Apparent molar volumes and apparent molar heat capacities of aqueous silver nitrate at molalities from 0.015mol·kg−1 to 0.5mol·kg−1 , at temperatures from 278.15 K to 393.15 K, and at the pressure 0.35 MPa

Apparent molar volumes and apparent molar heat capacities of aqueous silver nitrate at molalities from 0.015mol·kg−1 to 0.5mol·kg−1 , at temperatures from 278.15 K to 393.15 K, and at the pressure 0.35 MPa

J. Chem. Thermodynamics 2002, 34, 1531–1543 doi:10.1016/S0021-9614(02)00168-4 Available online at http://www.idealibrary.com on Apparent molar volume...

480KB Sizes 2 Downloads 135 Views

J. Chem. Thermodynamics 2002, 34, 1531–1543 doi:10.1016/S0021-9614(02)00168-4 Available online at http://www.idealibrary.com on

Apparent molar volumes and apparent molar heat capacities of aqueous silver nitrate at molalities from 0:015 mol  kg1 to 0:5 mol  kg1 , at temperatures from 278.15 K to 393.15 K, and at the pressure 0.35 MPa W. B. Clayton, B. A. Patterson, J. J. Jardine, and E. M. Woolleya Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA

Densities of aqueous silver nitrate solutions were determined at molalities m from 0:015 mol  kg1 to 0:5 mol  kg1 , at temperatures T from 278.15 K to 368.15 K, and at the pressure 0.35 MPa, using a vibrating tube densimeter (DMA 512P, Anton Paar, Austria). A fixed cell, power-compensation, differential-output, temperature-scanning calorimeter (NanoDSC 6100, Calorimetry Sciences Corporation, American Fork, UT, USA) was used to measure the heat capacities of the same solutions at the same pressure and at 278:15 6 T=K 6 393:15. Apparent molar heat capacities Cp;/ and apparent molar volumes V/ were calculated for these solutions and fitted by regression to empirical equations describing the surfaces (Cp;/ ; T; m) and (V/ ; T; m). Ó 2002 Elsevier Science Ltd. All rights reserved.

KEYWORDS: apparent molar volume; apparent molar heat capacity; silver nitrate

1. Introduction Silver nitrate has several uses in industry including the manufacturing of mirrors and dyes. It is an important reagent used extensively in analytical chemistry. However, not much information is available regarding the thermodynamic properties of its aqueous solutions as a function of temperature. In this paper we present the apparent molar heat capacities Cp;/ and apparent molar volumes V/ for silver nitrate aqueous solutions at molalities m from 0:015 mol  kg1 to 0:5 mol  kg1 , at temperatures T from 278.15 K to

a

To whom correspondence should be addressed (E-mail: [email protected]).

0021-9614/02/$ - see front matter

Ó 2002 Elsevier Science Ltd. All rights reserved.

W. B. Clayton et al.

1532

393.15 K, and at the pressure 0.35 MPa. The results are fitted to empirical regression equations for the surfaces (Cp;/ ; T; m) and (V/ ; T; m).

2. Experimental An aqueous stock solution of silver nitrate m ¼ 0:49983 mol  kg1 was prepared using carefully dried reagent grade silver nitrate (Sargent-Welch Scientific Company, Skokie, IL, USA). The reagent purity was found to be greater than 0.994 mass fraction pure by the Mohr method. We have used 1.000 mass fraction purity in our calculations. The water used was distilled, deionized, autoclaved, and degassed. All other solutions were prepared by mass dilution using this stock solution. All weighings were corrected for buoyancy. Precautions were taken so that all solutions were stored away from direct light. TABLE 1. Apparent molar volumes V/ for aqueous silver nitrate at p ¼ 0:35 MPa. The  uncertainties are standard deviations from a minimum of thirty measurementsa m

