Author and subject index volume 25, 1987

Author and subject index volume 25, 1987

PROGRESS IN SURFACE SCIENCE, VOLUME 25 AUTHOR INDEX Abraham, F.F. 145 Adams, D.L. 56 Albright, Th.A. 273 Allan, G. 56, 227 Allen, R.E. 331 Almbladh,...

669KB Sizes 1 Downloads 55 Views

PROGRESS IN SURFACE SCIENCE, VOLUME 25

AUTHOR INDEX

Abraham, F.F. 145 Adams, D.L. 56 Albright, Th.A. 273 Allan, G. 56, 227 Allen, R.E. 331 Almbladh, C.O. 227 Ammenter, J.H. 297 Amos, A.T. 297 Andersen, J.N. 56 Andersen, O.K. 210 Anderson, A.B. 273, 283, 297 Anderson, P.W. 154, 227 Ando, T. 95 Angona, G. 136 Antonangeli, F. 137 Appelbaum, J.A. 80 Arakawa, E.T. 137 Aruga, T. 189 Ashcroft, N.W. 210 Baberschke, K. 210 Backrach, R.Z. 331 Baerends, E.J. 273 Baetzold, R.C. 274, 283 Bagus, P.S. 188, 189, 273 Baker, G.A., Jr. 39 Balian, R. 154 Balseiro, C.A. 145 Balzarotti, A. 137 Band, E. 273 Baquero, R. 82 Baraff, G.A. 82 Bardeen, J. 251 Bar6, A.M. 227 Baroni, S. 137 .C 227 Bartelt'I 95 Barto~, Bassett, D.W. 226 Batra, I.P. 137, 188, 189 Bauschlicher, C.W. 136, 189 Bauschli~her, C.W., Jr. 273 Beckmann, H.-O. 136, 187 Behm, R.J. 227, 251 Bell, B. 297 Benesch, G.A. 80, 81, 227 Bennemann, K.H. 145, 227

Bensenbacher, F. 209 Beres, R.P. 331 Berke, H. 274 Bernholc, J. 80, 81 Bigot, B. 274 Biloen, P. 274 Blake, R.J. 80 Bleistein, N. 39 Blount, E.I. 80 Boccuzzi, F. 137 Bona~ic-Kouteck~, V. 136 Borden, W.T. 284 Bottiger, J. 209 Boudreaux, D.S. 80 Bourdin, J.-P. 227 Boustani, I. 136, 187 Bowker, M. 283 Bradshaw, A.M. 283 Brdi~ka, R. 39 Brenig, W. 227 Brongersma, H.H. 145 Brook, P.A. 297 Bruch, L.W. 226 Bruchmann, D. 56 Brucker, C.F. 273 Bryant, G.W. 117 Buck, T.M. 145 Bucur, RoV. 251 Buehler, R.J. 137 Buenker, R.J. 283 Bullett, D.W. 80, 283 Burch, R. 251 Burdett, J.K. 273 Burgi, H.B. 297 Burke, N. 227 Burton, J.J. 145 Byers-Brown, W. 251 Campbell, C.T. 283 Campbell, D.M. 188 Carosso, P. 82 Carstensen, H. 331 Carter, J.L. 145 Casanova, R. 226 Causa, M. 136, 137 Chabal, Y.K. 227 I

2

AUTHOR INDEX

Chadi, D.J. 154, 331 Changxin, C. 137 Char, B.W. 39 Chelikowsky, J.R. 79, 145, 188 Cheng, C.Y. 145 Christmann, K. 227, 251 Christmann, S.B. 227 Chye, P. 209 Ciraci, S. 137, 188, 189 ~izek, J. 39 Cohen, M.L. 79, 137, 188 Colbourn, E.A. 136 Colle, R. 137 Corless, G.K. 251 Coulson, C.A. 274 Couper, A. 251 Courant, R. 39 Cox, B.N. 136 Cox, D.M. 274 Crapper, M.D. 283 Cubiotti, G. 297 Cunningham, S.L. 306, 316 Cyrot, M. 145 Cyrot-Lackmann, F. 80, 145, 274 Dautzenberg, F.M. 274 Davenport, J.W. 227 Davidson, E.R. 284 Davison, S.G. 80, 95, 105, 171, 297, 306, 316 Dederichs, P.H. 316 Desjonqueres, M.C. 80, 227, 274 Dessing, R.P. 274 Deutz, J. 316 Dewar, M.J.S. 284 Ditchfield, R. 137 DBbler, U. 210 Dobryznski, L. 306 Dornhaus, R. 117 Dovesi, R. 82, 136, 137 Dow, J.D. 331 Doyen, G. 297 Dreysse, H. 227, 316 Ducastelle, F. 227 Duke, C.B. 56, 331 Easterbrook, D. 82 Ebina, A. 331 Echenique, P.M. 251 Economou, E.N. 171 Eherenreich, H. 117 Ehrlich, G. 226 Einstein, T.L. 226, 227, 251, 306, 316 Eley, D.D. 251 Elices, M. 81

