CALPHAD Vol. 2, No. 4, pp. 295-318. Pergsmon Press Limited, 1978. Printed in Great Britain.
COUPLED PHASE DIAGRAMS AND THERMOCHEMICALDATA FOR TRANSITION METAL BINARY SYSTEMS-IV* Larry Kaufman and Harvey Nesor ManLabs, Inc., 21 Erie Street Cambridge, Massachusetts 02139,USA ABSTRACT.
A data base covering the transition metals has been developed which permits coupling of thermochemical and phase diagram data and can readily be employed to compute ternary and higher order systems. The which is part of a series, details the following ten current paper, titanium-carbon, manganese-carbon, binary systems : aluminum-carbon, chromium-carbon, iron-carbon, cobalt-carbon, nickel-carbon, niobiummolybdenum-carbon and tungsten-carbon. This brings the total carbon, of such systems covered to forty seven. This paper together with past and projected contributions will cover other binary members in order to permit calculation of a sufficiently wide range of ternary systems.
1.
Introduction
Previous papers in the current series (l-4) provide descriptive information covering thirty-seven binary systems composed of titanium, chromium, The manganese, iron, cobalt, nickel, copper, niobium, molybdenum, and tungsten. present paper deals with the binary systems of carbon and these metals thus enFuture contributions will extend this list to cover larging the data base. Lattice stability descriptions for carbon are presented aluminum and silicon. below which when coupled with those presented earlier(l-4) for the above listed metals and with excess free energy and compound formation data permit characterization of specific ternary systems. 2.
Lattice
Stability
Values
Table 1 contains values for the lattice stability of carbon between In addition, the graphite form and the other metallic structures of interest. Table 1 also contains values of the lattice stability of the graphitic forms of the metals of interest(S) which will be employed in characterizing the specific binary systems discussed below. 3.
The Aluminum-Carbon
System
Table 2 summarizes the analytical description of the Al-C system which can be combined with the lattice stability values given in Table 1 and in the earlier work(l) to compute the phase diagram shown in Figure 1 and the thermochemical properties of alloys in this system. Figure 1 shows the most recent experimental phase diagram (10) for comparison with the calculated result while Table 3 provides the available experimental thermochemical data.
*
This work has been sponsored by the Metallurgy Program? Metallurgy Materials Section, Division of Materials Research, National Science tion, Washington, D.C. under Grant DMR76-08453.
295
and Founda-
L. Kaufman and H. Nesor
296
TABLE
1
LATTICE STABILITY VALUES FOR THE ELEMENTS (5) _S_=_=_=-5-=-E-2-I~I-I-I-=-~~~~ (Units
Element C
of J/mol
(L-Liquid,
and J/mol
K will
be used
P=BMn, K=aMn. G=Graphite) -32635
-12.5521
throughout)
Temperature RanBe (K) 300 < T
32635
300 < T
-24267
300 < T
-7531
300 < T
6694
300 < T
114223
-27.1961
300 < T
Al
-25.104T
300 < T
Ti
-25.104T
300 < T
Mn
-25.104T
300 < T
Cr
-25.104T
300 < T
Fe
-25.1041
300 < T
co
-25.104T
300 < T
Ni
-25.104T
300<
Nb
-25.104T
300 < T
t&J
-25.104T
300 < T
w
-25.104T
300<
T
T
AH=H-x~l"H~l-~~oH~
Compound
e
-13.224
s=s-xpAI-x~osc
0
0
TABLE 3
e
+R[xAlfinxAl+x c k%xC]
Esw-xAl~s~l-xCOs~
x;=o.429
Composition
o
o
Composition Range
-5.94 ?:0.30 (8)
-29614 + 342 (6)
AG[1873K] = -12571 f 1600 (9)
0.571 Al (liquid) + 0.429 C (Graphite)+ Al0 571 Co 42g
-29700 + 1429 (7)
AS(298K)
AH[298K]
0.571 Al(fcc) + 0.429 C (Graphite)+ Al0 571 Co 42g
SUMMARY OF EXPERIMENTAL THERMOCHEMICALDATA FOR ALlB.lINUM CARBIDE
-89029
~~1~~41840
Graphite
A10.571C0.429
xAlxc[xA19623-xc786591
EO 0 H =s-xAlOH;l-xCDHC$
Liquid
4
Phase
ANALYTICAL DESCRIPTION OF THE ALIJMINUM-CARBON SYSTEM
TABLE 2
e = fee
Comments
300
800
Comments
z
I
3 5
2
!?
