ADVANCES IN C N O H Y D R A T E CHEMISTRY AND BIOCHEMISTRY. VOL. 41
CARBON-13 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY OF MONOSACCHARIDES BY KLAUS BOCKAND CHRISTIANPEDERSEN Department of Organic Chemistry. The Technical University of Denmark. DK-2800 Lyngby. Denmark I . Introduction ................................................. I1. Sampling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . Conditions for Optimal Signal-to-Noise Ratio ...................... 3. Referencing of Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . Resolution Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111. Assignment Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. Comparison with Model Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . Isotopic Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. Correlation with Proton Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . RelaxationRates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . Paramagnetic Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. Protonation Shifts ........................................... IV . Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. Identity of Monosaccharides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . Structure Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . Conformational Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . Relaxation Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . Complexation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V . Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27 28 29 30 31 32 33 34 34 35 36 37 38 39 39 39 40 43 43 43 44
I . INTRODUCTION
The first two reports on carbon-13 nuclear magnetic resonance ( 13Cn.m.r.) spectra of carbohydrates appeared1. in 1968 and 1969; since then. 13C-n.m.r. spectroscopy has become increasingly important as a tool for the characterization and structural elucidation of sugars and their derivatives . Although 13C-n.m.r. is closely related to 'H-n.m.r. spectroscopy, especially when both types of spectra are recorded with
.
(1) F. J . Weighert. M Jautelat. and J. D. Roberts. Proc. Natl .Acad . Sci . USA. 60 (1968) 1152-1155 . (2) A . S . Perlin and B . Casu. Tetrahedron Lett., (1969) 2921-2924 .
27
Copyright @ 1983 by Academic Press. Inc All nghts of reproduction in any form reserved ISBN 0-12-007261-6
28
KLAUS BOCK AND CHRISTIAN PEDERSEN
Fourier-transform instruments, the two techniques are sufficiently different to be valuable complements to each other. In many cases, in particular when dealing with complex molecules, such as polysaccharides, the amount of information obtainable from 'H-n.m.r. spectra is limited, compared to that revealed3 by I3C-n.m.r. spectra. Monosaccharides may also yield 'H-n.m.r. spectra that are poorly resolved, even at high field, and that contain little information. On the other hand, proton-decoupled, I3C-n.m.r. spectra are well resolved and, even if the signals are not assigned, a spectrum will provide an almost unambiguous identification of a compound. The application of I3C-n.m.r. spectroscopy to carbohydrates has already been reviewed many times,4-" and has been discussed in two monograph~.'~.'~ In each of those reviews, limited numbers of chemical-shift data for carbohydrates were given. As, for identification purposes, it is useful to have convenient access to an extensive list of chemical-shift data, the main purpose of the present article is to provide an almost complete collection of W-n.m.r. chemical-shifts of monosaccharides, their methyl glycosides, and acetates; see Tables IV. In addition, examples of shift data for as many different types of monosaccharide derivative as possible will be given; see Tables VIXXI. Nucleosides and nucleotides are not included, but data on compounds of these types have been reported, for example in Refs. 8, 12, and 14. The literature covered in the present article includes most of that published in 1980, together with a few subsequent papers. 11. SAMPLINGTECHNIQUES The fundamental principles of Fourier-transform, n.m.r. spectroscopy have been described in books and reviews.'"-" (3) P. A. J. Gorin,Adc;. Carbohydr. Chem. Biochem., 38 (1980) 13-104. (4) B. Coxon, Dec;. Food Carbohydr., 2 (1980)351-390. (5) A. S. Perlin, M T P Znt. Reo. Sci., Org. Chem. Ser. One., 7 (1976) 1-34. (6) S. N. Rosenthal and J. H. Fendler, Ada. Phys. Org. Chem., 13 (1976)292-424. (7) .4. S. Shashkov and 0. S. Chizhov, Bioorg. Khim., 2 (1976) 437-497. (8) F. W. Wehrli and T. Nishida, Fortsclrr. Chem. Org. Nuturst., 36 (1979) 1-229. (9) R. Barker and T. E. Walker, Methods Carbohydr. Chem., 8 (19130) 151-165. (10) T. D. Inch, Annu. Rep. N M R Spectrosc., 5A (1972)305-352. (11) G. Kotowycz and R. U. Lemieux, Chem. Rev., 73 (1973)669-698. (12) J. B. Stothers, Carbon-13 NMR Spectroscopy, Academic Press, New York, 1972, pp. 458-468. (13) E. Breitmaier, G. Jung, and W. Voelter,Angew. Chem., 83 (1971) 659-672. (14) M.-T. Chenon, R. J. Pugmire, D. M. Grant, R. P. Panzica, and L. B. Townsend, J . Am. Chem. SOC., 97 (1975) 4627-4636. (15) F. W. Wehrli and T. Wixthlin, lntefpretation of Carbon-13 NMR Spectra, Heyden, London. 1976.
13C-N.M.R.SPECTROSCOPY OF MONOSACCHARIDES
29
1. Sample Preparation The solvents most frequently used for the measurement of 13Cn.m.r. spectra are deuterium oxide (D20) and deuteriochloroform (CDCl,). Deuterated dimethyl sulfoxide (Me2SO-d,) is frequently used, especially for oligo- and poly-saccharides,, and a range of other solvents, including pyridine-d, , have also been employed. The 13Cn.m.r. chemical-shifts of carbohydrates cover a range of -200 p.p.m., and, as solvent-induced shifts are usually less than 1 p.p.m., the choice of solvent does not have a large effect on proton-decoupled, 13C-n.m.r.spectra. Exceptions to this are, however, spectra of basic or acidic carbohydrates (amino sugars, and aldonic and uronic acids), which are strongly pH-dependent. Proton-coupled, 13C-n.m.r. spectra may also be affected by a change in solvents owing to their profound effect on the IH-n.m.r. spectra. The concentration of the sample in a particular solvent has little effect on chemical-shift values and, because of the inherently low sensitivity of I3C-n.m.r. spectroscopy, it is advantageous to use as concentrated solutions as possible when measuring these spectra. However, increased concentration, and consequently increased viscosity, causes line broadening due to decreased, spin-lattice relaxation-times (TI values),'* and thus, poorer resolution. Certain solvents that tend to give viscous solutions (for example, Me2SO-d6) may also give decreased resolution. The temperature of the sample solution has a profound effect on the viscosity and, hence, on the resolution; that is, a higher temperature results in better resolution, because of lower viscosity (larger T, values). The most important aspect of temperature changes in the sample is, however, its effect on chemical-shift values. Thus, a series of I3C-n.m.r. spectra recorded for methyl a-aglucopyranoside in D 2 0 solution showedl9 linear changes in chemical shifts of up to 0.015 p.p.m./degree. Hence, when data have to be compared accurately, I3Cn.m.r. spectra should be recorded at the same temperature, and for samples that have reached temperature equilibrium in the probe. It is obvious that the best resolution is obtained from samples that contain no insoluble impurities, and no paramagnetic materials. The line broadening caused by soluble paramagnetic impurities" may be (16) E. Breitmaier and W. Voelter, 1 3 4 N M R Spectroscopy, Verlag Chemie, Weinheim, 1974. (17) M. L. Martin, J.-J. Delpuech, and G . J. Martin, Practical NMR Spectroscopy, Heyden, London, 1980. (18) K. Bock, L. D. Hall, and C. Pedersen, Can. J . Chern., 58 (1980) 1916-1922. (19) K. Bock, B. Meyer, and M. R. Vignon,J. Magn. Reson., 38 (1980) 545-551.
30
KLAUS BOCK AND CHRISTIAN PEDERSEN
diminished20 by treatment with an ion-exchange resin or by addition of small amounts of (ethylenedinitri1o)tetraacetate(EDTA).Dissolved oxygen also causes some line broadening; it may be removed sufficiently by boiling the solution in the sample tube for 1 minute.
-
2. Conditions for Optimal Signal-to-Noise Ratio The signal-to-noise ratio (s/n) obtained when a l3C-n.m.r. spectrum is recorded for a given sample solution depends, of course, on the type of instrument used, and it is obvious that a high-field instrument, quadrature detection, and large sample tubes are factors that all result in increased s/n in a given time. Increased concentration of the sample results in a larger s/n, but only to a certain extent, as too high a concentration will lead to line broadening, which will, in turn, have an adverse effect on the s/n. The pulse width is an important factor in the measurement of pulsed spectra. The optimal pulse-width may be estimated21from the equation cos a = exp(- T 1 / T ) ,in which a is the pulse width (in degrees), TI the spin-lattice relaxation-time (in s), and T the pulse-repetition time (in s). For monosaccharides in 20% aqueous solution, TI values of the protonated carbon atoms are22 1 s at 30". Using 8 k of computer memory for the acquisition, and a sweep width of 5-6 kHz, T becomes 0.6-0.8 s, and the equation gives an optimum pulse-width of -60". In Fig. 1 is shown a series of spectra measured at different pulse-widths, all other variables being kept constant. The best s/n is seen to correspond to a 63" pulse. If '%-n.m.r. spectra are recorded for very concentrated solutions, or impure samples, the TI values may become small, and, in such cases, a 90"sample pulse will be optimal. The s/n is, of course, directly proportional to the amount of sample present in the sample tube (more correctly, in the volume defined by the receiver coil); hence, a better s/n is obtained when a large sampletube is used. If, however, a limited amount of compound is available, it may be advantageous to use a smaller probe-insert, because this gives a better coupling between the receiver coil and the nuclei in the sample. The increased s/n resulting from measuring the same amount of compound in a 5-mm sample tube rather than in a 10-mm tube is illustrated in Fig. 2. It may be seen that the s/n ratio in the 5-mm insert is -3 times that in the 10-mm. Consequently, with the 5-mm tube, a
-
(20) M.Cohn and T. R. Hughes, Jr.,]. B i d . Chem., 237 (1962) 176-181. (21) R. R. Emst and W. A. Anderson, Rev. Sci. Instrum., 37 (1966) 93-102. (22) K. Bock and L. D. Hall, Carbohydr. Res., 40 (1975) c3-C5.
13C-N.M.R. SPECTROSCOPY OF MONOSACCHARIDES
31
FIG. 1.-22.63-MHz, 13C-N.m.r. Spectrum of Methyl 8-D-Xylopyranoside in D,O (0.5 M) at 274 K. [All spectra were obtained under the same experimental conditions, but with different pulse-widths:A, 90";B, 63";C, 45"; and D, 27". Obviously, the optimal signal-to-noise ratio is obtained with a 63" pulse-width.The numerals in A indicate the signals of carbon atoms 1-5.1
sln corresponding to that shown in Fig. 2A could have been achieved with only 20,000/9 = -2000 scans, because the s/n is proportional to the square root of the number of scans.
3. Referencing of Signals Carbon-13 chemical-shifts are defined relative to the carbon signal of internal tetramethylsilane (Me,Si); hence, when measuring spectra in organic solvents, Me4Si should be added to the sample solution as the internal reference-~tandard.2~ However, any homo- or hetero-nuclear signal of the solvent, or of an added reference compound, may be used to calculate the 13C-chemical shifts, provided that its shift rela(23) Pure A p p l . Chem., 45 (1976) 217-219.
32
KLAUS BOCK AND CHRISTIAN PEDERSEN
10mm
3
1
2
4
6
5 mm
B
s/n = 24.4/1
FIG.2.-22.63-MHz, %-N.m.r. Spectrum of Methyl /3-D-Xylopyranoside (10 mg) in 40. [A. Measured in a 10-mm sample-tube in 0.9 mL of DzO. B. Measured in a 5-mm sample-tube i n 0.3 mL of 40. Experimental conditions for the acquisition of the two spectra were exactly identical, and both spectra were obtained with 20,000 scans. In A, the numerals 1-5 indicate the signals of corresponding carbon atoms, and 6 indicates the signal of the 0-methyl group.]
tive to Me,Si is known. In aqueous solution, in which MF4Si is insoluble, it is necessary to use a water-soluble reference-compound unless external Me,Si (in a capillary tube) is employed. In most cases, internal 1,4-dioxane (67.4), acetone (30.5),or methanol (49.6 p.p.m.) are used as references when D,O is the solvent. For routine purposes, when accurate chemical-shifts are not important, it may be convenient to use the deuterium signal of the solvent as a heteronuclear reference, thus avoiding addition of any reference compound. 4. Quantitative Analysis It is often assumed that quantitative data cannot be satisfactorily obtained from integrated, I3C-n.m.r. spectra, because of saturation phenomena and nuclear Overhauser effects. However, if spectra are measured under suitable conditions, and if integrals (or peak heights) of
I3C-N.M.R.SPECTROSCOPY OF MONOSACCHARIDES
33
signals from carbon atoms carrying the same number of hydrogen atoms are compared, it is possible to obtain rather accurate information (f5%; that is, comparable to integrals obtained from 'H-n.m.r. spectra) about the relative amounts of components in a mixture. This has been discussed both from a general point of viewz4and, more specifically, with regard to carbohydrate^.^*'^-^^^^^^ It may be concluded that one of the most important conditions for correct integrals is a good s/n, which is, of course most, readily obtained for concentrated solutions. In such samples, the TI values are small, and hence, saturation is less likely. Furthermore, a sufficient digital resolution (at least 5 points per line) is necessary, in order to define the lines in a spectrum. This may be achieved by narrowing the sweep width, by using a sufficiently large computer memory, or by multiplying the free induction decay (f.i.d.) by a sensitivity-enhancement factor corresponding to a line broadening of 2-3 Hz. Obviously, integration can only be performed on signals that are completely separated; hence, high-field instruments are better suited for this purpose. Integrated, 13C-n.m.r. spectra have been used extensively to study mutarotational equilibria of monosaccharides, especially of ketoses, which do not have well-resolved, 'H-n.m.r. ~ p e c t r a , 2 ~ and - ~ also ~ have been used to determine the composition of crude reaction-mixture~.~~
5. Resolution Enhancement Better separation of poorly resolved signals can obviously be achieved by measuring a spectrum at higher field. However, because increased relaxation-times result in sharper lines,18the resolution can also be improved by using a low concentration, a high temperature, and a nonviscous solvent (for example, acetone). Besides, the use of a (24) S. Gillet and J.-J. Delpuech,]. Magn. Reson., 38 (1980)433-445. (25) J. W. Blunt and M. H. G. Munro, Aust. J . Chem., 29 (1976) 975-986. (2%) D. Horton and Z. Wataszek, Carbohydr. Res., 105 (1982) 145-153. (26) D. Doddrell and A. Allerhand,J. Am. Chem. SOC.,93 (1971)2779-2781. (27) L. Que and G. R. Gray, Biochemistry, 13 (1974) 146-153. (28) D. J. Wilbur, C . Williams, and A. Allerhand,J. Am. Chem. SOC.,99 (1977) 54505452. (29) C. Williams and A. Allerhand, Carbohydr. Res., 56 (1977) 173-179. (30) A. S. Perlin, P. C. M. H. du Penhoat, and H. S. Isbel1,Adu. Chem. Ser., 117 (1973) 39-50. (31) S. J. Angyal and G. S. Bethell, Aust. J . Chem., 29 (1976) 1249-1265. (32) W. Funcke, C. von Sonntag, and C. Triantaphylides,Carbohydr. Res., 75 (1979) 305 -309. (33) P. C. M. H. du Penhoat and A. S. Perlin, Carbohydr. Res., 36 (1974) 111-120. (34) K. Bock, C. Pedersen, and H. Thegersen, Acta Chem. Scand., Ser. B , 35 (1981) 441-449.