E l l i s , D.E. 137 Enta, Y. 188 Erbudak, M. 188 Erley, M. 227 Ermoshkin, A.N. 136, 137 Ertl, G. 227, 251, 297 Estrup, P.J. 227 Evarestov, R.A. 137 Falicov, L.M. 274 Fantucci, P. 136, 187, 188, 283 Feibelman, P.J. 80, 81, 209, 227 Feller, D. 284 Felter, T.E. 227 Fink, H.W. 226 Finnis, M.W. 56 Fisher, G.B. 210 Flack, H.D. 137 Flanagan, T.B. 251 Fleming, I. 209 Flocken, J.W. 56 Flores, F. 80, 81, 227, 251, 273, 274 Fond~n, T. 210 Fong, C.Y. 188 Foo, E.-N. 117 Forstmann, F. 171 Fortunelli, A. 137 Fowler, A.B. 95 Fowler, R.H. 105 Freeman, A.J. 79, 82, 188, 227, 273 French, T.M. 137 Frenken, J. 56 Frenken, J.W. 56 Frennet, A. 274 Friedel, J. 56, 145, 227 Fu, C.L. 56, 227, 273 Fukui, K. 273 Gabbay, I. 273 Gadzuk, J.W. 105 Galla~her, J.M. 227 Garci~-Moliner, F. 80, 81, 82, 95, 105 Garrone, E. 137 Gartland, P.O. 82 Gaspard, J.P. 145 Geddes, K.O. 39 Geusic, M.E. 274 Ghiotti, G. 137 Ginatempo, B. 297 Girlanda, R. 137 Godby, R.W. 227 Goddard, W.A. 227, 251 Gomer, R. 316 Gonnet, G.H. 39 Goodman, D.W. 274 Graves-Morris, P. 39

AUTHOR INDEX Grepstad, J.K. 82, 95 Ishida, H. 189 Greuter, F. 79 Ito, M. 283 Grimley, T.B. 82, 136, 171, 227, 2511toh, H. 297 Grossel, Ph. 251 Ivanov, I. 154 Grout, P.J. 251 Gunnarsson, O. 209, 210, 227 Jacobsen, K.W. 209, 210 Gurman, S.J. 80 Janak, J. 227 Gurney, B.A. 210, 251 Jardin, J.P. 80 Jepsen, D.W. 56, 80, 81 Haase, J. 210, 283 Jerrard, R.J. 95, 105, 297 Hamann, D.R. 79, 80, 227 Jeung, G.H. 188 Hamilton, J.C. 145 Jiang, P. 56 Hanawa, T. 227 Jimbo, A. 145 Handelsman, R.A. 39 Joannopoulos, J.D. 331 Hariti, A. 274 Johansson, P.K. 209, 210, 227 Harris, J. 209 John, C.S. 251 Harrison, W.A. 105, 331 Jona, F. 56, 80 Hartung, V. 227 Jones, R.O. 171 Hashiba, M. 145 Jones, W.B. 39 Hashizume, T. 145 Jostelli, U. 188 Hass, E.C. 188 Joyce, K. 251 Hass, K.C. 117 Joyner, R.W. 274 Hayden, B.E. 283 Haydock, R. 80, 81, 227 Kahn, A. 331 Hehre, W.J. 137 Kahn, O. 273 Heine, V. 79, 80, 81, 154, 227 Kaldor, A. 274 Hermann, K. 189, 273 Kalkstein, D. 81, 117, 306, 316 Herzberg, G. 297 Kalla, R. 81 Hietschold, M. 95 Kang, D.B. 283 Hilbert, D. 39 Kappus, W. 226 Hirschfelder, J.O. 137 Kasowski, R.V. 188 Hjelmberg, H. 209, 227 Kelly, M.J. 80, 81, 273 Ho, K.M. 79 Kendelwicz, T. 189 Ho, W. 210, 251, 306, 316 Kendrick, J. 187 Hoff, H.A. 145 Kerker, G. 145 Hoffmann, R. 273, 274, 283, 297 Kerker, G.P. 79 Hofmann, P. 283 Kiejna, A. 226 Holland, B.W. 79 Kikuchi, E. 274 Holloway, S. 209, 273 Kionshita, T. 188 Holmberg, C. 209, 210 Kiskinova, M. 274 HolmstrBm, S. 209, 210, 227, 251 Kittel, C. 227 HBlzl, J. 226 Kittel, Ch. 154 Horn, K. 283 Kober, H. 39 Houn~Sller, A. 209 Koelling, D.D. 79 Huber, K.P. 297 Kohn, W. 80, 209, 226, 227, 251 Huijser, A. 331 Koinuma, H. 331 f~ Huyser, E.S. 284 Kolar, M. 95, 105 Hyodo, S. 145 Kono, S. 188 Koster, G.F. 117, 171, 306, 316 Ibach, H. 56, 189 Kotomin, E. 137 Idiodi, J.O.A. 210 Koukal, J. 95 lhm, J. 188, 331 Kouteck~, J. 39, 136, 154, 187, 188, ll'Kovi~, D. 39 227, 274, 283, 330 Imbihl, R. 227 Kouteck~, V.B. 187, 188 Inglesfield, J.E. 79, 80, 81, 82, Krakauer, H. 79, 82, 188 137 Kraut, E.A. 331

