Coupled phase diagrams and thermochemical data for transition metal binary systems-IV

Coupled phase diagrams and thermochemical data for transition metal binary systems-IV

CALPHAD Vol. 2, No. 4, pp. 295-318. Pergsmon Press Limited, 1978. Printed in Great Britain. COUPLED PHASE DIAGRAMS AND THERMOCHEMICALDATA FOR TRANSIT...

964KB Sizes 0 Downloads 93 Views

CALPHAD Vol. 2, No. 4, pp. 295-318. Pergsmon Press Limited, 1978. Printed in Great Britain.

COUPLED PHASE DIAGRAMS AND THERMOCHEMICALDATA FOR TRANSITION METAL BINARY SYSTEMS-IV* Larry Kaufman and Harvey Nesor ManLabs, Inc., 21 Erie Street Cambridge, Massachusetts 02139,USA ABSTRACT.

A data base covering the transition metals has been developed which permits coupling of thermochemical and phase diagram data and can readily be employed to compute ternary and higher order systems. The which is part of a series, details the following ten current paper, titanium-carbon, manganese-carbon, binary systems : aluminum-carbon, chromium-carbon, iron-carbon, cobalt-carbon, nickel-carbon, niobiummolybdenum-carbon and tungsten-carbon. This brings the total carbon, of such systems covered to forty seven. This paper together with past and projected contributions will cover other binary members in order to permit calculation of a sufficiently wide range of ternary systems.

1.

Introduction

Previous papers in the current series (l-4) provide descriptive information covering thirty-seven binary systems composed of titanium, chromium, The manganese, iron, cobalt, nickel, copper, niobium, molybdenum, and tungsten. present paper deals with the binary systems of carbon and these metals thus enFuture contributions will extend this list to cover larging the data base. Lattice stability descriptions for carbon are presented aluminum and silicon. below which when coupled with those presented earlier(l-4) for the above listed metals and with excess free energy and compound formation data permit characterization of specific ternary systems. 2.

Lattice

Stability

Values

Table 1 contains values for the lattice stability of carbon between In addition, the graphite form and the other metallic structures of interest. Table 1 also contains values of the lattice stability of the graphitic forms of the metals of interest(S) which will be employed in characterizing the specific binary systems discussed below. 3.

The Aluminum-Carbon

System

Table 2 summarizes the analytical description of the Al-C system which can be combined with the lattice stability values given in Table 1 and in the earlier work(l) to compute the phase diagram shown in Figure 1 and the thermochemical properties of alloys in this system. Figure 1 shows the most recent experimental phase diagram (10) for comparison with the calculated result while Table 3 provides the available experimental thermochemical data.

*

This work has been sponsored by the Metallurgy Program? Metallurgy Materials Section, Division of Materials Research, National Science tion, Washington, D.C. under Grant DMR76-08453.

295

and Founda-

L. Kaufman and H. Nesor

296

TABLE

1

LATTICE STABILITY VALUES FOR THE ELEMENTS (5) _S_=_=_=-5-=-E-2-I~I-I-I-=-~~~~ (Units

Element C

of J/mol

(L-Liquid,

and J/mol

K will

be used

P=BMn, K=aMn. G=Graphite) -32635

-12.5521

throughout)

Temperature RanBe (K) 300 < T

32635

300 < T

-24267

300 < T

-7531

300 < T

6694

300 < T

114223

-27.1961

300 < T

Al

-25.104T

300 < T

Ti

-25.104T

300 < T

Mn

-25.104T

300 < T

Cr

-25.104T

300 < T

Fe

-25.1041

300 < T

co

-25.104T

300 < T

Ni

-25.104T

300<

Nb

-25.104T

300 < T

t&J

-25.104T

300 < T

w

-25.104T

300<

T

T

AH=H-x~l"H~l-~~oH~

Compound

e

-13.224

s=s-xpAI-x~osc

0

0

TABLE 3

e

+R[xAlfinxAl+x c k%xC]

Esw-xAl~s~l-xCOs~

x;=o.429

Composition

o
o
Composition Range

-5.94 ?:0.30 (8)

-29614 + 342 (6)

AG[1873K] = -12571 f 1600 (9)

0.571 Al (liquid) + 0.429 C (Graphite)+ Al0 571 Co 42g

-29700 + 1429 (7)