34
KLAUS BOCK A N D CHRISTIAN PEDERSEN
5-mm insert and sample tube, instead of the usual 10-mm tubes, will, with most instruments, result in sharper lines, in addition to the increased sensitivity mentioned earlier (see Fig. 2). Alternatively, the resolution of a spectrum may be improved by various mathematical methods, readily performed with a computer and normally described in the instruction manuals for the various n.m.r. instruments. A detailed discussion of data processing in Fourier-transform, n.m.r. spectroscopy was given in Reference 35. It should be mentioned that any mathematical improvement of resolution inevitably leads to a loss of s/n. Resolution enhancement is usually not important in proton-decoupled, W-n.m.r. spectra of monosaccharides. However, in the much more complex, proton-coupled, carbon spectra, this technique is useful if the rather small, two- or three-bond, C-H couplings have to be measured. 111. ASSIGNMENT TECHNIQUES The assignment of signals to specific carbon atoms is a necessary prerequisite to the application of 13C-n.m.r. spectroscopy in structural investigations. As assignment techniques have been described in numerous reviews and book~,3*~~'~*'"-" this area will be treated relatively briefly in the present article.
1. Comparison with Model Compounds In earlier publications, the assignment of signals in 13C-n.m.r. spectra of monosaccharides relied mostly on comparison with those of model compounds3697;this approach led to a number of simple, general rules, summarized as follows. ( a ) The anomeric carbon atoms in pyranoses and furanoses, and in their derivatives, resonate at lowest field (90-110 p.p.m.), except in 1-thioglycosides (see Table VI). (b) Carbon atoms carrying primary hydroxyl groups are found at 60-64 p.p.m. (c) Carbon atoms bearing secondary hydroxyl groups, in pyranoses and furanoses, give signals at 65-85 p.p.m. Signals of alkoxylated carbon atoms, including C-5 in pentopyranoses and C-4 in furanoses, are shifted 5-10 p.p.m. to lower field when compared with the corresponding, hydroxy-substituted carbon atoms. (35) J. C. Lindon and A. G . Femge, Prog. Nucl. Magn. Reson. Spectrosc., 14 (1980)2766. (36)A. S. Perlin, B. Caw, and H. J. Koch, Can. /. Chem., 48 (1970)2596-2606. (37) D.E. Dorman and J. D. Roberts,/.Am. Chem. Sac., 92 (1970)1355-1361.
13C-N.M.R.SPECTROSCOPY OF MONOSACCHARIDES
35
A number of more complicated rules on the influence of axial or equatorial substituents on the chemical shifts of a-,p-, or y-carbon atoms may be safely applied to simple, alicyclic m o l e ~ u l e s . 3 ~In~ ~ - ~ ~ the authors’ opinion, however, such rules are generally of limited value for pyranoses or hranoses, because these contain several, mutually interacting substituents, and use of these rules has, in several instances, led to erroneous assignments. 2. Isotopic Substitution
If a compound in which carbon atoms at known positions are substituted with deuterium or carbon-13 is available, the assignment of its l3C-n.m.r. spectrum is greatly facilitated. Substitution with carbon-13 results in a much stronger signal from the enriched carbon atom, and hence, in its unambiguous assignment. In addition, l3C-I3C couplings may be visible in the spectra of I3C-enriched compounds, and these, together with isotope-induced shifts, may assist in the assignment of In carbon atoms in positions a or p to the enriched carbon atom.9940-44 the I3C-n.m.r. spectra of C-deuterated compounds, the deuterium-carrying carbon atom usually gives no signal, due to coupling to deuterium, longer spin-lattice relaxation-time, and quadrupolar broadening of the signal. Furthermore, the p-carbon atoms may be assigned A convebecause of the small, deuterium-induced, upfield shift~.4~-~* nient procedure for the preparation of glycosides labelled with deuterium at the hydroxyl-bearing carbon atoms has been deve10ped.4~-~~ Introduction of such magnetic nuclei as I9F or 31Pleads to spin-spin (38)D.K. Dalling and D. M. Grant,]. Am. Chem. Soc., 89 (1967)6612-6622. (39)D. E. Doman and J. D. Roberts,]. Am. Chem. Soc., 93 (1971)4463-4472. (40)T.E. Walker, R. E. London, T. W. Whaley, R. Barker, and N. A. Matwiyoff,]. Am. Chem. SOC., 98 (1976)5807-5813. (41)T. E. Walker, R. E. London, R. Barker, and N. A. Matwiyoff, Carbohydr. Res., 60 (1978)9-18. (42)T.E.Walker and R. Barker, Carbohydr. Res., 64 (1978)266-270. (43)A. S. Serianni, E. L. Clark, and R. Barker, Carbohydr. Res., 72 (1979)79-91. (44)G . Excoffier, D. Y. Gagnaire, and F. R. Taravel, Carbohydr. Res., 56 (1977)229238. (45)P. A. J. Gorin, Can. ]. Chem., 52 (1974)458-461. (46)P. A. J. Gorin and M. Mazurek, Can.]. Chem., 53 (1975)1212-1223. (47)H. J. Koch and A. S. Perlin, Carbohydr. Res., 15 (1970)403-410. (48)E.Breitmaier and U. Hollstein, Org. Magn. Reson., 8 (1976)573-575. (49)H. J. Koch and R. S. Stuart, Carbohydr. Res., 67 (1978)341-348. (50) S.-C. Ho, H. J. Koch, and R. S. Stuart,Carbohydr. Res., 64 (1978)251-256. (51)F.Balza, N.Cyr, G. K. Hamer, A. S. Perlin, H. J. Koch, and R. S. Stuart, Carbohydr. Res., 59 (1977)c7-cll.
36
KLAUS BOCK AND CHRISTIAN PEDERSEN
coupling with neighboring carbon atoms, and their I3C-signals may therefore be readily identified.4"s"-"6 Whereas introduction of I3C or deuterium onto carbon atoms requires more-or-less laborious syntheses, 0-deuteration of hydroxyl groups or N-deuteration of amino groups is readily achieved by exchange of protons by deuterons with D,O. In the deuterated carbohydrates thus obtained, only small isotopic-shifts are observed in the '"C-n.m.r. spectra; however, when measured under appropriate conditions, these shifts are very useful for the assignment of 13C-signa1s.50,S7-6i
3. Correlation with Proton Spectra An assignment technique that requires no chemical modification of
the compound studied involves the use of proton-coupled, or off-resonance-decoupled, 'W-n.m.r. spectra. A proton-coupled spectrum, usually measured by the "gated decoupling" technique,'"'' contains information about the I3C-'H coupling-constants, but, as these are large, the 13Cmultiplets may overlap. In an off-resonance-decoupled ~pectrurn,~"-" the C-H couplings are lessened and, hence, overlap of signals is less likely. Both types of spectra show unambiguously how many protons are attached to each I3C nucleus. In addition to the large, one-bond, I3C-H couplings,2,62-65 fully proton-coupled spectra having good resolution will show two- or three-bond, 13C-H COUplings that may be useful for the assignment of signals to certain car(52) K. Bock and C. Pedersen, Acta Chem. Scand., Ser. B , 29 (1975)682-686. (53) V. Wray, J. Chem. Soc., Perkin Trans. 2, (1976) 1598-1605. (54) G . Adiwadjaja, B. Meyer, H. Paulsen, and J. Thiem, Tetrahedron, 35 (1979)3733%.
(55)J. V. O'Conner, H. A. Nunez, and R. Barker, Biochemistry, 18 (1979) 500-507. (56) T. A. W. Koerner, Jr., R. J. Voll, L. W. Cary, and E. S. Younathan, Biochemistry, 19 (1980) 2795-2801. (57) D. Y. Gagnaire and M. Vincendon,J. Chem. Soc., Chem. Commun., (1977) 509510. (58) D. Y. Gagnaire, D. Mancier, and M. Vincendon,Org. Magn. Reson., 11 (1978)344349. (59) P. E. Pfeffer, K. M. Valentine, and F. W. Parrish,J. Am. Chem. SOC., 101 (1979) 1265- 1274. (60) P. E. Pfeffer, F. W. Panish, and J. Unruh, Carbohydr. Res., 84 (1980) 13-23. (61) K. Bock, D. Y. Gagnaire, and M. R. Vignon, C . R . Acad. Sci., Ses. C , 289 (1979) 345-348. (62) K. Bock and C. Pedersen,]. Chem. Soc., Perkin Trans. 2, (1974)293-297. (63)K. Bock and C. Pedersen, Acta Chem. Scand., Ser. B , 29 (1975) 258-264. (64) J. A. Schwarcz and A. S. Perlin, Can. J . Chem., 50 (1972)3667-3676. (65) H. Paulsen, V. Sinnwell, and W. Greve, Carbohydr. Res., 49 (1976)27-35.
13C-N.M.R.SPECTROSCOPY OF MONOSACCHARIDES
37
bon atoms. Two- and three-bond, l3C-H couplings have been discussed in several a r t i ~ l e s , 4 O . ~and * ~ ~in- ~a ~review.72 The most straightforward way of assigning 13Csignals is through selective, proton decoupling. By this technique, one proton is irradiated at its resonance frequency with a low-power, single frequency, causing the signal of the carbon atom to which it is bound to appear as a singlet in the l3C-n.m.r. spectrum, whereas all of the other carbon atoms are coupled to protons, and hence give off-resonance, decoupled multiplets. This is clearly illustrated in Fig. 3. This technique, however, requires a fully assigned, 'H-n.m.r. spectrum having well-dispersed proton-signals (separated by at least 10 Hz), and is therefore best conducted with high-field instruments and for acylated carbohydrates, which afford better-separated proton-signals. With modem, pulsed Fourier-transform instruments, series of selective proton-decouplings may be performed automatically, provided that the correct, decoupling frequencies have been measured.15 Correlation between proton and carbon chemical-shifts and coupling-constants may also be obtained through heteronuclear, twodimensional, n.m.r. ex~eriments.733~~ 4. Relaxation rate^^,^"^
Carbon-13 relaxation-rates of monosaccharides are dominated by dipolar-relaxation mechanisms,18,22 and primarily give information ahor:t molecular m ~ t i o n , in ~ ~addition , ~ ~ to the somewhat trivial distinction between C, CH, CH, , and CH, groups. However, by measuring spectra with a suitable pulse-sequence, the differences in spin-lattice relaxation-rates can be used for the assignment of signals from overlapping C H and CH, groups.77
(66)R. U. Lemieux, T. L. Nagabhushan, and B. Paul, Can.]. Chem., 50 (1972)773-776. (67) A. S. Perlin, N. Cyr, R. G. S. Ritchie, and A. Parfondry, Carbohydr. Res., 37 (1974) cl-c4. (68)J. A. Schwarcz, N. Cyr, and A. S. Perlin, Can.]. Chem., 53 (1975) 1872-1875. (69) R. G. S. Ritchie, N. Cyr, and A. S. Perlin, Can.J . Chem., 54 (1976)2301-2309. (70) N. Cyr and A. S. Perlin, Can.J . Chem., 57 (1979)2504-2511. (71) R. U. Lemieux, Ann. N . Y. Acad. Sci., (1973) 915-934. (72) P. E. Hansen, Prog. Nucl. Magn. Reson. Spectrosc., 14 (1981) 175-296. (73) R. Freeman and G. A. Morris,]. Chem. SOC., Chem. Commun., (1978) 684-686. (74) L. D. Hall and G. A. Moms, Carbohydr. Res., 82 (1980) 175-184. (75) M. F. Czarniecki and E. R. Thomton,]. Am. Chem. Soc., 99 (1977)8279-8282. (76) J. M. Berry, L. D. Hall, and K. F. Wong, Carbohydr. Res., 56 (1977)C16-~20. Lallemand,]. Chem. SOC., Chem. Commun., (1981) 150-152; (77) C. LeCoco and J.-Y. D. M. DoddreIl and D. T. Pegg,]. Am. Chem. SOC., 102 (1980)6388-6390.
86
KLAUS BOCK AND CHRISTIAN PEDERSEN
38
I;,
H-1
~ - n.4 3 n-2
A
14.ti 65
OMe
90 MHz
i
I
C
D
/I
t.
.
I I I
FIG.3.--90-MWz, 'H-N.m.r. Spectrum in Deuteriochloroform (0.1M ) and 22.63-MHz, *T-N.m.r. Spectra of Methyl TetraO-acetyl-a-D-glucopyranosidein Deuteriochloroform (1 M). [A. The W M H z , 'H-n.m.r. spectrum, with the assignment ofthe signals given above the resonances. 8.The 22.63-MHz, 13C-n.m.r., proton-noise-decoupled, lacn.m.r. spectrum, with the assignment of the signals indicated below the resonances. C, D, E, and F show the results of a series of selective, proton decouplings, applied at the frequencies indicated in A, at positions C to F.]