4

AUTHOR INDEX

Kronig, R.L. 105 Kruger, P. 81 Ku, R.C. 145 Kumar, D. 145 Kumar, V. 145 la Femina, J.P. 273 Lambin, Ph. 145 Lamm, N.Q. 145 Landau, L.D. 105 Lander, J.J. 188 Lang, N.D. 79, 80, 81, 209, 210, 227, 251, 273 Langmuir, I. 210 Langreth, D.C. 80 Lannoo, M. 56 Lap~yre, G.J. 331 Laramore, G.E. 56 Larsen, D.S. 210 Larsson, C.G. 80 Lau, K.H. 226, 227, 251 Lawson, W.D. 117 Leboss~, J.-C. 227 Lee, S.B. 274 Legg, K.O. 56 Legrand, B. 56 Levich, V.G. 39 Levine, J.D. 80, 171 Levinson, H.J. 79 Lewis, J. 137 Libin, L. 137 L i f s h i t z , E.M. 105 Li~, H. 331 Lin, H.F. 145 Lindau, I. 117, 145, 189 Lindgren, S.A. 188 Lindner, T. 283 Ling, D.T. 145 Lipari, N.O. 81 L i s t , R.S. 189 Liu, W.K. 171, 297, 306, 316 Lochikov, V.A. 137 Long, D. 117 Lopez, J. 56, 227 Lopez-Sancho, J.M. 274 Lopez-Sancho, M.P. 274 Louie, S.G. 79, 188, 227 Louis, E. 81 Lowe, J.P. 273 Lubinsky, A.R. 331 Lundqvist, B.I. 209, 210, 227 Lynch, J.F. 251 Lyo, S.K. 316

Maca, F. 95 MacGillavry, D. 39 Machlin, E.S. 145 Mackie, W. 79 Mackintosh, A.R. 210 Mackrodt, W.C. 136 McLaren, J.M. 80 MacRae, A.U. 188 Madhaven, P. 274, 297 Madhukar, A. 297 Madix, R.D. 210 Madix, R.J. 274, 283 Mahanty, J. 251 ~ l l o , A. 209, 210 Manninen, M. 210 Manzke, R. 331 March, N.H. 227, 251, 273, 274 Marcus, P.M. 56, 80, 81 Mariani, C. 283 Mark, P. 331 Martino, G. 137 Martin-Rodero, A. 251 Masuda, K. 297, 306, 316 Matsushima, T. 227 Mattheiss, L.F. 79 Mazur, A. 81, 154 McCaffrey, J.G. 274 McLachlan, A.D. 226 McLane, S.B. 145 Mclean, D. 245 Mecea, V. 251 Mei, W.H. 331 Menon, M. 331 Mermin, N.D. 210 Meyman, N.N. 39 Miedema, A.R. 145 Miller, J.N. 145, 209 Minot, C. 273, 274 Miranda, R. 188 Modinos, A. 105 Moir, S.A. 297 Montgomery, V. 331 Mookerjee, A. 145 Moore, I.D. 227, 251 l I Moran-Lopez, J.L. 145 Morgan, P. 117 Morita, Y. 274 Moritz, W. 227 Morrison, J. 188 Morse, M.H. 274 Morterra, C. 137 Moruzzi, V. 227 Mrstik, B.J. 331 Muda, Y. 227

AUTHOR INDEX Muetterties, E.L. 273 Penney, W.G. 105 Mukherjee, S. 145 Perkal, Z. 105 Muller, J.E. 209 Petersen, L. 56 Muller, K. 188 Pettersson, L.M.G. 189 Muller, W. 189 Pettifor, D.G. 145 Munoz, M.C. 82 Pewestorf, P. 136 Murata, Y. 188, 189 Pewestorf, W. 187 Muscat, J.-P. 189, 227, 297, 306, 316 Peyerimhoff, S.D. 283 Myles, C.W. 331 Pezzica, G. 137 Phillips, J.C. 188, 189 Philpott, M.R. 189 Nagel, S. 137 Pianet~a, P. 189 Nason, D. 145 Nelin, C.J. 189 Pick,S. 154 Pierini, A.B. 284 Nelson, J.S. 188 Pignet, T. 251 Neumann, M. 251 Pisani, C. 82, 136, 137 Newns, D.M. 210, 227, 297, 316 Nex, C.M.M. 81 Pisarev, A.A. 209 Plummer, E.W. 79, 105 Ng, Y.S. 145 Poirier, R. 137 Nicholls, J.M. 188 Pollmann, J. 80, 81, 154 Nicolaou, N. 105 Ponec, V. 274 Nielsen , B.B. 209 Pople, J.A. 137 Nielsen, H.B. 56 Popovic, Z.D. 227 Nielson, S. 117 Post, D. 273 Nieminen, R.M. 210 Posternak, M. 79 Nimtz, G. 117 Pretzer, W.R. 273 Nordheim, L.W. 105 Prince, K. 283 Nordlander, P. 209, 227, 251 Prybyla, J.A. 227 N~rskov, J.K. 209, 210, 227, 273 Puschmann, A. 210, 283 Nyberg, C. 210, 227 Puska, M.J. 209, 210 Puszkarski, H. 171 Oelling, E.M. 188 Putley, E.H. 117 Ohmura, Y. 251 Ohnishi, S. 79 Ray, N.K. 273 Olivier, J. 137 Redondo, A. 251 Olmstead, M.A. 154 Rehn, L.E. 145 Oppenheimer, J.R. 105 Reihl, B. 79, 188 Orlando, R. 136, 137 Rhodin, T.N. 273 Outka, D.A. 210, 283 Ricca, F. 137 Ozin, G.A. 274 Richter, L.J. 251 Rideal, E.K. 39 Paasch, G. 95 Rieder, K.H. 227 Pacchioni, G. 136, 188 Riedinger, R. 316 Paldus, J. 39 Riley, C.E. 283 Pandey, K.C. 154, 188 Ritchie, R.H. 251 Pantelides, S. 80 Rodriquez, J.A. 283 Pantelides, S.T. 81 Roelofs, L.D. 227 Papadia, S. 210 Roetti, C. 136, 137 Paranjape, B.V. 251 Rousseau-Violet, J. 227 Parker, A.H. 284 Rowe, J.E. 189 Parry, D.E. 137 Rubio, J. 81, 95, 105, 274 Pastori-Parravicini, G. 137 Pearson, E.J. 251 Sachtler, W.M.H. 145, 273, 274 Pearson, R.G. 273, 274 Saillard, J.-Y. 274, 283 Pell~gatti, A. 39 Sakai, A. 145 Pendry, J.B. 79, 80, 274 Sakurai, T. 145 Penka, V. 227

