J. Chem. Thermodynamics 2001, 33, 1419–1440 doi:10.1006/jcht.2001.0841 Available online at http://www.idealibrary.com on
Thermodynamics for proton dissociations from aqueous L-histidine at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa: apparent molar volumes and apparent molar heat capacities of the protonated cationic, neutral zwitterionic, and deprotonated anionic forms J. J. Jardine, T. G. Call, B. A. Patterson, M. L. Origlia-Luster, and E. M. Woolleya Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, U.S.A.
Apparent molar volumes Vφ and apparent molar heat capacities C p,φ were determined for individual solutions of aqueous L-histidine, of aqueous L-histidine with equimolal HCl, and of aqueous L-histidine with equimolal NaOH at molalities m = (0.015 to 0.66) mol · kg−1 , at temperatures T = (278.15 to 393.15) K, and at the pressure p = 0.35 MPa. Apparent molar volumes were generated from density measurements obtained with a vibrating-tube densimeter. Apparent molar heat capacities were generated from heat capacity measurements with a twin fixed-cell, power-compensation, differential-output, temperature-scanning calorimeter. These results were then fitted by regression to empirical equations to describe the (Vφ ,m,T ) and (C p,φ , m, T ) surfaces for each of the three systems. These regression equations were then used to calculate the changes in partial molar volume 1r Vm and partial molar heat capacity 1r C p,m as functions of m and T for both the first and second proton dissociation reactions for protonated aqueous L-histidine. The changes in enthalpy 1r Hm and entropy 1r Sm and the acid dissociation molality quotient Q a were then obtained as functions of m and T for each proton dissociation reaction by integration, using our (1r C p,m , m, T ) results and literature values for 1r Hm and Q a . Our results illustrate the unique thermodynamic properties of the cationic, neutral zwitterionic, and c 2001 Academic Press anionic forms of L-histidine in aqueous solution. KEYWORDS: apparent molar volume; apparent molar heat capacity; L-histidine; hydrochloric acid; sodium hydroxide; zwitterion; ionization; acidity; proton dissociation
a To whom correspondence should be addressed (E-mail: earl
[email protected]).
0021–9614/01/101419 + 22 $35.00/0
c 2001 Academic Press
1420
J. J. Jardine et al.
1. Introduction The physical and chemical characteristics of virtually all biologically relevant molecules depend strongly upon the pH of their aqueous environment. Enzymes optimally catalyse biological reactions only within a narrow pH range. Beyond this range, catalytic activity is lost and the enzymes are partially denatured under increasingly basic or acidic conditions. On the molecular level, changes in pH determine the proportions of protonated and deprotonated residues within proteins, nucleic acids, and other biomolecules. Changes in the equilibrium distribution among species with changes in temperature T , pressure p, and molality m can be determined by thermodynamic calculations using free energy and enthalpy information at a reference T , p, and m, combined with the change in partial molar volume 1r Vm and partial molar heat capacity 1r C p,m as functions of T , p, and m for proton dissociation reactions of isolated amino acids in aqueous solution. Values for 1r Ym (where Y = V or C p ) for proton dissociation of protonated L -histidine(aq), H2 · His+ (aq), reaction (1), can be estimated from apparent molar properties Yφ for solutes in process (2) by using equation (3): H2 · His+ (aq) = H · His(aq) + H+ (aq), H2 · His+ Cl− (aq) = H · His(aq) + H+ Cl− (aq), 1r Ym,1 = Yφ {H+ Cl− (aq)} + Yφ {H · His(aq)} − Yφ {H2 · His+ Cl− (aq)}.
(1) (2) (3)
Similarly, the change in partial molar property 1r Ym for the proton dissociation reaction of zwitterionic L-histidine, H · His(aq), reaction (4), can be estimated from apparent molar properties Yφ for reactants and products for process (5) by using equation (6): H · His(aq) = His− (aq) + H+ (aq), H · His(aq) + Na+ Cl− (aq) = Na+ His− (aq) + H+ Cl− (aq), 1r Ym,2 = Yφ {Na+ His− (aq)} + Yφ {H+ Cl− (aq)} − Yφ {H · His(aq)} − Yφ {Na+ Cl− (aq)}.
(4) (5) (6)
2. Experimental Anhydrous L-histidine {H · His(c)} (molar mass = 155.16 g · mol−1 , Fluka Chemie AG, Neu-Ulm, Switzerland, analysis number 350 371/1 30 397, stated purity >0.995 mass fraction, 0.005 mass fraction assumed to be water) was used to prepare H · His(aq) solutions in small preweighed glass bottles. All solutions were prepared by mass dilution with distilled, deionized, autoclaved, and degassed water. The L-histidine + NaOH solutions {Na+ His− (aq)} were prepared from {H · His(c)} and a stock solution of NaOH(aq) that was previously standardized by titration against primary standard potassium hydrogen phthalate (1) and further diluted with water to yield a series of solutions with a 1 : 1 molar ratio of L-histidine and NaOH. Similarly, the L-histidine + HCl {H2 · His+ Cl− (aq)} solutions were prepared from H · His(c) and a solution of HCl(aq) that was previously standardized by titration against the above NaOH(aq) solution (1) and further diluted
Thermodynamics of protonated, neutral, and deprotonated L-histidine
1421
to yield a series of solutions with a 1:1 molar ratio of L-histidine and HCl. All mass measurements were corrected from apparent mass to mass, and the formation of water was accounted for in the calculation of the Na+ His− (aq) solution molalities. Solution densities were obtained using a vibrating-tube densimeter (model DMA 512, Anton PAAR, Austria) that was described in previous work. (1) The temperature of the densimeter experiments ranged from T = (278.15 to 368.15) K at 5 K or 10 K intervals, while the cell pressure p remained constant at (0.350 ± 0.002) MPa. The period of oscillation τ of the vibrating tube as well as T and p of the experiments were recorded at intervals of about 40 s as described in detail previously. (1) Solution densities were calculated by using equation (7): ρs = ρw + {kρ · (τs2 − τw2 )}.
(7)
In equation (7), ρs and ρw are the densities of the solution of interest and of pure water respectively, and τs and τw are the periods of oscillation of the vibrating tube when it contains the experimental solution and pure water respectively. The T - and p-dependent calibration constant kρ was obtained by measuring (at the same T and p) τw for water and τs for 1.0 mol · kg−1 NaCl(aq), both of which have well-known densities. (2,3) Measurements were made on water every 4 or 5 days to account for any drift in τw over time. The temperature of the vibrating tube was monitored with a platinum resistance thermometer as described previously. (1) This method yields ρs values with a maximum standard deviation of 20 µg · cm−3 at each rounded T for all solutions investigated. A twin fixed-cell, power-compensation, differential-output, temperature-scanning calorimeter (model 6100 NanoDSC, Calorimetry Sciences Corporation, Spanish Fork, UT, U.S.A.) was used to measure the volumic heat capacity of each solution. The calibration process for this calorimeter is described in previous work. (4,5) The calorimetric cell pressure p was held constant at (0.350 ± 0.015 ) MPa, while the scan rate r was set to ±16.6667 mK · s−1 for the heating and cooling modes at 273.15 < T /K < 398.15. Each experiment was run in an alternating cycle of five heating and five cooling scans, and average calorimetric output values were then used to calculate the solution heat capacities. The massic heat capacities for the solutions at each T were obtained by using equation (8): c p,s = {kc · (1Ps − 1Pw )/(r · ρs )} + (c p,w · ρw /ρs ).
