Bornes supérieures isopérimètriques pour les valeurs propres du type de Sturm-Liouville

Bornes supérieures isopérimètriques pour les valeurs propres du type de Sturm-Liouville

C. R. Acad. Analyse Sci. Paris, t. 325, SCrie I, p. 835-840, 1997 Analysis mathCmatique/Mathematical Isoperimetric upper bounds for the eigenval...

335KB Sizes 1 Downloads 31 Views

C. R. Acad. Analyse

Sci. Paris, t. 325,

SCrie I, p. 835-840,

1997

Analysis

mathCmatique/Mathematical

Isoperimetric upper bounds for the eigenvalues of the Sturm-Liouville type Samir

KARAA

Laboratoire des Mathematiques pour 1’Industrie et la Physique, CNRS UMR 5640, Universiti: Paul-Sabatier, 118, route de Narbonne 31062, Toulouse, France. E-mail : [email protected]

Abstract.

We study the problem of maximizing the eigenvalues of the differential equation (q(z)y’)’ + Xp(z)y = 0 defined on a finite interval. The problem is solved by means of sufficient conditions of optimality.

Bornes

supkrieures isop6rim6triques pour les valeurs propres

du type de Sturm-LiouviUe RCSUlnC.

On

Ptudie le problhe de maximisation des valeurs propres de l’kquation (q(z)y’)’ + Xp(x)y = 0 d@nie sur un intervalle borne’ de R. Le probkme est t&oh ir l’aide de

conditions

Version

francaise

On considere

sujfisantes

d ‘optimalit&.

abrbgke

un couple (4, fi) E U, x V tel que X1(q, p) < designe la premiere valeur propre du probleme (l)-(2) et U, et V sont les ensembles definis par (3) et (4) respectivement. Posons iw? = u”u,pvh(cL PI. X1(4,@)

V(q,p)

le probleme

E U,

(P)

: Trouver

x V, oti X1(4, p)

a

Alors, on a le theoreme suivant : THBORGME. - Soit Q > 1 un nombre Gel et posons p = 2a/(a fonction

propre

du problkme

non-linkaire

(Ally’Ij;-ply’lp-2y’)’ 02 jj est donnke par (6). Posons optimal, et on a :

t3 &ant la fonction

ensuite

- 1). De%gnons par jj la premibre

:

+ X/5y = 0, Q(z)

y(O) = y(e) = 0,

= AlI~‘II~-“l~‘(2)lp-2.

Alors

le couple

(@,p) est

d’Euler.

On generalise ensuite ces resultats a toutes les valeurs propres du probleme (l)-( 2). Note prbsentbe par Haim BR~ZIS.

0764~4442/97/03250835 0 Academic des Sciences/Elsevier. Paris

835

S. Karaa

We shall be concerned

with the eigenvalue

problem

M4Y’)’ + Jv(X)Y = 0,

(1) (2)

Y(O)

= Y(l) = 0,

e being a positive real number, and we denote by Xi (q, p) its first eigenvalue. Let H, A, and B be positive numbers such that HC > I?. Define the sets of constraints U, and V by:

P

(4)

V

=

p

10 5 p(x) 2 H,

E L"(O,l)

J

0 p(x)dx

where N is a number



= B

2 1. The aim of this Note is to study the problem:

(PI

maximize

Xl(q, p)

In [4], estimates of Xi(q, p) are obtained are subjected to the constraints

subject to

(q, p) E U, x V.

when the functions

J qN(x)dx =l, I

0

q(x)

and p(x)

are nonnegative,

and

Y

PO(X)dx

= 1,

J0

where Q and p are non-zero real numbers. It is proven that Xl(q, p) cannot be estimated from above when a: 2 1 and ,/3 = 1. For other extremal problems concerning eigenvalues, see [l]-[3], [5], [6], and the references therein. Put now

where the sup is taken in the class of all pairs (q, p) E U, x V. It is clear that standard compactness arguments do not enable us to establish the existence of solutions to problem (P). We proceed then to exploit the sufficient conditions given by: PROPOSITION.- Let (ij, 6) be a couple

of functions

from

U, x V and $ be any first eigenfunction

of the problem: (i(x)y’)’

(5)

Je-

P(x)$(x)~dx

0

J

+ X@(x)y

e

<

= 0, y(0)

J

836

= 0.

e

~(x)lJ(x)~

dx,

0

(5) is in fact the reason for choosing

J P

q(x)$(x)’

dx 5

0

for every couple (q, p) E U, x V, then (@,c) is a solution Condition

= y(l)

~(x)$(x)~

0

to problem

the optimal

function

(P). b given below.

dx

lsoperimetric

1.

