CUMULATIVE S U B J E C T INDEX OF VOLUMES I (FUNDAMENTALS), II and III (INTERFACES) A N D IV a n d V (COLLOIDS) In this index bold face print refers to chapters or sections; app., and fig. mean appendix, and figure, respectively. The roman numerals I, II, III, IV and V refer to Volumes I, II, III, IV and V, respectively. When a subject is referred to a chapter or section, specific pages of that chapter or section are usually not repeated. Sometimes a reference is made even though the entry is not explicitly mentioned on the page indicated. Entries in square brackets [..] refer to equations. The following abbreviations are used: (intr.) = introduced; (def.) = definition of the entry, ff = and following page(s). Combinations are mostly listed under the main term (example: for negative adsorption, see adsorption, negative), except where only the combination as such makes sense or is commonly used (example: capillary rise). Entries with 'surface' are often also found under 'interface' except where one of the two is uncommon. Entries to incidentally mentioned subjects are avoided. For the spelling of non-English names, see the preface to each volume. To avoid undue expansion of this index, chemical substances are mostly grouped together; for instance, for butanol, palmitic acid, sodium dodecylsulphate, hexane and dimyristoylphosphatidylethanol amine (DMPE) look under alcohols, fatty acids, surfactant, (anionic), alkanes and (phospho-)lipids. a b s o r p t i o n b a n d s ; 1.7.14 a b s o r p t i o n coefficient; 1.7.13 a b s o r p t i o n index; 1.7.13 a b s o r p t i o n (of r a d i a t i o n ) ; see electromagnetic r a d i a t i o n acceptor (in s e m i c o n d u c t o r ) ; II.3.172ff 'acid rain'; 11.3.166,11.3.221 a c o u s t i c waves; 1.7.44, II.4.5d a c o u s t o p h o r e s i s ; II.4.5d activity coefficient; I . 2 . 1 8 a , 1.2.18b, 1.3.50 Debye-Hiickel theory; 1.5.2a, I . 5 . 2 b of (single) i o n s ; 1.5.1a, I.5.1b, I.fig. 5.2, 11.5.2.28] (Davies) activator (in flotation); III.5.97 additivity (in coagulation); IV.3.9k a d h e s i o n ; II.2.5, II.5.97, III.5.4, III.5.2 (also see: wetting, a d h e s i o n a l , w o r k of a d h e s i o n ) a d h e s i v e j o i n t s ; III.5.17 a d i a b a t i c (process); 1.2.3 (def.) a d m i t t a n c e s p e c t r u m ; II.3.93, Il.fig. 3 . 3 0 , II.3.97 a d s o r b a t e ; I.1.17(def.), 1.3.17 ideal; 1.1.17 t h i c k n e s s ; I I . 2 . 6 3 , II.2.76, II.2.79 ellipsometric; 1.7.10b
SUBJECT INDEX
(see further: adsorption of polymers) adsorbent; I.1.18(def.) adsorption; I.1.4ff(intr.), II.chapters 1-3 and 5, III.chapter 4, V.chapter 1 and diffusion; I.6.5d, I.6.5e, II. 1.6, see adsorption, kinetics in emulsions; see V.chapter 8, energy; 1.1.19{intr.), I.3.23ff, [I.4.6.I], II.I.22, II.1.3c, Il.l.Sf, II.I.44ff, Il.l.SOff, II.3.6d-e, Il.chapter 5, V.chapters 1. 3 for heterogeneous surface; II.1.104ff enthalpy; II.1.3c, II.1.3d, IL1.3f, II.2.5b, Il.figs. 2.26-28, Il.figs. 3.60-61 isosteric, II.1.3c, II.1.3d, II.1.28, Il.figs. 1.8-1.10, II.2.26, II.2.49 entropy; 1.3.30, II.1.21, II.1.22, II.1.3c, II.1.29, II.1.3f, Il.fig. 1.11, II.1.43, II.1.52, Il.fig. 1.16, II.1.65, V.chapters 1, 3 from solution; 1.2.73, 1.2.85, Il.chapters 2 and 5, Ill.chapter 4, V.chapters 1, 3 basic features; 11.2.2, Il.fig. 2.1 composite nature; II.2.2, II.2.3-2.6 dilute solutions; II.2.4, II.2.7, II.5.7, II.5.8 electrosorption; II.3.12 exchange nature; II.2.1 experiments; II.2.5, II.5.6, Ill.chapter 4, V.chapters 1, 3 in emulsions; V.8.2d functional; 11.1.18,11.1.33 Gibbs energy; 1.2.74, 11.1.3e, II.1.3f, II.1.45, Ill.chapter 4, IV.chapter 3 V.chapters 1, 3 heat; 11.1.3c, 11.1.28, Il.fig. 1.7, IILfig. 4.16 (also see: enthalpy) Helmholtz energy; II. 1.21, II. 1.23 heterogeneous surfaces; II. 1.7 hysteresis; Il.fig. 1.13, II.1.42, II.1.82, Il.figs. 1.31-33, Il.fig. 1.35, Il.fig. 1.39, Il.l.Se, II.5.26, II.5.7d, V.figs. 3.16-17, V.3.38ff, V.fig. 3.20 kinetics; II.1.45ff, II.2.8, IL5.3c, III.4.5 localized; I.3.5b, I.3.6d, II.1.7, II.1.5a, II.1.5b, Il.l.Sd, II.1.5e, II.1.5f, Il.fig. 1.21 mobile; I.3.5d, II. 1.7, II. 1.5c partially mobile; II.1.5d, II.1.5e, Il.fig. 1.18, Il.fig. 1.21 negative; I.1.3(intr.), 1.1.4, 1.1.5, 1.1.21, 1.2.85, 1.5.93, II.3.5b, II.3.7e, Il.fig. 3.40, II.5.20ff, IL5.3e, Il.fig. 5.6, Il.fig. 5.9, IV.fig. 5.3 physical; II. 1.18, Il.fig. 1.13 presentation of data; II. 1.4, Il.fig. 1.12
SUBJECT INDEX
adsorption (continued), residence time (adsorbed molecules); II.1.46ff specific; see specific adsorption standard deviations; II. 1.45 superequivalent; IL3.62(def.), IV.3.9J, see further: specific adsorption t-plot; Il.figs. 1.27-28, 11.1.88, Il.fig. 1.34 (statistical) thermodynamics; I.2.20e, 1.2.22, II. 1.3, II.2.3, II.3.6d-e, 11.3.12,11.5.5 a-plot; II. 1.90 (also see: adsorption isotherm (equation), calorimetry; for adsorption at hquidfluid interfaces, see (Gibbs) monolayers. For specific examples see under the chemical name of the adsorb ate) adsorption of: atoms; 1.3.5b, 1.3.5c, II.chapter 1 biopolymers; 1.1.2, Il.fig. 5.26b, ll.fig. 5.29, V.chapter 3 gases and vapours; II.chapter 1 functional; II. 1.18, (for relation to wetting, see III.5.3b, Ill.fig. 5.16 ions; 1.1.20, II.3.6d-e also see: double layers, electric polyelectrolytes; II.5.8, V.2.3c, V.fig. 2.19 charge compensation; 11.5.85 chemical and electric contributions; II.5.84ff, Il.fig. 5.32;, Il.figs. 5.38-39 grafting; V.2.3c isotherms; Il.figs. 5.32-33, Il.figs. 5.35-40 multilayer; V.2.6e, V.fig. 2.37 multi-Stern layer; II.5.87 profiles; Il.fig. 5.34 theory; II.5.5g polymers; 1.1.2, 1.1.19, 1.1.23, I.fig. 1.18, 1.1.27, 1.2.72, Il.fig. 4.42, Il.chapter 5, Il.fig. 5.1, Il.fig. 5.6, V.chapter 1 applications; II.5.9 bound fraction; II.5.18, II.5.71, Il.fig. 5.22, V.chapter 1 dispersity effects and fractionation; II.5.3d, Il.fig. 5.8, II.5.7c, Il.figs. 5.29-31, V.1.91 energy parameter; II.5.28, V.chapter 1 equilibrium aspects; V.fig. 1.51 experimental techniques; II.5.6 film rupture (effect on); V.8.88 hysteresis: IL5.26. II.5.7d, V.1.12d isotherms; Il.figs. 5.7-8. Il.fig. 5.22. Il.figs. 5.25-28
4
SUBJECT INDEX
adsorption of polymers (continued), kinetics; II.5.3c layer thickness; II.5.6b, Il.fig. 5.19, Il.figs. 5.23-25, II.5.72ff, V.fig. 1.51 electrokinetic; II.4.128, Il.fig. 4.42, II.5.63ff ellipsometric; II.5.64ff hydrodynamic; II.5.61ff, Il.figs. 5.24-25 steric; II.5.65ff (also see, profiles) loops; II.5.18, II.5.32, figs. II 5.19-23, II.5.70ff, V.fig. 1.6, V.1.6c negative (= depletion); IL5.20, I1.5.3e, Il.fig. 5.9, III.2.58 (self adsorption), V.1.8, V.1.9 profiles; II.5.18, Il.fig. 5.6, Il.fig. 5.10, II.5.40, Il.figs. 5.15-16, II.5.6c, Il.figs. 5.19-20, II1.3.8e, V.fig. 1.1, V.1.6, V.1.5, V.1.8, V.1.9, V.1.11, V.fig. 1.30. scaling; V. 1.68, V.2.3 tails; II.5.18, II.5.32 , Il.figs. 5.19-23, 11.5.70ff, V.fig. 1.6 theory; II.5.4, V.chapter 1 diffusion equation; II.5.32, [V. 1.4.1] (Edwards) excluded volume effect; II.5.5b GSA (ground state approximation); V. 1.2 lattice theories; II.5.30ff Monte Carlo; II.5.30 scaling; II.5.4c ScheutJens-Fleer theory; II.5.31, 11.5.5, see self-consistent field theory square gradient method; II.5.33 statistics; II.5.29 trains; Il.fig. 2.27, II.5.18, 11.5.32, Il.fig. 5.19, Il.figs. 5.21-23, II.5.70ff, V. chapter 1 proteins; V.chapter 3 competition; V.3.8 dispersion forces; V.3.20 driving forces; V.3.3c electrostatics; V.3.19-20 equations of state (2D); V.fig. 3.24 fluid interfaces; V.3.7 hydration/dehydration; V.3.21-22 hydrophobic interactions; V.3.4b hysteresis; V.3.3 and 3.5 kinetics; V.3.3a, V.fig. 3.6 principles; V.3.1-3 reconformation; see structural alterations
SUBJECT INDEX
adsorption of proteins (continued), relaxation; V.3.3b, V.3.32ff, V.fig. 3.18 reversibility; see hysteresis and relaxation structural alterations; V.3.4, V.3.22ff, V.figs. 3.15-19, V.3.6c, V.fig. 3.28 surfactants; 1.1.25, I11.1.14b ionic; II.3.12, I11.4.6d non-ionic; 11.2.7d, III.4.6c adsorption isosters; II.1.3d, Il.fig. 1.9, II.1.37, Il.fig. 1.12f, II.2.26 adsorption isotherm (equation); 1.1.17ff(intr.), I.fig. 1.12, II.1.3ff, Il.fig. 1.12, II.1.5, Il.app. 1 Brunauer-Emmett-Teller (BET); I.3.5f, Il.l.Sf, [II. 1.5.47], [11.1.5.50], Il.fig. 1.24a classification, adsorption from dilute solution; II.2.7b, Il.fig. 2.24 gas adsorption; II. 1.4b surface excess; II.2.3c, Il.fig. 2.8, II.2.4 composite; 1.2.85 (see surface excess) Dubinin-Radushkevich; [II. 1.5.56] electrosorption; II.3.12b, Il.S.Sg Frenkel-Halsey-Hill; [II. 1.5.55] Freundlich; 1.1.19, II. 1.2, [II. 1.7.7] (generalized), Il.fig. 2.24c Frumkin-Fowler-Guggenheim (FFG); I.3.8d, Il.l.Se, Il.fig. 1.19, II.1.64, Il.fig. 1.43, [II.A1.5a], II.2.65, II.3.195 for surface excess isotherm; II.2.4d for specific adsorption of ions; II.3.6d Harkins-Jura; [II. 1.5.57] Henry; 1.1.19, 1.2.73. 1.6.65, II.1.2, [II.Al.la], Il.fig. 2.24a heterogeneous surface; Il.fig. 1.43 high affinity; 1.1.19, Il.fig. 2.24d, Il.figs. 5.7-8, Il.fig. 5.26, Il.fig. 5.29, Il.fig. 5.31, V.chapter 1 , 3 Hill-De Boer = Van der Waals; see there individual; see partial Langmuir; 1.1.20, 1.2.74, I.3.6d, I.fig. 3.2, 1.3.46, II.1.2, II.1.28, II.1.4a, 11.1.5a, 11.1.5b, Il.figs. 1.14-17, II.1.5d, Il.l.Se, [II.1.7.7] (generalized), [II.A1.2a], Il.fig. 2.24b, II.2.86, II.3.196 binary mixture; II.2.4b, II.2.4c, Il.fig. 2.11 local; II. 1.104, Il.fig. 1.43, II. 1.108 one-dimensional; 1.3.8a Ostwald-Kipling; II.2.3b, [II.2.3.6], [II.2.6.1] partial (= individual); Il.fig. 2.9, Il.figs. 2.11-14