5. Paramagnetic Reagents It is well known from 'H-n.m.r. spectroscopy that the addition of soluble, paramagnetic reagents (notably europium, gadolinium, and cupric complexes) causes large changes in chemical shifts and line widths. Similarly induced changes are observed in 13C-n.m.r.spectra, and their use for assignment of carbon signals have been discussed in general terms by several a u t h o r ~ . ' ~Paramagnetic ,'~ shift-reagents have
13C-N.M.R. SPECTROSCOPY OF MONOSACCHARIDES
39
also been applied in the study of I3C-n.rn.r. spectra of carbohydrate~.~~-~~
6. Protonation Shifts The chemical shifts observed in the I3C-n.m.r. spectra of aminodeoxy sugars are strongly dependent on the pH of the sample solution, and the spectra of such compounds should, therefore, be measured with control of the pH. Comparison of I3C-n.m.r. spectra, measured at low or high pH, that is, for compounds having protonated or free amino groups, may be used for the assignment of carbons a and p to the amino groups.11J6,81,82 Similar, but smaller, effects are-observed in the spectra of other ionizable compounds, such as aldonic or uronic acid^.^^,^^
IV . APPLICATIONS
1. Identity of Monosaccharides The most important, practical application of 13C-n.m.r.spectroscopy is probably the simple characterization and identification of organic compounds. Because of the simplicity of proton-decoupled carbon spectra, and the sensitivity of carbon-13 chemical-shifts towards structural changes, carbon spectra are extremely well suited for this purpose (see, for example, Ref. a), and it is for this reason that the emphasis of the present article has been placed on presenting chemical-shift data of monosaccharides and their derivatives. Such data are also important for structural studies of oligo- and poly-saccharides? and for the investigation of such mixtures as those arising from r n u t a r o t a t i ~ n ~(see ~ - ~Section ~ II,4) or from other reactionsa3* (78) B. Caw, G. Gatti, N. Cyr, and A. S. Perlin, Carbohydr. Res., 41 (1975) d - C 8 . (79) S. Hanessian and G . Patil, Tetrahedron Lett., (1978) 1031-1034. (80) P. McArdle, J. 0.Wood, E. E. Lee, and M. J. Conneely, Carbohydr. Res., 69 (1979) 39-46. (81) K. F. Koch, J. A. Rhoades, E. W. Hagaman, and E. Wenkert,J.Am. Chem. SOC., 96 (1974) 3300-3305. (82) R. U. Lemieux, K. Bock, L. T. J. Delbaere, S. Koto, and V. S. Rao, Can.].Chem., 58 (1980) 631-653. (83) K . Bock and C. Pedersen, unpublished results. (84) R. C. Beier, B. P. Mundy, and G. A. Strobel, Can.J . Chem., 58 (1980) 2800-2804. (85) W. Voelter, E. Breitmaier, and G. Jung,Angew. Chem., 83 (1971) 1011-1012. (86) S. J. Angyal, G. S. Bethell, D. E. Cowley, and V. A. Pickles, Aust. J . Chem., 29 (1976) 1239-1247. (87) C. F. Midelfort, R. K. Gupta, and H. P. Meloche,]. Biol. Chem., 252 (1977) 34863492.
KLAUS BOCK AND CHRISTIAN PEDERSEN
40
When studying the course of reactions, %-n.m.r. spectra may be used to monitor the progress of a reaction,% or to detect intermediates. The latter was achieved in a study of the Kiliani-Fischer reaction?* 2. Structure Determination The sensitivity of carbon-13 chemical-shifts towards changes in substitution renders W-n.m.r. spectroscopy very useful for the determination of the structures of unknown compounds. This is clearly seen from the large changes in carbon-13 chemical-shifts encountered when deoxy, aminodeoxy, deoxyhalogeno, thio, or unsaturated h n c tions are introduced into monosaccharides (see Tables X-XII, and XIV) and it reflects the influence of electronegativity and polarizability on the chemical shifts. It may be noted that whereas a chlorine and bromine atom situated on C-1 of aldose derivatives causes upfield shifts of 2 and 5 p.p.m., respectively (see Table VI), a much larger effect is observed when substitution takes place at other carbon atoms of pyranoses or furanoses. Thus, replacement of oxygen by chlorine at C 4 or C-6 of galactopyranose causes upfield shifts of 7 and 19 p.p.m., respectively; the corresponding shifts for bromine are -20 and -28 p.p.m., respectively. Similar, carbon-13 chemical-shifts are found in deoxy sugars; but deoxy and deoxyhalogeno carbon atoms can be readily differentiated through the multiplicities of their protoncoupled, W-n.m .r . spectra. A change of ring size is also accompanied by a change of chemical shifts; thus, furanoses and other five-membered rings have chemical shifts downfield from those of the configurationally related, six-membered (see Tables 1-111). Similar relationships are found for five- and six-membered lactonesSR(see Table XX). Acyclic derivatives show chemical shifts at higher field than those of the corresponding cyclic compounds (see Tables XV and XVI). In five-menibered, isopropylidene derivatives that are monocyclic, or fused to a pyranoid ring, the chemical shifts for the quaternary carbon atoms are 108.5111.4 p.p.m., whereas values of 111.4-115.7 p.p.m. are found when they are fused to a furanose ring. Six- and seven-membered, isopropylidene derivatives show the quaternary carbon atoms at 97.1-99.5 and 101- 102 p.p.m., Similar data have been educed from 13C-n.m.r.spectra of benzylidene derivativesw The chemical shifts of the methyl groups of isopropylidene derivatives may also give information concerning the ring size.89The two carbon atoms engaged in
-
-
(88) R. M. Blazer and T. W. Whaley,J. Am. Chem. Soc., 102 (1980)5082-5085. (89) J. G. Buchanan, M. E. Chac6n-Fuertes, A. R. Edgar, S. J. Moorehouse, D. I. Rawson, and R. H. Wightman, Tetrahedron k t t . , (1980)1793-1796. (90)T. B. Grindley and V. Culasekharam, Carbohydc Res., 74 (1979)7-30.
W-N.M.R. SPECTROSCOPY OF MONOSACCHARIDES
41
an epoxide give carbon signals at higher field than those of five- and six-membered rings (see Table XIII). Furthermore, the signals of epoxide carbon atoms may be assigned from their large (180-190 Hz), one-bond, C-H coupling-~onstants.~~ Although many pairs of anomers give quite different signals for the anomeric carbon atoms, it has not been found possible to discover a general relationship between the anomeric configuration and the chemical shifts. However, for those furanoses in which the substituents at C-1 and C-2 are trans-oriented, the signals of the anomeric carbon atoms are always found at lower field than in those of the corresponding cis isomers.92For pyranoses, this relationship does not hold, but the anomeric structure of pyranoses can always be determined2s4. 62,83,64,74 from the one-bond coupling-constants, namely, JC--I,H--l. The corresponding coupling-constants of furanoses cannot be used to determine anomeric structures. Alkylation of oxygen leads to a rather large, downfield shift of the a-carbon atom (see Section II1,l and Table VIII), as discussed in reviews3s5Jand in several papers.36,37,93-97 Similarly, formation of cyclic acetals in downfield shifts of the furanose or pyranose car(91) K. S. Kim, D. M. Vyas, and W. A. Szarek, Carbohydr. Res., 72 (1979) 25-33. (92)R. G. S. Ritchie, N. Cyr, B. Korsch, H. J. Koch, and A. S. Perlin, Can.J . Chem., 53 (1975) 1424-1433. (93)P. A. J. Gorin and M. Mazurek, Carbohydr. Res., 48 (1976)171-186. (94) J. Haverkamp, J. P. C. M. van Dongen, and J. F. G. Vliegenthart, Tetrahedron, 29 (1973)3431-3439. (95) J. Haverkamp, J. P. C. M. van Dongen, and J. F. G. Vliegenthart, Carbohydr. Res., 33 (1974)319-327. (96) J. Haverkamp, M. J. A. De Bie, and J. F. G. Vliegenthart, Carbohydr. Res., 39 (1975)201-211. (97) R. Usui, N. Yamaoka, K. Matsuda, K. Tuzimura, H. Sugiyama, and S. Seto, J . Chem. Soc.,Perkin Trans. 1, (1973) 2425-2432. (98) W. Voelter, E. Breitmaier, E. B. Rathbone, and A. M. Stephen, Tetrahedron, 29 (1973)3845-3848. (99) W. A. Szarek, A. Zamojski, A. R. Gibson, D. M. Vyas, and J. K. N. Jones, Can. J . C h m . , 54 (1976)3783-3793. (100) A. S. Shashkov, A. I. Shienok, M. Islomov, A. F. Sviridov, and 0. S. Chizhov, Bioorg. Khim., 3 (1977)1021-1027. (101) A. Lip&, P. Nhhsi, A. Neszmklyi, and H. Wagner, Carbohydr. Res., 86 (1980) 133-136. (102) E. Conway, R. D. Guthrie, S. D. Gero, G. Lukacs, and A.-M. Sepulchre,J. Chem. Soc., Perkin Trans. 2, (1974) 542-546. (103) A. Lip&, P. Fugedi, P. Nhnhsi, and A. NeszmBlyi, Tetrahedron, 35 (1979)11111119. (104) A. NeszmBlyi. A. LipKk, and P. Nbhsi, Carbohydr. Res., 58 (1977) ~ 7 - m . (105) P. J. Garegg, B. Lindberg, and I. Kvamstrom, Carbohydr. Res., 77 (1979)71-78. (106) P. J. Garegg, P.-E. Jansson, B. Lindberg, F. Lindh, J. Lonngren, I. Kvarnstrom, and W. Nimmich, Carbohydr. Res., 78 (1980) 127-132.
42
KLAUS BOCK AND CHRISTIAN PEDERSEN
bon atoms (see Table IX).Introduction of an acyl group onto oxygen causes a smaller (1.5-4p.p.m.), downfield shift of the a-carbon atom than that of an alkyl group. However, as 0-acylation causes the signal of the @-carbonatom to shift upfield (1-5 p.p.m.), the cumulative effect of several acyl groups may be difficult to predict. Acylation effects on simple alcohols have been d i ~ c u s s e d , ~and ~ *systematic '~~ studies of I3C-n.m.r. spectra of carbohydrates selectively 0-acylated in different positions have been reported by several a ~ t h o r s . ' ~ ~ - ~ ~ ~ Just as introduction of a magnetic nucleus into a known position may help in assigning the signals in a 13C-n.m.r.spectrum (see Section III,Z), the placement of an isotope in an unknown position may be determined from isotope shifts or from, for e ~ a m p l e , ' ~ C - *coupling ~C constants, or both. In most cases, the stereochemistry of the quaternary carbon atom in branched-chain carbohydrates cannot be elucidated from 'H-n.m.r. spectra, but 13C-chemical shifts, or long-range, I3C-lH coupling-constants, may often yield valuable inf~rmation."*-"~Likewise, the stereochemistry of acetal carbon atoms of benzylidene derivatives,103* l w and of acetals derived from pyruvic acid,105*10g may be determined from I3C-chemical shifts. Finally, from the 13C-chemicalshifts of glycopyranosides, it is possible to obtain information about the stereochemistry of chiral aglycons. I?'
(107) Y. Terui, K. Tori, and N. Tsuji, Tetrahedron Lett., (1976) 621-622. (108) M. R. Vignon and P. J. A. Vottero, Tetrahedron Lett., (1976) 2445-2448. (109) M. R. Vignon and P. J. A. Vottero, Carbohydr. Res., 53 (1977) 197-207. (110) K. Yoshimoto, Y. Itatani, and Y. Tsuda, Chem. Pharm. Bull., 28 (1980)2065-2076. (111) K. Yoshimoto, Y. Itatani, K. Shibata, and Y. Tsuda, Chem. Pharm. Bull., 28 (1980) 208-219. (112) H. Komura, A. Matsuno, Y. Ishido, K. Kushida, and K. Aoki, Carbohydr. Res., 65 (1978) 271-277. (113) P. E. Pfeffer, K. M. Valentine, B. G. Moyer, and D. L. Gustine, Carbohydr. Res., 73 (1979) 1-8. (114) P. M. Collins and V. R. N. Munasinghe, Carbohydr. Res., 62 (1978) 19-26. (115) J.-C. Depezay, A. Dukault, and M. Saniere, Carbohydr.Res., 83 (1980)273-286. (116) M. MiljkoviC, M. GligorijeviC, T. Satoh, D. GliSin, and R. G. Pitcher, J . Org. Chern., 39 (1974) 3847-3850. (117) K. Sato, M. Matsuzawa, K. Ajisaka, and J. Yoshimura, Bull. Chem. SOC. Jpn., 53 (1980) 189-191. (118) A.-M. Sepulchre, B. Septe, G. Lukacs, S. D. Gero, W. Voelter, and E. Breitmaier, Tetrabdron, 30 (1974) 905-915. (119) S. Seo, Y. Tomita, K.Ton, and J. Yoshimura,J. Am. Chem. Soc., 100 (1978)33313339.
W-N.M.R. SPECTROSCOPY OF MONOSACCHARIDES
43
3. Conformational Analysis Relatively little use has yet been made of I3C-n.m.r. spectroscopy in conformational analysis. The most extensive studies have been conducted on furanoses, the conformational equilibria of which may be studied by consideration both of carbon-13 chemical-shifts and of twoand three-bond, C-H coupling-constants.70The conformation of pentopyranoses has been investigated through one-bond, C-H couplingconstantsF3 Other applications of two- and three-bond, C-H couplings are described in Refs. 120 and 121. An experimental method for the determination of long-range, C -H coupling-constants has been describedIe2;this technique can conveniently be used with modem, n.m.r. instruments having full computer-control of the decoupling channels.
4. Relaxation Rates Carbon-13, spin-lattice relaxation-rates may be readily measured with pulsed, Fourier-transform instruments, and they primarily provide information about the molecular motion in s o l ~ t i o n . ~ , ~ ~ ~ ~ , Carbon-13 relaxation-rates have mostly been used to obtain structural information on polysa~charides.~
5. Complexation Carbon-13 chemical-shifts have been used to study the interaction of monosaccharides with such complexing agents as b o r a t e ~ ' ~ *and J~~ calcium ion^.'^^,'^^ Paramagnetic complexing-agents are mentioned in Section III,5.