2
2
is
:: 2 P
298
L. Kaufman and H. Nesor
TRANSITIONMETAL BINARY SYSTEMS-IV
The Titanium-Carbon
4.
299
System
Table 4 provides the analytical description of the titanium carbon system(S) used to calculate the phase shown in Figure 2a. The latter is compared with the observed phase diagram(ll-15) shown in Figure 2b. The analytical description shown in Table 4 can also be used to calculate the thermochemical properties of titanium carbide for comparison with the experimental values(l1) shown in Table 5. 5.
The Chromium-Carbon
System
Table 6 displays the analytical description of the chromium-carbon system, which when coupled with the lattice stability values presented earlier (1) and in Table 1 can be employed to compute the thermochemical properties The latter is compared with the experimental phase diagram and phase diagram. (12) in Figure 3 while Table 7 summarizes the experimental thermochemical data (16-18). 6.
The Manganese-Carbon
System
The analytical description presented in Table 8 combined with the lattice stability values shown in Table 1 and presented earlier(4) permit calculation of the phase diagram displayed in Figure 4a and the thermochemical properties. These can be compared with the experimental phase diagram (11-15, 19,20) and thermochemical properties given in Table 9 (11,21,22). The latter yield divergent heats and entropies of formation but similar free energies of formation for the manganese carbides listed near 1100K. The values calculated from the description in Table 8 yield similar free energies of formation near 1lOOK with heats and entropies of formation which are closest to the results of Hillert and Waldenstrom(21). 7.
The Iron-Carbon
System
Table 10 provides the analytical description of the iron-carbon system which when coupled with the lattice stability values shown in Table 1 and presented earlier(l,Z) permit calculation of the thermochemical properties The latter is compared with the oband the phase diagram for this system. Table 11 provides a summary (11) of the served diagram in Figure 5, while experimental thermochemical data for iron-carbon alloys which can be computed from the description in Table 10 with good precision. 8.
The Cobalt-Carbon
System
Table 12 summarizes the analytical description of the cobalt-carbon system which can be combined with the lattice stability values shown in Table 1 and those presented earlier(l) to perform calculation of the phase diagram This description can also be employed to compute the displayed in Figure 6a. thermochemical properties for the system. Limited experimental thermochemical data for fee Co-C alloys are shown in Table 13(23). 9.
The Nickel-Carbon
System
Table 14 displays the analytical description of the nickel-carbon system which can be combined with the lattice stability values in Table 1 and those presented earlier to compute the thermochemical properties and the phase Figure 7b shows the experimental diagram for the System shown in Figure 7a. phase diagram while Table 15 provides some experimental information on the activity of carbon in fee nickel (23).
Ul=H-x+i'+i-x;oH;
Compound
-159700
xTixc83680
Graphite
Ti0.56C0.44
0
-xTixc 209200
bee
e = fee
x;=o.44
300
o
Comments
llOO
o
Composition
l!iOO
-80400
1900
(from bee Ti and graphite)
-90500 f 4000 (from hcp Ti and graphite) II 1, -86700
AGf (Joules)
300 1000
T°K
Comments
o
Composition Range
FORMATION OF Ti0.50 Co 5o AT SEVERAL TEMPERATURES(11)
EXPERIMENTALVALUES OF THE FREE ENERGY OF
TABLE 5
-16.57
0
0
+R[xTignxTi+xcKnxC]
Esw-xTi'S~i-xC%~
-xTixc175728
EH'=H&i't$i-xCoH;
Liquid
0
Phase
ANALYTICAL DESCRIPTION OF THE TITANIUM-CARBONSYSTEM
TABLE 4
!z .X % $
5
R
c
r.