(8)
In equation (8), c p,s and c p,w are the massic heat capacities of the experimental solution and water respectively, while 1Ps and 1Pw are the differences in power applied to the heaters on the two cells to maintain the same temperature when the probe cell contains solution and water respectively. The T - and p-dependent calibration constant kc was determined from measurements on water and on 1.0 mol · kg−1 NaCl(aq) which have well-known massic heat capacities. (2,3) Any drift in 1Pw with time was determined by measuring water in the probe cell every 4 or 5 days, and the calculation of c p,s accounted for this drift. Values of Vφ and C p,φ were determined from results of the density and heat capacity experiments by using equations (9) and (10): Vφ = (M2 /ρs ) − {1000 · (ρs − ρw )/(ρs · ρw · m)}, C p,φ = (M2 · c p,s ) + {1000 · (c p,s − c p,w )/m}.
(9) (10)
1422
J. J. Jardine et al.
TABLE 1. Apparent molar volumes Vφ for aqueous L-histidine {H · His(aq)} at p = 0.35 MPa.a The ± uncertainties are r.m.s. deviations from multiple measurements taken during a 1200 s interval while the period of vibration was stable m mol · kg−1
Vφ
Vφ
Vφ
Vφ
Vφ
cm3 · mol−1
cm3 · mol−1
cm3 · mol−1
cm3 · mol−1
cm3 · mol−1
T = 278.15 K
T = 288.15 K
T = 298.15 K
T = 308.15 K
T = 318.15 K
0.01569
95.05 ± 0.21
99.77 ± 0.27
97.95 ± 0.33
100.05 ± 0.27
103.00 ± 0.64
0.03134
96.45 ± 0.10
99.28 ± 0.14
100.06 ± 0.18
101.01 ± 0.20
101.72 ± 0.27
0.06238
96.16 ± 0.04
98.29 ± 0.07
99.29 ± 0.09
100.37 ± 0.11
101.19 ± 0.06
0.12004
96.07 ± 0.03
97.75 ± 0.02
99.02 ± 0.02
100.11 ± 0.03
100.99 ± 0.03
0.25029
96.21 ± 0.01
98.07 ± 0.02
99.31 ± 0.03
100.35 ± 0.02
101.22 ± 0.03
T = 328.15 K
T = 338.15 K
T = 348.15 K
T = 358.15 K
T = 368.15 K
0.01569
103.06 ± 0.29
104.65 ± 0.15
102.94 ± 0.35
104.84 ± 0.30
104.70 ± 0.23
0.03134
102.27 ± 0.13
102.73 ± 0.17
102.45 ± 0.10
103.42 ± 0.12
103.85 ± 0.27
0.06238
102.10 ± 0.10
102.49 ± 0.08
102.58 ± 0.06
103.26 ± 0.09
104.00 ± 0.07
0.12004
101.76 ± 0.03
102.08 ± 0.03
102.73 ± 0.04
103.23 ± 0.04
103.54 ± 0.03
0.25029
101.89 ± 0.03
102.63 ± 0.03
102.98 ± 0.02
103.44 ± 0.03
103.87 ± 0.02
a Average experimental values of ρ can be obtained with equation (9) and with ρ given in s w reference 7.
In equations (9) and (10), M2 is the molar mass of the solute. Estimated uncertainties in Vφ and C p,φ that result from uncertainties in solution compositions are 60.3 cm3 · mol−1 and 62.2 J · K−1 · mol−1 respectively at all T and m of this investigation.
3. Results and discussion Values of Vφ for H · His(aq), H2 · His+ Cl− (aq), and Na+ His− (aq) are given in tables 1 to 3 respectively. Figures 1 to 3 show the results for these three L-histidine systems. Also shown in figures 1 to 3 are the (Vφ , m, T ) surfaces obtained by regression using the empirical equations (11) and (12) and the regression parameters in table 4: Vφ = ν0 + ν1 · T + ν2 /T, Vφ = A V · m
1/2
+ ν0 + ν1 · T + ν2 /T + ν3 · m.
(11) (12)
Equation (11) was used to regress the results for H · His(aq) in table 1, and equation (12) was used to regress the results for both H2 · His+ Cl− (aq) and Na+ His− (aq) in tables 2 and 3 respectively. The regressions used weighting factors inversely proportional to the uncertainties given in tables 1 to 3. The term A V in equation (12) is the Debye–H¨uckel coefficient for apparent molar volumes. Values of A V used in this investigation are based on the equations of Bradley and Pitzer (6) and are given by Ford et al. (7) Our Vφ results for H · His(aq) are compared with literature values at 278.15 < T /K < 328.15 and 0.1 MPa in figure 1. (8–13) The deviations 1 of our Vφ from these range from
Thermodynamics of protonated, neutral, and deprotonated L-histidine
1423
TABLE 2. Apparent molar volumes Vφ for aqueous L-histidine + HCl {H2 His+ Cl− (aq)} at p = 0.35 MPa.a The ± uncertainties are r.m.s. deviations from multiple measurements taken during a 1200 s interval while the period of vibration was stable m mol · kg−1
Vφ
Vφ
Vφ
Vφ
Vφ
cm3 · mol−1
cm3 · mol−1
cm3 · mol−1
cm3 · mol−1
cm3 · mol−1
T = 278.15 K
T = 288.15 K
T = 298.15 K
T = 308.15 K
T = 318.15 K
0.03000
115.10 ± 0.11
115.04 ± 0.18
116.75 ± 0.35
117.53 ± 0.28
118.83 ± 0.37
0.06002
110.30 ± 0.04
112.39 ± 0.14
113.66 ± 0.16
115.76 ± 0.10
116.94 ± 0.17
0.12004
112.52 ± 0.04
114.36 ± 0.06
115.73 ± 0.09
117.00 ± 0.08
117.51 ± 0.07
0.25007
112.38 ± 0.02
114.29 ± 0.03
115.82 ± 0.04
117.05 ± 0.04
117.65 ± 0.04
0.49629
112.93 ± 0.005
115.02 ± 0.02
116.50 ± 0.013
117.68 ± 0.02
118.43 ± 0.02
T = 328.15 K
T = 338.15 K
T = 348.15 K
T = 358.15 K
T = 368.15 K
0.03000
117.83 ± 0.33
118.30 ± 0.13
117.60 ± 0.23
117.98 ± 0.15
116.87 ± 0.26
0.06002
116.89 ± 0.11
116.86 ± 0.07
117.40 ± 0.07
117.75 ± 0.08
116.93 ± 0.07
0.12004
117.65 ± 0.06
117.96 ± 0.03
118.06 ± 0.05
117.63 ± 0.05
117.49 ± 0.05
0.25007
118.08 ± 0.03
118.49 ± 0.014
118.52 ± 0.02
118.60 ± 0.03
118.30 ± 0.015
0.49629
118.80 ± 0.02
119.23 ± 0.009
119.36 ± 0.007
119.47 ± 0.013
119.28 ± 0.012
a Average experimental values of ρ can be obtained with equation (9) and with ρ given in reference 7. s w
