NEUROCOMPUTING Neurocomputing 6 (1994) 615-616
ELSEVIER
Author index to volume 6 (1994) Adeli, H., s e e Hung, S.L Allen, W.G., s e e Mak, M.W. Anastasio, T.J., Testable predictions from recurrent backpropagation models of the vestibulo-ocular reflex Andrade, M.A., s e e Merelo, J.J. Anguita, D., G. Parodi and R. Zunino, An efficient implementation of BP on RISC-based workstations
45 99 237 443 57
Baran, R.H., s e e Ko, H. Barnard, E. and J.E.W. Holm, A comparative study of optimization techniques for backpropagation Bartlett, E.B., A stochastic training algorithm for artificial neural networks Battiti, R. and G. Tecchiolli, Learning with first, second, and no derivatives: A case study in high energy physics Bhattacharyya, D.K. and A.K. Ray, Stepless PWM speed control of AC motors: A neural network approach
219
Chen, V., s e e Tsao, T.-R. Chilingarian, A., Neural classification technique for background rejection in high energy physics experiments
305
19 31 181 523
497
De Groot, C. and D. Wiirtz, 'Plain backpropagation' and advanced optimization algorithms: A comparative study
153
Grumbach, A.,
343
see
Midenet, S.
Hagiwara, M., A simple and effective method for removal of hidden units and weights Hagiwara, M., Time-Delay ART for spatio-temporal patterns H6rault, J., s e e Pellerin, D. Holm, J.E.W., see Barnard, E. Hung, S.L. and H. Adeli, Object-oriented backpropagation and its application to structural design
207 513 419 19
Jacyna, G.M.,
455
see
Sagar, V.
Karayiannis, N.B. and A.N. Venetsanopoulos, Decision making using neural networks IGm, I., s e e Szu, H. K i m , J . , see Szu, H. Kinnebrock, W., Accelerating the standard backpropagation method using a genetic approach Ko, H. and R.H. Baran, Signal detectability enhancement with auto-associative backpropagation networks
Elsevier Science B.V.
45
363 551 551 583 219
616
A u t h o r index to volume 6 (1994)
Lee, T.H., A.P. Loh and V. Srinivasan, A technique for on-line parameter estimation based on an analog artificial neural net structure L o h , A . P . , see Lee, T.H. Mak, M.W., W.G. Allen and G.G. Sexton, Speaker identification using multilayer perceptrons and radial basis function networks Merelo, J.J., M.A. Andrade, A. Prieto and F. Mor~n, Proteinotopic feature maps Midenet, S. and A. Grumbach, Learning ASsociations by Self-Organization: The LASSO model Monfroglio, A., Backpropagation networks for logic constraint solving Morhn, F., see Mereio, J.J.
405 405
99 443 343 67 443
Pao, Y.-H., G.-H. Park and D.J. Sobajic, Learning and generalization characteristics of the random vector Functional-link net Park, G.-H., see Pao, Y.-H. Parodi, G., see A n g u i t a , D. Pellerin, D. and J. H~rault, Scheduling with neural networks: Application to timetable construction Pimmel, R.L., see Y o o , H. Prieto, A., see Merelo, J.J.
419 541 443
Ray, A.K.,
523
see
Bhattacharyya, D.K.
Sagar, V., G.M. Jacyna and H. Szu, Block-parallel decoding of convolutional codes using neural network decoders Sexton, G.G., see Mak, M.W. Sipper, M. and Y. Yeshurun, Cost-performance evaluation of analog neural networks and high order networks Sobajic, D.J., see Pan, Y.-H. Srinivasan, V., see Lee, T.H. Szu, H., J. Kim and I. Kim, Live neural network formations on electronic chips Szu, H., see Sagar, V. Tan, S. and J. Vandewalle, On the design of feedforward neural networks for binary mappings
Tecchiolli, G.,
see
Battiti, R.
Tsao, T.-R. and V. Chen, A neural scheme for optical flow computation based on Gabor filters and generalized gradient method Vandewalle, J., see Tan, S.
163 163 57
455 99 291 163 405 551 455
565 181 305
Venetsanopoulos, A.N., see Karayiannis, N.B.
565 363
Wu, C.-HJ., see Young, F.F. Wiirtz, D., see de Groot, C.
327 153
Yeshurun, Y., see Sipper, M. Yokni, H., A fundamental element for neural computer - Folthret Y ~ , H. and R.L. Pimmel, The effect of weight precision and range on neural network classifier performance Young, F.F. and C.-H.J. Wu, Using dipole receptive fields for the reconstruction of printed characters
291 473
Zunino, R.,
see A n g u i t a , D.
541 327 57