Boundary Value Problems for Eaquations of Mixed Type

Boundary Value Problems for Eaquations of Mixed Type

G.M. de La Penha. L.A. Medeiros (eds.) Contemporary Developments in Continuum Mechanics and Partia\ Differential Equations @North-Holland Publishing C...

185KB Sizes 2 Downloads 78 Views

G.M. de La Penha. L.A. Medeiros (eds.) Contemporary Developments in Continuum Mechanics and Partia\ Differential Equations @North-Holland Publishing Company (1978) BOUNDARY VALUE PROBLEMS FOR EQUATIONS O F M I X E D TYPE

STANLEY O S H E R Mathematics

-

UCLA

Los Angeles, C a l i f .

90024

U. S.A.

We a r e c o n c e r n e d w i t h t h e q u e s t i o n :

which boundary

v a l u e p r o b l e m s a r e w e l l posed f o r t h e d i f f e r e n t i a l e q u a t i o n o f mixed t y p e :

K(y)hxx+u + a u + b u + c u = F YY X Y

(1) where

~ ( y =) s g n y

and

a, by c

=

+1

if

y > O

-1

if

y < O

a r e smooth f u n c t i o n s of

(x,y).

We s h a l l a l s o d e v e l o p a n e f f e c t i v e n u m e r i c a l algorithm (obtained j o i n t l y

w i t h A r t h u r Deacon) b a s e d

on a

r e d u c t i o n o f t h e boundary v a l u e problem i n t o a n e l l i p t i c problem w i t h u n u s u a l non p s e u d o - l o c a l

boundary c o n d i t i o n s f o r

which t h e G a l e r k i n p r o c e d u r e w o r k s w e l l .

T h i s problem i s

s o l v e d b o t h a n a l y t i c a l l y , u s i n g and m o d i f y i n g r e s u l t s

of

K o n d r a t i e n on e l l i p t i c e q u a t i o n s i n c o n i c a l r e g i o n s , and n u m e r i c a l l y u s i n g and m o d i f y i n g s t a n d a r d L a p l a c e i n v e r t e r s . We t h e n u s e t h e i n v e r t e d Cauchy d a t a on t h e p a r a b o l i c l i n e t o o b t a i n t h d s o l u t i o n i n t h e h y p e r b o l i c region. A s a very simple i l l u s t r a t i o n w e c o n s i d e r t h e follow-

i n g problem

3 97

E Q U A T I O N S O F M I X E D TYPE

Yt

in

Qo

we s o l v e

in

fll

we s o l v e

on

C0’

on

C1

which i s s p a c e l i k e , we p r e s c r i b e

on

rl

which i s a c h a r a c t e r i s t i c ,

hxx

+

u

-

xx

uY Y = F o U

YY = F 1

which i s a smooth c u r v e , we p r e s c r i b e

u =

Cp

u = ep 1

nothing i s given.

The aim i s t o r e d u c e all t h e h y p e r b o l i c i n f o r m a t i o n t o the l i n e

y = 0.

T h i s i s done as f o l l o w s :

u = f(x-y)

I n the hyperbolic region write f

and

g

+ g(x+y),

unknown ( h e r e we assume f o r s i m p l i c i t y that F r O ) 1

thus

u

- u

hx

+

X

(2)

u

Y

y=o

Y y=0

= 2f’(x)

= 2g‘ ( x )

Again,

f o r s i m p l i c i t y , we t a k e t h e c u r v e

line,

y = -cx

0 < c < 1

we t h e n h a v e

= cp,(x)

= f(x(l+c))

u(x,-cx)

Cl

+

g(x(1-c))

or

(3)

(-1

cp‘ 1 l + X c 1-c ( K = -) 1+c

= f’ (x)

+

Kg‘

(X

t o be a s t r a i g h t

(1-4) l+C

S T A N L E Y OSHER

398

Using (2) arid ( 3 ) , we have

where

Kx

x

ep,

is always a known function. Thus we have the following n o n pseudo-local boundary

Y

value problem

A

LII = F

B

A F o r the problem analyzed above,

general boundary conditions on

C1,

! ,

= k

X

for

is easily cornpuked.

We now build a parametrix f o r this problem and obtain coerciveness in weighted Sobolev spaces as in Kondratien.

Moreover, we can write an asymptotic expansion u

near

r

A

and

and pj

B

-c

, x j Pj(V)

R e X . + m J

on the boundary with simple formulas for the

moreover it turns out that if

li;le

is

sufficiently small, the hypotheses o f the Lax-Milgran theorem are obeyed f o r this elliptic problem on

HI,

thus a Galerkin

procedure can be shown to converge. We also use as elements i n this procedure the functions having the appropriate singular behavior at A and B. The resulting numerical procedure works very well.

399

E Q U A T I O N S O F M I X E D TYPE

Bibliography

and O s h e r , S.

[l] D e a c o n , A.

121 K o n d r a t i e n , V.A.

-

-

-

T o appear.

B o u n d a r y v a l u e p r o b l e m s for e l l i p t i c

e q u a t i o n s i n d o m a i n s w i t h c o n i c a l o r a n g u l a r points, T r a n s . M o s c o w Math.

SOC.,

T r d y , Vol.

R u s s i a n 2 0 9 - 2 4 2 , T r a n s l a t e d A.M.S.

[3]

O s h e r , S.

-

16 ( 1 9 6 7 )

(1968).

B o u n d a r y v a l u e p r o b l e m s f o r e q u a t i o n s of

m i x e d t y p e I. Cornm. P . D . F .

T h e L a u r e n t i e n - B i t s a d z e model.

2, ( 1 9 7 7 ) , '199-547.