TRANSITIONMETAL BINARY SYSTEMS-IV
301
0
0
-xCrxC138072
-xCrxC133888
xCrxC41840
bH=H-x&%~r-x~'HCe
Liquid
bee
Graphite
Compound
-3.394
-75011
-16220 + 580
'=0.600 %.4ao
-21970 +-800
-22800 rt800
-14920 + 850
Cr0.700 co.3oo
-18120 i 750
-19700 k 800
AHf[298](11)
2 950
AHff298](17)
-10000
AHf[298](16)
CARBIDES
FROM KC
x;=o.400
x;=o.300
x:=0.207
Composition
O
O
O
Composition Range
-22400 f8OO
-23300 2800
-18200 5800
A~f(W
CHROMIUM
AND GRAPHITE
0 = bee
8 = bee
0 = bee
Comments
300
800cT<2200 'Refers to bee
1600
Comments
-13700-5.683 (t3303(1300to 1500K)
-14700-3.643 (t170)(1100to 1720K)
-lllOO-2.64T (t170)(1150to 1300K)
AGfj1573K]f17)
OF CHROMIUM
Cr0.793 5.207
COMPOtJND
SUMMARY OF EXPERIMENTALHEATS AND FREE ENERGIES OF FORMATION
TABLE 7
-1,195
-58781
Cro.700co.300
Cr0.600C0.400
-0.536
-41483
Cr0.793C0.207
9 .e hS=S-x&%Cr-x; SC
0
cR[xCrenxCr+xC!2nxC]
%w-xCrO&x&
EH+=$-xCr"H&-xCoH~
Phase 4
ANALYTICAL DESCRIPTION OF THE CHROMIUM-CARBONSYSTEM
TABLE 6
,z 2 1
f
X
$ D.
!!
c l?l
r I
TRANSITIONMETAL BINARY SYSTEMS-IV
303
x~O.300
-5.579
-54827
TABLE 9
xEP0.250
x;=O.207
-5.511
-5.144
Composition
-46129
-41779
ASPS-x&Q&x;os;
O
o%;C
O
O
O
8=bcc
8=fcc
8=bcc
Comments
300
300
1000
lOOO
lOOO
1300
1400
Comments
M"o.700 c9.300
tio.75o Co.25o
Kia0.793'0.207
COMPOUND
-14300 f 400
-17800 f 400
AHf[lOOOK](ll)
-4200 1:400 -4600 f 400
-10200 i 400
AHf[1073K](22)
-9700 f 400
Wf[ll23K](21)
-4.90 jL0.4
-7.03 f 0.4
ASf[lOOOK](ll)
3.75 f 3.10 f
0
0.4
0.4
ASf[1073K](22) 0
ASf[l123K](21)
SUKMARY OF EXPERIMENTAL HEATS AND ENTROPIES OF FORMATION OF MANGANESE CARBIDES FROM FCC MANGANESE AND GRAPHITE
Kiao.700co.300
0.750 co.250
MI-i
lhO. 79fC0* 297
AH=H-"l;nO&x;oH;
-~xC[x14u41.84+xC47.698]
-~xC[x14u194974+xC288278]
K(a-Mu)
Compound
-~x~[~41.84+~~47.698]
-~x~[~l94974~~~288278]
PfB-Mu)
0
hx&a4.602-~~47.6981
-~xC[x&41419+xC288278J
fee
x14,,xC41840
-x14,,xC[~16.736+xC79.496]
-~xC[x&69034+xC25344]
bcp
Graphite
xF,uxC[h4.602-xC47.698]
-~xC[xl&18407+xC269031]
bee 0 XC 1
O
x,4uxC[k4.602-xC47.698]
-~xC[x,4099S79+xC166523]
Liquid
SYSTEM Composition Range
OF THE THESE-CARBON
Phase 0
ANALYTICAL DE~RIPT~~
TABLE 8
E *
F
B a. m .
B
s
r
g .c..