AUTHOR INDEX Saladin, D.K. 274 Salem, L. 273 Salvetti, O. 137 Saunders, V.R. 136, 137 Sayers, C.M. 145 Sch~fer, I. 331 Schick, M. 226 Schl~ter, M. 39, 82, 188 Schmit, J.L. 117 Sch~nhammer, K. 227 Schrieffer, J.R. 226, 251, 306, 316 Schulte, F.K. 227 Schwarzwenbach, D. 137 Scott, C.G. 171 Seki, H. 189 Sexton, B.A. 210, 283 Sham, L.J. 209 Shangda, X. 137 Shima, N. 189 Shluger, A.L. 137 Shockley, W. 81 Shore, J.D. 227 Shustorovich, E. 283 Silberman, J.A. 117 Simonetta, M. 136 Sinfelt, J.H. 145 Singh, I. 331 Sirivastava, G.P. 188 Skibowski, M. 331 Slagsvold, B.J. 82, 95 Slater, J.C. 117, 306, 316 Slater, J.G. 171 Smalley, R.E. 274 Smith, N.V.. 95, 251 Smith, R.J. 331 Smoluchowski, G.A. 273 Smoluchowski, R. 56 So, E. 331 Somers, J. 283 Somorjai, G.A. 137, 210, 273, 274 Sorenson, C.S. 56 Soukiassian, P. 188, 189 Soven, P. 81, 117, 306, 316 Spanjaard, D. 80, 81, 227 Spicer, W.E. 117, 145, 189, 209 Squires, R.R. 273 Srivastava, G.P. 331 Stefan, P.M. 145 Stern, F. 95 Steslicka, M. 105 Stewart, R.F. 137 Stocker, W. 227 Stohr, J. 210, 283 Stolze, P. 209, 210 Stoneham, A.M. 137, 226, 251 Stott, M.J. 209, 227

Strayer, R.W. 79 Strei%, K.M. 251 Stulen, R.H. 227 Stuve, E.M. 210 Suda, Y. 331 Sueteka, W. 283 Sulston, K.W. 171, 297, 306, 316 Suzuki, S. 188 Swanson, L.W. 79 Takahashi, T. 331 Tamaru, K. 273 Tan, K.P. 105 Tanaka, K. 273 Tasker, P.W. 137 Tejedor, E. 81 0 Tengstal, C.-G. 210, 227 Tennison, S.R. 274 Tersoff, J. 274 Thibeault, J.C. 297 Thomburg, M. 274 Thorn, D.L. 274 Thron, W.J. 39 Tochihara, H. 188, 189 Tomanek, D. 227 Tonki's~k, M. 154 Tong, S.Y. 95, 226, 331 Topping, J. 189 Tosi, M.P. 56 Tossell, J.A. 137 Toyoshima, I. 210 Tre'glia, F. 80 Tr6glia, G. 227 Trevor, D.j. 274 Tsai, M.-H. 188 Tsong, T.T. 145, 226 Tsukada, M. 189 Ueba, H. 95, 105, 171, 297, 306, 316 Umrigar, C. 209, 227 Unno, T. 331 Upton, T.H. 227 Urias, J. 145 van Broekhoven, E.H. 274 van der Plank, P. 145 van der Veen, J.F. 56 van Hove, M.A. 95, 226, 227, 251, 274, 331 van Laar, J. 331 Van Labeke, D. 251 van Rooy, T.L. 331 van Santen, R.A. 273, 274 van Schaik, J.R.H. 274 van Wijk, A.P. 274 Vashishta, P. 251

