Scripta METALLURGICA
Vol. 8, pp. I01-I02, 1974 Printed in the United States
Pergamon Press, Inc.
COMMENT ON "BACK-STRESSES, IMAGE STRESSES, AND WORK-HARDENING" BY
L.
M.
BROWN
*
K. T a n a k a Fatigue Testing Division National Research Institute for Metals 2 - 3 - 1 2 N a k a m e g u r o , M e g u r o k u , Tokyo 153, JAPAN (Received In the recent internal
stress
A c t a Met.
in the matrix
S e p t e m b e r 1, 1973)
have appeared
two p a p e r s
of dispersion-hardened
calculating
crystals 1'
2).
the average
However,
the
calculated results i n two p a p e r s h a v e an a p p a r e n t d i s c r e p a n c y i n t h e d e p e n d e n c e o f t h e a v e r a g e s t r e s s on t h e v o l u m e f r a c t i o n of the inclusions, f . Namely, due t o Mori and T a n a k a 1 ) , i t s i m p l y d e p e n d s l i n e a r l y on f , w h i l e due t o Brown 2) i t d e p e n d s n o t o n l y on t h e f i r s t o r d e r o f f b u t a l s o on t h e h i g h e r o r d e r o f f . In t h i s s h o r t n o t e I w o u l d l i k e t o p o i n t o u t t h a t Brown c o m m i t t e d a t r i v i a l error in his calculation, w h i c h l e d t o t h e s p u r i o u s d e p e n d e n c e o f t h e a v e r a g e s t r a i n on f . Now l e t us s t a r t from t h e t h i r d p a r a g r a p h o f p . 8 8 1 i n B r o w n ' s p a p e r . I n a given inclusion, tim he strain, c i j F, c o n s i s t s o f t h e c o n s t r a i n e d s t r a i n , Eij C the image s t r a i n , eij ; and t h e s t r a i n due t o a l l t h e o t h e r i n c l u s i o n s . Brown a s s u m e d t h a t t h e s t r a i n due t o a l l t h e o t h e r i n c l u s i o n s c a n be e q u a t e d t o t h e mean s t r a i n i n the matrix, Thus,
M,
if
t h e number o f t h e i n c l u s i o n s ,
F C im M" eij ~-__eij + eij +
N, i s s u f f i c i e n t l y
large.
(a)
Here we must notice that the mean strain in the matrix, N, originates from the constrained strain and the image strain due to all the other inclusions. Therefore, im the strain, eij , in Eq.(a) should be the image strain of a given inclusion itself and t h e a v e r a g e o f t h e s t r a i n , I , i s t o h a v e t h e o r d e r o f ( V / V 0 ) e i j T ' where V i s . t h e v o l u m e . o f a g i v e n i n c l u s i o n and V0 i s t h e v o l u m e o f t h e b o d y , s i n c e i~__. < ~ i j l m > . I t i s e v i d e n t t h a t i n E q . ( 8 ) i n B r o w n ' s p a p e r the strain, im I c a n be n e g l e c t e d c o m p a r e d t o t h e s t r a i n s , < e i j C > i and <~ijF>M, s i n c e <~ij C >i ~ Eij T ~]p(V/Vo)eij T and < ~ i j F > M ~ ( N V / V o ) e i j T = f~.lj T ~ ( V / V o ) E i j T from the assumption that the number of inclusions is large and any of them does not occupy a large part of the body. Thus, the strain, i, should be omitted from the right hand side of Eq.(10) in Brown's paper. This gives the correct expression, which is
101
i02 COMMENT ON: BACK-STRESSES,
identical
t o Mori and T a n a k a ' s E q . ( 6 ) .
(12) i n B r o w n ' s p a p e r , strain
IMAGE STRESSES AND WORK-HARDENING
due t o a l l
Unfortunately,
he t o o k t h e s t r a i n ,
Vol. 8, No. 2
as e x p r e s s e d in E q s . ( 1 1 )
and
< E i j l m > i , f o r t h e a v e r a g e o f the image
inclusions.
The i n c o n s i s t e n c y i n v o l v e d i n B r o w n ' s p a p e r can a l s o be d e m o n s t r a t e d from a n o t h e r l i n e . From t h e d e f i n i t i o n ,
im>
=
<~. F> C> lj - <~ij
= - fl - (I Comparing Eq.(b) with Eq.(AI)
f)M •
(b)
in Brown's paper, we have
M = -M'
(c)
since = re.. T. Substitution of Eq.(c) into Eq.(b) gives i] ij fl = feij T - f I.
(d)
If we combine Eq.(d) with Eq.(9) in Brown's paper, we will have M = O. Of c o u r s e , t h i s u n r e a l i s t i c image s t r a i n i n E q . ( a ) .
conclusion results
from t h e i n c o r r e c t
treatment
o f the
Acknowledgement
this
I enjoyed discussions matter.
w i t h Dr. T. Mori in Tokyo I n s t i t u t e
o f T e c h n o l o g y on
References 1. T. Mori and K. T a n a k a , Acta M e t . , 21, S 7 1 ( 1 9 7 3 ) . 2. L. M. Brown, Acta M e t . , 21, 8 7 9 ( 1 9 7 3 ) . *Dr. L. M. Brown w r i t e s : "The e x t r e m e r i g h t - h a n d term o f e q u a t i o n s ( 9 ) , ( 1 0 ) , (1]~ and (13) o f my p a p e r s h o u l d be d e l e t e d . This change does n o t a f f e c t the m a j o r conclusions of the paper."