SUBJECT INDEX
adsorption isotherm (continued), partially mobile; ILl.Sd, II.fig. 1.18 potential theories; 11.1.73 quasi-chemical; I.3.8e, 11.1.57, [ILA1.6a], II.3.196, V.2.21 standard deviation; 1.3.36 statistical thermodynamics; II.1.3ff, 11.1.5, II.1.6, II.L105, II.2.4, II.3.12, 11.5.5, V.chapter 1 surface excess; II.2.3, Il.figs. 2.11-14, Il.figs. 2.18-23 molecules of different sizes; 11.2.4e, II.fig. 2.14 relation to inter facial tension; II.2.4f multilayer; 11.2.44ff Szyzskowski; [111.4.3.14] Temkin; [11.1.7.6] thermodynamics; I.2.20e, 11.1.3, 11.2.3, II.3.6d-e, II.3.12, 11.5.5 Van der Waals (= Hlll-De Boer); 11.1.59, [II. 1.5.27], Il.fig. 1.20a, Il.fig. 1.23, [II.A1.7a] vlrial; I.3.8f, II. 1.58, [II.A1.4a] Volmer; II.1.5c, Il.figs. 1.15-17, [II.A1.3a] (also see: Gibbs' adsorption law) adsorptive; I.1.17-18(def.) Aerosil; see silica aerosol; I.1.5(def.), 1.1.6, V.8.33 AES = Auger electron spectroscopy AFIVI = atomic force microscopy = SFM, scanning force microscopy ageing; 1.2.99 aggregation; 1.1.2,1.1.6, IV.fig. 4.23 colloids; IV.2.2c, IV.4.5 emulsions; V.8.3c surfactants; see V.chapter 4 (see the pertaining systems) agitation (foam formation); V.fig. 7.9 air bubbles, electrophoresis; II.4.130ff, rv.3.115 floating; I.fig. 1.4 foam stability; V.7.10, V.7.19, V.fig. 7 submersion of; 1.1.1,1.1.2, 1.1.11, Ill.fig. 5.19 albumin, adsorption; V.fig. 3.20, V.fig. 3.22, V.figs. 3.24-27, V.fig. 3.28, V.fig. 3.30 negative adsorption; IV.fig. 5.3 second virlal coefficient; IV.fig. 5.29
SUBJECT INDEX
alcohols, surface dynamics and rheology; III.figs. 3.46, 47, III.4.3c, III.figs. 4.12-16, in.table4.1 surface entropy; III.fig. 2.15 surface tension; III.4.3c Volta potential; lll.fig. 4.14, Ill.fig. 4.24 Alexander-de Gennes model (brushes); V.1.56, V. 1.60 alkanes, surface entropy; Ill.fig. 2.15 surface dynamics and rheology; III.figs. 46, 47 surface tension, data; Ill.fig. 2.17, Ill.table 2.3, Ill.fig. 4.10 simulations; III.2.41-43, Ill.figs. 2.12-13 lattice theory; III.2.60 ff, Ill.fig. 2.17-19 alkylpolyglucoside microemulstions; V.5.6b aluminum oxide; IV.fig. 2.2d adsorptionof HCl; Il.fig. 1.10 adsorption of water vapour; Il.fig. 1.28 boehmite preparation; IV.2.4c double layer; Il.table 3.8 gibbsite preparation; IV.2.4c point of zero charge; Il.app. 3b alveoles; V.6.8 amphipathic; L1.23(def.) amphiphilic; I.1.23(def.) amphipolar; I.1.23(def.) analytical ultracentrifugation; IV.2.54ff analyzer; 1.7.27, l.fig. 7.7,1.7.98 anionic surfactants, see surfactants anisotropic media; 1.7.14 birefringence; 1.7.97, 1.7.100 scattering; 1.7.8c anisotropy; 1.7.8c, 1.7.14 of colloidal particles; see particles (colloidal), shape annealed (polyelectrolytes); V.2.2 antagonism (in coagulation); IV.3.9k antifoam; V.7.6 antithixotropy; IV.6.14 Antonow's rule; [111.2.11.12], III.5.76 apolar media, double layers; II.3.11
8
SUBJECT INDEX
apolar media (continued), electrokinetics; II.4.50 solvation; I.5.3f arable gum; see gum arable Archimedes principle (for interaction in a medium); 1.1.30, 1.4.42, 1.4.47, 1.4.50, L4.69ff, I.fig. 4.15, IV.3.91ff d'Arcy's law (flow in porous media); L6.4f, lV.2.32ff, IV.4.50-51 area; see surface area association colloids; I.1.6(intr.), I.1.23ff, W.1.5 association colloids, general, esp. modelling; V.chapter 4 bending (of worm-like micelles); V.4.6d bending and vesicles; V.4.7d, V.fig. 4.38, V.fig. 4.47 bilayers (lipid); V.4.37ff, V.fig. 4.7, V.4.7c, V.4.99ff critical micellization concentration; V.4.1c, V.table 4.1. Many examples in V.chapter 4 cylindrical micelles; V.4.6, V.figs. 4.25-30, V.4.i iSff disc-like micelles; V.4.7b, V.figs. 4.33-34 end-cap energy; V.4.6c, V.fig. 4.27, V.fig. 4.45 extensive introduction; V.4.1a ionic; V.4.5, V.figs. 4.18-24, V.fig. 4.37 kinetics of micellization; V.4.10 lamellar phases; V.4.7 lamellar phases, interactions; V.4.8 mass action model; V.4.2b micelles, size fluctuations; V.4.2ci mixed micelles; V.4.9a, V.figs. 4.42-43 molecular simulations (MD, Monte Carlo); V.4.30, V.4.33ff, V.figs. 4.5-6 non-ionic; V.4.4, V.figs. 4.9-14. V.figs. 4.25-29, V.4.7, V.figs. 4.31-36 pluronics; V.4.4e, V.figs. 4.15-16 profiles; V.fig. 4.1, V.figs. 4.6-7, V.figs. 4.10-12, V.fig. 4.15, V.figs. 4.20-21, V.fig. 4.26, V.fig. 4.32, V.fig. 4.35, V.fig. 4.46 quasi-macroscopic models; V.4.3c, V.fig. 4.8, V.4.5e second c.m.c; V.4.6e self-consistent field theory; V.4.3b, V.fig. 4.6, V.fig. 4.9, V.4.4, V.4.5, V.4.6b, appendix V. 1 solubilization; V.4.9b, V.fig. 4.46 surfactant packing parameter; V.4.1d, [V.4.1.4] thermodynamics (classical); V.4.2 thermodynamics of small systems; V.4.19ff undulation forces; V.4.8a, V.figs. 4.39-40 vesicles; V.figs. 4.35-38
SUBJECT INDEX
association constant; 1.5.2d association of ions; see ion association association of water; 1.5.3c atomic force microscopy; 1.7.90, IL1.12ff, 11.figs. 1.3-4, II. 1.91, Il.fig. 2.17, lll.table 3.5, III.S.Td, Ill.figs. 3.66-68, Ill.fig. 5.28, V.fig. 1.43, V.fig. 3.14 ATR = attenuated total reflection, attenuated total reflection; 1.7.81, 11.1.18, II.2.54, Il.fig. 2.16, V.fig. 3.18 Auger (electron) spectroscopy; 1.7.11a, I.table 7.4 autocorrelation function; Lapp. 11.1 autophobicity; II. 1.80, II. 1.101 averaging; 1.3.1 a{ intr.) azeotrope (in adsorption from solution); II.2.23 cir-method (porous surfaces); II. 1.89-90 bacteria, Corynebacterium;
Il.fig. 4.39
halophilic; 1.1.27 Nitrosobacter, Nitrosomonas;
II.3.122
BAM = Brewster angle microscopy Bancroft rule; III. 1.84, III.4.97, V.8.5, V.8.59ff barium sulphate; II.table 1.3 barometric distribution; 1.1.20 barrier crossing; IV.fig. 4.4 barycentric derivative; 1.6.5 Bashforth-Adams tables (for capillarity); III.1.18ff Batchelor eq. (viscosity); [IV.6.9.9] Baxter model (adhesive hard sphere); IV.5.41, IV.figs. 5.22-26, IV.fig. 5.30 BBGKY = Bogolubov-Born-Green-Klrkwood-Yvon (recurrency expression); II.3.53ff BDDT = Brunauer-Deming-Deming-Teller, II.(isotherm classification); II. 1.4b beam splitters; 1.7.98 beating (optical) = optical mixing beating (mechanical, foam preparation); V.7.13 bending; Ill.fig. 1.34 bending moment of interfaces; 1.2.91, V.8.86 bending moduH of interfaces; [III.1.10.2], III.1.55, III.1.15, III.1.79, Ill.tables 1.6 and 1.7 (data); III.4.7, V.4.6d, V.4.7c, V.5.5a, V.fig. 5.34 Bernouilli's law; [V.8.2.2] Berthelot principle (for interaction between different particles): 1.4.3 Iff, [III.2.11.18] BET = Brunauer-Emmett-Teller; see adsorption isotherm BET-transformed; II. 1.69 Bethe-Guggenheim (approx.) = quasi-chemical biaxiality (anisotropic systems); 1.7.97
SUBJECT INDEX
bicontinuity in microemulsions; see there bilayers; V.4.7 Bingham fluid; IV.fig. 6.5, IV.fig. 6.17, IV.fig. 6.21 Bingham viscosity; IV.6.12, 6.40 binodal; 1.2.68, IL5.12, Il.fig. 5.4, III.2.26, 1V.5.64ff, IV.fig. 5.62 binominal; [IV.A.1.4] biological activity; V.flg. 3.29 blomineralization; IV.2.38 biopolymers; LI.2,1.1.27, Il.fig. 5.5, V.chapter 3 birefringence; 1.7.14 Bjerrum length; [1.5.2.30a] for polyelectrolytes; [11.5.2.23], V.2.9 Bjerrum theory (ion association); 1.5.2d black body (radiation); 1.7.22 black film; see film, hquid blob; 11.5.11, V.fig. 1.31 blood clotting; V.3.52ff body (or volume) forces; 1.1.8ff(intr.), 1.4.2 Bohr magneton; 1.7.95 boiling point elevation; 1.2.74 Boltzmann equation, II.Boltzmann factor; I.3.10ff, [11.3.5.4], II.3.216 dynamic; II.3.217 Boltzmann's law (for entropy); [1.2.8.2], [1.3.3.7] (also see: Poisson-Boltzmann equation, theory) Booth eq. (prim, electroviscous effect); [rV.6.9.16] Born-Bjerrum equation (solvation); [1.5.3.4] Born equations (solvation); 1.5.3b, II.3.123 Born repulsion; 1.4.5 Bose-Einstein statistics; 1.3.12 Boyle point; 1.2.51, 1.2.64, II.5.6 Boyle-Gay Lussac law; 1.2.51 Bragg-Williams approximation; 1.2.62, I.3.8d, I.3.49ff, I1.1.56ff, V.2.17 Bredigsols; IV.2.37 Brewster's angle; 1.7.74, II.2.51, V.fig. 6.4 Brewster angle microscopy; III.table 3.5, III.fig. 3.56 bridging; V.chapter 1, especially V.8.1.11 V.8.73 bridging (foam destruction); V.7.32 Brillouin lines; 1.7.44 Bronsted (acids, bases); 1.5.65, 11.2.7, IV.4.2b Brownian motion: 1.3.34, 1.4.2, 1.6.3a, 1.6.3d, Lapp, l i e , IV.2.7, IV.4.2b in a force field; L6.3b, IV.4.3b
SUBJECT INDEX