Optimal

upper

bounds for the eigenvalues

of the Sturm-Liouville

type

solutions

Let fi be the function

defined

by: H p(z) = 0 i H

(6)

The real a is choosen

so that p(z)

if 0 5 :C 5 n, ifa
E V. That is a = (2H)-‘B.

THEOREM1. - Let a > 1 and set p = 2a/(a

We establish

- 1). Let fj be the$rst

now our main result:

eigenfunction

of the nonlinear

problem: (AIIY’~~;-~IY’I~-~Y’~’

+ XPY

where p is given by (6). Put q = A](ij’J]~-P]fj’]P-2. (P), and we have

where B is Euler’s

=

0, Y(O) = de) = 0,

Then th e couple

(4, p) is a solution

to problem

Beta function.

To prove this theorem,

we will use the following

LEMMA 1. - Let p be a number

lemmas:

> 1. Let m. = inf, G[y], where

G[yl = (J; IY’IP w2’p .d @Y2 dx and p is given by (6). The inf above Then G has a nonnegative minimizer (i) jj is concave and symmetric (ii) 1 = {x E [o,e]; g(x) = max (iii) jj’ is everywhere continuous

is taken in the class of all non-zero functions y from W,‘“(O, e). fj in W,‘“(O, 1) with the following properties: about x = e/2. I$[} is exactly the interval [a,e - a]; a = (2H)-lB. and jj satisjies the equation (IIY’II~-PIy’IP-2y’)’

at every point of the interval

+

m/?y= 0

(0, e).

(iv> m = 2J!T?!&$-2’p(~)1-2’pB~(;,~

(v)

_ 9.

We have

G(x) = G(a)+ cl(a - x) p’(p-l)[l y’(x)

= cp(a - x) l’(p--l)[1

G(x) = QX[l + o(l)] where cl, ~2, and c3 are non-zero

+ o(l)]

+ o(l)]

as x + a-, as z + a-, as z + O+,

numbers. 837

S. Karaa

t? and ij be us in Lemma 1. Put q(x) = 1IQ’1Isep ~fj’(~)~p-“.

LEMMA 2. - Let p > 2 and let thefunctions Let

inf

P= Then /L is attained

?I-;

.Ib”4~” dx

(08) j-i ,5y2 d:l: ’

on ji and u = m.

Proof of Theorem

1. - Let cy > 1 and set p = ~cx/(Q: - l), p > 2. Put t(x)

where $ is indicated Holder’s inequality,

in Lemma we obtain

= A~I~‘II~-P(~J’(x)~P-~,

1. Then we have s, G(x)” dx = A”, which implies for all q E U,

s

that @ E U,. By

e

0

q(x)G’(x)’dx 5

(sil~~(x)l~dx)‘;“(i’q(x)-dx)“l

= A(1

On the other hand, it is easily

verified

jQ’(x)[pdx)2”

= ~q(x)1/‘(x)2dx.

that for each x E [0, !I,

and hence Ji @(x)$(x)~ dx < 1: p(x)$(x)” d x f or every function p E V. Besides, since the differential equation (ll~‘ll~-pl~‘lp-2~‘)’ + 7n@j = 0 holds everywhere

in (0, a), Proposition

1 and Lemma 2 imply that (4, ,6) is a solution

COROLLARY 1. - Let q and p be two functions p E L”(0, e), where Q: > 1. Then

where C(a)

not identically

to problem

zero such that q E

L"(0, 1) and

= I& for the case A = B = H = 1.

THEOREM 2. - If (II = 1, then for all (q, p) E VI x V &(q,p) The equality

is attained

< 12AH2B-“.

if p equals the function

i(x) =

( MIH(u’ 0

fi defined by (6), and - x2)/2

t @(e- x) where Ml

= 12AH2B-”

if 0 2 x 5 a, if u < x 5 e/2, if e/2 5 2 5 e,

and a = (2H)-lB.

Proof. - The key of the proof is the appropriate

choice of the test function if O
838

(P).

jj defined by:

lsoperimetric

for which we have for all (q,p)

2. Estimates

upper

bounds for the eigenvalues

of the Sturm-Liouville

type

E U1 x V,

of all the eigenvalues

We now give an optimal upper bound for the n-th eigenvalue of problem (l)-(2). The main result presented here is: THEOREM3. - Let X,(q,

functions

p) be the n-th eigenvalue of problem (l)-(2). Suppose that the coefjicient q and p are not identically zero and satisfy: q E L”(0, e) and p E L” (0, !), where cu > 1. Then

where C?(a) = C(a) g’tven by Corollary 1 if o! > 1 and c(1) = 12. In addition, the equality is attained by two periodicfinctions q and p with a period equal to e/n and such that q(x) = q( nrc), p(x) = /?(nz) for all x E (0, e/n), where q and p are the optimal functions indicated in Theorems 1 and 2.