V/ 1

mol  kg

3

V/ 1

cm  mol

V/ 1

V/

cm  mol

1

cm  mol

cm3  mol1

3

3

T ¼ 278:15 K

T ¼ 283:15 K

T ¼ 288:15 K

T ¼ 298:15 K

0.49983

28:079  0:008

28:617  0:007

29:277  0:005

30:516  0:006

0.24986

27:297  0:007

27:829  0:008

28:53  0:01

29:81  0:01

0.12499

26:20  0:02

27:08  0:02

28:01  0:02

29:33  0:02

0.05000

24:97  0:04

25:96  0:04

26:91  0:05

28:36  0:05

0.02500

29:12  0:08

28:93  0:08

29:00  0:09

29:3  0:1

0.01484

26:7  0:1

26:5  0:1

27:7  0:1

28:1  0:1

T ¼ 308:15 K

T ¼ 318:15 K

T ¼ 328:15 K

T ¼ 338:15 K

0.49983

31:402  0:005

32:027  0:006

32:451  0:005

32:723  0:006

0.24986

30:665  0:008

31:35  0:01

31:87  0:01

32:135  0:009

0.12499

30:27  0:02

30:99  0:02

31:58  0:02

31:78  0:02

0.05000

29:50  0:05

30:24  0:05

30:59  0:05

30:68  0:05

0.02500

29:3  0:1

29:0  0:1

29:0  0:1

29:35  0:06

0.01484

28:0  0:1

27:5  0:1

28:3  0:1

25:5  0:2

T ¼ 348:15 K

T ¼ 358:15 K

T ¼ 368:15 K

0.49983

32:823  0:007

32:907  0:006

32:715  0:006

0.24986

32:21  0:01

32:228  0:009

32:02  0:01

0.12499

31:85  0:03

31:96  0:02

31:85  0:02 30:23  0:07

0.05000

30:51  0:05

30:52  0:05

0.02500

28:8  0:1

28:6  0:1

29:0  0:1

0.01484

24:5  0:2

24:9  0:1

25:2  0:2

a

Average values of qs can be obtained with equation (3) using qw given in reference 2.

Apparent molar volumes and heat capacities of aqueous silver nitrate

1533

The densities of the aqueous silver nitrate solutions were determined from a vibrating tube densimeter (DMA 512P, Anton Paar, Austria) at 278:15 6 T=K 6 368:15 and at the pressure 0.35 MPa. A temperature circulator (PolyScience 9510, Niles, IL) controlled the temperature of the densimeter. As reported previously,ð1;2Þ the temperature was controlled within an average standard deviation of 0:0020 K and a maximum deviation of 0:0029 K for all solutions and temperatures recorded, and the pressure was maintained constant at ð0:350  0:001Þ MPa. The periods of oscillation s  4 ms had an average standard deviation Ds ¼ 0:68 ns and a maximum deviation of 1:0 ns. Densities were calculated with HookeÕs Law by equation (1), qs ¼ qw þ kq  ðs2s  s2w Þ;

ð1Þ

FIGURE 1. Apparent molar volumes V/ for aqueous silver nitrate AgNO3 (aq) plotted against molality m and temperature T. s, Experimental values at p ¼ 0:35 MPa from table 1; surface at p ¼ 0:35 MPa generated from regression parameters in table 2 with equation (5); O from reference 6 at T ¼ 298:15 K and p ¼ 0:10 MPa.

W. B. Clayton et al.

1534

where qs and qw are the densities of the silver nitrate solution and water, respectively, and ss and sw are the periods of oscillation of the tube when it contains the solution and water, respectively. Values of kq , the calibration constant for the densimeter, were determined, as described previouslyð1;2Þ from experiments with water and 1:0 mol  kg1 NaCl(aq), both of which have well known densities.ð3;4Þ The calorimeter used to measure the heat capacities was calibrated as described in earlier work.ð5Þ Results used were the average of eight temperature scans between 273.15 K and 398.15 K at the rate r ¼ 16:6667 mK  s1 and at the pressure ð0:35  0:015Þ MPa. The heat capacity of a solution was determined from the difference in the calorimetric power output from two experiments performed under the same conditions: one with the reference and sample cells filled with water, and the other with the sample cell filled with the solution of interest and the reference cell again filled with water. The massic heat capacity is determined by equation (2), cp;s ¼ kc  ðDPs  DPw Þ=ðr  qs Þ þ cp;w  qw =qs ;

ð2Þ

where cp;s and cp;w are the massic heat capacities of the solution of interest and of water, respectively; DPs and DPw are the differences in power required to maintain the two calorimetric cells at the same temperature during the two experiments; and kc is the calibration constant for this calorimeter, obtained as reported previouslyð5Þ from measurements on 1:0 mol  kg1 NaCl(aq) and water.ð3;4Þ Experiments were performed with water in both cells every few days to determine and compensate for any small changes in the calorimetric baseline signal.