TABLE 3. Apparent molar volumes Vφ for aqueous L-histidine + NaOH {Na+ His− (aq)} at p = 0.35 MPa.a The ± uncertainties are r.m.s. deviations from multiple measurements taken during a 1200 s interval while the period of vibration was stable m mol · kg−1
Vφ
Vφ
Vφ
Vφ
Vφ
cm3 · mol−1
cm3 · mol−1
cm3 · mol−1
cm3 · mol−1
cm3 · mol−1 T = 318.15 K
T = 278.15 K
T = 288.15 K
T = 298.15 K
T = 308.15 K
0.03002
94.71 ± 0.10
96.69 ± 0.09
97.64 ± 0.06
98.49 ± 0.11
99.38 ± 0.09
0.04996
92.82 ± 0.06
95.56 ± 0.04
97.65 ± 0.06
99.20 ± 0.04
100.27 ± 0.07
0.08491
93.18 ± 0.03
95.84 ± 0.03
97.87 ± 0.03
99.29 ± 0.03
100.37 ± 0.03
0.17435
93.42 ± 0.014
96.37 ± 0.016
98.30 ± 0.019
99.79 ± 0.016
100.94 ± 0.015
0.34750
94.68 ± 0.013
97.19 ± 0.010
99.02 ± 0.012
100.51 ± 0.03
101.66 ± 0.008
0.66092
96.73 ± 0.004
99.07 ± 0.003
100.89 ± 0.004
102.31 ± 0.004
103.44 ± 0.006
T = 328.15 K
T = 338.15 K
T = 348.15 K
T = 358.15 K
T = 368.15 K
0.03002
99.54 ± 0.11
99.92 ± 0.07
100.28 ± 0.17
100.31 ± 0.06
100.18 ± 0.09
0.04996
100.46 ± 0.06
101.38 ± 0.08
100.98 ± 0.06
101.50 ± 0.07
101.33 ± 0.07
0.08491
100.77 ± 0.022
101.19 ± 0.03
101.54 ± 0.03
101.76 ± 0.02
101.67 ± 0.03
0.17435
101.73 ± 0.013
102.04 ± 0.02
102.62 ± 0.02
102.82 ± 0.02
102.99 ± 0.02
0.34750
102.41 ± 0.006
103.20 ± 0.005
103.64 ± 0.011
104.09 ± 0.008
104.31 ± 0.009
0.66092
104.26 ± 0.006
104.96 ± 0.006
105.48 ± 0.006
105.89 ± 0.005
106.20 ± 0.005
a Average experimental values of ρ can be obtained with equation (9) and with ρ given in reference 7. s w
1424
J. J. Jardine et al.
104
102 100 98 96
m
0.25 0.20 0.15 0.10
. kg ol
m
/(
0.05
−1
)
0.00
280
300
320
340
360
380
T/K
FIGURE 1. Apparent molar volumes Vφ for L-histidine(aq) {H · His(aq)} at p = 0.35 MPa plotted against temperature T and molality m. , Experimental values from table 1; surface generated from regression parameters given in table 4 with equation (11). Literature values at p = 0.1 MPa: O, reference 8; , reference 9; N, reference 14; ♦, reference 10; H, reference 11; , reference 12; , reference 13.
◦
•
TABLE 4. Regression parameters of equations (11) and (12) for the apparent molar volumes Vφ of aqueous L-histidine {H · His(aq)}, L-histidine + HCl {H2 · His+ Cl− (aq)}, and Lhistidine + NaOH {Na+ His− (aq)}. The ± values are chosen to reproduce the generated Vφ values to within ±0.01 cm3 · mol−1 at m 6 0.66 mol · kg−1 and at 278.15 6 T /K 6 393.15
Parameter v0 /(cm3 · mol−1 ) 100 · v1 /(cm3 · mol−1 · K−1 ) v2 /(cm3 · K · mol−1 ) v3 /(kg · cm3 · mol−2 ) 1a /(cm3 · mol−1 )
H · His(aq) equation (11)
H2 · His+ Cl− (aq) equation (12)
Na+ His− (aq) equation (12)
238.167 ± 0.006 −17.326 ± 0.001 −26044 ± 1
385.286 ± 0.006 −39.414 ± 0.001 −45568 ± 1
0.27
0.32
364.903 ± 0.005 −37.287 ± 0.001 −46855 ± 1 4.038 ± 0.007 0.23
a Standard deviations of the regression.
−0.1 to +0.9 cm3 · mol−1 , except for one value at 298.15 K which is lower than all others by about 4 cm3 · mol−1 . (14) Our Vφ results for H2 · His+ Cl− (aq) are compared with one value from the literature (8) at 298.15 K and 0.1 MPa in figure 2. The deviation 1 of our Vφ from this value from the literature is 1.9 cm3 · mol−1 . Figure 4 shows the (1r Vm,1 , m, T ) surface for proton dissociation of H2 · His+ (aq)
Thermodynamics of protonated, neutral, and deprotonated L-histidine
1425
120
118 116 114 112 0.5 0.4
m
0.3
. kg ol
m
/(
0.2 0.1
−1
)
0.0
280
300
320
340
360
380
T/K
FIGURE 2. Apparent molar volumes Vφ for L-histidine + HCl(aq) {H2 · His+ Cl− (aq)} at p = 0.35 MPa plotted against temperature T and molality m. , Experimental values from table 2; surface generated from regression parameters given in table 4 with equation (12). Literature value at p = 0.1 MPa: O, reference 8.
◦
106 104 102 100 98 96 94 92 0.6 0.5 m 0.4
/(
m
0.3
ol . kg
0.2 −1
)
320
0.1 0.0
280
300
340
360
380
T/K
FIGURE 3. Apparent molar volumes Vφ for L-histidine + NaOH(aq) {Na+ His− (aq)} at p = 0.35 MPa plotted against temperature T and molality m. , Experimental values from table 3; surface generated from regression parameters given in table 4 with equation (12).
◦
1426
J. J. Jardine et al.
3.0
2.5
2.0
1.5 1.0 0.4
m
0.3
. kg ol
m
/(
0.2 0.1
−1
)
0.0
280
300
320
340
360
380
T/K
FIGURE 4. Change in volume 1r Vm,1 for proton dissociation reaction (1) for protonated L -histidine(aq) {H2 · His+ (aq)} at p = 0.35 MPa generated from regression parameters given in table 4 and from regression equations for H+ Cl− (aq) in reference 16.
200 160 120 80 40 0.5 0.4
m
0.3
/(
0.1
−1
. kg ol
m
0.2
)
0.0
280
300
320
340
360
380
T/K
FIGURE 5. Change in volume 1r Vm,2 for proton dissociation reaction (4) for L-histidine(aq) {H · His(aq)} at p = 0.35 MPa generated from regression parameters given in table 4, from equations for Na+ Cl− (aq) in reference 3, and from regression equations for H+ Cl− (aq) in reference 16.
Thermodynamics of protonated, neutral, and deprotonated L-histidine
1427
475 450 425 400 375 350 0.25 0.20 m / ( 0.15 m 0.10 ol
.k g
−1
)
320
0.05
300 0.00
280
340
360
380
T/K
FIGURE 6. Apparent molar heat capacities C p,φ for L-histidine(aq) {H · His(aq)} plotted against temperature and molality. , Experimental values from table 5; surface generated from regression parameters given in table 8 with equation (13).