Brownian motion (continued), rotational; 1.6.73 BSA = bovine serum albumine; see albumine brushes (at interfaces); III.3.4J, IV.4.5, V.1.11, V.fig. 1.28, 29, V . l . l l g , V.2.3c bubbles; see air bubbles Burgers element; III.3.129 Cabannes factor; 1.7.53 Cabosil; see silica Cahn electrobalance; III. 1.44 Cahn-Hilliard theory (for interfacial tension); III.2.6, V.1.7 calcium carbonate (structure factor); IV.fig. 5.33 calomel reference electrode; 1.5.85 calorimetry (adsorption); II.1.3c, Il.fig. 1.7, II.1.29, II.2.5b, II.5.60 canal surface viscometer; III.3.183-184 capacitance, electric; 1.4.51, 1.5.13, II.3.7c, II.3.94, II.3.106 differential; I.5.13(def.), 1.5.15, 1.5.100, II.3.10, II.3.21, il.fig. 3.5, il.5.29, Il.fig. 3.9, II.3.33, II.3.36, II.3.6c, Il.fig. 3.22, Il.figs. 3.42-43, Il.fig. 3.49, Il.figs. 3.50-51, Il.fig. 3.53, II.3.149, II.5.60-61 integral; I.5.13(def.), 1.5.15, 1.5.59, II.3.10, II.3.6c capillaries (electrokinetics in), electrokinetic velocity profile; Il.figs. 4.15-16 electro-osmosis; 11.4.2 Iff electrophoresis; II.4.132 streaming current; II.4.3d streaming potential; II.4.3d capillary bridges; III.1.49. III.1.84, I l l . S . l l d capillary condensation; II.1.42, II.1.6, Il.figs. 1.32-33, Il.fig. 1.35, Il.fig. 1.39 capillary depression; 1.1.8ff, I.fig. 1.1, Ill.fig. 1.4b, III.5.4e capillary electrometer; II.3.139ff, Il.fig. 3.47, III. 1.20 capillary length; [III. 1.3.3], Ill.table 1.1 capillary number; [III.5.8.1], also see: [V.8.2.3] capillary osmosis; II.4.9 capillary phenomena (general); 1.1.3, 1.2.23, II.1.6d, II.1.6e, III.1.1, 111.1.1,111.1.2 capillary pressure; I.l.Sff, I.fig. 1.9, I.fig. 1.10, 1.2.23, II. 1.6, V.6.25, V.7.5, V.8.2 Young and Laplace's law; I.1.9(intr.), 1.1.12, 1.1.15, I.2.23b, especially [1.2.23.19], II.1.85ff, II.1.99, III.l.l, [III.1.1.2] capillary rise; 1.1.2, I.1.8ff, I.fig. 1.1, II.1.6e, III.1.3, Ill.fig. 1.4a, III.1.83, I11.5.4e capillary waves; III.2.9c, III.3.6g, III.3.10 capture efficiency (orthokinetic); IV.fig. 4.18
11
12
SUBJECT INDEX
carrier wave; 1.7.38 carbon, graphite, AFM image; 11.fig. 1.3 adsorption of: benzene, R-hexane; II.fig. 1.8 carbon tetrachloride; II.figs. 1.22-23 hexane + hexadecane; II.fig. 2.20 krypton; Il.fig. 1.29 long alkanes from n-heptane; 11.figs. 2.28-29 n-heptane-cyclohexane mixture; Il.fig. 2.18 octadecanol; Il.fig. 2.17 pentane + decane; Il.fig. 2.20 rubber; Il.fig. 5.31 water vapour; Il.fig. 1.11, Il.fig. 1.28 soot; IV. 1.3 immersion (= wetting) enthalpy; II.table 1.3 carboxymethyl cellulose solutions, viscosity; IV.fig. 6.35, V.fig. 2.33 Carnahan-Starling equation [1.3.9.31], [IV.5.4.14] casein (p , K ); IV.fig. 5.18, V.figs. 3.24-27, V.fig. 8.19, V.fig. 8.20 Casimir-Polder equation (for retarded Van der Waals forces); [1.4.6.35], [1.4.7.9] Cassie equation; [III.5.5.2] caterpillar trough; III.fig. 3.74 cation exchange capacity; 1.5.99, II.3.165ff cationic surfactants, see surfactants CBF = common black film; see films, liquid c.c.c. = coagulation, critical concentration, see colloid stability CD = circular dichroism; see dichroism c.e.c. = cation exchange capacity cell (galvanic); see galvanic cells centrifugation potential (gradient); II.table 4.4, II.4.6-7, IV.2.54 ceramics; IV. 1.6, IV.3.185 Hamaker constants, IV.app. 3 chain crystalhzation; V.8.6 chain statistics; II.5; V.l, V.2.3 Chandrasekhar equation; [1.6.3.20] Chapman-Kolmogorov equation; [1.6.3.13], [IV.4.2.5] characteristic curve (in potential theory for gas adsorption); II. 1.74 characteristic functions (in statistical thermodynamics); 1.3.3, [1.3.3.8], III.table 3.2 (in Langmuir monolayers), III.fig. 3.14 charge (electric); 1.5.3, 1.5.9, I.fig. 5.1 (also see: double layer, surface charge density, space charge (density))
SUBJECT INDEX
charge-determining ions; I.5.5b, II.3.7, II.3.8, II.3.84ff, II.3.89, II.3.147ff charge reversal; II.3.62, see further overcharging charged (colloidal) particles; II.chapter 3, II.chapter 4 concentration polarization; II.3.206, II.3.13c, II.4.6c, [II.4.6.53], II.4.8, [II.4.8.22] contribution to conductivity; II.figs. 4.37-39 contribution to dielectric permittivity; II.figs. 4.37-39 far fields; II.3.207, II.3.13b, II.3.211, II.3.217, II.4.18-19, II.4.6, II.4.8 fluxes; II.3.215ff, II.4.6, 11.4.8 (in) alternating fields; II.4.8 interaction; see interaction between colloids induced dipole moment; II.3.206, II.3.210, II.3.212ff, II.4.8 local equilibrium; II.3.213, II.4.79 near field; 11.3.211,11.4.6 polarization field; II.3.207, IL3.209, II.3.211ff, II.4.18-19, II.4.70, II.4.87, II.4.8 polarization in external field; II.3.13, Il.fig. 3.86, Il.fig. 3.88, II.4.3a, Il.fig. 4.2, 11.4.18ff, II.4.6, II.4.8 relaxation; II.3.13d, Il.fig. 3.89, II.4.6c, II.4.8 charging of double layers; I.5.17ff, 1.5.7, II.3.5, IV.3.1, IV.3.2, V.2.3, V.3.8ff (also see: under double layer, electric: Gibbs energy; for specific examples see under the chemical name) charging parameter; 1.5.17, 1.5.106 cheese rheology; IV.6.15, IV.6.19 chemical potential (intr.); 1.2.1 Iff, 1.2.35 dependence on curvature; 1.2.23c dependence on pressure; 1.2.4Iff dependence on temperature; 1.2.40 (of) polymers; II.5.9 chemisorption; II. 1.6, II. 1.32, II. 1.18, Il.fig. 1.9, II.2.85 chirality; 1.7.100. IIL3.216 cholesterol monolayers; Ill.fig. 3.13, III.3.8d, Ill.figs. 3.92-93 chromatography; II.2.47ff, II.2.88 eluate; II.2.48 field flow fractionation; IV.2.61ff high performance liquid (HPLC); II.2.47 retention volume; II.2.48 chymotrypsin; V.fig. 3.29 c.i.p. = common intersection point circular dichroism (CD); see dichroism circular polarization; see electromagnetic radiation, polarization
13
14
SUBJECT INDEX
Clapeyron equation chemical equilibrium; [1.2.21.11 and 12] gas adsorption; [1.3.39] solubility; [1.2.20.6] in pores; II. 1.99 two-dimensional; III.3.38 Clausius-Mosotti equation (for polarization of a gas); [1.4.4.10] clay minerals (general); 1.5.99 cation exchange capacity; 1.5.99, II.3.165ff double layer; ll.fig. 3.1c, II.3.8, Il.S.lOd electrokinetics; 11.3.168 isomorphic substitution; II.3.2, II.3.165 structures; II.3.163ff, Il.figs. 3.66-67 swelling; II.3.163ff cleaving of solid surfaces; 1.2.99 closure relations; 1.3.69, IV.5.3d cloud point; V.4.11 cloud seeding; II.3.130 CLSIVI = confocal laser scanning microscopy; see CSL]V[ cluster integral; 1.3.65 c.m.c. = critical micelllzation concentration; see micellization coacervatlon; IV.5.95ff, IV.fig. 5.64 coagulation; I.1.6(intr.), 1.1.7, 1.1.28, 1.4.7,1.7.61, IV.3.9 also see; colloid stability coagulation (flocculation) kinetics; IV.2.2d, IV.figs. 3.65-66, IV.chapter 4, V.1.85 critical concentration; II.3.129ff, IV. 1.11 fractal formation; IV.4.5 irregular series; II.3.62; see further, overcharging orthokinetic; IV. 5b particle size effects; IV.4.32 perikinetic (def.); IV.4.37 rapid; IV.4.3a slow; IV.4.3b surface roughness effects; IV.4.32 coalescence, (emulsions); V.8.3b, V.8.53ff, V.8.64 partial; V.8.73 coalescence (foams); V.7.10 coherence (of radiation, electromagnetic waves); 1.7.15, I.7.22ff, 1.7.69 coherence time; 1.7.22 coherent neutron scattering; 1.7.70 cohesion (in liquids); 1.4.5c
SUBJECT INDEX
cohesion (work of); 1.4.47, III.5.2, III.fig. 5.9 cohesion pressure; 1.3.69 cohesion (or cohesive) energy; 1.4.46 coil (of polymer molecules); 1.1.26, I.fig. 1.17, II.5.2 co-injection (foaming); V.7.13 co-ions; I.1.21(def.) Cole-Cole diagram; 1.4.35, Il.fig. 3.30b collapse (monolayers) (def.); III.3.23, Ill.fig. 3.46, III.3.226 collector (in flotation); I.I 25, III.5.97 colligative properties (intr.); I.2.20f collision broadening (spectral lines); 1.7.22 colloids (general); I.1.5ff(def.), 1.1.2, IV.chapter 1, Volume IV (particulate colloids), Volume V (hydrophilic colloids) characterization; IV.2.3 colour; IV.2.39 ' light scattering; IV.2.3b microscopies; rv.2.3a, IV.2.41ff sedimentation; IV.2.3d; see further separate entry surface area; III.3.131ff, IV.2.3c concentrated; IV.chapter 5 electron micrographs; Il.fig. 1.1, IV.figs. 2.1, 2.2 and 2.4 emulsions; V.chapter 8 in external fields; II.3.13, II.chapter 4 fractionation; rv.2.2h history; IV. 1.4 hydrophihc; 1.1.7(def.); IV. 1.11 (def.). Volume V (general) hydrophobic; I.1.7(def.); IV. 1.11 (def.), Volume IV (general) stability; 1.1.6,1.1.22ff (also see: colloid stability, general) interaction between colloids and macrobodies, interaction curves; I.fig. 6.2, IV.chapter 3, IV.chapter 4, IV.chapter 5 atomic force microscopy; II. 1.13, IV.3.12 constant charge vs. constant potential; 1.5.108, IV.3.8ff, IV.fig. 3.1 density correlation functions; Lapp, l i e , IV.chapter 5 depletion; IV.3.10 Deryagin approximation; I.4.60ff, IV.3.2, IV.3.7c Deryagin-Landau-Verwey-Overbeek (DLVO) theory; IV.chapter 3 Deryagin-Landau-Verwey-Overbeek extended (DLVOE) theory; IV.3.9 in films; V.6.5 disjoining pressure; [V. 1.1.2 and 3], IV.chapter 3 dynamics; IV.chapter 4, IV.4.3 (def.)