AUTHOR INDEX Velasco, V.R. 81, 82 Velicky, B. 95, 117 Vigoureux, J.M. 251 von Barth, U. 227 Vvedemsky, D.D. 80 Walker, S.M. 227 Wallden, L. 188 Wang, C.L. 145 Wang, R. 331 Watanabe, K. 145 Watt, S.M. 39 Weber, J. 39 Weinberg, W.H. 226, 227, 251, 306, 316 Weinert, M. 82, 188, 227 Wendelken, J.F. 210 Werthamer, N.R. 154 Whangbo, M.H. 273 Whetten, R.L. 274 Whisnant, D.M. 251 White, J.M. 251 Whitten, J.L. 274, 297 Wiesner, K. 39 Wikborg, E. 80 Wilkins, J.W. 209, 227 Williams, A.R. 81, 209, 227 Williams, F.L. 145 Williams, G.P. 283, 331

Williams, M.W. 137 Williams, R.H. 331 Wilson, J.A. 117 Wimmer, E. 79, 82, 188, 227, 273 Woicik, J.C. 189 Wojciechowski, K. 226 Wolfgarten, G. 81 Wong, H.S. 117 Woodruff, D.P. 251, 283, 284 Woodward, R.B. 273, 274 Wright, C.J. 251 Wynblatt, P. 145 Xu, G. 331 Yamashina, T. 145 Yaniv, A. 117 Yates, D.J.C. 145 Yin, M.T. 188 Ying, S.C. 227 Young, A.S. 117 Yu, K.Y. 209 Zaremba, E. 209 Zeiri, Y. 251 Zeller, R. 316 Zhang, T. 306, 316 Ziman, J.M. 80 Zunger, A. 188

PROGRESS IN SURFACE SCIENCE, VOLUME 25

SUBJECT INDEX

Adatom interactions 212-214. See (Alkali metals..., cont.) also Interaction theory,-ch-emcharge transfer value 185-186 isorbed atoms on metal surface ionicity tests 183-185, 186 Adsorption K-Si system 176, 177 alkali metals on semiconductor metallization and 176, 177 surfaces 175-187. See also slab model calculations 177, 177-183 Alkali metals-semic~u~tor binding energy structure of interaction K+Si(lOO)-(2xl) surface 179-180 Anderson-Newns (AN) model and excharge density and 180-182 tended H~kel theory (EHT) K-Si(lOO)-(2xl) surface structure 286-289 178-179 AN model 287-288 metallization and 183 CuH binding energy and bond Anderson model description, interaction length 288-289 of chemisorbed atoms on metal EHT and parameters 286-288 surfaces 215-221 CO and H) coadsorption on metal chemisorption and interaction funcsurfaces 241-242 tions 217 H, dissociative and associative direct interactions, adatom orbitals 256, 264-267 218-219 H atom interactions outside Pt(111) electron correlation effects 219-221 surface 229-240 Hartree-Fock approximation soluH/Cu clusters 289-291 tion 215-216 linear chain model 290 Anderson-Newns (AN) three-dimensional clusters 290-291 adsorption, H/Cu substrates 286-289 H/Ni-contaminated Cu chains 291-293 chemisorption energy and 312-313, H/Ni-contaminated Cu substrates 315 285-293 complex energy integration method H/Ni-contaminated substrates 307, 310-311 309 of impurity effects on chemiH-type in bridging on higher cosorption 307-315 ordination sites 269 adatom-impurity atom interaction Adsorption sites, formate layers/Cu studies 307 surfaces 275-283 adatom-impurity interaction catalysis and, heterogensous energy 312-313, 315 261-262 H/Ni, H/Ni(Cu), H/Ni(Cu) systems Alloys, binary, charge transfer 313 effects on 139-144. See also H/W, H/W(Re), H/W(Ta) systems 314 Surface segregation, charge self-consistency effect on 308 transfer effect on tight-binding model and Green's Alkali metals-semiconductor interfunction formalism 308-310 action, K-Si system 175-187 Asymptotic expansion, spherical AI-Ge system 176, 186-187 kinetic currents 24-25, 26-27, bonding and 174-175, 177 28, 30, 32, 35 cluster model calculations 177, Asymptotic relaxation value, atomic 183-186 surface surface relaxation 51-55 binding energy tests, Si-K 184-185 Al(110) surface 52, 53, 54

