 29 26
442
? 6
28 22
2500 2500
10000 10000 10000
1588.196
436
1588.438 1588.658
2500 0 2500 " 2500
1587.356 1587.431 1587.668
429 430 431
438 439
2 0 4 5 4
30 31 27 25 29
2500 2500
1587.193
428
1 4 5 3 6
31 28 26 29 23
2500 250" 0
1586.680
424
0 0 0
1586.449
'1 24 30 32
0
1586.262
422
5 1 6 3 1
27
0
1586.148
419
420
(continued)
!7
28 26 2”
2?
29 22 19 27 14
22 19 16 26 25
3”
7.5 16 28
21
18 31 29 24
27
30 32 24 21 28
31 26 23 27 18
23 10 20 29 33
-0.0232 -0.0139 0.0212 -0.0118 O.0417
-0.0126 0.0029 0.0449 0.0019 0.0064
-0.0040 0.0262 0.0183 -0.0127 -0.0037
10.0317 -0.0078 0.0423 Q.0067 "."020
-0.0173 0.0103 -0.0017 -0.0271 0.0130
-0.0169 -".0080 0.0084 0.0152 1.0109
0.0185 n.0107 0.0058 -0.0080 -0.0308
0.0518 -0.0082
0.0045 -,-I.““31 0.0053
?bs-calcb
2 4 5 6 3
24 21 19 16 *2
10000 10000 0 2506 2500 2 1 5 4 1 6 3 0 2 4 5 6 3 2 1 5 4 1 6 3 0 2 4 6 3
23 24 18 20 23
15 21 23 22 19
17 14 20 21 22
I.6 78 II 13 19
21 20 17 12 18
0 10000 0 0 10000
10000 2500 0 0 0
10000 2500 0 0
0 2500 10000 10000 10000
10000 10000 10000 2500 10000
1593.465
1593.845
1594.073
1594.130 1594.268 1594.392 1594.444 1594.634
1594.779 1595.031 1595.238
1595.374
1595.688
1596.000 1596.092 1596.174
1s96.25g4 1596.336 1596.595
1596.948
1597.142
1597.282 1597.536 1597.883
474
477 473
480 481 482 483 485
486 488 489
491
493 495 496 497
498 499 501
504
505
SO6 508 511
0
21 19 13 7 16
12 15 20 7 16
12 9 18 19 22
9 18 23 21 15
21 24 14 17 22
23 17 14 11 20
16 24 11 20 25
6 3 0 2 4
16 22 24 23 20
5 4 1 6 3 0 2 4 6 3
17 19 22 14 20 22 21 18 13 19
5 6 3 2 1
2 1 5 4 1
24 25 19 21 24
18 15 21 22 23
2 4 5 6 3
25 22 20 17 23
5 1 6 3 0
22 20 14 8 17
13 16 21 8 17
13 10 19 20 23
10 19 24 22 16
22 25 15 18 23
24 18 15 12 21
17 25 12 21 26
5 1 6 3 0
20 25 17 23 25
0
1592.670 1592.943 1593.114 1593.297
469 471 472 473
10000 10000 loo00 10000
1592.340 1592.518 21 26 18 24 26
14 24 23 27 20
6 2 3 1 4
19 26 25 27 23
13 23 22 26 19
18 25 24 26 22
2500 2500 2500 10000 10000
6 2 3 1 4
KY1
N" K-1
Transition
N' KL1 Kll
Weight’
468
461
1592.165
1592.013
465 466
Positionb
ObSer”d
ser1a1 Numbera
0.0081 0.0128 0.0025 0.0070 -0.0093
0.0282 -0.0049 0.0122 -0.0224 0.0021
0.0759 -0.0127 0.0024 -0.0027 0.0005
0.0000 -0.0087 0.0072 0.0198 -0.0230
-0.0217 -0.0015 0.0317 -0.0040 -0.0041
554 555 556
546 548 549 550
542
1603.464 1603.541 1603.620
1602.291 1602.542 1602.632 1602.765
L601.893
1601.619 1601.761