15
16
SUBJECT INDEX
colloids, interaction between colloids and macrobodies, interaction curves (continued), electric; IV.chapter 3 comparison of models; IV.3.7f diffuse, constant charge; IV.3.4 diffuse, constant potential; rv.3.3 Gouy-Stern layers, regulation; IV.3.5, IV.figs. 3.24-28, IV.3.9d spherical double layers; IV.3.7, IV.fig. 3.30 energy barrier; IV.3.9, IV.fig. 4.4 external field; IV.3.10, IV.4.5, IV.5.30 forced interaction; IV.3.6, IV.3.10, IV.4.3, IV.4.5b, IV.5.3c hetero-interaction; IV.3.4, IV.3.6 hydrod)mamics (influence); IV.4.5b kinetics; IV.chapter 4 induction; IV.fig. 3.21 linear superposition approximation (LSA); TV.3.12 Maxwell stress; IV.3.22 measurement; 1.4.8, Il.figs. 2.2-3, II.3.56ff, IV.3.12 nanoparticles; IV.3.81 orthokinetic; IV.4.5b primary minimum; I.fig. 4.2, IV.3.9 regulation; W.3A, IV.3.5 rheological consequences; IV.6.13 secondary minimum; I.fig. 4.2, IV.3.9 simplified models; IV.5.2c, IV.5.4, IV.5.5, IV.5.6a, IV.5.81 solvent structure-mediated; 1.5.3, 1.5.4, IV.3.5, IV.3.8c surface force measurements; rv^.3.12 surface roughness; IV.3.82ff tabulation of electrical interactions; IV.app. 2 thermodynamics; IV.3.2, V.1.1 timescales; 1^.4. Iff two-dimensional; III.3.241 virial approach; 1.7.8b, FV^.chapter 5 irreversible = hydrophic, lyophobic mills; IV.2.2g mixtures; IV.5.7c, IV.5.8c preparation; 1.1.6, 1.2.100, IV.chapter 2 (general) by comminution; rv.2.29 by condensation = by precipitation
SUBJECT INDEX
colloids, preparation (continued), by precipitation; V.2.2a (homogeneous), IV.2.2b (kinetics), IV.2.2c, IV.2.2f (heterogeneous) dispersity; lV.2.2d examples of sol preparations; IV.2.4 fractionation; IV.2.2h, IV.2.54ff also see separate entry nucleation and growth; IV.2.2b, IV.2.2f particle growth; IV.2.2d size control; IV.2.2a size distributions; see separate entry sol-gel processing; rv.2.2j reversible = hydrophilic, lyophilic solvent structure contribution; Il.figs. 2.2-3, II.2.10, III.3.8c solubility; IV.2.2e wetting; III.5.4h (also see: particles, charged (colloidal) particles) colloid stability, stabilization; IV.chapter 3, IV.chapter 4 adsorption versus depletion; IV.3.2, V.1.10 bridging; V.1.6b, V.fig. 1.6 brushes; V . l . 1 1 , V.fig. 1.29, V . l . l l g by (bio)pol3rmers (including steric stabilization); I.1.2(intr.), 1.1.7, I.fig. 1.18, I.1.27ff, I.fig. 2.11, II.5.96ff, IV. 1.3, IV. 1.4, IV.fig. 1.2, V.chapter 1 (general), V.6.5C by polyelectrolytes; V.2.7 by surfactants; 1.1.25 case studies; IV.3.13 concentration profiles; V.1.5 critical coagulation concentration (c.c.c); IV.3.98, IV.3.9e, IV.table 3.2 depletion (flocculation); IV.1.5, V.1.8, V.1.9, V . l . l l h disjoining pressure; IV.chapter 3, V.l.6, V.l.7 DLVO theory; I.1.21ff (intr.), 1.3.59, IV.1.14, IV.chapter 3 DLVOE theory; IV.chapter 3, esp. 3,9 emulsions; V.S.lg equilibrium aspects; V. 1, V. 1.12 flocculation kinetics; V.1.12e general; I.1.6ff(intr.), I.1.21ff, I.fig. 1.14, 1.2.71, I.fig. 2.11, 1.4.8, IV.chapter 3 gravity influence; IV.3.10a Gibbs energy; IV.chapter 3, V.1.6, V.figs. 1.7-13, V.1.7, V.1.8b-d, V.1.9c, V . l . l l f grand potential; V.1.1, V. 1.3-4, V.1.6 Helmholtz energy; V. 1.1, V. 1.4, V. 1.10, V. 1.57ff, V. 1.65ff
17
18
SUBJECT INDEX
colloid stability, stabilization (continued), influence electric field; IV.S.lOb irregular series; see overcharging lyotropic series; see separate entry magnetic forces; IV.3.10c measurement; IV.3.102ff, IV.3.12 mushroom interaction; V. 1.1 If nonaqueous media; IV.3.11 orthokinetic coagulation, flocculation; IV.4.5b, V.1.84 Ostwald ripening; IV.2.2e, V.8.3b rheological consequences; IV.6.13 and point of zero charge; II.3.106 Schulze-Hardy rule; IV.3.9e tethered; V. 1.11 {also see: colloids interaction, Van der Waals interaction) colloid titration, calorimetric; II.3.98 conductometric; 11.3.88, Il.fig. 3.20 polyelectrolytes; V.2.2d potentiometric; I.S.lOOff, I.fig. 5.17, II.3.7, II.3.85, Il.fig. 3.29, II.3.151, Il.figs. 3.57-59, II.5.60, IV.fig. 3.75 proteins; V.3.5ff, V.figs. 3.15-17 colloid vibration potential; ILtable 4.4, II.4.7, II.4.3e, II.4.5d colloidal dispersion; IV. 1.9 (def.) comminution of big particles; IV.2.2g common intersection point (in colloid titration curves); II.3.8a, Il.fig. 3.34, Il.figs. 3.57-59, Il.figs. 3.63-64, Il.fig. 3.77, Il.fig. 3.80, II.3.206 complex coacervate micelles; V.2.6f, V.fig. 2.39 complex coacervation; IV.5.95, V.2.6c, V.figs. 2.34-36 complex quantities; Lapp. 8 compliance; see (interfacial) rheology composition law (polymer adsorption); II.5.40 compositional ripening (emulsions); V.8.71 compressibility; 1.7.46, [III.2.11.4] Ornstein-Zernike equation; [1.3.9.32], [IV.5.2.7] two-dimensional; see interfacial rheology compression; IV.6.2 compression modulus; IV.6.6 concentrated polymer regime; II.5.9, Il.fig. 5.3, IV.6.11, IV.6.12 concentration profiles (ions); Il.fig. 3.8, Il.fig. 3.20, II1.3.4h, IV.fig. 3.1 concentration profiles (polym. ads.); V.1.5
SUBJECT INDEX
condensation, counterions; V.2.2a condensation, homogeneous, 1.2.23d condensation (method for preparing colloids); IV. 1.2, IV.2.2 condensation, (two-dimensional); 1.3.43, Il.figs 1.3.5-8, I.3.47ff, L3.53ff, II.1.59ff. Il.fig. 1.20, Il.figs. 1.31-33, Il.fig. 1.35, Il.fig. 1.39, Il.fig. 1.42, 11.2.66 conduction (electrolytes); 1.6.6 (also see: surface conductance, surface conductivity) conduction bond (solids); Il.fig. 3.68, II.3.173 conductivity (electrolytes), limiting; I.6.6a, I.table 6.5 molar; 1.6.6a (also see: surface conductivity) conductivity of, capillaries and plugs; 11.4.55ff, II.4.7, Il.fig. 4.34 colloids: a.c. measurements; II.4.5e, Il.figs. 4.21-22, 11.4.8, Il.figs. 4.37-39, IV.fig. 4.16 colloids (non-aqueous); IV.3.134 ions and ionic solutions; 1.5.51, 1.6.6a, I.table 6.5, 1.6.6b microemulsions; V.5.3f polyelectrolytes; V.2.5b, V.2.5c thin films; V.6.2g, V.fig. 6.37 vi^ater; 1.5.43 conductometric titration of colloids and polyelectrolytes; see colloid titration configurations; 1.3.11, I.3.29ff, II.5.2, V.2.3 also see; polymer adsorption configuration integrals; I.3.9a, [1.3.9.6], IV.chapter 5 configurational energy; 1.3.46 configurational entropy; 1.2.52, 1.3.30, V.3.2a confocal laser scanning microscopy; 1.7.91, IV.5.92 conformation; II.5.1, see under polymers, polyelectrolytes, proteins congruence (adsorption from binary mixtures); II.2.3e charge; II.3.198 electrosorption; II.3.198, Il.fig. 3.81 pH; II.3.155, II.3.198 temperature; 11.2.27, II.3.156 conjugate acid (def.); 1.5.65 conjugate base (def.); 1.5.65 conjugate force; see force conservation (of energy); see energy conservation (of momentum); 1.6.1b, IV.6.4
19
20
SUBJECT INDEX
conservation laws; see hydrodynamics conservative force (def.); 1.4.1 consistency test (adsorption from binary mixtures); II.2.3e, II.fig. 2.19 contact angle; 1.1.3,1.1.8, I.fig. 1.1, Il.figs. 1.40-41, Ill.fig. 1.1, Ill.chapter 5 and enthalpy of wetting; II. 1.29, III.5.2 data; Ill.app. 4 heterogeneous precipitation; IV.2.2f hysteresis; Ill.fig. 1.20, III.1.41ff, III.5.5, III.5.4, Ill.fig. 5.4, III.5.9-10, III.5.40 measurement (general); III.5.4, (in films) V.6.2e, V.6.3e captive bubbles; III.5.4b capillary rise/depression; 111.5.4e fibers; III.5.4g films, liquid; V.6.2e, V.6.3e, V.figs. 6.18-19, V.fig. 6.38 individual particles; III.5.4h objects in interface; III.5.4c powders, porous materials; III.5.4i pressure compensation; III.5.50 sessile drops; III.5.4b spinning drop; III. 1.53 tilted plates; III.5.4d contact angle, advancing; see hysteresis contact angle, dynamics; III.5.8 contact angle, interpretation; III.5.7 contact angle, receding; see hysteresis continuity equations; 1.6. l a , IV.6.1, IV.6.2 contrast matching (in neutron scattering); 1.7.70 convection; 1.6.37, V.8.75 convective diffusion; 1.6.7c convolution; I.A10.3 co-operativity; II. 1.48 coordination number; 1.3.45, 1.4.46, 1.5.3c copolymers in microemulsions; V.5.6e copper phtalocyanine pigment; IV. fig. 1.5 cordierite; IV.fig. 2.2a core (of micelles) = interior part corona (of micelles) = exterior part correlation coefficient; I.3.9e correlation function; IV.5.2a direct; IV.5.16 pair; 1.3.66, II.3.5Iff