TRANSITIONMETAL BINARY SYSTEMS-IV
d ”
2
P, , , , , , , , , ,
305
AH=H-x* FeoH;e-x;oH;
Comments
300
300
300
1300
Comments
(l-x) Fe(fcc) + x C (graphite)+Fe (l_x) Cx(fcc) AG AH 0.:2 895 -765 -1155k125 0.04 1828f209 O.iS Fe (bee) + 0.25 C (graphite)+Feo75 Co 25 T-K AG AH 4468 400 6837 3050~500 600 7506+500 0.75Fe(fcc) + 0.25 C (graphite)+Feo75 Co 25; AG =
0.12
x (atom fraction Carbon) 0.04 0.08
AG 1594 314
T'K 800 1000
AH 7209 5699
AH 2786 3786
AH 4619 6163
2807-2.7453 (+400) for lOOOK to 1400K
AG -1372 -1460 0x06 0.08
(1426OK)
(l-x) Fe (liquid) + x C (graphite)+Fe (l_x) Cx (liquid) (1873OK) AG AH x(atom fraction Carbon) AG 962 -2853 -6363 0.16 -4607 2038 -6460 0.20 -5749?418 3255k628
e=fcc - 0.900 x:=0.25 - 31810 Fe0.75 '0.25 .-.___--__-_---TABLE 11 SUMMARY OF EXPERIMENTAL THERMOCHEMICALDATA FOR IRON-CARBONALLOYS (11)
Compound
Composition
o
0
e 8 AS=S-X;~%~~-X;~S~
o
xFexC[xFe2.929-x+816]
-xFexC[xFe94558+xC155226]
fee
xFexC41840
o
XFeXC[XFe37.823+xC29.079]
-xFexC[xFe35146+xC95814]
bee
Graphite
o
Composition Range
-XFeXC[XFe10.544*xC48.953]
+R[xFeLnxFe+xCKnxC]
ES@&_, FeOS;e-xCOS;
-xFexC[xFe91630+xC156063]
e 09 EO 0 H =s-xFeoHFe-XC HC
Liquid
0
Phase
10
ANALYTICAL DESCRIPTION OF THE IRON-CARBON SYSTEM
TABLE
2 6 c1
X .
7* a
6
k
P
r
bee
The Iron-Carbon
5
+ Graphite
point
Fe3C
Liquid
I
System
Calculated
Figure
(a)
Melting
Fe3C
/
I
Metastable
Fe
/
I
/
/
I
C
2500
T’K
Fe
1
b$c Fe3C
_
Liquid
_
-
1 I I
: I
(b)
Liquid
I Observed
I
bee
fee
1 (11.15)
1
+ Graphite
+ Graphite
+ Graphite
1
I
M%o
+ OS+ co-xc OSC co +R[xCoBnxCo+xCI1nxC]
TABLE 13
0
-xcoxc25.10
E&b-x
ocxc
o
%x$1
o
Range
Composition
"C
I
78672
- 25.65T + 47850(xc/xco)+ 47.85T(xC/xCo)
for xc < 0.02 (Graphite is the Standard State)
RTIn ti
EXPERIMENTALDATA ON THE ACTIVITY OF CARBON IN FCC COBALT (23)
xcoxc41840
draphite
"HbC
-xcoxc[59831xco+95814xc]
C
fee
.HbCo_X
-xcoxc[59831xco+95814xc]
-xcoxc94558
E"kDb
hcp
Liquid
4
Phase
ANALYTICAL DESCRIPTION OF THE COBALT-CARBONSYSTEM
TABLE 12
300
60WT<1800 *Refers to fee
3OO
1300
Comments
' 2
i
F
r .
Figure 6.
1
1
t ,
I,
System
(a) Calculated
I
The Cobalt-Carbon
I
,
hcp + Graphite /
fee + Graphite
1 C
1000
1500
2000
2500
3000
3500
T'K
co
-
I
1
1
1
I
I
PI
(11-15)
4
hcp + Graphite / (b) Observed
I
fee + Graphite
I
,
I
-
C
l
xC
TABLE
= 58765
(Graphite
- 10.34T
OF CARBON
15
0
O
is the Standard
(23)
State)
Comments
300cT~l.800 *Refers to Graphite
300
15OO
f 101'5T(xC/XNi)
IN FCC NICKEL
+ 101,sOO(XC/XNi)
DATA ON THE ACTIVITY
for xC
RT In aCxNi
EXPERIMENTAL
xNixc41840
O
-~~~~~~4J1x,~~+67.70x~J
-xNixc[79496xNi+108784xcJ
Graphite
O
-xNixc[42.97xNi+15.36xC]
+R[xNiRnxNi+xChxC1
Composition Range
-xNixc[111294xNi+99579xCJ
NimXC
SYSTEM
Liquid
9
OF THE NICKEL-CARBON
EHk H4MIXNi *Ii
DESCRIPTION
Phase
ANALYTICAL
TABLE 14
TRANSITIONNETAL BINAXY SYSTEMS-IV
311
L. Kaufman and Il.Neeor
312
10.