◦
described by reaction (1), and figure 5 shows the (1r Vm,2 , m, T ) surface for proton dissociation of H · His(aq) described by reaction (4). The surface (Vφ , m, T ) for HCl(aq) used in these calculations was generated from the equations of Sharygin and Wood, (15) and that for NaCl(aq) was generated from the equations of Archer. (3) The differences between 1r Vm,1 for the isoelectric process of reaction (1) and 1r Vm,2 for the ionic process of reaction (4) are readily apparent. We estimate the total uncertainty in 1r Vm,1 and 1r Vm,2 as 1 6 ±1.1 cm3 · mol−1 . Values of C p,φ for H · His(aq), H2 · His+ Cl− (aq), and Na+ His− (aq) are given in tables 5 to 7 respectively. Figures 6 to 8 show the results for these three L-histidine systems. We are not aware of values from the literature for these solutions. Also shown in figures 6 to 8 are the (C p,φ , m, T ) surfaces obtained by regression using the empirical equations (13) and (14) and the regression parameters given in table 8: C p,φ = c0 + c1 · T + c2 /{(T /K) − 270} + c3 /{1000 − (T /K)} + c4 · m,
(13)
C p,φ = AC · m + c0 + c1 · T + c2 /{(T /K) − 270} + c4 · m + c5 · ln(T /K) + c6 /T.
(14)
1/2
The term AC in equation (14) is the Debye–H¨uckel coefficient for apparent molar heat capacities. Values of AC used in this investigation are based on the equations of Bradley and Pitzer (6) and are given by Ford et al. (7) The regressions used weighting factors inversely proportional to the uncertainties given in tables 1 to 3. Figure 9 shows the (1r C p,m,1 , m, T ) surface for proton dissociation of H2 · His+ (aq)
1428
J. J. Jardine et al.
250
200 150 100 50 0.5 0.4
m
0.3
−1
. kg ol
m /(
0.2 0.1
)
0.0
280
300
320
340
360
380
T/K
FIGURE 7. Apparent molar heat capacities C p,φ for L-histidine(aq) + HCl(aq) {H2 · His+ Cl− (aq)} plotted against temperature T and molality m. , Experimental values from table 6; surface generated from regression parameters given in table 8 with equation (14).
◦
300 250 200 150 100 0.6 0.5
m
/ ( 0.40.3 m ol . 0.2 kg −1 0.1 )
340 0.0
300 280
320
360
380
T/K
FIGURE 8. Apparent molar heat capacities C p,φ for L-histidine(aq) + NaOH(aq) {Na+ His− (aq)} plotted against temperature T and molality m. , Experimental values from table 7; surface generated from regression parameters given in table 8 with equation (14).
◦
Thermodynamics of protonated, neutral, and deprotonated L-histidine
1429
TABLE 5. Apparent molar heat capacities C p,φ for aqueous L-histidine {H · His(aq)} at p = 0.35 MPa.a The ± uncertainties are r.m.s. deviations for the averages obtained from a minimum of eight scans C p,φ C p,φ C p,φ C p,φ C p,φ C p,φ m mol · kg−1 J · K−1 · mol−1 J · K−1 · mol−1 J · K−1 · mol−1 J · K−1 · mol−1 J · K−1 · mol−1 J · K−1 · mol−1 T = 278.15 K T = 283.15 K T = 288.15 K T = 293.15 K T = 298.15 K T = 303.15 K 0.00784
341 ± 17
362 ± 18
378 ± 19
390 ± 19
401 ± 19
410 ± 18
0.06238
341.1 ± 2.9
362.4 ± 4.1
379.5 ± 4.3
393.4 ± 4.4
404.7 ± 4.6
414.3 ± 4.7
0.12004
336.0 ± 1.9
358.7 ± 2.9
376.4 ± 3.1
390.4 ± 3.0
401.7 ± 2.9
411.3 ± 2.9
0.25029
362.5 ± 1.2
381.2 ± 1.6
396.3 ± 1.6
408.6 ± 1.6
418.7 ± 1.6
427.2 ± 1.7
T = 308.15 K T = 313.15 K T = 318.15 K T = 323.15 K T = 328.15 K T = 333.15 K 0.00784
417 ± 21
424 ± 19
429 ± 20
436 ± 20
440 ± 20
445 ± 20
0.06238
422.3 ± 4.7
429.2 ± 4.8
435.0 ± 5.0
440.4 ± 4.9
444.9 ± 4.9
449.1 ± 4.9
0.12004
419.7 ± 2.8
426.7 ± 2.4
432.5 ± 2.4
437.7 ± 2.5
442.5 ± 2.6
446.8 ± 2.5
0.25029
434.4 ± 1.7
440.7 ± 1.7
446.0 ± 1.8
450.7 ± 1.8
454.8 ± 1.7
458.5 ± 1.7
T = 338.15 K T = 343.15 K T = 348.15 K T = 353.15 K T = 358.15 K T = 363.15 K 0.00784
449 ± 21
453 ± 22
457 ± 23
459 ± 23
461 ± 23
463 ± 25
0.06238
452.9 ± 5.1
456.2 ± 5.4
459.2 ± 5.7
462.1 ± 5.9
464.4 ± 6.0
466.5 ± 6.3
0.12004
450.6 ± 2.6
453.8 ± 2.7
456.7 ± 2.9
459.6 ± 3.0
462.1 ± 2.9
464.3 ± 2.9
0.25029
461.9 ± 1.8
464.8 ± 1.9
467.4 ± 1.9
469.8 ± 2.0
471.9 ± 2.0
473.6 ± 2.0
T = 368.15 K T = 373.15 K T = 378.15 K T = 383.15 K T = 388.15 K T = 393.15 K 0.00784
465 ± 27
468 ± 29
468 ± 31
470 ± 34
470 ± 39
468 ± 47
0.06238
468.4 ± 6.6
470.1 ± 7.0
471.4 ± 7.5
472.7 ± 8.1
473.6 ± 9.1
474.1 ± 10
0.12004
466.0 ± 2.9
467.7 ± 3.1
468.8 ± 3.2
470.0 ± 2.9
470.8 ± 2.9
471.5 ± 2.9
0.25029
475.3 ± 2.2
476.7 ± 2.3
477.6 ± 2.4
478.6 ± 2.5
479.3 ± 2.8
479.8 ± 3.5
a Average experimental values of c p,s can be obtained with equation (10) and with c p,w given in reference 7.
described by reaction (1), and figure 10 shows the (1r C p,m,2 , m, T ) surface for proton dissociation of H · His(aq) described by reaction (4). The surfaces (C p,φ , m, T ) for HCl(aq) and NaCl(aq) used for these calculations were obtained from Patterson et al. (16) and from the equations of Archer (3) respectively. The differences between (1r C p,m,1 , m, T ) for the isoelectric process of reaction (1) and (1r C p,m,2 , m, T ) for the ionic process of reaction (4) are readily apparent in figures 9 and 10. There are several sources of the proton dissociation constants for aqueous L-histidine at p = 0.1 MPa in the literature. (17–22) We use the values of the acid dissociation molality quotients Q a,1 for reaction (1) and Q a,2 for reaction (4) at T = 298.15 K, m = 0.1 mol · kg−1 and m = 0.5 mol · kg−1 , and p = 0.1 MPa from Martell and Smith (17) to obtain the thermodynamic equilibrium constants K a , as pK a,1 = (6.02±0.03) and pK a,2 = (9.06 ± 0.03). We also use pQ a,1 = pK a,1 at T = 298.15 K for m 6 0.5 mol · kg−1