AS(298K)

AH[298K]

0.571 Al(fcc) + 0.429 C (Graphite)+ Al0 571 Co 42g

SUMMARY OF EXPERIMENTAL THERMOCHEMICALDATA FOR ALlB.lINUM CARBIDE

-89029

~~1~~41840

Graphite

A10.571C0.429

xAlxc[xA19623-xc786591

EO 0 H =s-xAlOH;l-xCDHC$

Liquid

4

Phase

ANALYTICAL DESCRIPTION OF THE ALIJMINUM-CARBON SYSTEM

TABLE 2

e = fee

Comments

300
800
Comments

z

I

3 5

2

!?

2

2

is

:: 2 P

298

L. Kaufman and H. Nesor

TRANSITIONMETAL BINARY SYSTEMS-IV

The Titanium-Carbon

4.

299

System

Table 4 provides the analytical description of the titanium carbon system(S) used to calculate the phase shown in Figure 2a. The latter is compared with the observed phase diagram(ll-15) shown in Figure 2b. The analytical description shown in Table 4 can also be used to calculate the thermochemical properties of titanium carbide for comparison with the experimental values(l1) shown in Table 5. 5.

The Chromium-Carbon

System

Table 6 displays the analytical description of the chromium-carbon system, which when coupled with the lattice stability values presented earlier (1) and in Table 1 can be employed to compute the thermochemical properties The latter is compared with the experimental phase diagram and phase diagram. (12) in Figure 3 while Table 7 summarizes the experimental thermochemical data (16-18). 6.

The Manganese-Carbon

System

The analytical description presented in Table 8 combined with the lattice stability values shown in Table 1 and presented earlier(4) permit calculation of the phase diagram displayed in Figure 4a and the thermochemical properties. These can be compared with the experimental phase diagram (11-15, 19,20) and thermochemical properties given in Table 9 (11,21,22). The latter yield divergent heats and entropies of formation but similar free energies of formation for the manganese carbides listed near 1100K. The values calculated from the description in Table 8 yield similar free energies of formation near 1lOOK with heats and entropies of formation which are closest to the results of Hillert and Waldenstrom(21). 7.

The Iron-Carbon

System

Table 10 provides the analytical description of the iron-carbon system which when coupled with the lattice stability values shown in Table 1 and presented earlier(l,Z) permit calculation of the thermochemical properties The latter is compared with the oband the phase diagram for this system. Table 11 provides a summary (11) of the served diagram in Figure 5, while experimental thermochemical data for iron-carbon alloys which can be computed from the description in Table 10 with good precision. 8.

The Cobalt-Carbon

System

Table 12 summarizes the analytical description of the cobalt-carbon system which can be combined with the lattice stability values shown in Table 1 and those presented earlier(l) to perform calculation of the phase diagram This description can also be employed to compute the displayed in Figure 6a. thermochemical properties for the system. Limited experimental thermochemical data for fee Co-C alloys are shown in Table 13(23). 9.

The Nickel-Carbon

System

Table 14 displays the analytical description of the nickel-carbon system which can be combined with the lattice stability values in Table 1 and those presented earlier to compute the thermochemical properties and the phase Figure 7b shows the experimental diagram for the System shown in Figure 7a. phase diagram while Table 15 provides some experimental information on the activity of carbon in fee nickel (23).

Ul=H-x+i'+i-x;oH;

Compound

-159700

xTixc83680

Graphite

Ti0.56C0.44

0

-xTixc 209200

bee

e = fee

x;=o.44

300
o
Comments

llOO
o
Composition

l!iOO
-80400

1900

(from bee Ti and graphite)

-90500 f 4000 (from hcp Ti and graphite) II 1, -86700

AGf (Joules)

300 1000

T°K

Comments

o
Composition Range

FORMATION OF Ti0.50 Co 5o AT SEVERAL TEMPERATURES(11)

EXPERIMENTALVALUES OF THE FREE ENERGY OF

TABLE 5

-16.57

0

0

+R[xTignxTi+xcKnxC]

Esw-xTi'S~i-xC%~

-xTixc175728

EH'=H&i't$i-xCoH;

Liquid

0

Phase

ANALYTICAL DESCRIPTION OF THE TITANIUM-CARBONSYSTEM

TABLE 4

!z .X % $

5

R

c

r.