The Niobium-Carbon System
The analytical description of niobium-carbon solution and compound phases is shown in Table 16. This description can be combined with the lattice stability values in Table 1 and those presented earlier(Z) to calculate the phase diagram shown in Figure 8a and the thermochemical properties. The observed phase diagram(l2) is compared with the calculated diagram in Figure 8b while Table 17 summarizes the experimentally determined thermochemical data for the niobium carbide phases(l1). 11.
The Molybdenum-Carbon System
Table 18 contains the analytical description of the molybdenum-carbon system which can be used in conjunction with the lattice stability values in Table 1 and with those presented earlier to compute the phase diagram and thermochemica properties of molybdenum-carbon solution and compound phases. The calculated phase diagram in Figure 9a is compared with the observed diagram in Figure 9b, while Table 19 contains experimental data for molybdenum carbides (111. 12.
The Tungsten-Carbon System
The tungsten-carbon solution and compound phases are described analytically in Table 20. This description, when coupled with the lattice stability values in Table 1 and those presented earlier(2) can be employed to generate the thermochemical properties and the phase diagram shown in Figure 10a. The latter can be compared with the observed phase diagram(12) shown in Figure lob. Table 21 summarizes the experimental thermochemical data for tungsten carbides(l1). References L. Kaufman, CALPHAD 1, 7 (1977) L. Kaufman and H. Nesor, CALPHAD 2, 59 (1978) :: L. Kaufman and H. Nesor, CALPHAD z, 81 (1978) L. Kaufman, CALPHAD 2 117, (1978) 5. L. Kaufman and H. Nesor, Treatise on Solid State Chemistry, N.B. Hannay Ed. 5 179 Plenum Press, New York (1975) 6. R.O.G. Blachnik,P. Gross and C. Hayman, Tr. Faraday Sot. 66 1058 (1970) 7. R.C. King and G.T. Armstrong, J. Research,National Bureau z Standards, 68A 661 (1964) Furakawa, T.B. Douglas, W.G. Saba and A.C. Victor, J. Research, 8. m. National Bureau of Standards 69A 423 (1965) 8B 531 (1977) 9. U.V. Choudary and G.R. Belton-et.Tr. 10. H. Ginsberg and V. Sparwald, Aluminum 4f181,219 (1965) 11. R. Hultgren, P.D. Desai, D.T. Hawkins,x. Gleiserand, K.K. Kelley, Selected Values of the Thermodynamic Properties of Metals(and Binary Alloys) (2 Volumes) ASM, Metals Park, Ohio (1973) 12. E. Rudy, Compendium of Phase Diagrams, Air Force 13. M. Hansen and K. Anderko, Constitution of Binary Alloys, McGraw Hill, New York, (1958) 14. R.P. Shunk and F. Shunk, First and Second Supplements (Ibid) (1965),(1969) 15. D.T. Hawkins and R. Hultgren, Metals Handbook 8 251 American Society for Metals, Metals Park, Ohio (1973) 16. W.M. Dawson and F.R. Sale, Met.Tr. 8A 15 (1977) 17. Y.A. Chang and D. Naujock, Met. Tr.3 1693 (1972) 18. A.C. Kulkarni and W.L. Worrel, Met. Tr. 3, 2363 (1972) 19. R. Benz, J.F. Elliott and J. Chipman, Met. Tr. 3 1449 (1973) 20. R. Benz, J.F. Elliott and J. Chipman, Met. Tr. 3 1975 (1973) M. Hillert and M. Waldenstrom, CALPHAD, 1. 97 (1972) 22;: U.V. Choudary and Y.A. Chang, CALPHAD, 2 169 (1978) 23. J.C. Swartz, Met. Tr. 2 2318 (1977)
43:
-141838
Nb0.50 co.5o -5.565
-5.950
e e AS=S-x~bOSNb-X~%C
x~=O.500
x;=o.333
Composition
ocxc
o
o
Composition Range
298 1000 1700
T'K
-69300+2000 -68000 -67400
AG
-70300+2000 -69100 -67800
AH
0.500 Nb (bee) + 0.500 C (graphite)+Nbo , 5oo Co 5oo
AH[298K] = -65000+2000
0.67 Nb (bee) + 0.33 C (graphite)+Nbo67 Co 33
TABLE 17 SIJMMARYOF EXPERIMENTALTHERMOCHEMICALDATA FOR NIOBIUM CARBIDES (11)
-105054
8 e AH=H-x;~~~~-x;~H~
Compound
Nb0.667 '0.333
xNbxC83680
Graphite 0
92
x 169034 -XNb C
bee X NbXC?a.