1430
J. J. Jardine et al.
TABLE 6. Apparent molar heat capacities C p,φ for aqueous L-histidine + HCl {H2 His+ Cl− (aq)} at p = 0.35 MPa.a The ± uncertainties are r.m.s. deviations for the averages obtained from a minimum of eight scans C p,φ C p,φ C p,φ C p,φ C p,φ C p,φ m mol · kg−1 J · K−1 · mol−1 J · K−1 · mol−1 J · K−1 · mol−1 J · K−1 · mol−1 J · K−1 · mol−1 J · K−1 · mol−1 T = 278.15 K T = 283.15 K T = 288.15 K T = 293.15 K T = 298.15 K T = 303.15 K 0.01497
21.0 ± 7.2
55.2 ± 9.6
81.8 ± 9.7
104 ± 10
122 ± 12
137 ± 12
0.03000
−12.7 ± 3.3
22.7 ± 5.2
51.1 ± 5.1
75.0 ± 5.4
94.2 ± 5.8
110.4 ± 5.8
0.06002
25.6 ± 2.9
58.1 ± 5.1
84.7 ± 5.5
106.7 ± 5.5
124.3 ± 5.6
139.3 ± 5.6
0.12004
28.5 ± 1.8
60.4 ± 3.3
86.2 ± 3.4
107.5 ± 3.2
124.7 ± 3.1
139.3 ± 3.2
0.25007
29.8 ± 0.7
60.2 ± 1.4
84.9 ± 1.6
105.4 ± 1.8
122.0 ± 1.9
136.4 ± 1.9
0.49629
67.3 ± 0.2
93.6 ± 0.7
115.0 ± 1.0
133.1 ± 1.3
147.8 ± 1.4
160.6 ± 1.4
T = 308.15 K T = 313.15 K T = 318.15 K T = 323.15 K T = 328.15 K T = 333.15 K 0.01497
149 ± 13
160 ± 12
168 ± 13
168 ± 13
182 ± 13
187 ± 13
0.03000
123.7 ± 5.4
135.2 ± 5.5
144.5 ± 5.9
144.5 ± 5.9
159.1 ± 5.7
165.1 ± 5.4
0.06002
151.8 ± 5.2
162.5 ± 5.0
171.1 ± 5.0
171.1 ± 4.8
185.0 ± 4.6
190.7 ± 4.3
0.12004
151.6 ± 3.3
162.1 ± 3.3
170.5 ± 3.3
170.5 ± 3.3
184.4 ± 3.2
190.3 ± 3.2
0.25007
148.3 ± 1.9
158.8 ± 2.0
167.4 ± 2.1
167.4 ± 2.1
181.6 ± 2.0
187.5 ± 2.0
0.49629
171.6 ± 1.8
181.2 ± 1.7
189.1 ± 1.9
189.1 ± 1.8
202.4 ± 1.7
208.1 ± 1.8
T = 338.15 K T = 343.15 K T = 348.15 K T = 353.15 K T = 358.15 K T = 363.15 K 0.01497
192 ± 13
195 ± 14
200 ± 15
202 ± 16
205 ± 16
206 ± 17
0.03000
170.1 ± 5.1
174.5 ± 5.3
178.4 ± 5.6
181.8 ± 5.8
184.6 ± 5.8
186.4 ± 6.4
0.06002
195.7 ± 4.1
199.7 ± 4.1
203.2 ± 4.3
206.5 ± 4.4
209.1 ± 4.2
211.1 ± 4.5
0.12004
195.5 ± 3.2
199.6 ± 3.2
203.3 ± 3.3
206.7 ± 3.3
209.6 ± 3.4
212.0 ± 3.5
0.25007
193.0 ± 2.0
197.5 ± 2.1
201.5 ± 2.1
205.3 ± 2.0
208.5 ± 2.0
211.3 ± 2.1
0.49629
213.3 ± 1.8
217.6 ± 1.9
221.6 ± 1.8
225.2 ± 1.7
228.5 ± 1.8
231.3 ± 1.8
T = 368.15 K T = 373.15 K T = 378.15 K T = 383.15 K T = 388.15 K T = 393.15 K 0.01497
208 ± 19
209 ± 22
208 ± 27
209 ± 32
208 ± 38
208 ± 47
0.03000
188.2 ± 7.7
189.9 ± 9.2
190 ± 11
191 ± 13
190 ± 17
190 ± 22
0.06002
212.8 ± 5.2
214.2 ± 5.9
214.7 ± 6.9
215.6 ± 8.1
216 ± 10
216 ± 13
0.12004
214.0 ± 3.7
215.8 ± 4.1
216.8 ± 4.6
218.1 ± 5.3
218.9 ± 6.4
219.6 ± 7.8
0.25007
213.8 ± 2.2
216.0 ± 2.1
217.5 ± 2.2
219.1 ± 2.5
220.4 ± 3.4
221.5 ± 4.7
0.49629
233.9 ± 1.8
236.2 ± 1.7
237.8 ± 1.6
239.7 ± 1.6
241.2 ± 1.6
242.4 ± 1.7
a Average experimental values of c p,s can be obtained with equation (10) and with c p,w given in reference 7.
since reaction (1) is isoelectric, and pQ a,2 = pK a,2 + (1.022 kg1/2 · mol−1/2 ) · m1/2 for reaction (4) based on Debye–H¨uckel behavior at T = 298.15 K, p = 0.1 MPa, and m 6 0.66 mol · kg−1 . We have used experimental results from the literature (17–22) at m 6 0.5 mol · kg−1 for pK a,1 (or pQ a,1 ) at 273.15 6 T /K 6 313.15 to estimate the standard enthalpy change
Thermodynamics of protonated, neutral, and deprotonated L-histidine
1431
TABLE 7. Apparent molar heat capacities C p,φ for aqueous L-histidine + NaOH {Na+ His− (aq)} at p = 0.35 MPa.a The ± uncertainties are r.m.s. deviations for the averages obtained from a minimum of eight scans C p,φ C p,φ C p,φ C p,φ C p,φ C p,φ m mol · kg−1 J · K−1 · mol−1 J · K−1 · mol−1 J · K−1 · mol−1 J · K−1 · mol−1 J · K−1 · mol−1 J · K−1 · mol−1 T = 278.15 K T = 283.15 K T = 288.15 K T = 293.15 K T = 298.15 K T = 303.15 K 0.00749
91 ± 13
135 ± 13
166 ± 13
190 ± 13
210 ± 14
225 ± 15
0.08491
115.1 ± 2.5
149.8 ± 2.6
177.3 ± 2.1
198.9 ± 1.9
216.5 ± 1.7
230.7 ± 1.5
0.17435
114.8 ± 2.8
149.0 ± 3.0
176.0 ± 2.9
197.6 ± 2.8
215.0 ± 2.5
229.4 ± 2.5
0.34750
123.8 ± 2.1
155.8 ± 2.0
181.1 ± 2.0
201.7 ± 2.0
218.4 ± 1.9
232.3 ± 1.9
0.66092
168.3 ± 1.3
194.4 ± 1.3
215.4 ± 1.4
232.7 ± 1.5
246.8 ± 1.4
258.8 ± 1.4
T = 308.15 K T = 313.15 K T = 318.15 K T = 323.15 K T = 328.15 K T = 333.15 K 0.00749
239 ± 16
250 ± 14
257 ± 14
263 ± 14
269 ± 15
274 ± 15
0.08491
242.3 ± 1.4
252.2 ± 1.6
260.0 ± 1.6
266.6 ± 1.5
272.2 ± 1.6
276.8 ± 1.6
0.17435
241.3 ± 2.4
251.3 ± 2.3
259.4 ± 2.2
266.3 ± 2.1
272.1 ± 2.1
277.0 ± 2.1
0.34750
243.9 ± 1.8
253.8 ± 1.8
261.8 ± 1.8
268.8 ± 1.8
274.7 ± 1.7
279.7 ± 1.7
0.66092
268.9 ± 1.5
277.6 ± 1.5
284.8 ± 1.6
291.0 ± 1.5
296.4 ± 1.5
301.0 ± 1.6