TABLE 2. Regression parameters of equation (5) for the apparent molar volume V/ of aqueous silver nitrate. The  values are chosen so that equation (5) reproduces the generated V/ values to within 0:01 cm3  mol1 at m 6 0:5 mol  kg1 , at 278:15 6 T=K 6 393:15, and at p ¼ 0:35 MPa v0;0 =ðcm3  mol1 Þ

1603:68  0:01

v1;0 =ðcm3  mol1  K1 Þ

4:43798  0:00003

103  v2;0 =ðcm3  mol1  K2 Þ

4:1629  0:0001

v3;0 =ðcm3  mol1  KÞ

185610  1

v0;1 =ðcm3  kg  mol2 Þ

9253:99  0:002

v1;1 =ðcm3  kg  mol2  K1 Þ 2

2

3

10  v2;1 =ðcm  kg  mol

28:06966  0:00006 2

K Þ

2:8286  0:0001

v3;1 =ðcm3  kg  mol2  KÞ

1014850  6

v0;2 =ðcm3  kg2  mol3 Þ

12916:78  0:03

v1;2 =ðcm3  kg2  mol3  K1 Þ 2

3

2

3

10  v2;2 =ðcm  kg  mol

39:2211  0:0001 2

K Þ

v3;2 =ðcm3  kg2  mol3  KÞ Da /ðcm3  mol1 Þ a

Standard deviation of the regression.

3:95252  0:00002 1413430  7 0.15

Apparent molar volumes and heat capacities of aqueous silver nitrate

1535

Apparent molar volumes V/ and apparent molar heat capacities Cp;/ were calculated by equations (3) and (4), respectively, V/ ¼ M2 =qs  1000  ðqs  qw Þ=ðqs  qw  mÞ;

ð3Þ

Cp;/ ¼ M2  cp;s þ 1000  ðcp;s  cp;w Þ=m:

ð4Þ

In equations (3) and (4), M2 ¼ 169:8717 g  mol1 is the molar mass of silver nitrate.

TABLE 3. Standard partial molar volumes V02 and standard partial molar heat capacities C0p;2 for aqueous silver nitrate at infinite dilution and at p ¼ 0:35 MPa from equations (5) and (6) and the parameters in tables 2 and 5 T

V20

0 Cp;2

K

cm3  mol1

278.15

24.0

)106.8

283.15

25.3

)89.4

288.15

26.4

)74.5

293.15

27.3

)61.8

298.15

28.0

)51.1

303.15

28.6

)42.4

308.15

29.1

)35.3

313.15

29.5

)29.8

318.15

29.7

)25.7

323.15

29.9

)22.8

328.15

30.0

)21.0

333.15

30.1

)20.2

338.15

30.1

)20.2

343.15

30.1

)21.1

348.15

30.1

)22.6

353.15

30.0

)24.6

358.15

30.0

)27.1

363.15

29.9

)30.0

368.15

29.9

)33.1

373.15

29.9

)36.5

378.15

29.9

)40.0

383.15

30.0

)43.6

388.15

30.1

)47.1

393.15

30.2

)50.6

J  K1  mol1

W. B. Clayton et al.

1536

TABLE 4. Apparent molar heat capacities Cp;/ for aqueous silver nitrate at p ¼ 0:35 MPa. The  uncertainties are standard deviations for the averages from a total of at least four scans each at both increasing and decreasing temperaturea m