XNbXC20.92
9 ESO=S@_x "S$ Nb Nb-XCoSC +R[xNbKnxNb+xCRnxC]
-xNbxC110458
EHQ=H;-xNbO$b-xCOH;
Liquid
$
Phase
ANALYTICAL DESCRIPTION OF THE NIOBIUM-CARBONSYSTEM
TABLE 16
e=fcc
B=hcp
Comments
300cT<4200
lOoO
2500
Comments
_-
? z
2 3
i I+
%
g
2
L. Kaufman and H. Nesor
314
c
4
x 83680 xMo C
AH=H-x&?&-x;
Graphite
Compound
Mo0.60 '0.40
MoO.667 '0.333
-xMoxc37656
bee
T'K 298 800 1400 1573 1573
AG -15630 -16550 -18300 -18800 -18600+2000(17)
AH -15360 -14540 -13960 -14060
0.67 Mo(bcc) + 0.33 C (graphite)+Moo67 Co 33
SHMMARY OF EXPERIMENTAL THERMOCHEMICALDATA FOR MOLYBDENUM CARBIDE (11)
x;=o.400
0.502
-62559
TABLE 19
x*=0 333 c -
-2.278
Composition
o
0
AS=S-x~ooS~o-x~oS~
o
o
Composition Range
0
0
+R[xMo~nxMo+xC~nxCl
-56582
OH;
-xMoxc[xMo71128+xC129704]
$ EH$=H@_x 4 M MooHMo-XCOHC
Liquid
Phase 0
ANALYTICAL DESCRIPTION OF THE MOLYBDENUM-CARBONSYSTEM
TABLE 18
8=bcc
8=hcp
Comments
300
800
2000
Comments
G
z
g
:: 8 _
316
L. Kaufman and II.Nesor
-66275
-79182
wo.50 Co.50
-51238
'0.600 '0.400
WO.667 '0.333
-8.473
-3.384
-2.787
TABLE 21
e e As=s-x~%W-x~%C
0
0
0
E&=S@_x ySe_x QSO w w c C +R[xWQnxW+xCQnxC]
x~=O.500
._ .
T'K 298 1000 2000
AG -19200+1000 -17800 -16500
.._
.-.
AH -21000+1000 -19200 -18800
0.50 W(bcc) + 0.50 C (graphite)+Wo I 5. Co 5.
AH[298K] = -8800?1000 AG[lS23K] = -11400
0.67 W(bcc) + 0.33 C (graphite)+Wo67 Co 33
-.
e=hcp
e=bcc
--
ti=hcp
x;=0.333
x;=o.400
Comments
300
600
2800
Comments
Composition
O
O
O
Composition Range
SUMMARY OF THERMOCHEMICALDATA FOR TUNGSTEN CARBIDES (11)
0 8 dH=H-xiaHW-x;'HC
xCxC83680
Graphite
Compound
xWxC16736
-xWxC[xW3?656+xC83680]
Liquid
bee
'H~=~-x*'~-xC'~~~
Phase 9
ANALYTICAL DESCRIPTION OF THE TUNGSTEN-CARBONSYSTEM
TABLE 20
b
z
E
g
:: z 4
318
L. Kaufman and H. Nesor
C
Y P