1600.983 1601.118
536 537 540 541
1600.874
L600.058 1600.246 1600.411 1600.696
1599.143 1599.328 1599.763 1599.917
1598.496 1598.827 1599.023
1598.218 1598.442
1598.052
15 13 95 15 14
2500 2500 0 0 0
2500 2500
0
11 12 85 14 13
14 16 15 10 12
10000 10000 10000 0 2500
0 0
17 16 11 13 86
1 2
4 3
0 2
1 3
3 1 2 5 4
0 2 5 4
7 1c 4 14 11
14 10 4 15 13
12 16 13 6 9
17 15 6 9 3
8 11 3 16 12
12 5 14 4 96 17 1 15 3
0 10000 10000 loo00 10000 2500 2500 0 2500 0
11 5 14 18 15
4 6 3 1 2
15 10 16 18 17
2500 2500 10000 10000 10000
1 3 0 2 5
19 17 19 18 13
18 14 19 17 8
20 17 10 13 5
20 19 14 16 11
I. 2 5 4 6
K;l
0 2 5 4
18 17 12 14 96
12 13 35 15 14
1 2
4 3
1 3 5 0 2
5 4 6 1 3
13 15 10 18 16
16 14 10 16 15
4 6 3 1 2
16 11 17 19 18
3 1 2 5 4
1 3 0 2 5
20 18 20 19 14
15 17 16 11 13
1 2 5 4 6
21 20 15 17 12
N" K"1
Transition N' KI1
0 10000 2500 2500 0
2500 0 10000 0
2500
ObSfSi?"ed POSitionb WeightC
535
530 531 532 534
522 524 528 529
0.0099 -0.0288 0.0466 -0.0072 -0.0089
513 515 516 519 521
512
0.0295
-0.0207 0.0198 -0.0059 -0.0164 0.0486 -0.0035 0.0227 0.0019 -0.0128
Serial Numbera
Obs-Caleb
8 11 5 15 12
15 11 5 16 14
13 17 14 7 10
18 16 7 10 4
1; 13
9 12
12 6 15 19 16
19 15 20 18 9
21 18 11 14 6
Xi1
v
-0.0373 0.0136 0.0334 0.0294 -0.0150
-0.0052 0.0051 0.0161 0.0289 0.0248
0.0003 -0.0053 -0.0236 0.0418 -a:0019
-0.0127 -0.0162 0.0567 0.0008 -0.0070
0.0068 -0.0063 0.0124 -0.0010 0.0016
0.0017 -0.0092 -0.0030 -0.0049 0.0058
-0.0115 -0.0038 0.0037 0.0031 0.0250
-0.0056 0.0374 -0.0287 0.0050 0.0064
Ohs-Calc'
1603.685 1604.160 1604.365 1604.571
1605.262 1605.403 1605.471
1606.004 1606.152 1606.377
1607.03Ed 1607.173d 1607.247 1607.830 1607.916
1608.167
1608.943 1609.04ii
1609.642 1609.935
1610.686 1610.806
1611.416
1611.686
1612.427
1612.553 1613.179 1611.445
1614.138
557 56, 562 564
569 571 572
578 580 581
585 586 587 592 593
595
601 ll"L
605 607
613 614
619
620
626
627 632 633
638
0
0
0 0
0
0
0
loo00
" 3
25')O 0
10000 10000
loo00
2500
2500 10000 10000
0 2500 _!500
2500 2500
2500 2500 2500
3500
2500 10000 10000 10000
2500 2500
2500
2
3 1 2
4 1 3 0 2
30 22 212
514 33 50 ! :
71 70 62 616 5 2
9 0 82 54 818 72
91 73
9
83
94 10 11 I1 84
10 13 11 13 12
3 1
0 5 4'
3
6 7 5
5
9 7 1
7 8 4
6
5 8 12 9 5
7 17 8 13 11
2 1
3 1 2
4 1 3 0 2
40 3 ?1
615 43 60 515 52
RI 80 72 71 6;:
2
LO 0 9 2 64 919 8 2
10 10 83
104 11 13 12 94
11 ?.I 12 14 13
4 2 3
1 6 4
7 8 6 7 4
6
10 8 ?