Cp;/ 1

1

Cp;/ 1

JK

Cp;/ 1

 mol

JK

1

Cp;/ 1

 mol

JK

1

Cp;/ 1

 mol

1

JK

 mol1

mol  kg

JK

0.49983 0.24986 0.12499 0.05000 0.02500 0.01484

T ¼ 278:15 K 40:1  0:1 67:0  0:7 86:2  1:9 101:1  4:1 105:9  4:6 108:6  4:9

T ¼ 283:15 K 24:4  0:2 47:8  1:1 64:4  1:9 77:8  3:8 82:4  4:0 85:2  3:8

T ¼ 288:15K 12:4  0:1 32:9  0:9 47:8  1:6 60:0  3:4 64:6  3:4 67:7  3:6

T ¼ 293:15 K 3:0  0:1 21:5  0:8 35:1  1:5 46:5  3:2 51:1  2:5 53:9  2:9

T ¼ 298:15 K 4:1  0:2 12:7  0:5 25:4  1:1 36:0  2:7 41:0  2:1 43:6  2:8

0.49983 0.24986 0.12499 0.05000 0.02500 0.01484

T ¼ 303:15 K 9:6  0:2 5:8  0:4 17:7  0:9 27:7  2:2 33:0  1:8 35:6  2:4

T ¼ 308:15 K 13:8  0:2 0:6  0:4 11:9  0:8 21:5  1:6 27:3  1:3 29:5  2:2

T ¼ 313:15 K 17:0  0:2 3:4  0:2 7:4  0:6 16:6  1:2 22:4  1:0 24:5  2:0

T ¼ 318:15 K 19:2  0:2 6:2  0:2 4:2  0:5 13:3  0:8 19:4  0:8 20:9  1:9

T ¼ 323:15 K 20:8  0:2 8:3  0:1 1:8  0:4 10:8  0:6 17:1  0:9 18:2  2:1

0.49983 0.24986 0.12499 0.05000 0.02500 0.01484

T ¼ 328:15 K 21:7  0:2 9:7  0:1 0:3  0:3 9:3  0:4 15:7  1:0 16:6  2:2

T ¼ 333:15 K 22:2  0:3 10:5  0:1 0:6  0:2 8:4  0:4 14:6  1:1 15:1  2:4

T ¼ 338:15 K 22:3  0:3 10:8  0:2 1:0  0:1 7:9  0:3 14:4  1:2 14:6  2:5

T ¼ 343:15 K 21:9  0:3 10:6  0:2 0:7  0:1 8:4  0:4 14:9  1:2 15:1  2:9

T ¼ 348:15 K 21:2  0:2 9:9  0:2 0:0  0:1 9:4  0:4 15:6  1:1 15:4  2:9

0.49983 0.24986 0.12499 0.05000 0.02500 0.01484

T ¼ 353:15 K 20:2  0:2 9:0  0:2 1:0  0:2 10:6  0:4 17:1  1:2 17:3  2:9

T ¼ 358:15 K 19:0  0:2 7:7  0:1 2:4  0:1 12:0  0:4 18:4  1:3 18:7  2:8

T ¼ 363:15 K 17:4  0:3 6:0  0:2 4:2  0:2 14:1  0:5 20:5  1:2 21:4  2:9

T ¼ 368:15 K 15:6  0:3 4:2  0:2 6:3  0:2 16:6  0:5 23:3  1:1 24:3  3:5

T ¼ 373:15 K 13:7  0:2 2:0  0:2 8:6  0:3 19:4  0:5 25:9  0:9 26:8  3:6

0.49983 0.24986 0.12499 0.05000 0.02500 0.01484

T ¼ 378:15 K 11:3  0:2 0:5  0:2 11:5  0:2 22:4  0:5 29:4  1:1 30:7  3:2

T ¼ 383:15 K 9:0  0:2 3:1  0:2 14:4  0:2 25:6  0:7 32:4  1:0 34:0  2:6

T ¼ 388:15 K 6:4  0:2 6:0  0:1 17:5  0:2 29:1  1:0 36:1  0:7 37:9  2:9

T ¼ 393:15 K 3:6  0:1 8:9  0:2 20:9  0:9 32:9  0:7 40:8  0:7 43:1  2:4

a

 mol

1

Average experimental values of cp;s can be obtained with equation (4) and with cp;w given in reference 2.

Apparent molar volumes and heat capacities of aqueous silver nitrate

1537

3. Results and discussion Values for the apparent molar volumes V/ for aqueous silver nitrate are given in table 1. Figure 1 shows (V/ ; T; m) for aqueous silver nitrate along with the results of Singh et al.ð6Þ The regression surface in figure 1 corresponds to equation (5), V/ ¼ AV  m1=2 þ

2 X

mn  ðv0;n þ v1;n  T þ v2;n  T 2 þ v3;n =T Þ;

ð5Þ

n¼0

where AV is the Debye–H€ uckel coefficient for volumes. We have used values for AV based on the equations of Bradley and Pitzerð7Þ that are tabulated by Ford et al.ð2Þ The parameters for equation (5) given in table 2 are based on a regression with weighting factors inversely proportional to the uncertainties in table 1. Values calculated from this

FIGURE 2. Apparent molar heat capacities Cp;/ for aqueous silver nitrate AgNO3 (aq) plotted against molality m and temperature T. s, Experimental values at p ¼ 0:35 MPa from table 4; surface at p ¼ 0:35 MPa generated from regression parameters in table 5 with equation (6). O From reference 6 at T ¼ 298:15 K and p ¼ 0:10 MPa.  From reference 8 at T ¼ 298:15 K and m ¼ 0:068 mol  kg1 .