To prove this theorem, we shall use the following lemma: LEMMA 3. - Let r, s be two real numbers such that rs < 0 and r + s 2 1. Denote by E the set of all vectors X = (x1,x2, . ...2,) E (IO, l[)” satisfying cy=“=,xi < 1, and define the function F:ExE--+Rby:

F(X,

Y) = xc;‘y; + x;y;

+(1 - Xl - x2 - . . . - xn)r(l Then

+ . . . + xLy;

- y1 - y2 - . . . - 7&&y.

F attains its minimum value Fmin = (n + l)l-(‘+“) when X 1, . . , 1). A4oreover, this minimum point is unique in the case r + s > 1.

the function

(n + l)(-‘)(l,

=

Y

=

Proof of Theorem 3. - We begin by the case n = 2. The general case follows by using similar arguments. Let q and p be two measurable functions such that ]]q]]ol= 1, Q! > 1, ]]p]ll = 1, and 0 5 p(x) 5 H for all x E [0, C]. Let ya (resp. X2(q, p)) be the second eigenfunction (resp. eigenvalue) of the problem

(464d)~+ XP(X)Y

= 0,

Y(O) = 0)

= 0.

As is well known, the function y2 admits precisely one zero (call it x1) in the interval (0, e). Furthermore, the number X2(q, p) is in fact the first eigenvalue of the two problems: (d4Y’)

+ XP(X)Y = 0,

(q(x)y’)’ + xp(x)y = 0,

Y(0) = Y(Q) Y(X~ =

= 0,

de) = 0.

According to Corollary 1 and Theorem 2, we have:

(7)

X2(q, p) 5 C(o)H1+l’”

(~z’q(x)-dx)1’~(~z’p(r)dx)-(2+1’~’,

839

S. Karaa

where c(a)

(8) Similarly,

is given by Corollary

1 for o > 1 and c(1)

(I~‘~(~)~di)-1’~(JC~11i(X)iii)2+1’~

= 12. Inequality

(7) can be written

as:

5 C(~)H1+l/“[X2(4,P),-l.

we have:

(9)

Now put b = St1 q(x)a dz and c = ST1 p(z) dz. By summing (10)

b-1/ac2+1/a

+ (1 - b)-I/“(1

- c)~++

(8) and (9), we obtain:

< C(n)H1+l’”

[X,(9, p)]-‘.

By Lemma 3 (applied with n = l), the left side of (10) is not less than 2-l c are both in the interval (0,l). Therefore l/2 which shows that &(q,p)

< 2 C(o) H 1+1’a

< 4C(cr)H’+““.

[XzkJ,

since the reals b and

/w,

If ljqllcy = A and llplli = B, then we obtain

X2(4, p) 2 4 C(o)

H1+‘la

A B-(2+1’“).

To prove the general case n > 2, we argue as above and take into account the fact that the n-th eigenfunction of problem (l)-( 2) h as exactly (n - 1) zeros between 0 and e. Note remise le le’ avril 1997, acceptee le 28 juillet 1997.

References [l] Bandle C., 1987. Extremal problems for eigenvalues of the Sturn-Liouville type, Internat.Ser. Numer. Math , General inequalities,5, Birkhauser, 80, pp. 319-336. [2] Egorov Yu. V. and Karaa S., 1994. Optimisation de la premiere valeur propre de l’optrateur de Sturm-Liouville, C. R. Acad. Sci. Paris, 319, SCrie I, pp. 793-798. [3] Egorov Yu. V. and Karaa S., 1996. SW la forme optimale d’une colonne en compression, C. R. Acad. Sci. Paris, 322, Strie I, pp. 519-524. [4] Egorov Yu. V. and Kondratiev Yu. V., 1991. On an estimate of the principal eigenvalue of the Sturm-Liouville operator, Vestnik Mosk. (In-ta Math. Mech., 6, pp. 5-l 1. [5] Karaa S., 1996. Extremal eigenvalues and their associated nonlinear equations, Boll. Un. Math. Ital., IO-B, pp. 625-649. [6] Talenti G., 1984. Estimates of eigenvalues of Sturm-Liouville problems, Internat. Ser. Numer. Math., General inequalities, 4, Birkhluser, pp. 341-350.

840