T = 338.15 K T = 343.15 K T = 348.15 K T = 353.15 K T = 358.15 K T = 363.15 K 0.00749
277 ± 14
279 ± 14
281 ± 15
281 ± 15
283 ± 15
282 ± 16
0.08491
280.6 ± 1.6
283.4 ± 1.5
285.7 ± 1.6
287.4 ± 1.6
288.5 ± 1.7
289.0 ± 1.9
0.17435
281.1 ± 2.1
284.3 ± 2.1
286.8 ± 2.2
288.8 ± 2.2
290.3 ± 2.2
291.1 ± 2.2
0.34750
284.0 ± 1.7
287.4 ± 1.8
290.2 ± 1.8
292.6 ± 1.9
294.3 ± 1.8
295.5 ± 1.8
0.66092
305.0 ± 1.6
308.2 ± 1.7
311.0 ± 1.7
313.2 ± 1.8
315.1 ± 1.8
316.4 ± 1.9
T = 368.15 K T = 373.15 K T = 378.15 K T = 383.15 K T = 388.15 K T = 393.15 K 0.00749
280 ± 15
279 ± 17
277 ± 20
278 ± 23
278 ± 27
278 ± 27
0.08491
289.1 ± 2.0
288.6 ± 2.0
287.5 ± 2.2
286.1 ± 2.3
284.1 ± 2.3
281.8 ± 2.5
0.17435
291.5 ± 2.2
291.4 ± 2.2
290.7 ± 2.2
289.8 ± 2.2
288.4 ± 2.3
286.8 ± 2.5
0.34750
296.3 ± 1.9
296.7 ± 1.9
296.4 ± 1.8
295.9 ± 1.8
294.9 ± 1.8
293.8 ± 2.0
0.66092
317.3 ± 1.9
317.9 ± 1.9
317.9 ± 1.9
317.8 ± 2.0
317.3 ± 2.1
316.6 ± 2.3
a Average experimental values of c p,s can be obtained with equation (10) and with c p,w given in reference 7.
◦ for reaction (1) (by linear regression against 1/T ) 1r Hm,1 = (29.0 ± 2.9) kJ · mol−1 ◦ at T = 298.15 K for at T = 298.15 K and p = 0.1 MPa. We use 1r Hm,1 = 1r Hm,1 −1 m 6 0.5 mol · kg since reaction (1) is isoelectric. We have also used all the experimental results from the literature (17,18,20,21) at m 6 0.5 mol · kg−1 for pK a,2 (or pQ a,2 ) at 273.15 6 T /K 6 313.15 to determine the standard enthalpy change for reaction (4) (by ◦ = (38.9±2.3) kJ · mol−1 at T = 298.15 K. We use linear regression against 1/T ) 1r Hm,2
1432
J. J. Jardine et al.
∆ rCp,m,1 / (J . K −1. mol −1)
190 180 170 160 150 140 0.4 0.3
m . kg ol / (m
0.2 340
0.1
−1 )
0.0
280
300
320
360
380
T/K
FIGURE 9. Change in heat capacity 1r C p,m,1 plotted against temperature T and molality m for proton dissociation reaction (1) for protonated L-histidine(aq) {H2 · His+ (aq)} at p = 0.35 MPa generated from regression parameters given in table 8 and from regression equations for H+ Cl− (aq) in reference 16.
TABLE 8. Regression parameters of equations (13) and (14) for the apparent molar heat capacities C p,φ of aqueous L-histidine {H · His(aq)}, L-histidine + HCl{H2 · His+ Cl− (aq)}, and L-histidine + NaOH {Na+ His− (aq)}. The ± values are chosen to reproduce the generated C p,φ values to within ±0.1 J · K−1 · mol−1 at m 6 0.66 mol · kg−1 and at 278.15 6 T /K 6 393.15
Parameter c0 /(J · K−1 · mol−1 ) c1 /(J · K−2 · mol−1 ) c2 /(J · K−1 · mol−1 ) 10−1 · c3 /(J · K−1 · mol−1 ) c4 /(J · kg · K−1 · mol−2 ) c5 /(J · K−1 · mol−1 ) 10−1 · c6 /(J · mol−1 ) 1a /(J · K−1 · mol−1 )
H · His(aq)
H2 · His+ Cl− (aq)
Na+ His− (aq)
equation (13)
equation (14)
equation (14)
1732.53 ± 0.04
26184.66 ± 0.05
3032.03 ± 0.04
5.3430 ± 0.0001
9.6899 ± 0.0001
−413.1 ± 0.3
−633.1 ± 0.3
−204442 ± 2 72.6 ± 0.1
a Standard deviations of the regression.
−399712 ± 2 33.25 ± 0.09
12.93 ± 0.07
−3766.698 ± 0.008 −137888 ± 1 5
12
9
Thermodynamics of protonated, neutral, and deprotonated L-histidine
1433
TABLE 9. Best standard thermodynamic values for the acid dissociation constant and changes in partial molar volume, heat capacity, enthalpy, and entropy for proton dissociation from aqueous protonated L-histidine {H2 · His+ Cl− (aq)}, reaction (1), at the pressure p = 0.35 MPa T K
◦ 1r Vm,1
1r C ◦p,m,1
◦ 1r Hm,1
cm3 · mol−1
J · K−1 · mol−1
kJ · mol−1
278.15
2.7
151.6
25.63
pK a,1 6.355
◦ 1r Sm,1
J · K−1 · mol−1 −29.52
283.15
2.8
168.8
26.43
6.270
−26.70
288.15
2.8
174.7
27.29
6.186
−23.72
293.15
2.9
176.3
28.17
6.102
−20.73
298.15
3.0
176.0
29.05
6.018
−17.78
303.15
3.0
174.6
29.92
5.934
−14.89
308.15
3.0
172.5
30.79
5.850
−12.08
313.15
3.0
170.2
31.65
5.767
−9.34
318.15
3.0
167.8
32.49
5.684
−6.69
323.15
3.0
165.3
33.33
5.602
−4.12
328.15
3.0
163.0
34.15
5.520
−1.62
333.15
2.9
160.8
34.96
5.439
0.80
338.15
2.9
158.8
35.76
5.358
3.16
343.15
2.8
157.0
36.55
5.278
5.46
348.15
3.0
155.4
37.33
5.198
7.69
353.15
3.0
153.9
38.10
5.119
9.88
358.15
3.0
152.6
38.87
5.041
12.01
363.15
3.0
151.3
39.63
4.963
14.10
368.15
3.0
150.0
40.38
4.886
16.14
373.15
3.0
148.7
41.13
4.810
18.13
378.15
3.0
147.2
41.87
4.734
20.08
383.15
2.9
145.5
42.60
4.659
21.99
388.15
2.9
143.5
43.32
4.584
23.84
393.15
2.8
141.2
44.03
4.511
25.65
1a
1.1
9
0.03
0.00005
0.06
a Maximum uncertainties from propagation of experimental uncertainties in our 1 V ◦ and r m,1 1r C ◦p,m,1 values.