(120) D. Y. Gagnaire, R. Nardin, F. R. Taravel, and M. R. Vignon, Nouo. J . Chim., 1 (1977) 423-430. (121) R. U. Lemieux and S. Koto, Tetrahedron, 30 (1974) 1933-1944. (122) K. Bock and C. Pedersen,J. Magn. Reson., 25 (1977) 227-230. (123) A. Neszmelyi, K. Ton, and G . Lukacs,J. Chem. SOC.,Chem. Commun., (1977)613 -614. (124) P. A. J. Gorin and M. Mazurek, Carbohydr. Res., 27 (1973) 325-339; Can. J . Chem., 51 (1973)3277-3286. (125) W. Voelter, C. Biirvenich, and E. Breitmaier,Angew. Chem., 84 (1972) 589-590. (126) M. F. Czamiecki and E. R. Thornton, Biochem. Biophys. Res. Commun., 74 (1977) 553-558. (127) L. W. Jaques, J. B. Macaskill, andW. Weltner, ]I.,]. Chem. Phys., 83 (1979) 14121421.
44
KLAUS BOCK AND CHRISTIAN PEDERSEN
V. TABLES* In the following Tables are presented I3C-n.m.r. chemical-shifts of a variety of monosaccharides and their derivatives. As far as possible, complete sets of shift values are given for all of the pentoses, hexoses, methyl glycosides, alditols, and aldonic acids. In addition, the chemical shifts of a selection of the most common types of derivatives of monosaccharides are given. For many compounds, especially free sugars or methyl glycosides, carbon-13 chemical-shifts have been published several times for the same compound. In such cases, references are not necessarily given to all relevant articles, but primarily to those that give a complete assignment. When more than one reference is given to the same compound, the chemical-shift data have been taken from the reference marked with an asterisk in the Table. The majority of the spectra given in the Tables have been unambiguously assigned. Those which are not assigned (indicated with a superscript a ) are included because each constitutes a valuable identification of the compound. For many carbohydrate derivatives, only a few examples of spectra are given. Those references that contain a considerable number of additional data on similar derivatives are marked, or mentioned in footnotes to the Tables. The chemical shifts given in the Tables are, unless otherwise stated, from spectra recorded for solutions in D,O or in deuteriochloroform. Carbon-13 chemical-shifts published for a particular compound may differ considerably (by 1 to 2 p.p.m.), depending on the concentration, the temperature, and the reference standard used. Apart from changes caused by temperature,IYthe variations are generally the same for all of the carbon atoms in a compound, causing a parallel shift of signals. Because of these variations, the values in the Tables have been rounded off to one figure after the decimal point.
* The authors are grateful to Professor S . J. Angyal for a number of suggestions regarding, and corrections to, the data in the Tables. Data on heptoses, heptuloses, and heptitols will be published by S. J. Angyal and coworkers.
45
I3C-N.M.R.SPECTROSCOPY OF MONOSACCHARIDES TABLE I 13C-N.m.r.Data for Aldoses Compound
C-1
D-Hexopyranoses a-All 93.7 P943 U-Alt 94.7 P92.6 a-Gal 93.2 P97.3 (Y-GlC 92.9 P96.7 CY-GUl 93.6 P94.6 a-Ido 93.2 P93.9 a-Man 95.0 P94.6 a-Tal 95.5 P95.0 D-Pentopyranoses 97.6 a-Ara P93.4 a-Lyx 94.9 P95.0 a-Rib 94.3 P94.7 a-Xyl 93.1 P97.5 D-Hexofuranoses a-All 96.8 P101.6 a-Alt 102.2 P96.2 ff-Gal 95.8 P101.8 P-ClC 103.8
c-2
c-3
C-4
c-5
C-6
References
67.9 72.2 71.2 71.6 69.4 72.9 72.5 75.1 65.5 69.9 73.6" 71.1" 71.7 72.3 71.7' 72.5"
72.0 66.9 72.0 67.7 71.1 66.0 71.3 65.2 70.2 70.3 73.8 69.7 73.8 70.6 70.6 76.7 71.6 70.2 70.2 72.0 72.7" 70.6" 68.8c 70.6' 71.3 68.0 74.1 67.8 70.6c 66.0 69.6" 69.4
37,83,*128" 67.7 61.6 74.4 62.1 36,37,63* 61.6 129 72 .O 129 75.0 62.5 36,37,59,*98 71.4 62.2 36,37,59,*98 76.0 62.0 72.3 61.6 29,36,37,40.46,59,*85,130" 76.8 61.7 29,36,37,40,46,59,*1306 67.2 61.7 83 74.6 61.8 83 73.6" 59.4 83 75.6" 62.1 83 73.4 62.1 28,36,37,40,46,*130,b131 77.2 62.1 28,36,37,46,*1306 72 .O 62.4 59,*131 59,*131 76.5 62.2
72.9 69.5 71.0 70.9 70.8 71.8 72.5 75.1
73.5 69.5 71.4 73.5 70.1 69.7 73.9 76.8
69.6 69.5 68.4 67.4 68.1 68.2 70.4 70.2
67.2 63.4 63.9 65.0 63.8 63.8 61.9 66.1
72.4 76.1 82.4 77.5 77.1 82.2 81.8"
d
73.3 76.9 76.0 75.1 76.6
84.3 83.0 84.3 82.1 81.6 82.8 82.1'
70.2 71.7 72.5 73.4
d
d
71.5 d
36,37,46,59,*131,132* 36,37,46,59,*131,132* 36,37,83* 36,37,83* 36,48,83* 36,37,48,63,*131 36,37,46,59,*131,133 36,37,46,59,*131,133 63.1 63.3 63.3 63.3 63.3 63.6 d
83 83 129 129 83 83
29 (continued)
(128) W. A. Szarek, D. M. Vyas, S. D. Gero, and G. Lukacs, Can. J . Chem., 52 (1974) 3394 -3400. (129) K. Bock and M. Beck Sommer, Acta Chem. Scand., Ser. B , 34 (1980) 389. (130) R. Kasai, M. Okihara, J. Asakawa, K. Mizutani, and 0. Tanaka, Tetrahedron, 35 (1979) 1427- 1432. (131) W. Voelter and E. Breitmaier, Org. Magn. Reson., 5 (1973) 311-319. (132) K. Mizutani, R. Kasai, and 0. Tanaka, Carbohydr. Res., 87 (1980) 19-26. (133) J.-P. Utille and P. J. A. Vottero, Carbohydr. Res., 85 (1980) 289-297.
46
KLAUS BOCK A N D CHRISTIAN PEDERSEN
TABLEI (continued) Compound ~~
C-2
C-1 ~
C-3
C-4
C-5
C-6
References
~
97.3 101.4 a-ldo 102.5 B96.3 a-Tal 101.8 P97.3 DPentofuranoses a-Ara 101.9 896.0 a-Lyx 101.5 &-Rib 97.1 8101.7 m-Erythrose a-Furanose 96.8 P-Furanose 102.4 Hydrate 90.8 DL-Threose a-Furanose 103.4 P-Furanose 97.9 Hydrate 91.1 DL-Glyceraldehyde Hydrate 91.2 Glycolaldehyde Hydrate 91.2 Formaldehyde Hydrate 83.3 CV-GUI
P-
75.6‘ 75.9 72.7 72.0
80.4 80.3 82.2 81.6 82.7 83.3
62.6 63.2 70.3‘ 63.4 71.7c 63.4 71.6 63.7 63.8
82.3 77.1 77.8 71.7 76 .O
76.5 75.1 71.9 70.8 71.2
83.8 82.2 80.7 83.8 83.3
62.0 62.0 61.9 62.1 63.3
72.4 77.7 74.9
70.6 71.7 73.0
72.9 72.4 64 .O
43 43 43
82.0 77.5 74.6
76.4 76.2 72.2
74.3 71.8 64.4
43 43 43
75.5
63.4
d
d
78.1 78.6 77 .O 76.1 71.6
d
83 83
83
83 59,*131 59.*131 83 83 83 48,83* 48,83*
43 43
66.0
43
In dimethyl sulfoxide-d,. Not resolved.
Assignment may have to be reversed.
In pyridine-d,.
TABLE I1
W-N.m.r. Data for Methyl Aldosides ~~
~
~~
~
~
C-2
C-3
C-4
C-5
D-Hexopyranosides a-All 100.0 68.3 P101.9 72.2 a-Alt 101.1 70.0 P100.4 70.7 a-Gal 100.1 69.2 P104.5 71.7 a-Glc 100.0 72.2
72.1 71.4 70.0 70.2 70.5 73.8 74.1
68.0 68.0 64.8 65.6 70.2 69.7 70.6
67.3 74.8 70.0 75.6 71.6 76.0 72.5
Compound
P-
C-1
104.0 74.1 76.8
70.6 76.8
C-6 @Me
References
83 83 36 55.4 83 57.7 36,59,*131 56.0 36,59,*131 58.1 55.9 36,37,40,46,49,59,*60,99,” 130,”134 61.8 58.1 36,37,40,46,49,59,*60,99,” 130,b134
61.7 62.2 61.3 61.7 62.2 62.0 61.6
56.3
58.0
I3C-N.M.R. SPECTROSCOPY OF MONOSACCHARIDES
47
TABLEI1 (continued) Compound
C-1
100.4 102.6 a-Ido 101.5 101.9 a-Man p101.3 102.2 a-Tal D-Pentopyranosides 105.1 a-Ara p101.0 (Y-LYX 102.0 100.4 a-Rib 103.1 6100.6 a-Xyl p105.1 D-Hexofuranosides a-All 103.8 p109.0 a-Gal 103.8 p109.9 a-Glc 104.0 p110.0 109.7 a-Man p103.6 D-Pentofuranosides 109.2 a-Ara P103.1 109.2 a-Lyx P103.3 103.1 a-Rib 108.0 p103.0 a-Xyl p109.7 D-Tetrofuranosides a-Ery 103.6 p109.6 a-Thr 109.4 p103.8 a-Gul
p-
C-2
C-3
C-4
C-5
65.5 69.1 70.9 71.2 70.6 70.7
71.4 72.3 71.8 71.8 73.3 66.2
70.4 70.5 70.3 68.0 67.1 70.3
67.3 74.9 70.8 73.7 76.6 72.1
71.8 69.4 70.4 69.2 71.0 72.3 74.0
73.4 69.9 71.6 70.4 68.6 74.3 76.9
69.4 70.0 67.7 67.4 68.6 70.4 70.4
67.3 63.8 63.3 60.8 63.9 62.0 66.3
72.3 75.6 78.2 81.3 77.7 80.6 77.9 73.1
69.9 72.7 76.2 78.4 76.6 75.8 72.5 712d
85.9 83.4 83.1 84.7 78.8 82.3 80.5 80.7
72.7 73.8 74.5 71.7 70.7 70.7 70.6 71.W
81.8 77.4 77.0 73.2 71.1 74.3 77.8 81.0
77.5 75.7 72.2 71.0 69.8 70.9 76.2 76.0
84.9 82.9 81.4 82.1 84.6 83.0 79.3 83.6
62.4 62.4 61.5 62.7 61.9 62.9 61.6 62.2
72.8 76.4 80.5 77.4
69.9 71.4 76.4 75.8
73.6 72.6 73.7 72.0
C-6 0-Me
62.0 62.1 60.2 62.1 61.4 62.3
56.3 58.1 55.8 55.9 56.9 55.6
58.1 56.3 55.9 56.7 57.0 56.0 58.3 63.5 63.9 64.1 63.6 64.2 64.7 64.5 64.4
References
135 136 36 36,46,* 13CP 36,*130" 83 46,59,*131 , 1 3 2 , " ~ 46,59,*1 3 1 , 1 3 2 , " ~ 63 63 63,*131,134 36,46,*131,134 36,46,*131,134
56.6 56.4 57.2 55.6 57.0 56.3 57.2 56.8
92 92 92 92 92 92 92 92
56.0 56.3 56.9 56.7 55.5 55.3 56.7 56.4
46,92,*137 46,92,*137 92 92 46,92,*137 46,92,*137 92,*138 92,*138
56.7 56.6 55.5 56.2
92 92 92 92
~
a In dimethyl sulfoxided,. may have to be reversed.
* In pyridined,.
Contain additional data. Assignment
(134) E. Breitmaier, W. Voelter, G. Jung, and C. Tanzer, Chem. Ber., 104 (1971) 11471154. (135) H. Naganawa, Y. Muraoka, T. Takita, and H. Umezawa, J . Antibiot., Ses. A, 30 (1977) 388-396. (136) S. Jacobsen and 0. Mols, Acta Chem. Scand., Ser. B , 35 (1981)163-168. (137) E.Breitmaier, G . Jung, and W. Voelter, Chimia, 26 (1972) 136-139. (138) P. W. K. Woo and R. D. Westland, Carbohydr. Res., 31 (1973) 27-36.
48
KLAUS BOCK AND CHRISTIAN PEDERSEN
TABLE111 'T-N.m.r. Data for Ketoses and Their Methyl Glycosides
Compound
C-1
DHexopyranoses a-Fni 65.9 B64.7 a-Psi 64 .O
B-
64.8
64.5 64.8 864.4 DHexofuranoses a-Fm 63.8 863.6 a-Psi 64.2 B63.3 a-Sor 64.3 a-Tag P63.5 D-Hexopyranosides B-FN 61.8 a-Psi 61.1 B57.7 a-Sor 61.2 &-Tag 61.0 B61.7 D-Hexofuranosides a-Fni 58.7 B60.0 a-Sor 60.7 B57.7 a-Tag 58.8 P60.3 a-Sor a-Tag
C-2
C-3
G4
C-5
C-6
99.1 98.4 992 98.5 99.0 99.1
70.9 68.4 66.4 71.2 71.4 70.7 64.6
71.3 70.5 72.6 65.9 74.8 71.8 70.7
70.0 66.7 69.8 70.3 672 70.1
64.1 58.8 65.0 62.7 63.1 61.0
105.5 102.6 104.0 106.4 102.5 105.7 103.3
82.9 76.4 71.2 75.5 77.0 77.6 71.7
77.0 75.4 71.2 71.8 76.2 71.9 71.8
82.2 81.6 83.6 83.6 78.6 80.0 80.9
61.9 63.2 62.2 63.7 61.6
101.4 100.7 102.6 100.9 102.4 101.4
69.3 67.3 69.7 72.0 69.6 65.5
70.5 72.1 65.7 74.5 71.7 71.5"
70.0 66.7 69.9 70.1 66.8 70.4a
64.7 58.9 65.4 63.0 63.4 61.1
49.3 49.1 48.7 49.2 48.5 49.3
31 31 31 31 31 31
109.1 104.7 1042 109.9 108.7 105.3
81.0 77.7 80.0 80.3 75.2 73.4
78.2 75.9 76.5 772 71.9 71.7
84.0 82.1 78.8 83.4 80.6 82.0
62.1 63.6 61.6 62.1 60.8 61.9
49.1 49.8 49.9 49.3 49.6 49.8
31 31 31 31 31 31
C-OMe
References 31 26,27,31* 27,30,31,*33 27,30,31,*33 31,*27 31,*27 31,*27 26,27,31,*32 26,27,31,*32 27,30,31,*33 27,30,3 1,*33 31,*27 31,*27 31,*27
61.9
Assignments may have to be reversed. For further data, see p. 66.