10

SUBJECT INDEX

(Catalysis, cont.) (Asymptotic relaxation, cont.) theory and parameters of 259-261 lead 55 surface reactions and 264-270 Ni surfaces 53, 55 H2 dissociation to Cu2 atom Atomic motion string 264-267 Green's functions and 318, 319, hydrogenolysis reactions, Ni 321 alloyed with Cu 268-269 subspace Hamiltonian and 318-321 symmetries of HOMOand LUMOand 264 Atomic surface relaxation 43-55 Woodward-Hoffman rules and 264, 267 ion scattering spectroscopy and 44 CdTe surface electronic properties, LEED and 44 Kalstein-Soven Green functions oscillation damping and 44-45 method 108-116. See also point ion model of 46-48 Electronic properties, surface b.c.c. Fe surfaces 47, 48 II-IV compounds f.c.c. Al surfaces 47, 48 Charge transfer effects, surface process near surface, layer transsegregation in binary alloys lation and 44-45 and 139-144 Smoluchowski model, free electron electronic model, tight-binding gas surface 46-48 Hamiltonian basis 140-143 surface electronic structure calcumicroscopic theories and 139-140 lation and 43-44 model results 143-144 tight-binding model vs. 50-51 phenomenologic theories and 139 transition metal surfaces, d-band Chemisorption. See also specific topic and 48-51 Anderson-Newnsmod--eT~, impurity Atoms, chemisorption on metals effects on 307-315 191-208, 211-226. See also change of density of states (CDOS) Chemisorption on metals, atomic and 299, 302-304 and molecular; Interaction of computer simulations of 317-330 chemisorbed atoms on metal concept of and catalytic reactions surfaces 254-256 on contaminated b.c.c, metal Bonding, alkali metal-semiconductor 299-305 surfaces 175-177. See also formalism 300-302 Alkali metals-semiconductor CDOS and 302 interaction Koster-Slater impurity model 300 surface Green functions model Catalysis, heterogeneous 253-273 300, 302 chemisorption concept and 254 formate layers/Cu surfaces 275-283. chemisorption trends 256-258 See also Electronic structure, bond formulae 256-258 ~mlsorbed formate layers/Cu H/metal 258 surfaces covalent electronic effects and impurity effect, models and 255, 256 approaches 299-300 electron correlation effects impurity energy, bonding and anti270-272 bonding peaks 302, 303-305, bonding within molecule 270 317-330 chemical bonding in H2 271-272 trends of and chemisorptive formulae H atom/metal surface inter256-258 action 270-271 Chemisorption energies electrostatic electronic effects H adsorption on Ni-contaminated Cu and 255-256 chains 291, 295-296 frontier orbital theory, secondary H adsorption on Ni-contaminated Cu ensemble effect 259-263 clusters 290, 296 adsorption sites, atop vs. Chemisorption on metals, atomic and bridge 261-262 molecular 191-208 H adsorbed to f.c.c, crystal (111) 262-263

SUBJECT INDEX (Chemisorption, cont.) effective-medium theory with covalent contributions (EMT-2) 193, 200-202 perturbation theory and 197, 200-201 transitional hosts and 201-202 effective-medium theory with density expansion (EMT-1) 192-193, 198-200 chemisorption energy, O/jellium surfaces 199-200 effective-medium theory with interatomic forces (EMT-4) 194, 205-207 application of 205 potential energy curces, O/Cu 207 effective-medium theory with selfconsistent calculations (EMT-3) 193-194, 203-205 EMT-2 and 203 wag-mode frequency, OH/transition metal substrates 204-205 Gunnarsson-Hjelmberg method 192 Lang-Williams theory 192 limitations and utilization of methods 208 self-consistent jellium calculations and 192, 193, 194-198 adsorbate-induced dipole moments and 196-197 applications to date 194-195 O-jellium surface calculations 195-196 potential energy curves and 198 qualitative results extracted 195 theoretical problem perspectives and theories 191-192 Computer simulations of chemisorption 317-330 GaAs(110) surface 325-326 Al As at origin 329 As at Ga-Ga bridge site 327-328 Cl/GaAs(110) 326-327 Cu at As-As bridge site 330 O/GaAs(110) 327 Zn at As-As bridge site 329-330 Green's functions and atomic motion at surface 318, 319, 322 molecular dynamics computer simulations 321 subspace Hamiltonian, atom 318-321 theorems and 318-321, 324 tight-binding Hamiltonian and 322 CRYSTAL computer program. See Crystal

II

surfaces, ionic, Hartree-Fock characterization Crystal surface electron structure, surface Green function formalism image potential barrier and 87-88 step barrier and 85-86 Crystal surfaces, ionic, Hartree-Fock characterization 119-136 alumina slab energy and population data 129 band structure for bulk corundum 132-133 bulk corundum density maps vs. surface electronic structure 131-132 chemical effects and 123, 126 cluster approach 120 corundum slab surface and 121-122 densities of state, bulk and slab corundum 132, 133-134 electrostatic effects and interactions 122-123 electrostatic terms, role in calculation 124-129 computational data for corundum 125-126 corundum (0001) surface, electrostatic potential 128-129 MgO(011) surface, electrostatic potential 126-127, 128 missing layers effect 126 repeat units and 125, 126, 127, 128-129 slab approach 120-136 surface states corundum (0001) 135 Diffusion currents electrode reaction and 17 symptotic and asymptotic solutions of 18 theoretical treatments of 17-18 two-point Pade approximations 18, 29-32. See also Kinetic currents, two-point P~approximants Dimensionless parameters method and s~herical diffusion problem boundary value problem and 19-21 first-order correction 21-22 fixed concentration of depolarization at electrode surface 19 homogeneous equations solutions and 19-20 non-homogeneous equations solutions and 21-22, 25 second-order correction 22