◦ + (1.987 kJ · kg1/2 · mol−3/2 ) · m 1/2 for reaction (4) at T = 298.15 K, 1r Hm,2 = 1r Hm,2 p = 0.1 MPa, and m 6 0.66 mol · kg−1 . The enthalpy changes (1r Hm,1 , m, T ) and (1r Hm,2 , m, T ) for reactions (1) and (4), respectively, were calculated by integrating our (1r C p,m,1 , m, T ) and (1r C p,m,2 , m, T ) surfaces over temperature and over molality. The integration constants we used are 1r Hm,1 , and 1r Hm,2 at T = 298.15 K given above at p = 0.1 MPa. The effect of
1434
J. J. Jardine et al.
∆ rCp,m,2 / (J . K −1. mol −1)
− 230 − 240 − 250 − 260 − 270 0.4
m
0.3
/ (m
0.2 −1 )
. kg ol
0.1
320 0.0
300 280
360
340
380
T/K
FIGURE 10. Change in heat capacity 1r C p,m,2 plotted against temperature T and molality m for proton dissociation reaction (4) for L-histidine(aq) {H · His(aq)} at p = 0.35 MPa generated from regression parameters given in table 8, from equations for Na+ Cl− (aq) in reference 3, and from regression equations for H+ Cl− (aq) in reference 16.
∆ r Hm,1 / (J . K −1. mol −1)
45 40 35 30 25 0.4
m
0.3
−1 )
. kg ol
/ (m
0.2 0.1 0.0
280
300
320
340
360
380
T/K
FIGURE 11. Change in enthalpy of reaction 1r Hm,1 plotted against temperature T and molality m for proton dissociation reaction (1) for protonated L-histidine(aq) {H2 · His+ (aq)} at p = 0.35 MPa. See text for a description of the calculations.
Thermodynamics of protonated, neutral, and deprotonated L-histidine
1435
TABLE 10. Best standard thermodynamic values for the thermodynamic acid dissociation constant and changes in partial molar volume, heat capacity, enthalpy, and entropy for proton dissociation from aqueous zwitterionic L -histidine {H · His(aq)}, reaction (4), at the pressure p = 0.35 MPa T K
◦ 1r Vm,2
1r C ◦p,m,2
◦ 1r Hm,2
cm3 · mol−1
J · K−1 · mol−1
kJ · mol−1
278.15
18.7
−229.5
43.59
9.572
−26.52
283.15
56.8
−228.2
42.45
9.432
−30.65
288.15
78.2
−229.8
41.31
9.300
−34.70
293.15
93.4
−231.5
40.15
9.176
−38.71
298.15
105.5
−233.0
38.99
9.060
−42.68
303.15
115.6
−234.1
37.82
8.951
−46.60
308.15
124.3
−235.0
36.65
8.848
−50.47
313.15
131.9
−235.8
35.47
8.752
−54.28
318.15
138.5
−236.6
34.29
8.662
−58.05
323.15
144.3
−237.3
33.11
8.578
−61.77
328.15
149.3
−238.0
31.92
8.499
−65.45
333.15
153.5
−238.8
30.73
8.426
−69.07
338.15
157.0
−239.7
29.53
8.357
−72.66
343.15
159.7
−240.7
28.33
8.293
−76.20
348.15
161.6
−241.8
27.12
8.233
−79.71
353.15
162.8
−243.1
25.91
8.177
−83.18
358.15
163.3
−244.6
24.69
8.126
−86.62
363.15
163.0
−246.3
23.47
8.078
−90.04
368.15
161.9
−248.4
22.23
8.034
−93.43
373.15
160.0
−250.7
20.98
7.994
−96.81
378.15
157.2
−253.4
19.72
7.956
−100.17
383.15
153.7
−256.5
18.45
7.922
−103.53
388.15
149.3
−260.1
17.15
7.892
−106.89
393.15
144.1
−264.2
15.84
7.864
−110.25
1a
1.0
8
0.02
pK a,2
0.00004
◦ 1r Sm,2
J · mol−1
0.05
a Maximum uncertainties from propagation of experimental uncertainties in our ◦ and 1 C ◦ 1r Vm,2 r p,m,2 values.
changing pressure to p = 0.35 MPa changes these reference values only insignificantly compared with their estimated uncertainties noted above. The calculated (1r Hm,1 , m, T ) and (1r Hm,2 , m, T ) surfaces are shown in figures 11 and 12. We estimate total uncertainties in these two surfaces as 11 6 ±3.6 kJ · mol−1 for 1r Hm,1 and 12 6 ±3.1 kJ · mol−1 for 1r Hm,2 , including uncertainties that result from integration of (1C p,m , m, T ). The two (1r Hm , m, T ) surfaces were then integrated using the values of pQ a,1 and pQ a,2
1436
J. J. Jardine et al.
∆ r Hm,2 / (J . K −1. mol −1)
60 50 40 30 20 0.5 0.4
m
0.2
−1 )
. kg ol
/ (m
0.3 0.1 0.0
280
300
320
340
360
380
T/K
FIGURE 12. Change in enthalpy of reaction 1r Hm,2 plotted against temperature T and molality m for proton dissociation reaction (4) for L-histidine(aq) {H · His(aq)} at p = 0.35 MPa. See text for a description of the calculations.
given above at T = 298.15 K and p = 0.1 MPa. Again, the effect of changing pressure to p = 0.35 MPa changes these reference values only insignificantly compared with their estimated uncertainties. The (pQ a,1 , m, T ) and (pQ a,2 , m, T ) surfaces are shown in figures 13 and 14. We estimate total uncertainties 1 6 ±0.15 for both of these surfaces, including uncertainties propagated from the two integrations. The greatest contributing factor to this uncertainty is the uncertainty in the 1r Hm reference values at T = 298.15 K. The (1r Sm , m, T ) surfaces shown in figures 15 and 16 were calculated from equation (15) using the (1r Hm , m, T ) and (pQ a , m, T ) surfaces obtained above for each proton dissociation, and by using R = 8.31451 J · K−1 · mol−1 : 1r Sm = 1r Hm /T + R · ln Q a .
(15)
◦ , and calculated values of 1r Vm◦ , 1r C ◦p,m , 1r Hm◦ , 1r Sm 10. The values of both pK a,1 and pK a,2 were regressed
Summaries of our pK a are given in tables 9 and by using equation (16) with Tr = 333.15 K, and the resulting parameters an are given in table 11: pK a =
3 X {an · (T − Tr )n }.
(16)
n=0
4. Conclusions We have measured apparent molar heat capacities C p,φ for individual solutions of aqueous L -histidine, of aqueous L -histidine with equimolal HCl, and of aqueous L -histidine with
Thermodynamics of protonated, neutral, and deprotonated L-histidine
1437
6.4
p Qa 1
6.0 5.6 5.2 4.8
0.5
0.1 380
m
360
m
0.2
340
T/K
ol . kg
0.3 320
/(
300
−1
280
)
0.4
0.0
FIGURE 13. Plot of pQ a,1 against temperature T and molality m for reaction (1) for protonated L -histidine(aq) {H2 · His+ (aq)} at p = 0.35 MPa. See text for a description of the calculations.
9.6
p Qa 2
9.2 8.8 8.4 8.0 7.6
0.5
0.1
360 380
0.0
m
340
T/K
/(
320
ol . kg −
0.3 0.2
m
300
1
7.2
)
0.4
FIGURE 14. Plot of pQ a,2 against temperature T and molality m for reaction (4) for L-histidine(aq) {H · His(aq)} at p = 0.35 MPa. See text for a description of the calculations.