TABLEIV W-N.m.r. Data for Glycosides of Aromatic Aglycons C-2
C-3
C4
C-5
C-6
References
Phenyl D-glucopyranosides a 97.9 72.0 B 103.1 75.8 a p-NO, 100.5 74.1 B 102.7 76.0 B m-NO, 103.6 76.1 p &NO* 103.3 76.0
73.3 79.5 76.9 80.1 80.0
70.2 72.4 72.5 72.4 72.6 72.4
73.9 79.3 75.8 79.3 79.2 79.5
61.1 63.6 63.5 63.5 63.6 63.5
83 134 134 134 134 134
Compound
C-1
80.1
49
13C-N.M.R. SPECTROSCOPY OF MONOSACCHARIDES
TABLEIV (continued)
Compound
C-1
C-2
Phenyl D-gdactopyranosides 104.0 73.6 P 75.5 a p-NOI 100.8 103.4 73.2 P p m-NO, 101.2 73.3 73.2 fi o-NOZ 104.1 Phenyl Dmannopyrawsides 73.4 a p-NO, 101.5
C-4
C-5
C-6
References
76.4 712 76.1 76.1 76.3
71.3 70.5 71.1 71.1 71.1
78.3 72.1 78.6 78.7 78.7
63.7 63.0 63.5 63.5
63.5
134 134 134 134
72.5
69.5
78.0
63.8
134
C-3
134
TABLEV 13C-N.m.r. Data for Peracetylated Pyranoses and Furanoses ~
Compound
C1
D-Hexopyranoses 90.1 P-All a-Alt 90.2 ff-Gal 89.5 P91.8 a-Glc 89.2 P91.8 p-Gul 89.7 a-Ido 90.4 a-Man 90.4 ff-Tal 91.4 D-Pentopyranoses a-Ara 92.2 B90.4 a-Lyx 90.7 a-Rib 88.7 P90.7 a-Xyl 88.9 P91.7 D-Pentofuranoses a-Ara 99.4 P93.7 a-Lyx 98.0 P93.2 a-Rib 94.1 P98.1 a-Xyl 92.8 P98.9 a
C-2
C-3
C-4
C-5
C-6
References
68.2 68.2 67.2 67.8 69.3 70.5 67.3" 65.9 68.6 65.2"
68.2 66.4 67.2 70.6 69.9 72.8 67.1" 66.2 68.2 66.3"
65.8 66.4 66.2 66.8 68.O 68.1 67.1" 65.9 65.4 65.3"
71.2 64.4 68.5 71.5 69.9 72.8 71.1 66.2 70.5 68.8"
61.9 62.1 61.0 61.0 61.6 61.7 61.3 61.8 62.0 61.5
63 63 83 63 108 108,109* 83 63 62 63
68.2 67.3 68.2 67.1 67.1 69.2 69.3
69.9 68.7 68.2 65.6 66.0 69.2 70.8
67.3 66.9 66.6 66.5 66.0 68.8 68.1
63.8 62.9 61.9 59.3 62.5 60.5 62.5
80.6 75.4 75.0 70.5 70.0 74.1 75.3 79.4
76.9 74.8 70.6 68.5 69.8 70.5 73.8 74.3
82.4 79.7 77.0 77.7 81.6 79.2 75.4 79.9
63.1 64.5 62.4 62.8 63.3 63.6 61.6 62.3
63 63 63 63 63 63+*133* 63,*133b 139 139 139 139 139 139 139 139
Assignments may have to be reversed. * Contains additional data.
(139) B.L. Kam,J.-L. Barascut, and J.-L. Imbach, Carbohydr..Res., 69 (1979) 135-142.
.50
KLAUS BOCK AND CHRlSTlAN PEDERSEN
TABLEVI '"C-N.rn.r.Data for Tetra-0-acetyl-(benmy1)-Dglycopyranos yl Derivatives" ~~
Compound
~ g l u c oderivatives a-Azide
P-
a-Bromide a-Chloride
P-
@-Cyanide a-Fluoride
P-
a-Methoxy
P-
a-Phenoxy
P-
a-Phenylamino
P-
C-1
C-2
C-3
86.1 87.3 86.5 89.5 87.1 66.8 103.5 105.7 96.3 101.1 94.3 98.8 80.1
69.7 70.3 70.4b 70.2b 72.4 69.4 69.9 70.6 70.4 70.9 70.5 71.1 65.8 70.4 70.8* 69.6b 71.W 68.76 69.4
69.8 72.2 72.P 70.3b 73.0 73.3 69.1 71.4 69.7 72.5 70.1 71.8 71.0 72.1 70.6 73.7b 70.7b 73.56 70.3
68.9 64.6b 67.6 68.5 69.1 69.3
68.2 66.6b 67.6 70.2 68.8 70.4 69.3 68.2 67.4 66.0 69.1 71.0
84 .O
81.8 83.2 a-Methylthio 83.0 P82.3 a-Methoxy, benzoate 96.8 Methyl mglycopyranosides ,&All 99.3 a-Alt 98.2 a-Gal 96.5 P101.5 a-Man 98.1 a-Ara 101.9 P97.6 a-Lyx 98.4 a-Rib 97.5 a-Ethylthio
P-
P-
a-Xyl
P-
68.4
69.3 67.5 99.4 68.3 96.4 70.5 101.0 70.2
C-4
C-5
70.1 73.6 70.W 68.8b 74.9 77.3 69.6 71.5 66.8 71.4 68.1 72.5 72.1 72.8 67.6b 75.6b 68.96 67.76 68.v 75.5b 67.5 71.8 68.1
67.6 67.W 66.8b 67.2 67.8 67.1 67.0 68.2 68.1 68.4 68.2 68.5 68.7 68.7 68.2b
66.1 64.1b 67.0 66.8 65.8 67.9 67.2 66.6 66.1 66.9 68.8 68.3
70.0 68.96 65.7 70.6 68.0 63.2 60.3 59.4 57.9 61.1 57.7 61.3
C-6 61.7 61.4 60.8 60.4 61.2 61.8 61.0 61.3 61.5 61.6 61.7 61.8 61.7 62.0 62.0 61.9 62.1 61.8 62.9 62.1 62.2 61.2 61.0 62.1
Me
114.5 55.6 56.6
12.4 55.4
-
References
140 62 62 62 62 141 52,62* 52,62* 62,63,*142 62,63,*142 83 62 62 62 143 62 143 62 62
56.0 144 55.0 62 54.8 62,63,*142 56.6 62,*142 54.9 62,63* 63,*142 56.6 55.4 63,*142 54.9 63 56.2 63 55.7 63 54.7 63,*133,142 55.8 63,*133,142
Additional data for related compounds are given in Refs. 145-148. may have to be reversed.
Assignments
(140) T. Takeda, Y. Sugiura, Y. Ogihara, and S. Shibata, Can.1.Chem., 58 (1980)26002603. (141) B. Coxon, Ann. N . Y. Acad. Sci., (1973) 952-970. (142) A. 1. Kalinovskii and E. V. Evtushenko, Khim. Prir. Soedin., 1(1979) 6-8. (143) B. S. Petersen, Ph.D. Thesis, Danrnarks Tekniske Haiskole, Lynehy, 1978. (1M) K. Bock, S. R. Jensen, B. J. Nielsen, and V. Nom, Phytochemistry, 17 (1978) 753757. (145) H. Pauisen, A. Richter, V. Sinnwell, and W. Stenzel, Carbohydr. Res., 64 (1978) 339-364.
i3C-N.M.R. SPECTROSCOPY O F MONOSACCHARIDES
51
TABLEVII 13C-N.m.r.Data for Anhydropyranose Derivatives" Compound
C-1
C-2
C-3 C-4
C-5
C-6 0 - M e C-7
1,6Anhydro-fl-~-hexopyranoses All 101.5 70.2 63.5 70.1 76.8 65.4 101.9 72.9 69.9 70.3 77.6 66.0 Alt Gal 101.3 71.9 70.8 64.9 74.9 64.1 Glc 102.1 70.9 73.3 71.6 76.9 65.8 Gul 101.7 70.5 70.5 69.9 74.9 63.8 101.9 74.7 74.7 71.4 75.8 65.4 Ido Man 101.9 66.6 70.9 72.2 76.4 65.3 1022 69.1 69.2 67.1 74.8 65.1 Tal Per-0-acetylated 1,6anhydr0-/3-~-hexopyranoses 99.0 68.0 62.4 67.7 74.0 64.8 All Alt 99.2 71.8 67.0 69.2 74.7 65.6 Gal 98.7 70.9 67.3 64.6 71.9 64.3 99.5 70.1 69.9 71.0 74.0 65.5 Glc Gul 98.9 68.9 66.7 68.6 71.8 63.9 98.7 72.3 70.1b 70.W 73.5 65.2 Id0 Man 99.2 67.0 67.6 71.8 73.8 65.2 99.0 68.6 66.4 66.0 72.1 65.6 Tal Methyl 3,6anhydro-~hexopyranosides gal 98.6 69.8 77.7 70.5 81.5 69.5 p103.4 72.7 78.4 70.5 81.2 70.9 a-Glc 99.5 71.8 72.0 70.4 76.4 69.8 p104.1 72.5 72.8 71.8 75.3 70.2 2,7-Anhydro-8-n-heptulopyranoses 60.4 107.9 72.8 70.7 70.7 78.3 Alt Gal 61.1 107.1 71.7 71.7 64.9 76.3 Glc 61.4 107.2 71.W 74.4 70.6b 78.3 60.8 107.9 70.4 70.2b 69.9 76.1 Gul Ido 60.5 108.1 74.8 75.4 71.7 76.6 Man 60.9 107.7 66.5 71.3 72.7 78.6 ~
~
References
65,69* 65,69* 65,69* 65,69,*124,149,150 65,69* 65,69* 65,69* 65.69; 69 69 69 69 69 69 69 69 83,*151 83,*151 124 124
58.0 56.2 58.5 56.5 67.0 65.2 66.7 65.1 66.5 66.5 ~~~~
69 69 69 69 69 69
~
Additional data for related compounds are given in Refs. 152 and 153. Assignments may have to be reversed. a
(146) V. Pozsgay and A. Neszmblyi, Carbohydr. Res., 80 (1980) 196-202. (147) B. L. Kam and N. J. Oppenheimer, Carbohydr. Res., 77 (1979)275-280. (148) C. L a t e , A. M.N. Phuoc Du, F. Winternitz, R. Wylde, and F. Pratviel-Sosa, Carhohydr. Res., 67 (1978) 105-115. (149) Y. Halpern, R. Riffer, and A. Broido,J. Org. Chem., 38 (1973) 204-209. (150) N. Gullyev, A. Ya. Shmyrina, A. F. Sviridov, A. S. Shashkov, and 0. S. Chizhov, Bioorg. Khim., 3 (1977) 50-54. (151) A. S. Shashkov, A. I. Usov, and S. V. Yarotskii, Bioorg. Khim., 3 (1977) 46-49. (152) C. Subero, L. Fillol, and M. Marth-Lomas, Carbohydr. Res., 86 (1980)27-32. (153)T. Trnka, M. cerng, A. Ya. Shmyrina, A. S. Shashkov, A. F. Sviridov, and 0.S. Chizhov, Carbohydr. Res., 76 (1979) 39-44.
KLAUS BOCK AND CHRISTIAN PEDERSEN
52
TABLEVIII
'W-N.m.r. Data'' for 0-Substituted Monosaccharide Derivatives Compound
C-1
C-2
0-Methyl-D-glucopyranose
C-3
C-4
90.1 81.3 72.8* 70.5 84.4 76.6h 70.5 96.5 84.1 70.6 93.4 72.6 a 375.1 86.7 70.4 P 97.2 a 493.2 73.0 73.9 80.5 75.8 76.7 80.5 97.1 P 93.3 73.0 74.3 71.4 671.4 75.8 77.2 P 97.3 Methyl tetra-0-methyl-D-glucopyranoside a 93.2 82.6 84.3 80.6 P 105.0 84.6 87.2 80.5 D-GlUCOpyranOSe sulfate a 392.9 71.1 83.1 68.3 68.3 73.8 85.2 P 96.5 70.2 93.1 72.3 73.6 a 675.0 76.5 70.2 P 96.9 Phosphate D-PyranOSeS a Clc 196.3 72.9 74.3 70.9 75.3 76.9 71.2 P 98.9 a Gal 196.5 69.7 70.7 70.7 73.9 70.3 73.0 99.5 P 68.1 72.1 71.6 a Man 197.3 72.6 74.2 68.2 P 96.7 69.9 93.0 72.2 73.3 a G l t 669.9 74.8 76.3 96.7 P 67.1h 94.8 71.3 70.6 CI Man 666.7" 94.4 71.9 73.3 P P Fni 167.4 99.0 69.0 70.4 D-Furanoses a Fni 183.0 77.0 P 66.0 77.4 75.2 a Fru 663.8 105.3 82.6 76.9 P 63.8 102.4 76.2 75.4 a 2-
P
C-5
C-6
OMe
References
72.W 76.1b 72.8 77.3 71.7 76.1 71.4 75.8
61.4 61.5 62.3 62.3 62.1 62.1 72.6 72.6
58.4 60.9 61.3 61.3 61.6 61.6 60.3 60.3
62,*97 62,*97 37,97,*108 37,97,*108 97 97 97,*154 97,*154
71.0 75.4
72.4 72.4
94' 94'
72.1 76.3 70.5 74.7
61.5 61.5
155 155 155 155
74.1 77.9 73.1 77.2 75.0 78.2 71.3 75.6 72.6 76.1 70.1
61.9 62.4 62.7 62.9 62.4 62.7 64.8 64.8 63.7 63.7 64.4
55 55 55 55 55 55 83 83 156 156
83.0 81.3 81.4 80.8
62.6 63.3 64.5 65.4
56
68.1 68.1
56
56
56 56 (continued)
1154) R. Colson, K. N. Slessor, H. J. Jennings, and I. C. P. Smith, Can. ]. Chem., 53
(1975) 1030-1037.