8 9 5
6 9 13 10 6
8 1: 9 14 12
0.0071 0.0109 0.0070 0.0384 0.0279
0.0076 -0.0156 -0.0171 0.0051 0.0187
0.0144 -0.0131 0.0007 -0.0167 -0.0024
-0.0066 ".OOO? 0.0293 0.0125 -0.0008
-0.0124 -0.0059 -0.0199 0.0042 -0.021:
679
0.0008 -0.0062 -0.0028 -0.0016 -0.0031
1621.521 1622.213
162>.011
1622.593d
1622.497
1621.732
697 700
1621.400 1621.449 1621.509
6Q2 693 694 696
1621.018
1620.611 1620.909
1620.104 1620.256
1619.797 1619.889
1619.473
1618.421 1618.656 1618.950 1619.280 1619.332
1615.149 lt16.35: 1617.687 1617.930 1618.243
690
687 689
683 684
681 682
669 671 673 677 678
645 653 663 665 667
-0.0307 0.0011 0.0081 0.0087 -0.0225
-0.0196 O.O""O 0.0069 0.0038 0.0013
2500
10000 1000"
10000
10000
6
0 0 0 0
2 6 5 3 4 2 6 c 5 3
7 16 13 9 11 8 17 7 14 10
" 6 3 4 1
5 15 8 10 6 0 0 0 0 0 0 0 0
2 5 6 3 *
5 6 3 1 4
2 6 3 2 0
5 11 14 7 0
10 13 6 4 8
3 12 5 4 3
0 6 4
0
1 1 11 6
3
0 0 0 0
0 0 i)
0 0
9 9 0
Q 0
9 8 7 LO
7 LI 7 LO 8
72 16 6" 13 93
62 15 12 a3 10
5
6
4
6 5
6 10 6 9 7
4 1" 7 5 6
4 8 5 6
40 14 6 73 94 515 5 9 6 7 6 5 L1 8 6 7
2 5 8 3 4
5 6 3 3 4 2 5 6
6
4 *
2 I
4 10 13 63 52
95 12 53 31 74
20 86 00" 10 6 54
3 6 9 4 5
6 7 4 4 5
3 3
1 7 2
i 5 3
1
-0.0198 -1,.0068 -0.0088 ?.""91 0.0158
O.0132 -0.0143 0.'1089 O.0093 -3.0172
0.0326 'Q.0344 -t!.n"68 9.0056 0.0017
0.0061 0.0035 0.0404 0.0063 O.flOOl
0.0082 10.0306 -fl.o003 -0.1118 lI."350
-0.0356 -0.0080 -0.0345 0.0007 -0.0142
-0.0035 0.0595 n.0021 0.0497 -0.0003
0 2500 2500 0 2500
1624.210 1624.556
1624.671 1624.752
715 716
13 16 18 24 14
0 0
1626.216
1626.423 1626.841
1626.911 1627.117 1627.238
1627.305 1627.63"
1627.728
1627.833' 1628.""" 1628.369
726
727 729
73" 731 732
733 735
736
737 738 740
0 1000" 25"" 2500 2500
0
0 0
21 15 17 19 25
17 23 2" 13 14
2500 0 0 0
1625.777 1626.113
722 725
0
16 12 22 19 15
250" 2500 2500 0 2500
1625.666d
721
5 2 3 4 6
0 3 4 G 1
4 6 5 1 2
4 1 6 5 3
16 13 14 15 19
13 14 15 19 14
13 17 16 12 13
13 12 17 14 12
10 11 14 11 12
1 2 5 0 3
11 12 18 11 14
0 0 0 2500 2500
1625.467
72"
9 12 10 11 15
2 5 3 4 6
10000 0 25"" 25"" 2500
1624.902
1625.339
719
11 17 13 15 21
9 13 8 9 12 9 10 11 10 15
2 5
4 6
90 12 3 14 4 10 1 20 6
13 19 91 10 16
717
0
713 714
10000 2500 0 0
1624.006 1624.106
711 712
20 14 16 18 24
12 15 17 23 13
16 22 19 12 13
15 11 21 18 14
1" 11 17 1" 13
10 16 12 14 20
5 2 3 4 6
0 3 4 6 1
4 6 5 1 2
4 1 6 5 3
1 2 5 0 3
2 5 3 4 6
80 11 3 13 4 91 19 6
15 12 13 14 18
12 13 14 18 13
12 16 15 11 12
12 11 16 13 11
9 10 13 10 11
8 I.1 9 10 14
8 9 10 9 14
-0.0056 -0.0034 -0.0187 0.0359 -0.0047