12

SUBJECT INDEX

Effective-medium theories (EMT), (Electronic structure..., cont.) wave function in semi-infinite syschemisorption on metals. See also Chemisorption on metals, tems 59-64 Embedded cluster model atomic and molecular EMT-1, with density expansion alkali metals on semiconductors 192-193, 198-200 183-186 EMT-2, with covalent contributions interaction of chemisorbed atoms and 215-216 193, 200-202 Embedding method, electronic strucEMT-3, with self-consistent calture, semi-infinite surface culation 193-194, 203-205 73-79 EMT-4, with interatomic forces actual wavefunction value, surface 194, 205-207 region 74 EHT. See Extended H~ckel theory application to LCAOHamiltonian Electrode reactions, kinetic currents 77-79 and Dyson equation methods, comparison asymptotic expansion 34 with 76, 77 irreversible slow reaction 23 embedding potential and 74-76, 78-79 standard expansion at electrode Green function in surface region surface 34 74-75 Electron theory of surfaces, surface Hamiltonian expected value, surface Green function formalism and 84 plus vacuum region 73-74 crystal surfaces and 85-88 surface density of states and 75-76 systems with interfaces and 88-90 Electronic properties, surface, II-IV Extended H~ckel theory (EHT) 286-289 compounds, Kalstein-Soven Field emission from surface states, method band structure formalism and 108-110 tunnelling and 99-105 potential profile and 99 surface Green's functions for CdTe semi-classical approach and 99 and 110-116 surface Green function techniques Electronic structure, chemisorbed and 98-99 formate layers/Cu surfaces surface state tunnelling and 99-100 275-283 tunnelling from gap states and 101 adsorption geometries, formate/Cu vacuum region surface states (VSS) (110), (100) 278-280 100-103 electronic states energy d i s t r i bution, calculations 280-282 energy positions and orbital types Green function at surface, electronic structure calculations in at zone center 281-282 semi-infinite solid surface molecular orbital energies in 64-70 HCOOHand HCO0 276-277 for continuum states 64-65 non-empirical atomic orbital Dyson's equation calculation and 68, methods, within two-center 69, 70 approximation 276 linear combination atomic orbitals valence molecular-orbital symme(LCAO) scheme 65, 68-69 tries, isolated formate local density of states and 66-67 radical 277 recursion method of construction Electronic structure calculations, 66-68 semi-infinite solid surface tight-binding Hamiltonian methods 57-79 and 65-66, 68, 69, 70 bulk electronic calculations and Green function formalism, impurity 57-59 effects on chemisorption density functional theory and 57 and 308-310 embedding methods of 73-79 Green function matching and waveGreen function at surface 64-70 function, electronic structure Grmen functions and matching wave of semi-infinite surface 70-83 functions 70-73

SUBJECT INDEX

13

(Green function matching...,cont.) Impurity modes apllications of 72-73 antisymmetric method 70-71 eigen problem in localized in step model of surface potential 159-160, 163-164 71-72 hybridization 159-160, 163-164, Green function method of Kalstein167, 169-170 symmetric Soven, surface electronic properties of II-IV semiconductdepth effects and 167-168 ing CdTe 107-116 eigen problem in localized 159, band structure formalism and 108-110 162, 163 surface Green function for 110-116 Interactions alkali metals-semiconductors, K-Si H adsorption on Ni-contaminated Cu system 175-187. See also Alkali metals-semiconductor i--n~-~raction Cu chains 291 Anderson model description 215-221 localized orbitals and energies chemisorption and interaction 293-294 functions 217 two impurity atoms and 294-295 direct interactions adatom orbiCu clusters 296 tals 218-219 Hartree-Fock characterization of electron correlation effects ionic crystal surfaces. See 219-221 Crystal surfaces, ionic, Hartree-Fock approximation Hartree-Fock characterization solution 215-216 Hybridization, localized modes in multiple orbital adatoms 218-219 f i n i t e tight-binding chains chemisorbed atoms on metal surfaces 155-170 175-187 depth effects 165-170 embedded cluster model 221-226 of antisymmetric modes 167, analytical results, free electron 169-170 substrate 223-224 of symmetric modes 167-168 application to H/Ni(110, H/Pd(110) surface and midpoint energy H/Fe(110) 225-226 and wavefunction changes 165-167 effective medium theory and 221 eigen problem, localized modes formalism 222-223 159-163 H/Ni(111) system 224-225 antisymmetric impurity mode solujellium model and 221 tions 159-160, 163-164 FIM studies, adatom interactions conditions for LB mode 160-161 212-213, 217-219 symmetric and impurity modes indirect interaction studies 213-214 and solutions 159, 162, 163 LEED studies, ordered structures 212 electronic energy spectrum changes oscillatory interactions, molecules and 156 chemisorbed on metal surfaces model 156-159 229-250. See also Molecules impurity problem and 156-159 chemisorbeTon'metal surfaces N-process and 159 single-adatom problem 214, 219 perturbation parameters and 158 two-adatom problem 214 surface problem and 156-159 Interface, semiconductor/metal, surface Green function and 86 Image portential barrier, crystal Interface resonances, surface Green surface electron structure and function and 88-89 87-88 Interface states, surface Green Impurity effects function and 88 on chemisorption 307-315. See also Ion scattering spectroscopy, in atomic Anderson-Newns model of surface relaxation 44 impurity effects chemisorption on contaminated b.c.c, metal 302, 303-305 Koster-Slater model 300, 308