TRANSITIONMETAL BINARY SYSTEMS-IV

301

0

0

-xCrxC138072

-xCrxC133888

xCrxC41840

bH=H-x&%~r-x~'HCe

Liquid

bee

Graphite

Compound

-3.394

-75011

-16220 + 580

'=0.600 %.4ao

-21970 +-800

-22800 rt800

-14920 + 850

Cr0.700 co.3oo

-18120 i 750

-19700 k 800

AHf[298](11)

2 950

AHff298](17)

-10000

AHf[298](16)

CARBIDES

FROM KC

x;=o.400

x;=o.300

x:=0.207

Composition

O
O
O
Composition Range

-22400 f8OO

-23300 2800

-18200 5800

A~f(W

CHROMIUM

AND GRAPHITE

0 = bee

8 = bee

0 = bee

Comments

300
800cT<2200 'Refers to bee

1600
Comments

-13700-5.683 (t3303(1300to 1500K)

-14700-3.643 (t170)(1100to 1720K)

-lllOO-2.64T (t170)(1150to 1300K)

AGfj1573K]f17)

OF CHROMIUM

Cr0.793 5.207

COMPOtJND

SUMMARY OF EXPERIMENTALHEATS AND FREE ENERGIES OF FORMATION

TABLE 7

-1,195

-58781

Cro.700co.300

Cr0.600C0.400

-0.536

-41483

Cr0.793C0.207

9 .e hS=S-x&%Cr-x; SC

0

cR[xCrenxCr+xC!2nxC]

%w-xCrO&x&

EH+=$-xCr"H&-xCoH~

Phase 4

ANALYTICAL DESCRIPTION OF THE CHROMIUM-CARBONSYSTEM

TABLE 6

,z 2 1

f

X

$ D.

!!

c l?l

r I

TRANSITIONMETAL BINARY SYSTEMS-IV

303

x~O.300

-5.579

-54827

TABLE 9

xEP0.250

x;=O.207

-5.511

-5.144

Composition

-46129

-41779

ASPS-x&Q&x;os;

O
o%;C
O
O
O
8=bcc

8=fcc

8=bcc

Comments

300
300
1000
lOOO
lOOO
1300
1400
Comments

M"o.700 c9.300

tio.75o Co.25o

Kia0.793'0.207

COMPOUND

-14300 f 400

-17800 f 400

AHf[lOOOK](ll)

-4200 1:400 -4600 f 400

-10200 i 400

AHf[1073K](22)

-9700 f 400

Wf[ll23K](21)

-4.90 jL0.4

-7.03 f 0.4

ASf[lOOOK](ll)

3.75 f 3.10 f

0

0.4

0.4

ASf[1073K](22) 0

ASf[l123K](21)

SUKMARY OF EXPERIMENTAL HEATS AND ENTROPIES OF FORMATION OF MANGANESE CARBIDES FROM FCC MANGANESE AND GRAPHITE

Kiao.700co.300

0.750 co.250

MI-i

lhO. 79fC0* 297

AH=H-"l;nO&x;oH;

-~xC[x14u41.84+xC47.698]

-~xC[x14u194974+xC288278]

K(a-Mu)

Compound

-~x~[~41.84+~~47.698]

-~x~[~l94974~~~288278]

PfB-Mu)

0

hx&a4.602-~~47.6981

-~xC[x&41419+xC288278J

fee

x14,,xC41840

-x14,,xC[~16.736+xC79.496]

-~xC[x&69034+xC25344]

bcp

Graphite

xF,uxC[h4.602-xC47.698]

-~xC[xl&18407+xC269031]

bee 0 XC 1

O
x,4uxC[k4.602-xC47.698]

-~xC[x,4099S79+xC166523]

Liquid

SYSTEM Composition Range

OF THE THESE-CARBON

Phase 0

ANALYTICAL DE~RIPT~~

TABLE 8

E *

F

B a. m .

B

s

r

g .c..