SUBJECT INDEX
correlation function (continued), time (-dependent), 1.6.31, I.7.6c, 1.7.6d, 1.7.7, Lapp. 11, II.2.14, IV.2.46ff total; [1.3.9.23], II.3.51ff, IV.5.6ff, IV.5.16 (various examples in chapter IV.5) correlation length; 1.7.46, II. 1.94, II.5.11, III.2.27, IV.4.4, V.5.39, V.5.3h correlation time, rotational; 1.5.44 correlator; 1.7.6c, I.7.6d corresponding states; III.2.51, III.2.53, V.5.19ff, V.5.55 corrosion inhibition; II.3.224 Cotton-Mouton effect; 1.7.100 Cottrell equations; [1.6.5.20, 11.21], I.fig. 6.15a Couette viscometers/rheometers; IV.6.7b Coulomb's law, Coulomb interactions; [1.4.3.1], 1.4.38, 1.5.11, 1.5.16, 1.5.17, 1.5.21, II.3.36, II.3.48ff countercharge; I.1.20(def.), II.3.2, II.3.7 see, electric double layers counterions; I.1.21(def.), see, double layer (ionic components of charge), lyotropic sequences, specific adsorption coupling pcirameter (Kirkwood); 1.3.68 copper phtalocyanate; II.table 1.3, IV.fig. 1.5 creep flow; 1.6.45, IV.6.6b for inter facial creep, see interfacial rheology critical coagulation concentration (c.c.c); see colloid stability critical micellization concentration; see micellization critical opalescence; 1.3.37, 1.3.69, I.7.7c, IV.2.41 interfacial; 1.7.83 critical point or critical temperature; IV.fig. 2.3, IV.fig. 5.41, IV.fig. 5.43, IV.5.7a, IV.fig. 5.62 for polymer demixing; II.5.12 in pores; Il.fig. 1.39 two-dimensional; I.3.49ff, 1.3.53, II.1.109 critical radius (nucleation); 1.2.101, IV.2.2b cross coefficients (in irreversible thermodynamics); 1.6.12, 1.6.2 cross differentiation (principles); 1.2.14c cross-section (molecular); see surface area cryogenic transmission electron microscopy; IV.2.42-43 crystal defects (in semiconductor); II.3.172 crystal grov^h; II.5.97, IV.2.2 crystallization (of concentrated colloids); IV.5.8a
21
22
SUBJECT INDEX
CSLM = CLSM = confocal laser scanning microscopy; 1.7.91 Curie temperature; IV.3.124 curvature (of interfaces); I.2.23a,IIL1.4ff, III.1.17, III.1.15, V.4.7c, V.5.24ff, V.fig. 5.26, V.fig. 5.27b influence on chemical potential; 1.2.23c mathematical description; III. 1.78 radius of; I.2.23a, figs. 1.2.14-15, I11.1.4ff, III.1.2 spontaneous; III. 1.78, V.5.25, V.fig. 5.14 (also see: bending moment, bending modulus) cut-off length (gel); IV.4.49 CVP = colloid vibration potential Dalton'slaw; [1.2.17.2] damping (of oscillations); I.4.37ff see further interfacial rheology, w^ave damping dashpot (and spring); III.fig. 3.50, IV.6.6, see further (interfacial) rheology; Maxwell element and Kelvin (or Voigt) element; Darcy's law; see d'Arcy's law Davies equation (for ionic activity coefficient); [1.5.2.28] Deborah number; 1.2.6, 1.2.86,1.5.77, 1.6.2, II. 1.8, III. 1.32, III. 1.35, III.3.5, III.3.12, III.3.90, III.4.62, IV.4.33ff, IV.6.16-17, [IV.6.4.3] De Broglie wavelength; 1.3.23, 1.7.24 Debye equation (for polarization of gases); [1.4.4.8] Debye-Falkenhagen effect; 1.5.60, 1.6.6c, 11.4.111 Debye-Hiickel approximation (intr.); 1.5.19 Debye-Hiickel limiting law; [1.5.2.22] Debye-Hiickel theory, for pair interaction; IV.3.3d, IV.3.68 for polyelectrolytes; V.2.2d for strong electrolj^es; 1.5.2, 1.6.6b Debye length; [1.5.2.10], I.5.19(def.), I.table 5.2, II.3.19, [II.3.5.7]ff, [II.3.10.22] Debye-Van der Waals forces; see Van der Waals forces Debye relaxation; 1.6.73 decomposition; see demixing deep channel surface shear viscometer; III.fig. 3.70 defoaming; IV.7.6 deformation (in rheology); IV.6.1, IV.6.2 degeneracy; 1.3.4 degree of dissociation; 1.5.30, II.3.76, II.5.56, V.2.2d degrees of freedom (intr.); 1.2.36 de-inking; III.5.102 delayed (elastic) recovery; IV.fig. 6.12
SUBJECT INDEX
23
delta formation (relation to colloid stability); 1.1.1, 1.1.2, 1.1.7, IV. 1.2, IV.3.184 demixing; 1.2.19, Il.l.Se, IV.fig. 2.3, IV.5.7a binodal; 1.2.68, Il.fig. 5.4 critical; 1.2.19, Il.l.Se spinodal; 1.2.68, Il.fig. 5.4 two-dimensional; III.3.4e density correlation functions; Lapp, l i b , Lapp, l i e density functional; [111.2.5.18], 111.2.34, Ill.app. 3 density profiles, liquid-fluid interfaces; 111.2.4, 111.2.5, [111.2.5.31], lll.fig. 2.6, Ill.fig. 3.29 see also concentration profiles, distribution functions (of liquids near solids and of fluid interfaces), adsorption of polymers depletion (adsorption) = adsorption, negative layer thickness; V.1.8, V.1.9 depletion interaction; IV.3.10, IV.5.79ff, V.1.8, V.1.9, V.8.72ff depolarization (of polarized interface); 11.3.137 deposition; IV.4.3, lV.4.43-44 depolarization ratio; 1.7.54 Deryagin approximation (to compute interactions between non-flat colloids); 1.4.61, l.fig. 4.13, 1.4.64, IV.3.2, IV.3.7c Deryagin-Landau-Verwey-Overbeek (DLVO) theory; see colloids, interaction and colloid stability desalination; 1.1.3 (also see: salt-sieving) Descartes' law = Snell's law desorption; 1.1.5(def.) detectors (for radiation); 1.7.Ic quadratic; L7.36ff detergency; 111.5.101 dewetting; 111.5.4, 111.5.10, V.fig. 5.30, V.fig. 7.14 dextrane, adsorption on silver iodide; Il.fig. 5.26b, IL5.80ff, Il.fig. 5.29 DFG = difference frequency generation; 111.3.7c.v dialysate; I.5.86ff dialysis; IV.2.32 diamagnetism; 1V.3.124 dichroism; 1.7.98, II.2.56 circular (CD); 1.7.99, V.fig. 3.28, see chapter V.3 (general) dielectric displacement; L4.5f, 1.7.9, IV.3.124 dielectric dispersion of sols, low and high frequency; II.3.219, Il.fig. 3.89. 11.4.110
24
SUBJECT INDEX
dielectric dispersion of sols (continued), measurements; II.4.5e, II.fig. 4.21 theory; II.4.8, IV.4.5a, IV.figs. 4.16-17 dielectric drag; 1.5.51 dielectric increment, of colloids; 11.4.8, Il.fig. 4.37-39, IV.figs. 4.16-17 of ions; I.table 5.10 dielectric permittivity (dielectric constant); 1.4.10, L4.4e, L4.5a, I.4.5f, 1.5.11, I.table5.1,I.5.3e, 1.7.2, 1.7.6 complex formalism; L4.4e, 1.7.2c, Lapp. 8 emulsions; V.8.19ff measurement; 1.4.24, 1.4.5f, I1.4.5e, Il.figs. 4.21-22 relation to polarization; 1.4.23ff relation to refractive index; 1.7.12 dielectric polarization; see polarization dielectric relaxation; I.4.4e, I.4.5f, II.4.8 dielectric saturation; 1.5.11 dielectr©phoresis; II.4.51 differential scanning spectroscopy; V.3.26, V.fig. 3.28 diffraction, principles; 1.7.13, 1.7.24 diffraction colours; IV.2.40 diffuse charge, diffuse double layer; see double layer, diffuse (also see: surface charge) diffuse transmission spectroscopy; V.7.23 diffusing wave spectroscopy, IV.4.9, V.7.23 diffusion (coefficient); 1.6.3,1.6.5, 1.7.15, Lapp, l i e along surface; L6.5g, 11.2.14, 11.2.29, III.3.74 and correlation functions; Lapp. 11 and irreversible thermodjniamics; 1.6.5a collective; 1.6.55, 1.7.15, Lapp, l i e colloids; IV.4.1ff,IV.4.2 concentrated sols; 1.7.66, 1.7.15, Lapp, l i e convective; I.6.7e data; I.table 6.4 forced; 1.6.53, 1.6.7 hydrodynamic correction; 1.6.56, Lapp, l i e in condensed media; 1.6.56 in films; V.fig. 6.45 in gases; 1.6.55 in water; L5.44ff model interpretation; 1.6.5b
SUBJECT INDEX