W. B. Clayton et al.

1538

equation agree with the values of Singh et al.ð6Þ to within 0:8 cm3  mol1 . From this equation, V/ ¼ V02 at infinite dilution has been estimated and values are given in table 3. Our results for the apparent molar heat capacities for aqueous silver nitrate are given in table 4. Figure 2 shows (Cp;/ ; T; m) for aqueous silver nitrate, along with results of Singh et al.ð6Þ and Sergeeva et al.ð8Þ The regression surface in figure 2 corresponds to equation (6), Cp;/ ¼ AC  m1=2 þ

2 X

mn  ðc0;n þ c1;n  T þ c2;n  T 2 þ c3;n =T Þ;

ð6Þ

n¼0

where AC is the Debye–H€ uckel coefficient for heat capacities based on the equations of Bradley and Pitzerð7Þ that are tabulated by Ford et al.ð2Þ The regression used weighting factors equal to the inverse of the uncertainties in Cp;/ from table 4. The regression parameters for equation (6) are given in table 5. Values calculated from this equation agree with the values of Singh et al.ð6Þ and Sergeeva et al.ð8Þ to within 11 J  K1  mol1 . Extrapolated values for Cp;/ ¼ C0p;2 at infinite dilution are given in table 3. Figures 3 and 4 show (V/ ; T; m) and (Cp;/ T; m), respectively, for aqueous silver ion with comparable surfaces for the aqueous potassium and sodium ions obtained from results by Patterson and Woolleyð9Þ and with other literature values.ð8;10;11Þ Single ion apparent molar volumes V/;i and heat capacities Cp;/;i for aqueous silver ion were

TABLE 5. Regression parameters of equation (6) for the apparent molar heat capacity Cp;/ of aqueous silver nitrate. The  values are chosen so that equation (6) reproduces the generated Cp;/ values to within 0:1 J  K1  mol1 at m 6 0:5 mol  kg1 , 278:15 6 T=K 6 393:15, and p ¼ 0:35 MPa c0;0 =ðJ  K1  mol1 Þ

14904:6  0:1

c1;0 =ðJ  K2  mol1 Þ

39:0184  0:0001

102  c2;0 =ðJ  K3  mol1 Þ

3:33263  0:00006

101  c3;0 =ðJ  mol1 Þ

187378  1

c0;1 =ðJ  kg  K1  mol2 Þ

12817:6  0:2

c1;1 =ðJ  kg  K2  mol2 Þ 2

10  c2;1 =ðJ  kg  K

3

33:8676  0:0005 2

 mol Þ

2:9689  0:0001

101  c3;1 =ðJ  kg  mol2 Þ

162628  5

c0;2 =ðJ  kg2  K1  mol3 Þ

13950:6  0:4

c1;2 =ðJ  kg2  K2  mol3 Þ 2

2

3

10  c2;2 =ðJ  kg  K

38:491  0:001 3

 mol Þ

3:4775  0:0002

102  c3;2 =ðJ  kg2  mol3 Þ

16786  1

Da /ðJ  K1  mol1 Þ

1.5

a

Standard deviation of the regression.

Apparent molar volumes and heat capacities of aqueous silver nitrate

1539

FIGURE 3. Apparent molar volumes V/;i for aqueous potassium ion Kþ (aq), sodium ion Naþ (aq), and silver ion Agþ (aq) at p ¼ 0:35 MPa plotted against molality m and temperature T. The error bar represents our estimate of the total experimental uncertainties for each surface: DV 6 1:0 cm3 mol1 . s, , M, for Kþ (aq), Naþ (aq), and Agþ (aq), respectively, from reference 10 at p ¼ 0:10 MPa. d, j, N, for Kþ (aq), Naþ (aq), and Agþ (aq), respectively, from reference 11 at T ¼ 298:15 K.