-0.0045 -0.0025 0.0411 -0.0285 0.013"
0.0016 -"."?70 0.0131 -".OllO 0.0295
0.0285 0.0199 0.0038 0.0591 -0.0325
-0.0100 -0.00"8 0.0475 0.0126 0.0050 1630.772 1631.041 1631.201 1631.259 1631.357 1631.47" lh31.704 1631.838
759' 760 761 762 763 764 766 767
773 774 775 776
772
1632.689 1632.801 1632.879 1633.176
1632.535
1631.981 1632.089 1632.158
1630.610 1630.698
757 758
768 769 770
1630.529
1630.071 1630.229 1630.334
756
1629.844
753 754 755
1629.209 1629.325 1629.523
1629.119
1628.610 1628.736 1628.814
752
747 748 75"
0.015" -0.0063 -0.0028 0.0159 0.0073 0.0018 0.0342 0."""9 0.0147 -0.0141
746
742 743 744
0.0041 0.0030 0.0258 0.0031 -0.0058
Ohs-Calc'
0 0 0
loon0 0 0
31 25 23 28 22
24 22 2" 27 21
100"" 0 0 0 l""O0 10000 100""
26 20 19 19 30
25 19 29 23 21
17 22 28 20 18
19 21 24 18 17
20 26 16 23 17
22 16 15 15 18
" 1O""O 0 0 0
0 10000 2500 0 lOO0"
25"0 2500 2500 0 "
2500 25""
1000:
0 0 0
0 0 0 0 0
6 4 3 5 2
4 3 1 5 2
5 2 0 1 6
5 2 6 4 3
1 4 6 3 1
3 4 5 2 0
4 6 I 5 2
5 2 0 1 3
25 21 20 24 21
21 20 2" 22 19
22 19 19 18 25
20 17 23 19 18
18
ia
16 19 23
16 17 20 17 17
17 21 16 18 15
18 15 15 14 16
30 24 22 27 21
23 21 19 26 20
25 19 18 18 29
24 18 28 22 2"
16 21 27 19 17
18 20 23 17 16
19 25 15 22 16
21 15 14 14 17
Transition
6 4 3 5 2
4 3 1 5 2
5 2 0 1 6
5 2 6 4 3
1 4 6 3 1
3 4 5 2 0
4 6 1 5 2
5 2 0 1 3
24 2" 19 23 20
20 19 19 21 18
21 18 18 17 24
19 16 22 18 17
15 18 22 17 17
15 16 19 16 16
16 20 15 17 14
17 14 14 13 15
-0.0172 0.0034 -0.0028 0.0478 0.0264
0.0074 0.012" 0.0210 0.0239 0.0186
0.0383 0.0054 0.0448 0.0091 -0.0312
0.0482 0.0102 0.0201 0.0027 0.0042
0.0082 -0.0045 0.0419 -0.0070 0.0125
-0.0368 0.0385 0.0605 0.0044 0.0097
0.0471 0.0355 -0.0025 0.0331 -0.0035
0.0421 0.0081 -0.0156 0.0150 -0.0165
Ohs-Calrb
35
lOODO lOO"0 0 lo"00 10000
1636.342
16Ji."LI
1636.535 1636.851
10000 0 0 10000 1000"
1635.896 1635.992 1636.041 163G.187
16?5.653c1
1635.248 1635.456
10000 2500 2500 0 0
1 4 L 3 5
23 28 24 26 31
1634.961d
1634.779
29 23
2
4 7 5 6
2 0 1 4
16
26 25 25 io
25 15 24 27
31
25 24 28
6
25
22 25 24 24 26
23
22 26 2 ~~ 29
22 7.4 27 '1 23
29 27 32
0
I"000 10000 0 0 0
3 5 2 6
25 30 24 34
?I
1634.666
1634.585
1OOOO 0 0 0 0
3 5 6 2 4
24 29 33 23 27
1634.24"
0 0
250” 2500 2500
1633.883 1633.995 1634."78
1633.554
16::. 101 1633.396
1631.236
35
25 24 24 29
30
6 2 0 1 4 24 24 ?! 26
28 22 24 ?? 27
21 24 23 33 25
21 25 22 28 22
21 23 16 20 22
6 2 4 3 5
1 4 1 3 5
22 2i 23 25 30 34 24 28 26 31
3 5 2 6 0
3 5 6 * 4
24 29 2.3 33 22
23 28 32 22 26
“.“OO’.