TRANSITIONMETAL BINARY SYSTEMS-IV

d ”

2

P, , , , , , , , , ,

305

AH=H-x* FeoH;e-x;oH;

Comments

300
300
300
1300
Comments

(l-x) Fe(fcc) + x C (graphite)+Fe (l_x) Cx(fcc) AG AH 0.:2 895 -765 -1155k125 0.04 1828f209 O.iS Fe (bee) + 0.25 C (graphite)+Feo75 Co 25 T-K AG AH 4468 400 6837 3050~500 600 7506+500 0.75Fe(fcc) + 0.25 C (graphite)+Feo75 Co 25; AG =

0.12

x (atom fraction Carbon) 0.04 0.08

AG 1594 314

T'K 800 1000

AH 7209 5699

AH 2786 3786

AH 4619 6163

2807-2.7453 (+400) for lOOOK to 1400K

AG -1372 -1460 0x06 0.08

(1426OK)

(l-x) Fe (liquid) + x C (graphite)+Fe (l_x) Cx (liquid) (1873OK) AG AH x(atom fraction Carbon) AG 962 -2853 -6363 0.16 -4607 2038 -6460 0.20 -5749?418 3255k628

e=fcc - 0.900 x:=0.25 - 31810 Fe0.75 '0.25 .-.___--__-_---TABLE 11 SUMMARY OF EXPERIMENTAL THERMOCHEMICALDATA FOR IRON-CARBONALLOYS (11)

Compound

Composition

o
0

e 8 AS=S-X;~%~~-X;~S~

o
xFexC[xFe2.929-x+816]

-xFexC[xFe94558+xC155226]

fee

xFexC41840

o
XFeXC[XFe37.823+xC29.079]

-xFexC[xFe35146+xC95814]

bee

Graphite

o
Composition Range

-XFeXC[XFe10.544*xC48.953]

+R[xFeLnxFe+xCKnxC]

ES@&_, FeOS;e-xCOS;

-xFexC[xFe91630+xC156063]

e 09 EO 0 H =s-xFeoHFe-XC HC

Liquid

0

Phase

10

ANALYTICAL DESCRIPTION OF THE IRON-CARBON SYSTEM

TABLE

2 6 c1

X .

7* a

6

k

P

r

bee

The Iron-Carbon

5

+ Graphite

point

Fe3C

Liquid

I

System

Calculated

Figure

(a)

Melting

Fe3C

/

I

Metastable

Fe

/

I

/

/

I

C

2500

T’K

Fe

1

b$c Fe3C

_

Liquid

_

-

1 I I

: I

(b)

Liquid

I Observed

I

bee

fee

1 (11.15)

1

+ Graphite

+ Graphite

+ Graphite

1

I

M%o

+ OS+ co-xc OSC co +R[xCoBnxCo+xCI1nxC]

TABLE 13

0

-xcoxc25.10

E&b-x

ocxc
o
%x$1

o
Range

Composition

"C

I

78672

- 25.65T + 47850(xc/xco)+ 47.85T(xC/xCo)

for xc < 0.02 (Graphite is the Standard State)

RTIn ti

EXPERIMENTALDATA ON THE ACTIVITY OF CARBON IN FCC COBALT (23)

xcoxc41840

draphite

"HbC

-xcoxc[59831xco+95814xc]

C

fee

.HbCo_X

-xcoxc[59831xco+95814xc]

-xcoxc94558

E"kDb

hcp

Liquid

4

Phase

ANALYTICAL DESCRIPTION OF THE COBALT-CARBONSYSTEM

TABLE 12

300
60WT<1800 *Refers to fee

3OO
1300
Comments

' 2

i

F

r .

Figure 6.

1

1

t ,

I,

System

(a) Calculated

I

The Cobalt-Carbon

I

,

hcp + Graphite /

fee + Graphite

1 C

1000

1500

2000

2500

3000

3500

T'K

co

-

I

1

1

1

I

I

PI

(11-15)

4

hcp + Graphite / (b) Observed

I

fee + Graphite

I

,

I

-

C

l

xC

TABLE

= 58765

(Graphite

- 10.34T

OF CARBON

15

0

O
is the Standard

(23)

State)

Comments

300cT~l.800 *Refers to Graphite

300
15OO
f 101'5T(xC/XNi)

IN FCC NICKEL

+ 101,sOO(XC/XNi)