14

SUBJECT INDEX

Kinetic currents, electrochemical 17-37 cases (A)-(C) 23-24 asymptotic expansion 30, 35 average currents formula and 33-34, 35 instantaneous currents 30 diffusion current ratio and 26-27 dimensionless parameters and diffusion problem 19-22 first-order correction 23, 25-26 two-point Pade approximants and 27-33 with or without spherical corrections 22-27 Koster-Slater impurity model, in chemisorption on contaminated b.c.c, metal 300, 309

Oscillatory interactions, molecules chemisorbed on metal surfaces 229-250. See also Molecules chemisorbed on metal surfaces

Pade approximants, two-point 18, 29-32 See also Kinetic currents, electrochemical asymptotic expansion coefficients a_/ and c_/ for 29-30, 35 coeffTcients-bf, cases (A)-(C) 28, 29, 32 relative percentage errors for 31, 32, 35 versus exact values 30 Pairing picture, silicon surface (2xl) reconstruction. See Silicon surfaces (2xi) reconstruction, pairing picture LEED(Low energy electron diffraction) Photoemission, surface Green functions Low energy electron difrraction (LEED) and 92 differential cross-sections and calculations, wavefunction match92-94 ing in 64 one-step formulas of 93-94 electronic structure and surface Green function formalism standard theoretical interpretation, three-step model 92-93 and 90-91 LEED intensities and 91-92 Self-consistent caculations, effective-medium theory and 193-194, 203-205 Molecules chemisorbed on metal surSGF. See Surface Green function faces, oscillatory interSilicon surfaces (2xl) reconstrucactions of 229-250 tion, pairing picture of adsorbates with virtual bound 147-154 states, role in tunnelling formal mathematical framework of 243-244 150-153 CO and H2 mixed system outside investigational surfaces, Si(111), metal surface 240-243 ( I i 0 ) , (100) 148, 149-150 coadsorption, CO and H2/Ni(IO0) pairing theorem and selection rule 241-242 in 148-150 coadsorption, CO and H2/Rh(IO0) phonon problem in solids and 153 240, 242 selection rule applications 153 H atom interactions outside Pt(111) Si(110) reconstruction 153-154 surface 236-239 Slab model calculations, akali metaladsorption mechanism 239-240 semiconductor interactions 177, experimental data and 236-237 177-183 model 238-239 Smoluchowski model, atomic surface surface plasmon/physisorbed atom relaxation and 46-48 pair interaction ourside planar Spherical currents, kinetic currents metal surface 245-250 asymptotic solution 24-25, 26-27 theory of indirect oscillatory first-order spherical correction interactions 230-232 23-25 thermal desorption as coverage standard solution 24-25, 34 function 232-236, 245, 250 Step barrier, crystal surface elecimage theory 232-234, 248-251 tron structure and 85-87 molecular virtual bound state and Superlattices, surface Green function oscillatory interactions formalism and 89-90 234-236, 241

SUBJECT INDEX

15

Surface Green function (SGF) 83-94. Taylor expansion, kinetic currents See also Green function 29, 30, 32, 33, 34, 35 f o ~ - ~ l T ~ 84 Thermal desorption, oscillatory interelectron structure of crystal actions of chemisorbed molecules/ surfaces and 85-88 and metal surface and 232-236 electron structure of systems Tight-binding chains, f i n i t e hybridiwith interfaces 88-90 zation of localized modes 15-17 LEED and 90-92 Tight-binding model photoemission and 92-94 atomic surface relaxation and 48-55 matching Green function, surface asymptotic relaxation value as continuum 70-73 multilayer oscillatory relaxation in semi-infinite solid surface 64-70 and 51-55 surface interface as part of systransition metal d-band and 48-51 tem 83 versus point-ion model 50-51 surface properties of II-IV compounds and 107-116. See also impurity effects on chemisorption Green function method o - ~ - and 308-310 Kalstein-Soven Tunnelling Surface relaxation adsorbates with virtual bound states LEED intensity analysis and 44-46 in, role of 243-244 point-ion model 46-48 field effects on surface states Al and Fe surfaces 47, 48 and 98-99 crystal electrostatic energy field emission from surface states calculation 46 99-105 tight-binding model surface state 97-105 asymptotic relaxation value surfaces states in field emission and 51-55 process 97-98 multilayer oscillatory relaxation and 51 Wave functions, in semi-infinite transition metal d-band and 48-51 systems 59-64 trends of 43-45 bulk Schrodinger equation soluSurface segregation in binary alloys, tion and 59, 60, 62, 63, 64 charge transfer effects on density of states and 60-62 139-144 Green function and 70-73 one-dimensional potential case CuxNiy (y=l-x) alloy systems 140 elect)onic model, tight-binding and 60-62, 63 Hamiltonian basis 140-143 three-dimensional case 62-64 microscopic theories and 139-140 model results 143-144 phenomenologic theories and 139 Surface state energies, surface Green function and 85 Surface vs. bulk densities of states, surface Green function and 85-86