(155) S. Honda, H. Yuki, and K. Tahiura, Carbohydr. Res., 28 (1973) 150-153.
(156)P. A. J. Gorin, Can. ]. Chem., 51 (1973) 2105-2109. (157) A. S. Serianni, J. Pierce, and R. Barker, Biochemistry, 18 (1979) 1192-1199. (158) S. A. Abbas, A. H. Haines, and A. G. Wells,]. Chem. SOC., Perkin Trans. I , (1976) 1351- 1357.
I3C-N.M.R. SPECTROSCOPY OF MONOSACCHARIDES
53
TABLEVIII (continued) Compound
C-1
C-2
C-3
a Rib 5-
71.9 71.3 97.5 71.7 76.4 102.4 76.7 102.2 82.2 a Ara 575.1 77.0 P 96.3 n-Glyceraldehyde &phosphate, hydrate 91.3 74.9 66.0 n-Glycolaldehyde phosphate, hydrate 90.7 68.2
P
C-4
C-5
83.6 82.5 83.1 81.1
65.8 66.6 65.1 66.2
C-6
OMe
References
157 157 157 157 157 157
a Additional data for related compounds are given in Refs. 93, 95, 96, and 158. Assignments may have to be reversed. Contain additional data.
TABLEM W-N.m.r. Dataa for Isopropylidene and Benzylidene Derivatives* Compound
C-1
C-2
C-3
C-4
C-5
C-6
1,2:5,6-Di-O-isopropylidene-a-~-~ucofuranose 3-substituted derivatives OH 105.4 85.2 75.0 81.3 73.3 67.7 105.0 83.3 76.0 79.6 72.4 67.0 OAc OBz 105.2 83.4 76.7 80.0 72.7 67.3 105.3 82.6 81.7 81.3 72.5 67.4 OBn OMe 105.1 83.6 81.9 81.0 72.3 67.1 105.3 83.8 82.8 79.9 72.2 67.6 OMS 105.1 83.4' 82.1" 79.9 71.8 67.1 OTs Cld 104.3 85.4 62.2 79.7 73.2 66.4 104.8 82.3 93.5 80.4 71.7 66.9 F 105.0 79.8 34.7 77.9 76.2 66.1 Deoxyd 1,2 :5,6-DiO-isopropylidene-a-n-allofuranose 103.9 79.7' 75.6 79.1c 72.4 65.8 2,3 :5,6-Di-O-isopropylidene-a-~-mannofuranose 101.1 80.1' 79.7' 85.6 73.4 66.5 l,2 :3,4-DiO-isopropylidene-cr-~-galactopyranose 96.3 70.8" 70.6' 68.3" 71.5 62.1 Methyl 4,6Q-benzylidene-hexopyranosides a-All 100.2 67.9 68.8 78.1 56.9 68.8 a-Alt 101.6 69.6 68.8 76.0 57.8 68.8 99.4 70.8 68.6 76.5 62.8 68.6 8a-Gal 100.8 69.2' 69.5' 76.5 63.0 69.3 104.2 72.8" 71.2' 76.0 66.8 69.3 P99.9 72.4 70.5 80.8 62.0 68.5 a-Glc 104.2 74.2 72.9 80.3 65.9 68.3 8101.7 70.6 68.0 78.5 62.9 68.4 a-Man
C-7
0-Me
References
83,*100,101 83,*100 83 83 83 83 83,*100,101 99,*100 83
99,*100 83,*100 83 83
101.5 101.8 101.8 101.4 101.5 101.5 101.5 101.7
55.7 55.0 56.4 55.7 57.2 54.9 56.8 54.4
102,*128d 102 102 83 83 102 102 102
Additional data for related compounds are given in Refs. 90 and 103-106. For assignment of dependence of chemical shifts on ring size, see Refs. 89 and 90. Assignments may have to be reversed. In dimethyl sulfoxide-d,.
KLAUS BOCK AND CHRISTIAN PEDERSEN
54
TABLEX
13C-N.m.r.Data for Aminodeoxy-, Deoxyhalo- and Thio-substituted Derivatives ~
Compound
~~
C-1
Aminodeoxy-D-pyraw se" o-Glucose a 2-, HCI 89.9 93.5 P Me a 2-,base 99.7 98.7 Me a 3-, base Me (Y 6, base 99.0 a 1-N-Acetyl 79.1 81.8 B a 2-N-Acetyl 92.1 96.2 P Me a 2-N-acetyl 98.6 102.3 P Mannose u 2-, HCI 91.1 91.8 P a 2-iV-A~etyl 94.3 91.3 P Galactose 92.2 a 2-N-Acetyl 96.5 P 99.1 M e a 2-N-acetyl Thio-D-pyranoses' B 1-thio-Clc 85.1 73.9 B Sthio-Glc a 6-thio-Fru 64.8 66.4 P Deoxyhalo-n-pyranoses (I 6-Cl-Gk 93.4 P 97.1
~
~~
C3
C4
C-5
55.3 57.8 54.9 71.7 71.6 71.9 74.3 55.3
70.5 72.8 74.1 54.1 73.1 75.6 80.0 72.0 58.0 75.2 54.3 71.9 56.1 74.6
70.5 70.5 69.7 69.6 71.2 71.9 71.8 71.4 712 70.4 70.9
72.4 76.9 71.7 71.3 712 75.2 79.0 72.8 77.2 72.2 76.3
61.3 61.3 60.6 60.6 41.4 63.1 63.1 61.9 62.0 61.4 61.5
55.3 67.7
56.4 70.3 54.4 70.1 55.3 73.2
67.1 67.0 68.0 67.8
72.8 76.9 73.2 77.5
61.2 61.2 61.7 61.7
51.4 68.6 54.9 72.3 50.8 68.7
69.7 69.0 69.4
71.6 76.3 71.6
62.4 622 62.1
71.4 76.0 73.3* 71.9"
80.6 43.9 68.W 71.7d
62.3 61.0 27.1 30.4
163 83 164 164
71.3 712
71.4 75.6
45.6 45.1
154 154
C-2
79.6 74.4 84.4 85.3
77.9 74.4 72.7d 70.1
72.5 73.6 752 76.5
C-6 OMelNAc References
23.3 23.5 55.6 57.2
42,62* 42,62* 81 81 81 159 159 159,160* 159,160* 161b 82,161b*
23.2 23.2
42,162; 42,162* 160 160
54.9 54.5 54.8
23.2 23.4
160 160 81
(continued)
(159) S . Shibata and H. Nakanishi, Carbohydr. Res., 86 (1980)316-320. (160) D. R. Bundle, H. J. Jennings, and I. C . P. Smith, Can.]. Chem., 51 (1973) 38123819. (161) A. S. Shashkov, A. Yu. Evstigneev, and V. A. Derevitskaya, Carbohydr. Res., 72 (1979) 215-217. (162) T. Yadomae, N. Ohno, and T. Miyazaki, Carbohydr. Res., 75 (1979) 191-198. (163) P. Friis, P. 0.Larsen, and C. E. Olsen,]. Chem. SOC., Perkin Trans. 1 , (1977)661665. (164) M. Chmielewski and R. L.Whistler, Carbohydr. Res., 69 (1979) 259-263.
55
13C-N.M.R. SPECTROSCOPY OF MONOSACCHARIDES TABLEX (continued)
Compound
C-1
a 2,6-Br2-Glc
93.1 96.6 Me B 2-Cl-Glc' 101.5 Me a 2,6-Br2-Man 94.1 92.3 P 98.9 Me a 4-Cl-Gal' Me a 4,6-C1,-Gale 99.1 103.5 B"
P
C-6 OMe/NAc References
C-2
C-3
C-4
C-5
53.5 56.3 62.3 56.3 60.8 67.1 66.8 68.9
70.9 74.9 75.8 70.1d 71.8d 67.1 66.8 70.3
73.3 73.O 69.9 68.8 69.7 63.9 63.9 62.7
73.6 76.7 75.8 72.1d 75.7d 68.5 68.4 71.8
34.4 33.6 59.7 34.6 33.8 60.0 43.4 42.7
165 165 128 83 83 128 128 128
55.1 53.6 53.9 55.5
" Additional data for related compounds are given in Refs. 145 and 166. * Contains additional data. Additional data for related compounds are given in Refs. 167 and 168. Assignments may have to be reversed. In dimethyl sulfoxide-do. TABLEXI
13C-N.m.r.Data for Some Deoxy Sugars Compound
C-1
C-2
ZDeoxy-Whro-pentose 92.5 34.5 a-Pyranose 35.9 P94.6 98.9 41.9 a-Furanose" 98.9 41.8 P-" Deoxy-D-hexopyranoses 92.1 38.3 a-2-, arabino 94.1 40.5 P91.8 67.4 a&, ribo 69.7 P98.8 a4-,xylo 93.6 74.1" 76.9" P97.1 69.2 a-6-, Galacto 93.3 72.8 P97.3 a-6-,Gluco 93.1 72.9 75.6 P96.8 a&-, Manno 95.0 71.9 94.6 72.4 PDeoxy-whexofuranoses 97.4 73.9 a 3 - , ribo 102.6 76.5 P96.5 77.0 a-5, rylo '77.0 P102.5 a
References
C-3
C-4
C-5
65.1" 67.3" 71.7 72.0
68.1" 68.3" 86.1 86.6
66.8 63.6 62.3 62.3
68.8 71.4 34.7 39.3 69.3" 73.2" 70.4 74 .O 73.6 76.6 71.1 73.8
72.0 71.7 653 65.3 35.1 35.1 73.0 72.5 76.4 76.1 73.3 72.9
72.8 76.8 73.1 82.8 67.8" 71.3' 67.4 71.9 68.6 73.0 69.4 73.1
61.6 61.9 61.6 61.9 64.6 64.5 16.7 16.7 18.0 18.0 18.0 18.0
62 62 60 60 83 83 37,40,46* 37,40,46* 46 46 37,46.*130,"148 37,46,*130,"148
31.9 33.7 77.0 76.1
77.6 78.O 81.6 79.8
71.6 73.9 31.9 32.6
63.5 63.8 59.5 59.5
60 60 83
C-6
83,*137 83,*137 83,*137 83,*137
Assignments may be reversed. In pyridined,.
(165) K. Bock, I. Lundt, and C. Pedersen, Carbohydr. Res., 90 (1981)7-16. (166) B. Paul and W. Korytnyk, Carbohydr. Res., 67 (1978)457-468. (167) J. E. N. Shin and A. S. Perlin, Carbohydr. Res., 84 (1gSO) 315-327. (168) J. E. N. Shin and A. S. Perlin, Carbohydr. Res., 76 (1979) 165-176.
83
KLAUS BOCK AND CHRISTIAN PEDERSEN
S6
TABLEXI1 %-N.rn.r. Data for Methyl Deoxypyranosides Compound DPentopyranosides a-2-Deoxy+m~thro
P
j3-2-Deoxy-threo P-3-Deoxy-erythro a-2,3-Dideoxy-glycero
P
a3,4-Dideoxy-glycero
P
DHexopyranosides a-2-Deoxyurabino
C-1
C-2
C-3
C-4
101.3 99.6 101.5 104.7 99.8 100.3 102.3 104.9
34.6 33.1 372 67.8 27.9 26.0 70.1 68.8
67.9" 65.0" 70.8 36.4 27.4 26.0 28.5" 29.0"
67.4" 689" 702 65.0
65.3 63.6 64.8 68.0 652 66.2 65.1 66.0 25.7" 62.5 23.3" 64.8
100.8 103.2 98.9 106.1 101.4 108.3 103.1 102.4 104.5 100.3 104.3 101.9
39.1 40.7 67.1 68.5 65.8 68.3 67.4 75.6 75.8 72.6 74.5 71.0
70.8 72.9 35.3 39.1 35.7 39.7 33.3 71.1 71.2 73.9 76.7 71.3
73.6 73.6
C-5
OMe
References
56.8 55.6 57.0 57.0 55.7 55.9 57.8 56.9
169 169 169 169 169 169 169 169
56.9 169 59.1 169 a3-Deoxy-n'bo 65.0 55.6 169 B 652 57.7 169 a3-Deoxy-xylo 68.5 57.5 169 P 68.0 59.3 169 u3-Deoxyf yxo 682 57.3 169 a-4-Deoxy-xy lo 36.6 57.5 169 B 35.1 57.9 169 a-6-Deoxy-gluco 76.2 56.2 46 B 76.2 58.3 46 a-6-Deoxy-manno 73.1 55.8 46,*130,b133, 134,145, 147,169,170 B 102.0 71.2 73.0 73.0 73.6 17.6 57.6 130,b169,* 170 a-6-Deoxy-galacto 100.5 69.0 70.6 72.9 67.5 16.5 56.3 46,*82,171 P 104.8 71.5 74.1 72.4 71.9 16.5 58.3 46,*171 a-6-Deoxy-altm 101.3 70.9" 70.9" 70.7" 66.9 17.2 56.3 83 a-2$-Dideoxyerythro 98.1 29.0 26.9 66.0 74.3 61.8 54.9 169 103.5 30.3 30.3 66.1 80.6 62.2 57.0 169 P a-2,3-Dideoxy-threo 98.9 25.4" 23.7" 64.9 71.9 62.9 55.1 169 a3,4-Dideoxy-erythro 100.0 69.8 26.0 26.3 68.5 64.8 55.6 169 106.5 69.9 30.2 26.7 77.4 64.7 57.5 169 B
P
74.6 78.6 73.2 80.5 73.1 80.9 74.0 69.7 73.3 68.7 73.0 69.4
C-6
63.3 63.6 61.5 61.8 64.0 63.8 64.4 66.2 64.5 17.6 17.8 17.7
(continued)
(169) L. Wiebe, Ph.D. Thesis, Danmarks Tekniske Hq~jskole,Lyngby, 1976. (170) L. V. Backinowsky, N. F. Balan, A. S. Shashkov, and N. K. Kochetkov, Cnrbohydr. Res., 84 (1980) 225-235. (171) J.-H. Tsai and E. J. Behrman, Carbohydr. Res., 64 (1978) 297-301. (172) V. Pozsgay and A. Neszrnelyi, Carbohydr. Res., 85 (1980) 143-150. (173) 6. Monneret, C. Conreur, and Q. Khuong-Huu, Carbohydr. Res., 65 (1978)3545. (174) D. R. Bundle,J. Chem. SOC., Perkin Trans. 1 , (1979) 2751-2755. (175) D. R. Bundle and S. J. Josephson, Can. J . Chem., 56 (1978) 2686-2690.