-1J.0125 0.0150 0.1069 -0.0011 -0.0098
0.0102 0.0100 -0.0002 -0.0067 0.0232
0.0181 0.0244 -0.0235 n.o,o, 0.0878
0.0158 -0.0098 -0.0105 0.0294 0.0711
0.0062 0.0309 0.0075 0.0163 0.0142
0.0388 0.0311 -0.0189 0.0116 -0.0154
0.0062 -0.0072 0.0040 -0.0117
lG41.460
829 83" R31
1641.543 !641.672
1641.155
1641.029
1640.924
lG40.81”
164fl.349"
1640.161
1640.067
1639.507 1639.682
1639.048
1638.870 1638.997
8?R
827
825 826
823
822
821
819 820
81R
816 817
1638.738
1638.414
814
815
1637.818 1638.202d 1638.284
lb37.523'i 1637.641 1637.694
810 812 El?
809
807 308
0
2500 1"""" IOllO" 10000
2500
10000 I""00 10000 10000
l”O”0
1000”
i
" n
4 6 1 : ?
6 2 3 n 2
44 33 35 33 34 38 45 14 3: !G
I 1 i 4 5
5 6 n 2 4 32 31 34 37 40
38 42 31 31 36
1 3 4 2 3
10 32 35 31 33
0 0 1"OOO 0 n
n 25"" 250q 2500
: 3 4 5
6 4 2 5 3
2 4 5 1 3
:: 30 34 37
39 33 29 36 31
28 32 ?', 28 30
1000: 10000 2500 0
2500
0
'5"D 2500 2500
2500 2500 0 0 0
35 39 14 32 34
39 31 32 33 33
32 30 12 33 36
34 37 31 31 33
30 30 31 29 30
:; 29 31 32
33 29 27 32 28
27 LP 30 28 28
1 3 4 2 3 5 6 0 2 4 1 1 3 4 5 6 2 3 0 2
29 31 34 30 32 37 41 ?n 31 35 31 30 33 36 39 43 32 34 32 33
4 6 1 I :
31 29 31 32 35
6 0 2 4 5
39 28 79 33 36
37 44 13 32 35
33 36 30 3" 32
6 4 2 5 3
38 32 28 35 30
26
31 34 27 29
14 38 33 7, II
38 30 31 32 32
24 *9 3il 28 29
34 28 28 30 31
32 28 26 31 27
28 20 27 27
2
4 1 1 3
27
0.0155 cl.0027 0.0166 1.0105 -".0082
-0.0102 0.0204 -0.0236 0.0206 -0.0080
-0.0159 0.0156 -0.0266 ".0038 0.1538
0.1799 -0.0233 0.0169 0.0133 0.0035
-0.0032 -0.0002 -".0003 0.0221 -0.0639
-0.0402 -0.0021 0.0177 0.0217 0.1373
-0.0023 0.0155 0.0136 0.0722 0.0152
0.0320 0.0060 3.0826 -0.0204 -0.0043
1644.215
1644.586 1644.936 1645.033
1645.157
1645.388 1645.479
1645.808
846
848 850 851
852
853 854
856
d.
c.