diffusion (coefficient) (continued), non-linear geometry. I.6.5f non-spherical particles; I.6.69ff, I.fig. 6.19 of colloids from dynamic light scattering; 1.7.8b, 1.7.8c, I.7.8d, 1.7.15 rotational; 1.5.44, 1.6.20, 1.6.53, I.6.70ff, 1.7.8c, 1.7.59 self; 1.5.44, 1.6.53, 1.7.15, Lapp, l i e semi-infinite; 1.6.59 thermal; 1.7.44, 1.7.48 to/from (almost) flat surface; I.6.5d, II.2.8, II.4.6c, II.4.8b to growing particles; IV.2.2c diffusion-controlled particle growth; IV.2.2c diffusion equation (theory for polymer adsorption); II.5.32ff diffusion impedance; 11.3.96 diffusion layer; 1.6.63, 1.6.68 diffusion-hmited aggregation (DLA); IV.2.20ff, IV.4.5 diffusion-limited cluster aggregation (DLCA); IV4.45, IV.4.48, IV.fig. 4.25 diffusion potentials; I.5.5d, 11.4.125 also see: potential difference diffusion relaxation; II.3.13, II.3.219, II.4.6, II.4.8 diffusiophoresis; 1.6.91, IL3.214, II.4.9 dilatant, dilatancy (rheology); IV.6.11 dilatometry (and surface excesses); II.2.7 dilational modulus, interfacial; see inter facial rheology dimple formation (in draining films); V.6.39ff, Vfigs. 6.21-23 dipole field; I.4.4b, 11.3.13, II.4.6, 11.4.8 dipole moment; I.4.4b(def.), 1.7.3b data for molecules; I.table 4.1 of colloids; II.3.13 dipoles; 1.4.4b ideal (point dipole); 1.4.20 induced; 1.4.22, 1.4.27, 1.7.18, L7.93ff, II.3.13, II.4.6 of colloids; IL3.13, Il.fig. 4.1, II.4.8 oscillation; 1.7.3b, II.4.8 permanent; 1.4.22, 1.4.27, 1.7.17 Dirac delta function; I.7.40(def.) disc centrifuge; IV.2.60ff discotic fluid (2D); III.3.62 discs (surfactants); V.4.7b
25
26
SUBJECT INDEX
disjoining pressure; I.4.6(def.), II.1.22, Il.fig. 1.37, II.1.95ff, II.1.101, [II.2.2.1], II.5.65, III.3.176, III.5.7, III.5.14-15, III.5.23, Ill.fig. 5.12, Ill.fig. 5.15, IV.1.3, V.1.1, V.6.5 (also see: films, interactions; for interacting colloids, see IV. chapter 3) dispersion, dielectric; see there for preparation of colloids; IV.2.2g ofcolloids; 1.1.5, IV. 1.2 o^ efractive index; 1.4.37, 1.7.13 of transverse waves; III.3.116 dispersion forces; see Van der Waals forces dispersity (ofcolloids); see size distributions displacement, of particles; I.6.18ff, I.6.30ff dielectric; see there dissipation; 1.2.7, 1.2.22, L4.3,1.4.34, 1.6.9, 1.6.13, I.6.35ff, 1.7.2c, 1.7.14, IV.6.3 dissociation constant; 1.5.2d (in) double layers; II.3.65ff, II.3.72ff, II.3.76, II.3.82ff (in) polyelectrolytes; V.2.2d (in) proteins; V.3.5ff, V.table 3.1 relation to points of zero charge; II.3.8c, II.table 3.5 dissolution, heat of; 1.2.71 dissymmetry ratio (in scattering); 1.7.58, I.fig. 7.13 distal length (polym. ads.); V.1.18 distributions; 1.3. l a , 1.3.7, IV.app. 1 most probable; 1.3.7 Poisson; [IV.2.3.46] also see Gauss distribution distribution (partition) coefficient; 1.2.69 distribution (partition) equilibrium; 1.2.20a distribution function; I.3.9d, II.3.6b, II.3.9 direct/indirect; IV.5.21 higher order; I.3.9e in electrolytes; I.5.28ff, Lfig. 5.9, I.5.57ff in fluid interfaces; Ill.fig. 2.1, III.2.3, III.2.4, III.2.5, III.2.24, [III.2.5.30], Ill.fig. 2.6, [III.2.5.40] in liquids near surfaces; II. 1.94, Il.fig. 1.38, [II.2.1.2], II.2.6.8, Il.figs. 2.2-3, I1.2.2b, Il.figs. 2.4-8, 11.3.6b, II.3.9 in water; 1.5.3c, I.fig. 5.6 pair; I.3.71,II.3.51ff, III.2.30 relation to pair interaction; IV.3.142ff
SUBJECT INDEX
distribution function (continued), radial (or pair correlation); I.3.9d, 1.7.66, Lapp, l i e , II.3.6b, IV.5.5, IV.5.14, IV.fig. 5.4, IV.fig. 5.8, IV.fig. 5.31 singlet; 1.3.71 dividing plane; see Gibbs dividing plane DLA = diffusion-limited aggregation DLCA = diffusion-limited cluster aggregation DLVO = Deryagin-Landau-Verwey-Overbeek (theory), see colloid stability, colloids interaction DLVOE = Deryagin-Landau-Verwey-Overbeek extended (theory), see colloid stability, colloids interaction DNA, (persistence length); Il.fig. 5.5 Donnan effect; 1.1.21,1.5.90, 1.5.93, II.3.10, II.3.26, II.3.99, IV.1.6, IV.5.2d, V.2.4 relation to suspension effect; 1.5.5f Donnan e.m.f.; 1.5.88 Donnan potential; V.2.38ff donor (in semiconductor); 11.3.172ff donor number; 1.5.65 Doppler broadening (spectral lines); 1.7.22 Doppler effect, Doppler shift; 1.7.16, l.fig. 7.6, 1.7.19, 1.7.45, 1.7.94,11.4.46 Dorn effect = sedimentation potential double layer, electric; I.1.20(def.), l.fig. 1.13, 1.5.3ff, l.fig. 5.1, Il.chapter 3 in apolar media; 11.3.11, IV.3.11 diffuse; 1.1.21, l.fig. 1.13,1.5.3, l.fig. 5.1, II.3.5 (in) asymmetrical electrolytes; I1.3.5c capacitance; 11.3.21, Il.fig. 3.5, 11.3.29, Il.fig. 3.10, II.3.33, 11.3.36 (in) cavity; Il.fig. 3.16 charge; II.3.21, Il.fig. 3.4, II.3.29, Il.fig. 3.9, II.3.32ff, II.3.36, II.3.37, Il.fig. 3.12, Il.table 3.1, Il.table 3.2, II.3.40, Il.fig. 3.14, III.4.4 cylindrical; II.3.5f, II.5.14ff, V.2.2b, V.2.2c electrolyte mixtures; 11.3.5d field strength; II.3.20, II.3.21, 11.3.29,11.3.32 Gibbs energy; II.3.23, Il.fig. 3.6, IV.3.2 Gouy-Chapman theory; see there introduction; II.3.17ff ionic components; II.3.9ff, II.3,5b, Il.fig. 3.8, II.3.33, Il.fig. 3.11, Il.fig. 3.15,11.3.168 negative adsorption of co-ions; II.3.5b, II.3.7e, Il.fig. 3.33 potential distribution; II.3.24ff, Il.fig. 3.7, II.3.35, II.3.36, Il.fig. 3.12 III.4.4, IV.3.2-3.7, IV.3.11 spherical; II.3.5e, Il.table 3.1, Il.table 3.2
27
28
SUBJECT INDEX
double layer, electric; diffuse (continued), statistical thermodynamics; II.3.6b enthalpy of formation; 1.5.108, II.3.98, II.3.155ff, Il.figs. 3.60-61, II.table 3.6 entropy; 1.5.109, Il.fig. 3.44, Il.table 3.6 equivalent circuit; I.fig. 5.11, II.3.7c, Il.fig. 3.31 examples; 11.3.1, Il.fig. 3.1 Gibbs energy; 1.5.7, II.3.5, II.3.9, II.3.23, Il.table 3.6, II.3.142, II.3.146 Gouy-Stern model; II.3.6c, Il.figs. 3.20-26, IL3.6f, II.3.133ff, II.3.154, IL3.158 (also see: Gouy-Chapman theory, Stern layer) heterogeneity; II.3.83ff measurements; II.3.7 moment; [II.4.6.50] in monolayers; III.3.4h, Ill.fig. 3.17 in non-aqueous solvents; 1.5.66, II.3.36, IV.3.11 ionic components of charge; 1.5.2, I.5.90ff, I.5.6b, 1.6.88, II.3.5b, Il.fig. 3.8, Il.fig. 3.46, Il.figs. 3.53-55, Il.fig. 3.62 (also see: double layer, diffuse) Gosawa model; V.2.2b-c origin; II.3.2, II.3.110. II.3.117, II.3.155ff, II.3.158, V.2.2a overlap; 1.2.72, II.3.24 see colloid stability polarization in external field; II.3.13 (see further: charged (colloidal) particles) polarized vs. relaxed; 1.5.5b, II.3.1, II.3.4 polyelectrolytes; V.2.2 polyelectrolytic adsorbates; Il.S.Sg relaxation; I.5.5b, I.6.6b, I.6.6c, II.3.94, II.3.13d, II.4.6c, II.4.8, IV.4.4 site binding; see Stern layer statistical thermodynamics; II.3.6b Stern layer; 1.5.9, 1.5.59, II.3.17, IL3.6c, II.3.6g, II.5.5g, IV.3.9d capacitance; II.3.59ff, Il.fig. 3.43, Il.fig. 3.50 charge and potential distribution; II.3.6c, II.3.6d, Il.figs. 3.20-21, II.4.71, Il.figs. 5.17-18, II.5.5g, IV.3.9d condensation; V.2.2a, V.2.2b-c Gibbs energy; II.3.6f, Il.fig. 3.26 site binding; II.3.6e, II.3.6g specific adsorption; II.3.6d zeroth-order; II.3.59, Il.fig. 3.20a, Il.fig. 3.21 surface conduction; see there
SUBJECT INDEX
double layer, electric (continued), thermodynamics; 1.5.6, II.3.4, II.3.110ff, Il.table 3.6, II.3.138ff, II.3.155ff, II.figs. 3.60-61 triple layer model; II.3.61{def.), II.3.6c two-state models; V.2.2a-b, also see Oosawa model (also see: capacitance, ionic components, surface charge. For specific examples; see under the chemical name of the material.) drainage (of films and foams); I.fig. 1.7, 1.1.15, V.6.4, V.7.10, V.7.3a, V.8.55ff, V.fig. 8.18 drilling fluids; V.7.35 drilling muds; II. 1.80 drop, break-up (emulsification); V.8.34ff, fig. V.8.10 in electric field; 111.1.5, Ill.fig. 1.15 pendant; I . l . l l , I.fig. 1.3 pressure relaxation; III.3.188 rheology; III.3.187, Ill.fig. 3.72 sessile; I.fig. 1.1, Ill.figs. 5.1-2, III.5.4b, Ill.fig. 5.19 (see interfacial tension, measurement, III.chapter 1) Drude equations; I.7.78ff, II.2.52 dryfoam;V.7.1, V.fig. 7.12 DSC = differential scanning calorimetry Dukhin number; [II.3.13.1], IL3.208ff, II.4.12, II.4.30, II.4.3f, II.4.35ff, II.4.59 Dupre equation; [III.5.2.2b and 2c] DWS = diffusing wave spectroscopy dynamic light scattering; see electromagnetic radiation, scattering dynamics and rheology; IV.6.4 Edwards equation; [V. 1.4.1] Egyptian ink and paints; 1.1.Iff, IV. 1.3, IV.2.1 Einstein crystal; I.3.21ff, I.3.6a Einstein equation (for diffusion); 1.6.20, 1.6.30, [1.7.8.12a], 1.7.64, 1.7.66, 1.7.15 Einstein equation (for viscosity); [IV.3.10.2], IV.6.9a efficiency (thermodynamic); 1.2.9,1.2.22 elastic (material); IV.fig. 6.10, IV.6.14 elastic aftereffect; IV.fig. 6.12 elastic force, between brushes; V . l . l l e in gels; V.2.3d, V.figs. 2.20-21 elastic recovery; IV.fig. 6.12 elasticitv modulus; IV.6.7, IV.6.14