estimated by subtracting V/ and Cp;/ values for HNO3 (aq)ð9Þ from those for AgNO3 (aq) at the same m, T, and p. The surfaces are described by the empirical equations (7) and (8) V/;i ¼

2 X

mn  ðv0;n þ v1;n  T þ v2;n  T 2 þ v3;n =T Þ;

ð7Þ

n¼0

Cp;/;i ¼

2 X n¼0

mn  ðc0;n þ c1;n  T þ c2;n  T 2 þ c3;n =T Þ;

ð8Þ

1540

W. B. Clayton et al.

FIGURE 4. Apparent molar heat capacities Cp;/;i for aqueous potassium ion Kþ (aq), silver ion Agþ (aq), and sodium ion Naþ (aq) at p ¼ 0:35 MPa plotted against molality m and temperature T. The error bar represents our estimate of the total experimental uncertainties for each surface: DC 6 10 J  K1  mol1 .  From reference 8 at T ¼ 298:15 K and m ¼ 0:068 mol  kg1 .

with the parameters in table 6. Estimated values for V2;i and Cp;2;i at infinite dilution are given in table 7. We estimate the total experimental uncertainties in these single ion quantities as DV/;i 6  1:0 cm3  mol1 and DCp;/;i 6  10 J  K1  mol1 , respectively, over the entire ranges of m and T. We have calculated V/;i ¼ V02 ¼ 1:4 cm3  mol1 at m ¼ 0 mol  kg1 for Agþ (aq) from results reported by Kapustinky et al.ð11Þ using the conventional V/;i ¼ V02 ¼ 0:0 cm3  mol1 at m ¼ 0 mol  kg1 for Hþ (aq). We have also calculated Cp;/;i C0p;2 ¼ 28:0 J  K1  mol1 at m ¼ 0:068 mol  kg1 for Agþ (aq) from results reported by SergeevaÕs et al.ð8Þ using the recently reported Cp;/;i C0p;2 ¼ 62:2 J  K1  mol1 at m ¼ 0:068 mol  kg1 for NO 3 (aq) from Patterson and Woolley.ð9Þ

Apparent molar volumes and heat capacities of aqueous silver nitrate

1541

TABLE 6. Parameters of equations (7) and (8) for the apparent molar volume V/;i and apparent molar heat capacity Cp;/;i , of aqueous silver ion Agþ , potassium ion Kþ , and sodium ion Naþ at m 6 0:5 mol  kg1 , at 278:15 6 T=K 6 393:15, and at p ¼ 0:35 MPa. Values are given to the precision needed to reproduce V/;i to 0:01 cm3  mol1 and Cp;/;i to 0:1 J  K1  mol1 Agþ (aq) 1