These
were
NO2
taken
lines
were
the
blended
2 4 1 1 3 4 6 2 3 0 2 4 1 1 3 4 3 0 2 2 4 1 1 3 4
35 39 35 34 37 40 47 36 38 36 37 41 37 36 39 42 40 38 38 39 43 39 38 41 44
40 39 37 39 40
38 37 38 36 38
36 38 37 35 37
36 42 34 35 36
34 36 35 33 35
34 40 32 33 34
are
with
lines
text.
reciprocals
places
of the
useful
for
2 1 1 3 0 2 1 2 1
46 46 45 48 47 48 48 47 47
2500 10000 2500 2500 2500 2500 0 0 2500
spectrum
0.005 certain
than
1 3 0 3 2
43 46 45 47 45
0 0 2500 2500 2500
-1
for the
uncertainties.
applications.
cm
47 47 46 46
45 45 44 47 46
2 1 2 1
2 1 I 3 0
1 3 0 3 2
3 2 2 4 1
44 42 43 47 43 42 45 44 46 44
1 1 3 4 0
0 3 2 2 4
41 40 43 46 42
40 42 40 41 45
In the
0.0016 -0.0454 0.0480 0.0005
0.0360 0.0100 -0.0003 0.0385 0.0000
0.0029 0.0428 0.0084 0.0110 -0.0124
0.0012 0.0202 0.0054 0.0057 -0.0047
0.0115 -0.0110 0.0255 0.0239 0.0146
-0.0259 0.0224 -0.0099 0.0229 0.0107
Obs-Caleb
uncertainties
lines.
These
12.
46 47 44 45
44 45 43 45 46
41 43 44 43 42
41 40 42 44 43
41 39 41 42 42
40 39 38 40 42
different
in Ref. from best
appears
47 48 45 46
45 46 44 46 47
42 44 45 44 43
42 41 43 45 44
42 40 42 43 43
41 40 39 41 43
Transition
obtained
which
3 2 2 4 1
45 43 44 48 44
0 0 0 0 10000
1 1 3 4 0
42 41 44 47 43
2500 2500 2500 0 0 2500 0
0 3 2 2 4
41 43 41 42 46
0
measurements
measurement
better
independent
of the
1650.186
882
of estimated
of H20.
squares
prove
typically
and may
was
of up to six
\2 band
of the
retained
values
as averages
1649.842 1649.998
1649.653
880 881
879
1648.541 1648.621 1648.740
871 872 873
1648.924 1649.053
1647.895
868
874 875
1647.757
867
1647.54Sd
1646.995d 1647.405
863 865
866
1646.598 1646.691
1646.267d 1646.379
1646.200
861 862
859 860
858
Serial Numbera
on a reproduction
-0.0143 -0.0004 -0.0045 0.0243 0.0258
0.0148 0.0046 -0.0057 0.0323 0.0122
0.0213 -0.0216 0.0479 -0.0219 -0.0050
0.0028 0.0162 -0.0169 0.0178 0.0189
-0.0281 0.0077 0.0351 -0.0048 -0.0037
0.0265
-0.0020
0.0258 -0.0317 0.0014
Obs-Caleb
to be identified
4 6 2 3 0
38 15 34 36 34
KY1
the different
in the
as the
decmal
lines
41 40 38 40 41
39 38 39 37 39
37 39 38 36 38
37 43 35 36 37
35 37 36 34 36
35 41 33 34 35
determined
among
were
as described
were
assigned
four
agreement
values,
The
The weights
Ohs-Calc
records.
positions
allow
4 1 1 3 4
44 40 39 42 45
2 4 1 1 3
38 42 38 37 40
2500 2500 2500 2500 2500
4 6 2 3 0
41 48 37 39 37
4 3 0 2 2
2 4 1 1 3
36 40 36 35 38
43 41 39 39 40
4 6 2 3 0
39 46 35 37 35
N" K;l
Transition
N' KLl K;l
2500 2500 2500 2500 2500
0
0
numbers
serial
1643.930
845
observed
1643.847
844
The
1643.683
843
The
2500 2500 0 0
1643.341
840
b.
10000 10000 10000 10000 2500
1642.717 1642.958
837 839
a.