29
30
SUBJECT INDEX
electrical birefringence; 1.7.100 electric double layer; see double layer, electric electric capacitance; see capacitance eleclr c charge; see charge electric current (density); 1.6.6 two-dimensional; I.6.6d electric field; 1.4.3,1.4.5f, 1.5.10,1.7.6b caused by surface charge; 1.5.11; also see Gauss equation and electromagnetic waves; I.chapter 7 electric potential; see potential electroacoustics; II.4.3e, II.4.5d, Il.fig. 4.20 electrocapillary curves; I.5.96ff, 1.5.99, I.fig. 5.16, 11.3.139, Il.fig. 3.48, III.1.45 electrocapillary maximum; I.5.99ff, II.3.102, II.3.139ff, Il.fig. 3.48 electrochemical potential; 1.5.1c, [1.5.1.18], 1.5.74, II.3.5, II.3.90 electrochemistry (general introduction); I.chapter 5 electrodialysis; II.4.132 electrokinetic charge; 11.3.90, 11.4.1, Il.fig. 4.13 electrokinetic consistency; II.4.58, II.4.6e, Il.table 4.2, II.4.6f, Il.table 4.3 electrokinetic phenomena; II.chapter 4, V.2.5 a.c. phenomena; II.4.8 advanced theory; II.4.6 applications; II.4.6i, II.4.10, II.5.63ff double layer relaxation; II.4.6c elementary theory; II.4.3, II.4.7a irreversible thermodynamics; see Onsager relations polyelectrolytes; V.2.5a survey; Il.table 4.1 techniques; II.4.5 xylene in water; III.fig. 4.21 (see further the specific electrokinetic phenomena) electrokinetic potential; I.5.75ff, 1.6.87, Il.chapter 4, V.2,5 examples; Il.fig. 4.13, Il.figs. 4.29-30, IV.fig. 3.64, IV.fig. 3.72 interpretation; II.4.lb, II.4.4 relation to y/^; II.4.41ff, Il.fig. 4.12 electrol3^es; 1.5.1b, 1.5.2 electrocratic (colloid stability); IV. 1.2 electromagnetic radiation and waves; I.chapter 7, IV.2.3b absorption; 1.7.2c, 1.7.3, I.7.60ff secondary; 1.7.15 coherence; 1.7.15, 1.7.23 and oscillating dipoles; 1.7.3d
SUBJECT INDEX
electromagnetic radiation and waves (continued), detection; 1.7. I c in a medium; 1.7.2b, 1.7.2c intensity; 1.7.8, 1.7.33 interaction with matter; 1.7.3 in a vacuum; 1.7.la, 1.7.2a irradiance; 1.7.5,1.7.23 Maxwell equations; 1.7.2 phase shift; 1.7.3 polarization; I.7.1a, I.fig. 7.2, l.fig. 7.4, 1.7.23,1.7.26, I.fig. 7.8,1.7.14 elliptical; 1.7.6, l.fig. 7.4, 1.7.98, 1II.3.7 circular; l.fig. 7.4 planar; l.fig. 7.4 scattering; 1.7.3 and absorption; 1.7.60ff and fluctuations; 1.7.6b dynamic; 1.7.6c, l.fig. 7.10, 1.7.6d, 1.7.7, 1.7.8, lV.2.46ff forced Rayleigh; 1.7.103 Guinier; IV.2.44ff inelastic; 1.7.16(def.) Mie; 1.7.60ff, V.8.22 of colloids; 1.7.8, 11.4.46, IV.2.3b, lV.3.142ff, IV.5.21 of emulsions; V.8.17ff, fig V.8.6, V.table.8.1 of foams; V.fig. 7.2 of interfaces; 1.7.10c, III.I.IO of hquids; I.5.44ff, 1.7.7, I.7.8a of microemulsions; IV.fig. 5.14, V.5.3d, V.5.3e plane; I.7.27(def.) quasi-elastic, QELS; 1.7.16, 1.7.6, 1.7.7, 11.4.46, 11.5.62 Raman = inelastic Rayleigh-Brillouin = QELS Rayleigh-Debye; I.7.8d, lV.2.44ff, V.8.17 secondary; 1.7.16 static; 1.7.33, 1.7.6d, 1.7.7, 1.7.8 survey; 1.table 7.3 wave vector; 1.7.27(def.) (also see: neutron scattering, X-ray scattering) sources; 1.7.4 types of; I.fig. 7.1 electromotive force; 1.5.82 electronegative; 1.4.19, 1.4.48
31
32
SUBJECT INDEX
electroneutrality (electrolyte solutions); 1.5.1a; 1.5.1b electroneutrality of double layers; 1.5.4, 1.5.6a, II.3.6ff electron microscopies for sols; IV.2.42, also see the photographs in that chapter electron microscopies for microemulsions; V.5.3b electron pair acceptor; 1.5.65 electron pair donor; 1.5.65 electron spin resonance (ESR, principles); 1.7.16, 1.7.13 of aqueous electrolytes; I.5.54ff of interfaces; II.2.8, II.2.55, II.5.59 electro-osmosis; 1.6.12,1.6.16, II.4.1, Il.table 4.4, II.4.6, II.4.3b, Il.fig. 4.6, II.4.46, Il.fig. 4.15 in plug of arbitrary geometry; II.4.21-22, II.4.5b electro-osmotic dewatering; II.4.132 electro-osmotic flux; II.4.23 electro-osmotic pressure (gradient); Il.table 4.4, II.4.6, II.4.23ff electro-osmotic slip; II.4.19, II.4.21ff electro-osmotic volume flow; Il.table 4.4, II.4.6, II.4.22ff electrophoresis; II.chapter 4 advanced theory; II.4.6 anticonvectant; II.4.131 applications; II.4.10 elementary theory; II.4.3a experiments; II.4.5a polarization retardation; II.4.3a electrophoretic light scattering; II.4.46 electrophoretic mobility, velocity; II.4.4-5, Il.table 4.1,11.4.3a, Il.fig. 4.41, IV.figs. 3.623.64, IV.fig. 3.68, IV.fig. 3.74 cylindrical particles; Il.fig. 4.4, II.4.16 Dukhin-Semenikhin equation; [II.4.6.45], Il.fig. 4.29 Helmholtz-Smoluchowski equation; [II.4.3.4], II.4.12-14, II.4.17-19, Il.fig. 4.29 Henry; Il.fig. 4.4,11.4.16 Hiickel-Onsager equation; [II.4.3.5] hydrodynamics; II.4.14ff, II.4.6 influence of surface conduction; Il.fig. 4.4, Il.fig. 4.31 irregular particles; II.4.6h, Il.fig. 4.33 measurement; II.4.5a electroacoustics; II.4.5d microelectrophoresis; II.4.45ff, II.figs. 4.14-16 moving boundary; II.4.5 Iff, Il.fig. 4.17 Tiselius method; II.4.53
SUBJECT INDEX
electrophoretic mobility, velocity (continued), non-aqueous media; IV.3.135ff O'Brien-Hunter equation; [II.4.6.44] O'Brien-White; Il.figs. 4.26-29 poly electrolytes; V.2.5a ribonuclease; V.fig. 3.5 sol concentration effect; IL4.6g, Il.fig. 4.32 stagnant layer thickness determination; II.4.128ff, Il.fig. 4.42 verification of theories; IL4.6e electrophoretic deposition; II.4.132 electrophoretic retardation {in ionic conduction); 1.6.6b, II.4.3a electropositive; 1.4.19, 1.4.48 electrosonic amplitude; 11.4.7, II.4.5d electrosorption; II.3.4(def.), II.3.12 electr ostriction; 1.5.103 electroviscous effects; II.4.122ff, IV.6.9b, V.2.48ff electrowetting; IIL5.103 ellipsometric coefficients; 1.7.75, II.2.51, [II.2.5.7] ellipsometric thickness; [1.7.10.17], II.5.64 ellipsometry; 1.7.10b, II.2.5c, II.5.64ff, III.2.47, Ill.table 3.5, III.3.141ff, V.fig. 6.5 elliptical polarization; see electromagnetic radiation, polarization eluate; see chromatography emission spectrum; 1.7.14 emulsification; 1.1.3, 1.6.45, III.3.237, III.4.97, V.8.2 emulsification failure boundary; V.5.21, V.5.49 emulsifier; V.8.2 emulsifier (biological); 1.1.3 emulsion films; V.6.1 (def), see films, liquid emulsions (general); V.chapter 8 emulsions; I.1.3(intr.), I.1.5(def.), 1.2.98, IV. 1.9 (def. -F classif) aggregation; V.8.63, V.8.78ff characterization; V.8.1 coalescence; V.8.3e, V.8.64 creaming; V.fig. 8.25 dielectric properties; V.8.19ff drop size distribution; V.8.1e, V.8.66ff, V.fig. 8.25 formation; V.8.2, V.fig. 8.9, V.fig. 8.10, V.table 8.2 interfacial layers; V.8.2d multiple; IV. 1.9 optical properties; IV.fig. 5.63, V.8.17ff Ostwald ripening; V.8.3b, 8.63
33
34
SUBJECT INDEX