1438
J. J. Jardine et al.
30
∆ r Sm,1 / (J . K −1. mol −1)
20 10 0 − 10 − 20 − 30
m
0.4 0.3
/ (m
0.1
−1 )
. kg ol
0.2
0.0
280
300
320
340
360
380
T/K
FIGURE 15. Change in entropy 1r Sm,1 plotted against temperature T and molality m for reaction (1) for protonated L-histidine(aq) {H2 · His+ (aq)} at p = 0.35 MPa. See text for a description of the calculations.
∆ r Sm,2 / (J . K −1. mol −1)
20 0 − 20 − 40 − 60 − 80
m
− 100 0.5 0.4 0.3
−1 )
. kg ol
/ (m
0.2 0.1 0.0
260
280
300
320
340
360
380
400
T/K
FIGURE 16. Change in entropy 1r Sm,2 plotted against temperature T and molality m for reaction (4) for L-histidine(aq) {H · His(aq)} at p = 0.35 MPa. See text for a description of the calculations.
Thermodynamics of protonated, neutral, and deprotonated L-histidine
1439
TABLE 11. Regression parameters for equation (16) using Tr = 333.15 K for pK a,1 and pK a,2 from tables 9 and 10 for proton ionizations from protonated L-histidine, reactions (1) and (4). The ± values for each parameter are chosen to reproduce the generated pK a,1 and pK a,2 values to within ±0.001 at 278.15 6 T /K 6 393.15
Coefficient
Reaction (1)
Reaction (4)
pK a,1
pK a,2
a0
5.4389 ± 0.0006
8.4243 ± 0.0005
102 · a1 /(K−1 ) 105 · a2 /(K−2 ) 107 · a3 /(K−3 ) 1a
−1.613 ± 0.001
−1.425 ± 0.001
1.04 ± 0.03
10.112 ± 0.02 −3.321 ± 0.02
0.0012
0.0012
a Standard deviations of the regressions.
equimolal NaOH at molalities m = (0.015 to 0.66) mol · kg−1 , at temperatures T = (278.15 to 393.15) K, and at the pressure p = 0.35 MPa with greater precision than has been reported previously. Standard deviations 1 of our regressions of (C p,φ , m, T ) are all 69 J · mol−1 · K−1 . Apparent molar volumes Vφ were also measured for the three systems, and standard deviations 1 of our regressions of (Vφ , m, T ) are all 6 ±0.4 cm3 · mol−1 . The regression equations were then used to calculate (1r C p,m , m, T ) and (1r Vm , m, T ) surfaces for the first and second proton dissociation reactions for protonated aqueous L -histidine with estimated maximum uncertainties 11 = ±6.7 J · mol−1 · K−1 for (1r C p,m,1 , m, T ) and 12 = ±9.6 J · mol−1 · K−1 for (1r C p,m,2 , m, T ), and 11 6 ±1.1 cm3 · mol−1 for 1r Vm,1 and 12 6 ±1.0 cm3 · mol−1 for 1r Vm,2 . Reference values of pQ a,1 , pQ a,2 , 1r Hm,1 , and 1r Hm,2 at T = 298.15 K from the literature were used as integration constants to obtain the surfaces (1r Hm , m, T ), (pQ a , m, T ), and (1r Sm , m, T ) for both proton dissociation reactions. This integration process tends to minimize uncertainties in the resulting enthalpies and free energies, rather than amplifying the uncertainties as is the case when performing differentiation of free energies to obtain enthalpies and heat capacities, or when performing differentiation of enthalpies to obtain heat capacities.
Note added in proof We note that Vφ values for H · His(aq) reported in this paper differ by only −0.2 6 1/(cm3 · mol−1 ) 6 0.76 from recently reported results at 278.15 6 (T /K) 6 308.15, at 0.025 6 m/(mol · kg−1 ) 6 0.2, and at p = 0.010 MPa (Chen, J.-L.; Li, Z.-F.; Wang, B.-H.; Zhang, Y.-M. J. Chem. Thermodynamics 2000, 32, 805–819; doi:10.1006/jcht.2000.0658). REFERENCES 1. Ballerat-Busserolles, K.; Ford, T. D.; Call, T. G.; Woolley, E. M. J. Chem. Thermodynamics 1999, 31, 741–762; doi:10.1006/jcht.1999.0484.
1440 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.
J. J. Jardine et al.
Hill, P. G. J. Phys. Chem. Ref. Data 1990, 19, 1233–1274. Archer, D. G. J. Phys. Chem. Ref. Data 1992, 21, 793–829. Woolley, E. M. J. Chem. Thermodynamics 1997, 29, 1377–1385. Ballerat-Busserolles, K.; Origlia, M. L.; Woolley, E. M. Thermochim. Acta 2000, 347, 3–7. Bradley, D. J.; Pitzer, K. S. J. Phys. Chem. 1979, 83, 1599–1603. Ford, T. D.; Call, T. G.; Origlia, M. L.; Stark, M. A.; Woolley, E. M. J. Chem. Thermodynamics 2000, 32, 499–516; doi:10.1006/jcht.1999.0617. Shahidi, F.; Farrell, P. G. J. Chem. Soc. Faraday Trans. I 1981, 77, 963–968. Mishra, A. K.; Ahluwalia, J. C. J. Phys. Chem. 1984, 88, 86–92. Kharakoz, D. P. Biophys. Chem. 1989, 34, 115–125. Iqbal, M. J.; Ahmed, T. Indian J. Chem. 1993, 32A, 119–123. Millero, F. J.; Lo Surdo, A.; Shin, C. J. Phys. Chem. 1978, 82, 784–792. Yasuda, Y.; Tochio, N.; Sakurai,, M.; Nitta,, K. J. Chem. Eng. Data 1998, 43, 205–214. Jolicoeur, C.; Riedl, B.; Desrochers, D.; Lemelin, L. L.; Zamojska, R.; Enea, O. J. Solut. Chem. 1986, 15, 109–128. Sharygin, A. V.; Wood, R. H. J. Chem. Thermodynamics 1997, 29, 125–148; doi:10.1006/jcht.1996.0137. Patterson, B. A.; Jardine, J. J.; Call, T. G.; Origlia, M. L.; Woolley, E. M. J. Chem. Thermodynamics 2001, 33, 1257–1282; doi:10.1006/jcht.2001.0843 Martell, A. E.; Smith, R. M. Critical Stability Constants Vol. 1: Amino Acids. Plenum: New York. 1974, 61; Martell, A. E.; Smith, R. M. Critical Stability Constants Vol. 5: First Supplement. Plenum: New York. 1982, 31. Andrews, A. C.; Zebolsky, D. M. J. Chem. Soc. 1965, 742–746. Li, N. C.; Doody, B. E.; White, J. M. J. Am. Chem. Soc. 1957, 79, 5859–5863. Greenstein, J. P. J. Biol. Chem. 1933, 101, 603–621. Chakravorty, A.; Cotton, F. A. J. Phys. Chem. 1963, 67, 2878–2879. Izatt, R. M.; Christensen, J. J. Handbook of Biochemistry: Selected Data for Molecular Biology. 2nd Edition. Sober, H. A.: editor. CRC: Cleveland, OH. 1968, J58–J173. (Received 2 January 2001; in final form 28 April 2001)
WE-284