13C-N.M.R. SPECTROSCOPY OF MONOSACCHARIDES
57
TABLEXI1 (continued) Compound
C-1
C-2
C-3
C-4
102.9 67.3 105.0 67.7 a-2,6-Dideoxy-arabim 98.9 37.7
26.7 30.1
22.8 23.1 77.4
a3,4-Dideoxy-threo
P P
a3,6-Dideoxy-ribo
P
a3,6-Dideoxy-xylo
P
a3,6-Dideoxyarabim a4,6-Dideoxy-xylo
P
a4,6-Dideoxy-ribo
P
a4,6-Dideoxy-lyxo
103.2 99.1 106.2 99.9 106.7 100.8 102.6 106.1 100.8 102.1 101.9
68.7
79.0 72.7 35.4 70.6 39.1 70.5 33.9 69.2 38.1 69.1 34.6 70.7 69.9 42.6 73.1 42.4 68.1 39.1 68.6 39.5 66.0 36.2
41.0 67.4 68.8 63.9 66.4 68.4 75.7 77.5 68.5 71.7 68.8
a Assignments may be reversed. data.
C-5
C-6 OMe
72.2 67.0 79.2 66.8 68.7 17.8
57.1 58.7 55.3
74.5 69.2 76.6 67.0 74.9 68.0 67.3 71.2 60.7 68.1 64.3
59.1 55.6 57.8 55.8 57.6 55.7 57.7 59.7 56.3 57.7 54.7
19.4 17.3 17.6 16.2 16.5 17.9 22.5 22.4 20.4 20.7 21.1
In dimethyl sulfoxided,.
References 169 169 165,*172, 173' 169 169 99,b169,*174 83,*175 83 172,175* 169 169 169 169 172
Contains additional
TABLEXI11 13C-N.m.r.Dataa for Methyl Anhydro-D-glycosides
Compound D-Pentopyranosides a-2,3-Anhydro-lyxo P-2,3-Anhydro-ribo D-Pentofuranosides a-2,3-Anhydro-ribob
C-1
C-2
C-4
C-5
96.4 51.1 56.8 96.3 52.7 52.4
61.4 62.3
59.9 61.9
56.4 56.6
83 83
56.0 55.4 55.6 55.1
78.5 78.6 76.6 76.4
61.5 61.7 59.6 59.6
55.3 54.8 54.6 55.7
91 91 91 91
52.7 54.7 52.9 54.1
76.8 76.4 73.8 73.7
59.9 60.5 61.5 67.8
67.8 68.0 68.3 68.3
54.9 55.8 55.1 56.3
91 91 91 91
67.1 62.1 67.7 61.9
56.3 56.1
83 83
101.1 55.1 101.7 54.8 a-2,3-Anhydro-lyxob 101.5 53.7 Pb 101.8 54.4 4,6-O-Benzylidene-hexopyranosides a-2,3-Anhydro-alld 94.6 49.9 Pb 97.1 50.6 a-29-Anhydro-mannob 96.0 49.8 Pb 99.1 50.1 D-Hexopy ranosides a3,4-Anhydro-galado 97.0 64.4 a3,4-AnhydK1-t& 100.5 65.4
Bb
OMe References
C-3
54.0" 51.8" 52.6" 52.0"
C-6
Additional data for related compounds are given in Ref. 176. In dimethyl sulfoxided,. Assignments may be reversed. (176) M.Chmielewski, J. Mieczkowski, W. Priebe, A. Zamojski, and H. Adamowich, Tetrahedron, 34 (1978) 3325-3330.
58
KLAUS BOCK AND CHRlSTIAN PEDERSEN TABLEXIV
W-N.m.r. Data” for Unsaturated Carbohydrate Derivatives Compound
C-1 ~~
C-2
C-3
C-4
C-5
C-6
OMe
References
~ _ _ _ _
mGlycals Xylal 146.6 101.4 63.7’ 68.4’ 65.8 GDeoxygfucal 144.6 104.4 6 9 9 74.ab 75.7 17.2 Allal 146.2 101.3 62.5 67.0 74.8 61.3 Calactal 144.8 103.4 64.8 65.5 77.9 62.1 Glucal 144.6 103.8 69.7’ 69.2* 79.1 61.0 Methyl 4,6-O-benzylidene-~-hex-%enopyranoses aerythro 96.3 130.9 126.9 75.5 64.2 69.6 56.0 P 97.8 130.1’ 126.8’ 73.6 69.0 76.6 53.3 Methyl 40-acetyi-mpent-Zenopyranosides a-glycero 95.1 129.P 128.7b 64.9 60.1 55.7 P 94.2 130.9 125.1’ 63.4 61.3 55.6 Methyl 4,6-di-O-acetyl-~-hex-%enopyranosides 95.3 129.1’ 127.8’ 65.3 66.9 63.0 55.6 aerythro 63.9 63.0 54.9 72.4 95.6 129.8 125.9 P 62.6 55.2 94.8 130.4 125.0 66.6 62.6 a-threo Methyl U)-acetyl-3,4-dideoxy-~-pent-3-enopyranosides a-glycero 96.1 66.5 121.8 129.3 602 56.1 P 98.9 66.0 120.4 1312 59.4 55.9 Methyl 2,6di-O-acety13,4dideoxy-~-hex-3-enopyranosides aerythro 96.0 66.5‘ 124.3 127.9 66.8’ 65.3 56.0 56.1 71.6 65.9 B 100.2 67.3 124.7 1292 66.3 65.4@ 56.0 98.9 65.3* 122.4 130.8 a-threo 71.8 65.8’ 56.6 98.0 65.1’ 124.2 130.0 P 6-Deoxy-l,2 :3,4di-O-isopropylidene-~-~-am~no-hex-5-enopyranose 97.3 73.2 70.9 72.V 152.4 100.4 Methyl 5,6dideoxy-2~-isopropylidene-a-~-Z~-hex-5-enofuranoside 1072 81.6b 81.P 85.4 132.4 119.1
83 83 177 83 177 83 83 83 83 83 83 83 178 178 178 178 178 178 179 180
” Additional data for related compounds are given in Refs. 176,181,and 182. * Assignments may be reversed.
(177) A. I. R. Burfitt, R. D. Guthrie, and R. W. Irvine,Aust.J. Chem., 30 (1977) 10371043. (178) M.Chmielewski, A. Banaszek, A. Zamojski, and H. Adamowicz, Carbohydr. Res., 83 (1980)3-7. (179) B. Coxon and R. C. Reynolds, Carbohydr. Res., 78 (1980) 1-16. (180) K. Bock and C. Pedersen, Acta Chem. S c a d . , Ser. B, 31 (1977) 248-250. (181) R. D. Guthrie and R. W. Irvine, Carbohydr. Res., 82 (1980)207-224. (182) R. D. Guthrie and R. W. Irvine, Carbohydr. Res., 82 (1980) 225-236. (183)W. Funcke and C. von Sonntag, Carbohydr. Res., 69 (1979)247-251. (184) G. W. Schnarr, D. M. Vyas, and W. A. Szarek, J . Chem. SOC., Perkin Trans. 1 , (1979)496-503. (185) P. Finch and Z. M. Merchant, Carbohydr. Res., 76 (1979)225-232.
13C-N.M.R. SPECTROSCOPY O F MONOSACCHARIDES
59
TABLEXV '3C-N.m.r. Dataa for Some Acyclic Monosaccharide Derivatives Compound
C-1
C-2
C-4
C-3
C-5
C-6
OMe
References
75.46 74.8 72.6b 73.1b 73.7b 72.9 70.7 67.6
73.6b 64.5 73.0 64.6 72.3b 71.8b 64.2 64.2 71.7b 71Zb 64.8 64.8 73.4b 72.6 64.5 73.2b 72.3b 64.5
61.6 61.9 61.3 61.8 61.8 61.7 61.9 61.9
183 183 183 183 183 183 183 183
70.5 70.8 69.7* 69.8 69.8b
71.4b 72.6 69.4b 72.1 69.4b
63.6 62.8 70.0 71.4 71.4
63.2 63.4 63.8
67.6
72.5
71.3
63.2
~~
D-, 0-Methyloximes syn, Rib 152.2
71.4 67.7 anti, Rib 153.4 151.5 71.4 syn, Glc anti, Glc 153.5 67.5 69.8 syn,Gal 153.0 anti,Gal 155.2 66.0 syn, Fru 56.1 161.9 anti, FN 61.6 162.6 D-,Diethyl dithioacetals 54.5 71.6b Arac 54.4 74.2 xyl" 54.7 71.6 GalC 54.1 75.3 Glc" 55.0 73.8 ManC D-, Dimethyl acetals Glc" 104.1 73.6
184 184 184 184 184 53.1, 54.5
184
Additional data for related compounds are given in Ref. 185. Assignments may be reversed. In dimethyl sulfoxided&.
TABLEXVI W-N.m.r. Data for Alditols and Their Acetates Compounds Hexitols Allitol Altritol Galactitol Glucitol Iditol Mannitol Pentitols Arabinitol Ribitol Xylitol
C-1
C-2
C-3
C-4
C-5
C-6
References
63.7 64.4 64.5 63.8 64.1 64.6
73.5 71.8 71.5 74.3 73.1 72.2
73.7 72.2 70.7 71.0 72.5 70.7
73.7 73.0 70.7 72.6 72.5 70.7
73.5 74.0 71.5 72.5 73.1 72.2
63.7 63.4 64.5 64.2 64.1 64.6
184,"186* 184,"186* 184,a186,*187 154,184,"186,*188 184,"186* 184," 186,*187
64.4 63.8 63.9
71.6 73.5 73.2
71.9 73.6 72.0
72.3 73.5 73.2
64.3 63.8 63.9
184,"186,*187 154,184,a186,*187 184,a186,*187 (continued)
(186) S. J. Angyal and R. Le Fur, Carbohydr. Res., 84 (1980) 201-209. (187) W. Voelter, E. Breitmaier, G. Jung, T.Keller, and D. Hiss, Angew. Chem., 82 (1970) 812-813. (188) A. P. G. Kieboom, A. Sinnema, J. M. van Der Tom, and H. von Bekkum, Red. Trau. Chim. PUYS-BUS,96 (1977) 35-37.
KLAUS BOCK AND CHRISTIAN PEDERSEN
60
TABLEXVI (continued) ~
Compounds
C-1
Tetritols Erythritol 64.0 Threitol 63.9 Other alcohols Glycerol 64.0 Ethylene glycol 63.8 Hexitol acetates Allitol 61.8 Altritol 62.1 Galactitol 62.3 Clucitol 62.0 Iditol 61.8 Mannitol 62.0 Pentitol acetates Arabinitol 62.1 Ribitol 61.8 Xylitol 62.0 Tetritol acetates Erythritol 61.9 Threitol 62.0 Other alcohol acetates G lycero 1 62.4 Ethylene glycol 62.4 'I
~~
C-2
C-3
C-4
C-5
73.3 72.9
73.3 72.9
64.0 63.9
73.5 63.8
64.0
69.7 68.4 67.8 69.6 69.3 68.1
69.4 69.1 67.7 68.7 68.9 67.7
69.4 68.7 67.7 69.0 68.9 67.7
69.7 70.0 67.8 68.9 69.3 68.1
68.3 69.6 69.4
68.6 69.4 69.3
68.3 69.6 69.4
61.9 61.8 62.0
69.4 69.4
69.4 69.4
61.9 62.0
69.4 62.4
62.4
C-6
References
184,"186,*187 184,"186* 184:186,*187 186,*187 61.8 61.7 62.3 61.6 61.8 62.0
186 186 186 186 186 186 186 186 186 186 186 186 186
In dimethyl sulfoxided,. TABLEXVII
13C-N.m.r. Data'' for Anhydroalditols _ _ _ _ ~ ~ Compound C-1 c-2 C-3 C-4 C-5
C-6
References
1,4Anhydrohexitols Allitol 72.9 Altritol 74.1 Galactitol 73.7 Glucitol 74.3 Gulitol 72.2 iditol 72.9 Mannitol 71.9 Talttol 73.7
63.4 64.0 63.9 64.5 63.8 63.3 64.O 64.3
27,189* 189 189 189 27,189* 189 27,189* 189
72.1 78.3 77.9 77.3 72.3 77.2 72.3 72.5
72.9 79.1 79.3 76.8 71.3 76.5 71.2 73.3
82.9 86.5 85.8 80.8 81.3 80.9 81.1 82.1
72.5 72.7 72.3 70.3 71.6 71.3 70.3 72.2
(continued ) (189) H. Thggersen, Ph.D. Thesis, Danmarks Tekniske Hgjskole, Lyngby, 1980. (190) B. Matsuhiro and A. B. Zanlungo, Carbohydr. Res., 63 (1978) 297-300. (191) J. C. Goodwin, J. E. Hodge, and D. Weisleder, Carbohydr. Res., 79 (1980) 133141.