DATA ON THE ACTIVITY

for xC
RT In aCxNi

EXPERIMENTAL

xNixc41840

O
-~~~~~~4J1x,~~+67.70x~J

-xNixc[79496xNi+108784xcJ

Graphite

O
-xNixc[42.97xNi+15.36xC]

+R[xNiRnxNi+xChxC1

Composition Range

-xNixc[111294xNi+99579xCJ

NimXC

SYSTEM

Liquid

9

OF THE NICKEL-CARBON

EHk H4MIXNi *Ii

DESCRIPTION

Phase

ANALYTICAL

TABLE 14

TRANSITIONNETAL BINAXY SYSTEMS-IV

311

L. Kaufman and Il.Neeor

312

10.

The Niobium-Carbon System

The analytical description of niobium-carbon solution and compound phases is shown in Table 16. This description can be combined with the lattice stability values in Table 1 and those presented earlier(Z) to calculate the phase diagram shown in Figure 8a and the thermochemical properties. The observed phase diagram(l2) is compared with the calculated diagram in Figure 8b while Table 17 summarizes the experimentally determined thermochemical data for the niobium carbide phases(l1). 11.

The Molybdenum-Carbon System

Table 18 contains the analytical description of the molybdenum-carbon system which can be used in conjunction with the lattice stability values in Table 1 and with those presented earlier to compute the phase diagram and thermochemica properties of molybdenum-carbon solution and compound phases. The calculated phase diagram in Figure 9a is compared with the observed diagram in Figure 9b, while Table 19 contains experimental data for molybdenum carbides (111. 12.

The Tungsten-Carbon System

The tungsten-carbon solution and compound phases are described analytically in Table 20. This description, when coupled with the lattice stability values in Table 1 and those presented earlier(2) can be employed to generate the thermochemical properties and the phase diagram shown in Figure 10a. The latter can be compared with the observed phase diagram(12) shown in Figure lob. Table 21 summarizes the experimental thermochemical data for tungsten carbides(l1). References L. Kaufman, CALPHAD 1, 7 (1977) L. Kaufman and H. Nesor, CALPHAD 2, 59 (1978) :: L. Kaufman and H. Nesor, CALPHAD z, 81 (1978) L. Kaufman, CALPHAD 2 117, (1978) 5. L. Kaufman and H. Nesor, Treatise on Solid State Chemistry, N.B. Hannay Ed. 5 179 Plenum Press, New York (1975) 6. R.O.G. Blachnik,P. Gross and C. Hayman, Tr. Faraday Sot. 66 1058 (1970) 7. R.C. King and G.T. Armstrong, J. Research,National Bureau z Standards, 68A 661 (1964) Furakawa, T.B. Douglas, W.G. Saba and A.C. Victor, J. Research, 8. m. National Bureau of Standards 69A 423 (1965) 8B 531 (1977) 9. U.V. Choudary and G.R. Belton-et.Tr. 10. H. Ginsberg and V. Sparwald, Aluminum 4f181,219 (1965) 11. R. Hultgren, P.D. Desai, D.T. Hawkins,x. Gleiserand, K.K. Kelley, Selected Values of the Thermodynamic Properties of Metals(and Binary Alloys) (2 Volumes) ASM, Metals Park, Ohio (1973) 12. E. Rudy, Compendium of Phase Diagrams, Air Force 13. M. Hansen and K. Anderko, Constitution of Binary Alloys, McGraw Hill, New York, (1958) 14. R.P. Shunk and F. Shunk, First and Second Supplements (Ibid) (1965),(1969) 15. D.T. Hawkins and R. Hultgren, Metals Handbook 8 251 American Society for Metals, Metals Park, Ohio (1973) 16. W.M. Dawson and F.R. Sale, Met.Tr. 8A 15 (1977) 17. Y.A. Chang and D. Naujock, Met. Tr.3 1693 (1972) 18. A.C. Kulkarni and W.L. Worrel, Met. Tr. 3, 2363 (1972) 19. R. Benz, J.F. Elliott and J. Chipman, Met. Tr. 3 1449 (1973) 20. R. Benz, J.F. Elliott and J. Chipman, Met. Tr. 3 1975 (1973) M. Hillert and M. Waldenstrom, CALPHAD, 1. 97 (1972) 22;: U.V. Choudary and Y.A. Chang, CALPHAD, 2 169 (1978) 23. J.C. Swartz, Met. Tr. 2 2318 (1977)