v0;0 =ðcm3  mol Þ

1521.21

Kþ (aq) 220.96

Naþ (aq) 1032.73

)4.63162

)0.66693

)3.08436

103  v2;0 =ðcm3  mol1  K2 Þ

4.6889

0.7497

3.0978

v3;0 =ðcm3  mol1  KÞ

)166512

)24047

)116146

v0;1 =ðcm3  kg  mol2 Þ

)12795.836

)776.627

)5164.744

v1;1 =ðcm3  kg  mol2  K1 Þ

39.29881

3.19980

16.06586

1

3

v1;0 =ðcm  mol

1

K Þ

102  v2;1 =ðcm3  kg  mol2  K2 Þ

)4.0115

)0.4254

)1.6641

v3;1 =ðcm3  kg  mol2  KÞ

1386748

61176

553479

v0;2 =ðcm3  kg2  mol3 Þ

17987.58

431.08

6162.03

v1;2 =ðcm3  kg2  mol3  K1 Þ

)55.2299

)2.6607

)19.3464

2

3

3

2

10  v2;2 =ðcm  kg  mol

2

K Þ

5.63427

0.42721

2.01966

v3;2 =ðcm3  kg2  mol3  KÞ

)1948234

)6293

)653180

c0;0 =ðJ  K1  mol1 Þ

389.3

3649.3

6704.6

c1;0 =ðJ  K2  mol1 Þ

)0.0057

)9.8098

)17.6417

103  c2;0 =ðJ  K3  mol1 Þ

)0.9574

8.8878

15.4992

101  c3;0 =ðJ  mol1 Þ

)8426

)45092

)83068

1

c0;1 =ðJ  kg  K

2

 mol Þ

c1;1 =ðJ  kg  K2  mol2 Þ

)3050.3

)4137.8

)8767.9

8.2074

10.3403

25.0065

102  c2;1 =ðJ  kg  K3  mol2 Þ

)0.7924

)0.9134

)2.4724

101  c3;1 =ðJ  kg  mol2 Þ

42028

58142

106487

c0;2 =ðJ  kg2  K1  mol3 Þ

)427.8

)4889.9

)2630.3

c1;2 =ðJ  kg2  K2  mol3 Þ

2.876

17.307

8.756

102  c2;2 =ðJ  kg2  K3  mol3 Þ

)0.4283

)1.9740

)0.9091

102  c3;2 =ðJ  kg2  mol3 Þ

)260

4240

2350

It is interesting to note from figure 3 that the single ion apparent molar volume for Kþ (aq) is larger by about 10 cm3  mol1 than those for Naþ (aq) and Agþ (aq) at all m and T. On the other hand, we see from figure 4 that the single ion apparent molar heat capacities of all three ions show quite different patterns compared with those in figure 3. Figure 4 shows that, at low temperature, the single ion apparent molar heat capacities for all three ions increase significantly and with nearly the same dependence on m, whereas this dependence on m nearly disappears or becomes slightly negative for all three ions at high temperature.

1542

W. B. Clayton et al.

TABLE 7. Standard partial volumes V02;i and standard partial molar heat capacities C0p;2;i for aqueous silver ion Agþ (aq) at infinite dilution and at p ¼ 3:5 MPa from equations (7) and (8) and the parameters in table 6 T

V2;i0

K

cm3  mol1

0 Cp;2;i

J  K1  mol1

278.15

)2.9

10.7

283.15

)2.4

13.4

288.15

)1.9

15.8

293.15

)1.6

18.0

298.15

)1.4

19.9

303.15

)1.2

21.7

308.15

)1.1

23.2

313.15

)1.1

24.6

318.15

)1.1

25.8

323.15

)1.1

26.8

328.15

)1.2

27.6

333.15

)1.2

28.3

338.15

)1.2

28.7

343.15

)1.2

29.1

348.15

)1.2

29.3

353.15

)1.2

29.3

358.15

)1.1

29.2

363.15

)0.9

29.0

368.15

)0.7

28.6

373.15

)0.4

28.1

378.15

)0.1

27.4

383.15

0.4

26.7

388.15

0.9

25.8

393.15

1.5

24.8

REFERENCES 1. Ballerat-Busserolles, K.; Ford, T. D.; Call, T. G.; Woolley, E. M. J. Chem. Thermodyn. 1999, 31, 741–762. 2. Ford, T. D.; Call, T. G.; Origlia, M. L.; Stark, M. A.; Woolley, E. M. J. Chem. Thermodyn. 2000, 32, 499–516. 3. Hill, P. G. J. Phys. Chem. Ref. Data 1990, 19, 1233–1274. 4. Archer, D. G. J. Phys. Ref. Data 1992, 21, 793–829. 5. Woolley, E. M. J. Chem. Thermodyn. 1997, 29, 1377–1385. 6. Singh, P. P.; Spitzer, J.; McKay, R. M.; McCurdy, K. G.; Hepler, L. G. Thermochim. Acta 1978, 24, 111–115.

Apparent molar volumes and heat capacities of aqueous silver nitrate

1543

7. Bradley, D. J.; Pitzer, K. S. J. Phys. Chem. 1979, 83, 1599–1603. 8. Sergeeva, R. I.; Drakin, S. I.; KarapetÕyants, M. Kh. Russ. J. Phys. Chem. 1970, 44, 1665–1666. 9. Patterson, B. A.; Woolley, E. M. J. Chem. Thermodyn. 2002, 34, 535–556. 10. Millero, F. J. Structure and Transport Processes in Water and Aqueous Solutions. Horne, R. A.: editor. Wiley-Interscience: New York. 1971. Chap. 15. 11. Kapustinky, A. F.; Yakushevskii, B. M.; Drakin, S. I. Zh. Fiz. Khim. 1953, 27, 433–442. (Received 25 September 2001; in final form 23 April 2002)

WE-326