61
I3C-N.M.R. SPECTROSCOPY OF MONOSACCHARIDES TABLEXVII (continued) Compound
C-1
174-Anhydropentitols 74.1 Arabinitol Lyxitol 72.1 Ribitol 73.1 Xylitol 73.6 1,CAnhydrotetritols 72.3 Erythritol Threitol 73.8 2,!j-Anhydrohexitols 62.9 Allitol Altritol 61.3 Galactitol 60.5 Glucitol 61.1 Iditol 61.0 Mannitol 61.9 1,SAnhydrohexitols 66.1 Allitol Altritol 67.1 Galactitol 70.1 Glucitol 69.8 Gulitol 65.8 Iditol 68.2 Mannitol 70.8 Talitol 71.6
C-2
C-3
C-4
C-5
C-6
References
77.8 72.1 71.9 77.2
79.0 71.4 72.5 77.6
86.5 81.7 82.7 81.8
62.5 61.3 62.3 60.8
71.8 77.2
71.8 77.2
72.3 73.8
84.4 81.5 79.9 81.9 81.3 83.2
72.4 72.5 71.6 77.9 77.6 77.3
72.4 72.7 71.6 79.0 77.6 77.3
84.4 82.1 79.9 85.7 81.3 83.2
62.9 62.5 60.5 62.4 61.0 61.9
189 189 189 27,189* 27,189* 27,189*
66.8 70.4 67.4 70.4 66.6 70.1 70.0 70.1
70.0 70.4 75.1 78.4 71.0 70.8 74.5 70.6
67.1 65.8 70.1 70.7 71.0 70.6 68.2 69.2
77.0 77.2 80.4 81.3 76.6 77.4 81.5 80.4
62.2 62.3 62.3 61.5 62.4 62.0 62.1 63.4
27,189* 27,189* 27,189* 27,189* 189 189 27,189,*190 27,189*
27,189* 27,189* 27,189* 27,189* 27,189* 27,189*
Additional data for related compounds are given in Ref. 191.
TABLEXVIII I3C-N.m.r. Data for Aminodeoxydditols and Aminoanhydrodeoxydditols18g Compound
c-1
c-2
c-3
1-Amino-1-deoxy-D-hexitol hydrochloride Galactitol 43.6 67.2 71.2 Mannitol 43.1 67.6 71.2 1-Amino-1-deoxy-wpentitol hydrochloride Arabinitol 43.2 66.9 71.7 Lyxitol 43.0 67.7 72.3 Ribitol 41.6 68.2 73.1 Xylitol 42.6 68.3 72.1 5-Amino-l,Panhydro-5-deoxy-~-pentitol hydrochloride Arabinitol 74.6 77.5 80.0 Lyxitol 72.0 71.5 71.1 Ribitol 74.5 72.1 73.7 Xylitol 74.1 76.9 78.1
C-4
c-5
C-6
70.0 69.3
70.7 71.0
64.O 63.5
71.1 70.4 72.1 72.1
63.3 63.4 62.8 62.9
82.4 75.9 78.3 77.9
42.4 39.8 42.7 40.4
KLAUS BOCK AND CHRlSTIAN PEDERSEN
62
TABLEXIX 'T-N.m.r. Data for Uronic Acids or Uronolactones Compound
C-2
C-1
C-4
C-3
C-5
C-6
DGlucopyranumnic acid 72.4 71.4 172.9 a (pH 1.8) 93.2 72.0 73.4 75.4 173.8 72.2 13 96.9 74.7 76.3 76.9 176.9 73.0 a (pH 7.8) 92.9 72.2 73.5 72.6 177.6 72.7 96.7 75.0 76.5 P Methyl D-ghcopyranosiduronic acid and methyl ester 100.7 71.9 73.8 72.5 71.9 &-Acid a-Ester 100.8 71.9 73.7 72.4 71.9 @-Acid 104.3 73.8 76.5 72.3 75.6 " P-Ester 104.6 73.7 76.3 72.4 75.7 'I D-Glucofuranurono-6,3-lactone ff 99.1 74.8 85.6 76.7 70.4 177.8 P 103.7 74.8 85.6 78.4 70.1 177.9 D-Gdactopyranuronic acid a 93.2 68.7 69.5 70.9 70.5 172.6 B 97.0 72.1 73.1 70.9 74.8 173.5 Methyl (methyl a-mannopyranosid)uronate a 102.3 70.4 71.1 69.2 72.9 a Methyl 2-hexulosonate a-D-urubino 170.6 97.0 70.6' 71.7b 65.7* 63.5 P 170.6 97.0 69.3 69.5 69.1 64.7 a-L-xy lo 170.5 96.6 72.8 73.7 69.5 62.8 _
_
-~ ~
~
0-Me
References 59 59 59 59
56.7 56.8,54.2 58.5 58.7,56.2
46 46,*192 46 46 59 59 83,*127 83,*127
56.534.1
46
53.5 53.9 53.9
193 193 193
('Not resolved. * Assignments may b e reversed. (192) A. S. Shashkov, A. F. Sviridov, 0. S. Chizhov, and P. KovaC, Carbohydr. Res., 62 (1978) 11-17. (193) T. C. Crawford, G. C. Andrews, H. Faubl, and G. N. Chmumy,]. Am. Chem. SOC., 102 (1980) 2220-2225. (194) H. S. Isbell and M. A. Salam, Carbohydr. Res., 90 (1981)123-126. (195)W. Kondo, F. Nakazawa, and T. Ito, Carbohydr. Res., 83 (1980) 129-134. (196) M. Chmielewski, Tetrahedron, 36 (1980) 2345-2352. (197) S. Berger, Tetrahedron, 33 (1977) 1587-1589. (198) T. Ogawa, J. Wzawa, and M. Matsui, Carbohydr. Res., 59 (1977) c32-c35. (199) G . Schilling and A. Keller,]ustus Liebigs Ann. Chem., (1977) 1475-1479. (200) D. M. Vyas, H. C. Jarrell, and W. A. Szarek, Can.J. Chem., 53 (1975) 2748-2754. (201) A. K. Bhattacharjee, H. J. Jennings, and C. P. Kenny, Biochemistry, 17 (1978) 645 -651. (202) R. Cherniak, R. G. Jones, and D. S. Gupta, Carbohydr. Res., 75 (1979)39-49. (203) V. Eschenfelder, R. Brossmer, and H. Friebolin, Tetrahedron Lett., (1975)30693072. (204) H. J, Jennings and A. K. Bhattacharjee, Curbohydr. Res., 55 (1977) 105-112. (205) L. W. Jaques, B. F. Riesco, and W. Weltner, Jr., Carbohydr. Res., 83 (1980)21-32. (206) M. F. Czamiecki and E. R. Thomton,]. Am. Chem. SOC., 99 (1977) 8273-8279. (207) J. M. Beau, P. Sinay, J. P. Kamerling, and J. F. G. Vliegenthart, Carbohydr. Res., 67 (1978) 65-77.
63
13C-N.M.R. SPECTROSCOPY OF MONOSACCHARIDES
TABLEXX 13C-N.m.r. Datan for Salts of Aldonic Acids and for Aldonolactones Compound
C-1
C-2
C-3
C4
D-Aldonic acid salts (pH 14) Allonic 179.5 74.7b 74.6b 73.6b Altronic 180.5 74.W 73.9 72.7b Galactonic 180.6 72.4b 72.4b 71.1b Gluconic 179.8 75.2 72.4 73.8 Gulonic 180.4 75.6b 73.9 73.6b Idonic 179.5 73.8 73.2b 72.5b Mannonic 180.3 75.4b 72.2b 72Jb Talonic 180.7 75.3b 74.0" 72.6b Arabinonic 180.5 73.4b 72.6b 72.3b Lyxonic 180.0 75.1b 72.9 72.3b Ribonic 179.9 759 74.6b 73.W Xylonic 180.4 74.2b 74.V 73.6 Erythronic 179.6 74.4b 74.2b 62.8 Threonic 179.4 73.V 73.1b 63.1 Glyceric 179.2 74.4 64.9 D-Hexono-,. .pentono-, and tetrono-1.4lactones Allono 178.7 86.9 70.9 69.5b Altrono 176.8 81.3 74.8b 73.3b Galactono 176.7 74.5b 73.7b 80.9 Glucono 177.9 73,4b 73.8b 80.5 Gulono 178.8 71.7b 71.V 822 Idono 176.5 74.W 71.9 79.9 Mannono 178.8 79.3 71.5b 70.2b Talono 179.3 71.2b 71.V 86.9 Arabinono 176.9 82.0 74.6b 73.2b Lyxono 179.0 82.4 71.3b 70.3b Ribono 179.3 70.3b 69.8b 87.5 Xylono 177.9 73.9 72.9 812 Erythrono 179.3 69.7 73.7 70.5 Threono 178.0 70.4 74.0 73.1 D-Glucono-1,S-lactone 174.5 71.7b 82.3b 73.4b n-Gluconic acid (pH-3) 176.5 73.1b 72.3b 71.9
C-5
C-6
References
72.7b 72.6b 70.7b 72.0 71.7 71.9 71.6b 72.0 64.1 64.0 63.9 63.6
63.4 63.3 64.3 63.6 63.6 63.9 64 .O 64.4
83 83 83 83,*194 83 83 83 83 83 83 83 83 83,*43 83,*43 195,*43c
69.W 71.2b 69.8b 71.2b 70.4b 68.8b 68.5b 69.4b 60.1 60.6 61.4 59.9
62.8 62.3 62.9 63.2 62.4 62.9 63.4 62.7
83 83 83 83 83 83 83 83 83 83 83 83 83 83
67.9
60.8
83
71.4b
63.5
83
Additional data for related compounds are given in Ref. 196. Assignments may be reversed. Data for acid at pH -3. For further data, see p. 66. (I
(208) Y. Terui, K. Ton, K. Nagashima, and N. Tsuji, Tetrahedron Lett., (1975) 25832586. (209) J. Boivin, M. Pai's, and C. Monneret, Carbohydr. Res., 64 (1978) 271-278. (210) K.-I. Harada, S. Ito, and M.Suzuki, Carbohydr. Res., 75 (1979) ~17-c20. (211) K. Olsson, 0. Theander, and P. h a n , Carbohydr. Res.. 58 (1977) 1-8. (212) S. Mizsak, G. Slomp, A. NeszmBIyi, S. D. Gem, and G. Lukacs, Tetrahedron Lett., (1977) 721-724.
C
TABLEXXI
CA
W-N.m.r. Data for Some Biologically Significant Monosaccharides
0" R
c-1
c-2
174.2
118.9
156.6
77.3
60.0
63.4
197,*198
97.8 101.5 94.8 95.3
78.3 81.2 75.3 75.7
70.6 71.6 76.9 66.6
81.6 82.5 68.9 68.6
62.9 63.6 65.6 63.6
61.3 62.9 61.1 63.4
199 199 199 199
g
106.1 84.3 82.2 3-Deoxy-D-manno-octulosonicacid, sodium salt a-Pyranose 177.9 97.6 34.8 Me a-Pyranoside 176.5 102.5 35.2 P 174.8 102.4 35.5 A'-Acetyl-D-neuraminic acid, methyl pyranoside 41.0 174.1 101.6 a Acid 40.8 176.1 101.4 P 39.7 170.7 100.1 a Me ester 40.1 171.2 100.1 P
62.3
73.2
200
m
67.8" 67.4" 68.6"
67.4" 67.1" 66.5"
72.4 72.5 74.6
70.5 70.5 70.3
64.2 64.2 65.2
51.9 52.9
201,*202 201 201
69.0 67.1 69.0 67.2
52.9 53.1 52.8 52.6
73.4" 71.1" 73.8" 71.5"
69.2" 69.5" 69.2" 69.0"
72.6" 71.1" 71.5" 70.8"
63.6 64.5 64.0 64.3
203*-206 202,*205-207 203,*204,206 203,*204,206
Compound L-Ascorbic acid D-Hamamelose a-Furanose
B
a-Pyranose
B
1,u)-Isopropylidene-a-apiose
c-3
c-4
c-5
C-6
c-7
C-8
c-9
References
r2
U
2
3 U
z
n
Methyl 2,6-dideoxy-3-C-methyl-3-O-methyl-~-ribo-hexopyranoside~ a 98.8 37.8 74.9 78.0 70.8 18.2 P 97.5 35.2 73.0 78.0 64.5 17.9 Methyl 2-deoxy-3C-methyl-a-D-n'bo-hexopyranoside 98.2 40.5 69.4" 71.2 69.7" 62.9 Methyl 4,~-benzylidene-2-deoxy-2C-methyl-~-methyl-~-mannopyranoside a 104.2 37.6 76.6 79.1 63.8 69.1 P 103.8 38.1 79.5 78.9 67.6 68.9 Methyl 3-amino-2,3,6trideoxy-fl-~qlo-hexopyranoside 99.1 34.6 49.7 72.2 69.3 16.5 Methyl 3-acetamido-2,3,6trideoxyhexopyranoside a-tmrabino 97.6 35.0 48.1 74.2 68.6 17.0 a-dyxo 98.2 30.2 45.5 69.9 65.9 16.8 P-L-ribo 99.1 33.5 46.3 72.2" 71.8" 18.6 Methyl 3,4,6-trideoxy-3-(dimethylamino)-~qb-hexopyranoside a 99.6 68.7 60.3 29.3 64.8 21.2 P 104.9 69.9 65.4 28.8 69.5 21.2 Thioglycosides 82.5 80.9 78.1 73.0 70.1 61.7 Ally1 glucosinolatec Lincomycind 89.2 68.8 71.4 69.5 70.0 54.9 N-acetyl-" 88.2 68.8 71.3 69.4 69.5 53.8
21.1 21.9
208 208
25.6
118
54.7 56.9
11.0 5.7
116 116 209
56.0 54.6 54.8 55.9
209,210* 209 209
55.0 56.5
39.9 40.3
67.4 65.7
17.2 20.6
208 208 14.2 13.3
163 212 212
" Assignments may have to be reversed. Additional data for related compounds are given in Refs. 115 and 117. Additional data for related compounds are given in Ref. 211. The carbon chemical-shifts for the pyrrole ring of lincomycin hydrochloride are given in Ref. 212. Pyrrole ring substituted with an N-acetyl group.
6
2
+ v)
2
3
a8 cc
%
5
n Ec
$ i U E
66
KLAUS BOCK AND CHRISTIAN PEDERSEN ADDENDUM
For 'SC-n.m.r. data (Table 111) on B-Sorp and B-Solf, see Ref. 213. For IS-n.m.r. data on D-xylono- and D-mannono-1,5-lactone, and on the four Daldopentonic acids at pH 1-3 (Table XX), see Refs. 214-217.
(213) G.-J. Wolff and E. Breitmaier, Chem. Ztg., 103 (1979) 232-233. (214) A. S . Serianni, H. A. Nunez, and R. Barker,]. Org. Chem., 45 (1980)3329-3341. (215) D. Horton and Z . Waiaszek, Cnrbohydr. Res., 105 (1982) 95-109; 111-129. (216) Z. Wdaszek and D. Horton, Carbohgdr. Res., 105 (1982) 131-143. (217) 2.Wdaszek, D. Horton, and I. Ekiel, Cnrbohydr. Res., 193-201.