43:

-141838

Nb0.50 co.5o -5.565

-5.950

e e AS=S-x~bOSNb-X~%C

x~=O.500

x;=o.333

Composition

ocxc
o
o
Composition Range

298 1000 1700

T'K

-69300+2000 -68000 -67400

AG

-70300+2000 -69100 -67800

AH

0.500 Nb (bee) + 0.500 C (graphite)+Nbo , 5oo Co 5oo

AH[298K] = -65000+2000

0.67 Nb (bee) + 0.33 C (graphite)+Nbo67 Co 33

TABLE 17 SIJMMARYOF EXPERIMENTALTHERMOCHEMICALDATA FOR NIOBIUM CARBIDES (11)

-105054

8 e AH=H-x;~~~~-x;~H~

Compound

Nb0.667 '0.333

xNbxC83680

Graphite 0

92

x 169034 -XNb C

bee X NbXC?a.

XNbXC20.92

9 ESO=S@_x "S$ Nb Nb-XCoSC +R[xNbKnxNb+xCRnxC]

-xNbxC110458

EHQ=H;-xNbO$b-xCOH;

Liquid

$

Phase

ANALYTICAL DESCRIPTION OF THE NIOBIUM-CARBONSYSTEM

TABLE 16

e=fcc

B=hcp

Comments

300cT<4200

lOoO
2500
Comments

_-

? z

2 3

i I+

%

g

2

L. Kaufman and H. Nesor

314

c

4

x 83680 xMo C

AH=H-x&?&-x;

Graphite

Compound

Mo0.60 '0.40

MoO.667 '0.333

-xMoxc37656

bee

T'K 298 800 1400 1573 1573

AG -15630 -16550 -18300 -18800 -18600+2000(17)

AH -15360 -14540 -13960 -14060

0.67 Mo(bcc) + 0.33 C (graphite)+Moo67 Co 33

SHMMARY OF EXPERIMENTAL THERMOCHEMICALDATA FOR MOLYBDENUM CARBIDE (11)

x;=o.400

0.502

-62559

TABLE 19

x*=0 333 c -

-2.278

Composition

o
0

AS=S-x~ooS~o-x~oS~

o
o
Composition Range

0

0

+R[xMo~nxMo+xC~nxCl

-56582

OH;

-xMoxc[xMo71128+xC129704]

$ EH$=H@_x 4 M MooHMo-XCOHC

Liquid

Phase 0

ANALYTICAL DESCRIPTION OF THE MOLYBDENUM-CARBONSYSTEM

TABLE 18

8=bcc

8=hcp

Comments

300
800
2000
Comments

G

z

g

:: 8 _

316

L. Kaufman and II.Nesor

-66275

-79182

wo.50 Co.50

-51238

'0.600 '0.400

WO.667 '0.333

-8.473

-3.384

-2.787

TABLE 21

e e As=s-x~%W-x~%C

0

0

0

E&=S@_x ySe_x QSO w w c C +R[xWQnxW+xCQnxC]

x~=O.500

._ .

T'K 298 1000 2000

AG -19200+1000 -17800 -16500

.._

.-.

AH -21000+1000 -19200 -18800

0.50 W(bcc) + 0.50 C (graphite)+Wo I 5. Co 5.

AH[298K] = -8800?1000 AG[lS23K] = -11400

0.67 W(bcc) + 0.33 C (graphite)+Wo67 Co 33

-.

e=hcp

e=bcc

--

ti=hcp

x;=0.333

x;=o.400

Comments

300
600
2800
Comments

Composition

O
O
O
Composition Range

SUMMARY OF THERMOCHEMICALDATA FOR TUNGSTEN CARBIDES (11)

0 8 dH=H-xiaHW-x;'HC

xCxC83680

Graphite

Compound

xWxC16736

-xWxC[xW3?656+xC83680]

Liquid

bee

'H~=~-x*'~-xC'~~~

Phase 9

ANALYTICAL DESCRIPTION OF THE TUNGSTEN-CARBONSYSTEM

TABLE 20

b

z

E

g

:: z 4

318

L. Kaufman and H. Nesor

C

Y P