2500 2500 2500 2500
1642.620
836
2500 2500 0
0
1642.377'
2500
1642.109
WeiahtC
835
observed P,,itionb
833
Serial Numbera
v8 BAND
OF 14N1602
255
One was a slightly modified version of a program written by Johns et al. (6,7) and based on the Watson Hamiltonian (8,9). The other program was written by Willson (10) and is based on the Yallabandi and Parker (11) formulation of Watson’s Hamiltonian. Both programs gave essentially identical results for the upper state constants of the YSband in a preliminary fit. The final fit was made by using the Willson program based on the following Hamiltonian : j?:=Jz,,+sts+&+& (2) where
,3&= &*P4 + &*P?P,2+ i&*p,4 + DA*PyPz?- P,")+ D)s"[P,yPzz - P,2) +(Pz"- P,2)Pz2] ,f&= lYIP" +A?PJPZ2+Rpp," +R,P," +RjP4(Pzz- P,2) +177(P2[P,2(Pz? - P,") + (PI'- P,")P,"]j - P,")+ (Pz'- P$/qP,4]. (3) +H*[P,4(P,2 The following constants
were set equal to zero for upper and lower states: R, = Rx = RS = A, = Br = I_i = 0.
(-1)
The band center is defined as follows. IJg = h”’ - h,“.
(5)
The constants determined in the final tit are listed in Table I. The fit was to 300 transitions having A7as high as 48 and K-1 as high as 6. The standard deviation of the fit was 0.013 cm-‘. Using the convention in Ref. (6), where a standard deviation of 1.0 indicates proper weighting and no model errors, the standard deviation of the fit was 0.967. Table I also indicates the relationships between the constants of Eq. (2) and those of Eq. (29)) Ref. (9). The uncertainties in the upper state constants are based on assumed zero uncertainties in the ground state constants. Table II lists the observed wave numbers, assignments, weights, and deviations. The serial numbers included in Table II may be used to identify the lines on a detailed reproduction of the band available in Ref. (12). The experimental conditions are also given in this reference. The superscript (I’in Table II indicates lines which are blended with HsO absorptions. Because of much overlapping in the spectrum, it was necessary to include in the fitting lines that were highly blended. Lines that appeared single even if multiassigned were assigned an uncertainty of ~0.01 cm-’ while lines which were blended were assigned an uncer,ainty of ho.02 cm-r. Weights used in the fitting were taken as the reciprocal of the square of the uncertainty. The lines of the K-1 = 5 subband were found to be slightly shifted by a Coriolis resonance with the K-1 = 6 levels of the (020) state. These lines were omitted from the calculations. ACKNOWLEDGMENTS This research was supported, in part, by the Xational Science Foundation through grants made to the Michigan State University and The Ohio State University. One of us (KNR) would also like to
HURLOCK,
256
LAFFERTY,
AND RAO
acknowledge the support by the Department of Transportation, in completing aspects of this research. RECEIVED:
August
Climatic Impact Assessment Program
15, 1973 REFERENCES
1. A. GOLDMAN,D. G. MURCRAY, F. H. MURCRAY, W. J. WILLIAMS,AND F. S. BONOMO,Nature 225, 443 (1970). 2. W. J. LAFFERTYAND R. L. SAMS,paper J7, Symposium on Molecular Structure and Spectroscopy, Columbus, Ohio, 1973; to be published. 3. R. E. BLANK, M. D. OLMAN, AND C. D. HAUSE, J. Mol. Spectrosc. 33, 109 (1970). 4. M. D. OLMANAND C. D. HAUSE, J. 2Mol. Sfectrosc. 26, 241 (1968). 5. R. E. BLANK AND C. D. HAUSE, J. Mol. Spectrosc. 34, 478 (1968). 6. J. W. C. JOHNSAND W. B. OLSON,J. Mol. Spectrosc. 39, 479 (1971). 7. J. W. C. JOHNS,J. M. R. STONE,AND G. WINNEWISSER,J. Mol. Spectrosc. 42, 523 (1972). 8. J. K. G. WATSON,J. Chem. Phys. 46, 1935 (1967). 9. J. K. G. WATSON, J. Chem. Phys. 48, 4517 (1968). 10. P. D. WILLSON, Ph.D. Dissertation, Michigan State University, 1973. II. K. K. YALLABANDIAND P. M. PARKER, J. Chem. Phys. 49, 410 (1968). 12. S. C. HURLOCK,Ph.D. Dissertation, The Ohio State University, 1970. University Microfilms Nr. 70-19, 322. 13. S. C. HURLOCK,K. NARAHARI RAO, L. A. WELLER, AND P. K. L. YIN, J. Mol. Spectrosc. 48, 372 (1973).