emulsions (continued), phase inversion; V.8.64 Pickering stabilization; III.5.99, V.8.4 preparation; see formation sedimentation; V.8.3d, V.8.63 stability; V.8.3, V.fig. 8.22 type; V.8.3 viscosity; V.8.15, V.8.29 (also see: microemulsions) endothermlc; see process energy (principles); 1.2.4, Lapp. 3, Lapp. 4 absorption; L4.4e, 1.7.3 configur ational; 1.3.46 conservation; 1.2.8 interfaclal; 1.2.5, 1.2.11, Lapp. 5, Il.table 1.2 levels (semiconductors); ILfig. 3.68-69 mixing (polymers); [II.5.2.12] of radiation; 1.7.5 (also see: adsorption, interaction) engulfment; I I I . 5 . l i e enhanced oil recovery; 1.1.1, 1.1.3,1.1.11,111.1.84, V.7.35 ensemble (intr.); 1.3. I c canonical; 1.3. I c grand (canonical); 1.3.Ic microcanonical; 1.3. I c entanglements; IV.6.67ff enthalpy (principles); 1.2.6, Lapp. 3, Lapp. 4 interfacial; 1.2.6, 1.2.11, Lapp. 5, Il.table 1.2 of chemical reactions; 1.2.21 of dissolution; I.2.20c, L5.3a of electric double layer; 1.5.108, IL3.98, IL3.155ff, Il.figs. 3.60-61 of hydration; Liable 5.4 of transfer; 1.2.69 of wetting; see wetting (also see: adsorption, enthalpy) entropy (principles); I.2.8(intr.), 1.2.9, Lapp. 3, Lapp. 4 absolute; 1.2.24, 1.3.16 configurational; 1.2.52, 1.3.30 interfacial; 1.2.9, 1.2.42, 1.2.83, Lapp. 5. 11.1.2. Il.table 1.2, ILfig. 3.44 intrinsic; 1.2.52 of electric double layers; 1.5.109, ILfig. 3.44
SUBJECT INDEX
entropy (continued), of mixing; 1.2.53, 1.3.28, [II.5.2.11] of solvation (hydration); 1.5.3, I.table 5.4 production of; 1.6.2a, 1.6.2b statistical interpretation; I.3.16ff (also see: adsorption entropy) environment, double layer effects; II.3.220ff environmental scanning electron microscopy (ESEM); rv.2.42 Eotvos equation (for surface tension); [III.2.11.1] Eotvos number; [111.1.3c] EPR = electron spin resonance equation of motion; 1.6.lb, IV.6.1, IV.6.2 equation of state, BET; [ILL5.49], Il.fig. 1.24b Boyle-Gay Lussac (ideal); [1.1.3.4], 1.2.17a Car nahan-S tar ling; [1.3.9.31] hard sphere fluid; [1.3.9.26] one-dimensional; [1.3.8.5] Percus-Yevick; [1.3.9.29 and 30] Van der Waals; [1.2.18.26], [1.3.9.28] two-dimensional; 1.1.17, 1.3.42, I.3.8d, 11.1.3, Il.l.Sb, II.1.39, 11.1.45, ll.app. 1, I1I.3.4, Ill.table 3.3, II1.4.2, 111.4.3 double layer; 11.3.14 electrosorption; 11.3.197 Frumkin-Fowler-Guggenheim (FFG); I.3.46ff, [ll.A1.5b] Henry; [II.Al.lb] Hill-De Boer = Van der Waals; see there Langmulr; I.3.6d, [1.3.6.23], II.1.45, [11.1.5.10], Il.fig. 1.15b, [II.A1.2b] polymer monolayers; 111.3.4i, [III.3.4.56] protein monolayers; V.fig. 3.24 quasi-chemical; 1.3.8e, [lI.A1.6b] sols; [IV.3.12.8] Van der Waals; II. 1.51, II. 1.59, [11.1.5.28], Il.fig. 1.20b, [II.A1.7b and c], III.3.4e (two dimensional) virial; [II.A1.4b] Volmer [1.5.23], Il.fig. 1.15b, [II.A1.3b] equilibrium (general); 1.2.3, 1.2.8, 1.2.12, 1.3.7, IV.6.3a chemical; 1.2.21 frozen; 1.2.8 local; 1.6.2, 1.6.2a mechanical; 1.2.22, V.6.3b
35
36
SUBJECT INDEX
equilibrium (continued), membrane; 1.2.33{def.), L5.5f, III.3.29 metastable; 1.2.7, 1.2.68 partial; 1.2.7 restricted; V. 1.12c stable; 1.2.7, 1.2.19 equilibrium constant; 1.2.77, II.3.6e equilibrium criteria; 1.2.12 equipartition (of energy); 1.6.18 equipotential planes (in gas adsorption theory); II.fig. 1.25 equivalent circuits (electrochemistry); I.fig. 5.11, II.3.7c, Il.fig. 3.31 equivalent circuits (rheology); III.3.6i, IV.6.6 also see: interfacial rheology error function; [1.6.5.25], [II.4.6.37] Esin-Markov coefficients; I.5.6d, 1.5.102, II.3.15ff, 11.3.26, II.3.103ff, II.3.136, Il.fig. 3.45, IL3,144ff ESA = electrosonic amplitude ESCA (electron spectroscopy for chemical analysis) = XP(E)S ESEM = environmental scanning electron microscopy ESR = electron spin resonance Euler-Lagrange equation; [III.2.5.25], [III.A3.9] Euler's theorem; 1.2.28, 1.2.14a evanescent waves; 1.7.75, II.1.18, II.2.54, IV.3.157 evaporation; Ill.fig. 2.16 (heat), III.2.55 (entropy) prevention (water conservation); III.3.239 EXAFS = extended X-ray absorption fine structure exchange (adsorption from binary mixtures); II.2.1, II.2.3, II.2.4 constant; [11.2.3.16] excess functions and quantities; I.2.18b(intr.) in regular solutions; I.2.18c, I.3.46ff (also see: interfacial excesses) excimers; III.3.165 excluded volume; see polymers exothermic; see process expansion coefficient (2D); [III.3.3.2], [111.3.4.5] extended X-ray absorption fine structure (EXAFS); 1.7.88 extraction (of films); V.6.4e extrapolation length (polymer ads.); V.1.8, V.fig. 1.2 Fabry-Perot interferometer; 1.7.36, I.7.6d falling film (interfacial rheology); III.3.189ff falling meniscus (for measuring interfacial tensions); III. 1.11
SUBJECT INDEX
Faraday's gold sols; IV. 1.13, IV.2.27 fats (metabolism); 1.1.1, 1.1.3, 1.1.7 fatty acids; III.tables 3.7a, 3.7b (overview) fatty acid monolayers; III.fig. 1.32 (interfacial tension, dynamics), III.fig. 3.58, Ill.fig. 3.60, Ill.fig. 3.68, Ill.fig. 3.76, III.figs. 3.78-87, Ill.fig. 4.26 fatty amine monolayers; III.3.212, fig. III.3.88 FCS = fluorescence correlation specroscopy; III.3.7c.iv FEM = field emission (electron) microscopy; 1.7.lib Fermi-Dlrac statistics; 1.3.12, II.3.172 Fermi (energy) level; 11.3.172, Il.fig. 3.68,11.3.174 ferrofluids; IV.fig. 2.2c, IV.S.lOc preparation; IV.2.4d ferromagnetism; IV.3.124 FFEM = freeze fracture electron microscopy; see transmission electron microscopy FFF (sediment) = (sedimentation) field flow fractionation FFG = Frumkin-Fowler-Guggenhelm; see adsorption isotherm fibres, wetting; Ill.fig. 5.2, III.5.4g fibronectin (adsorption); V.fig. 3.14 Fick's first law; I.table 6.1,1.6.54,1.6.5d, 1.6.5e, 1.6.67 two-dimensional; 1.6.69 Fick's second law; 1.6.55, L6.5d, 1.6.5e, II.4.78,11.4.115 field emission techniques; 1.7.11b fleld strength, electric; 1.4.12ff (also see: double layer) film balance; 1.1.16,111.3.3, lll.figs. 3.4, 3.5 film drainage; V.6.4, V.fig. 8.18, V.8.84 film formation; V. chapter 6, V.8.72 film tension; I.1.12ff, 1.2.5ff, II.1.95ff, V.6.3b, V.fig. 6.17 films, liquid (free); 1.1.6, I.1.12ff, l.fig. 1.4 up to and including fig. 1.11, I.fig. 2.1, 1.2.5, IV. 1.3, V.chapter 6 (general) black or common black; IV. 1.3, V.6.6, V.fig. 6.8, V.fig. 6.10, V.fig. 6.25, V.fig. 6.33, V.fig. 6.37, V.fig. 6.43, V.8.88 Brewster's angle; V.fig. 6.4 colours; 1.7.80 conductivity; V.6.2g, V.fig. 6.37 contact angle; V.6.2e, V.6.3e, V.fig. 6.38 diffusion; V.6.7 disjoining pressure; V.6.2, V.6.2d, V.6.25, V.fig. 6.27, V.6.5, V.figs. 6.31-32, V.6.6a, V.fig. 6.34 elasticity; V.6.2f ellipsometry; V.fig. 6.4
37
38
SUBJECT INDEX
films, liquid (free) (continued), emulsion; V.6,2c, V.fig. 6.9 experiments; V.6.2 flow in them, drainage; 1.1.15, I.6.4d, IV. 1.3, V.6.4 FTIR; V.fig. 6.6 interferometry; V.6.2a macroscopic; V.6.2b, V.6.4e microscopic; V.6.2c multiple reflections; 1.7.80 Newton (black); 1II.5.39, IV. 1.3, V.6.2, V.fig. 6.33, V.6.6b, V.6.6c, V.figs. 6.43-44 oscillatory forces; see stratification reflectometry; V.fig. 6.4-6.5 permeability; V.6.2b, V.6.7a-b, V.figs. 6.43-44 phospholipid; V.6,7c pinch-off (in foam breaking); V.7.32 rupture; V.6.4c, V.6.4d, V.6.3b, V.6.6c, V.7.3b, V.7.6, also see; stability critical thickness; V.6.4c, V.fig. 6.23, V.fig. 6.25 stability; 1.6.45, V.7.3, V.fig. 7.14, V.8.81ff, V.8.85ff, V.fig. 8.26 Kabalnov-Wennerstrom theory; V.8.86 Vrij-Scheludko theory; V.6.4c, V.8.87 de Vries theory; V.8.85 stratification; V.6.2, V.6.5d thermodynamics; V.6.3 thickness; V.6.2a (def.), V.6.3a,b, V.6.4, V.fig. 6.28 thinning; II1.5.3d Van der Waals forces; 1.4.72, III.5.3 X-ray; V.6.9 also see; foams films, liquid (on solid supports), disjoining pressure; II.1.22, [11.1.3.15], II.1.6d, [11.1.6.18], Ill.fig. 1.14, III.5.3 (also see; wetting films) filtration; IV.2.32ff filtration law; [IV.2.2.66] FUVI = field-ion microscopy; 1.7.lib fire fighting; V.7.35-36 first curvature (of interfaces), see mean curvature First Law of thermodynamics; see thermodynamics First Postulate of statistical thermodynamics; see statistical thermodynamics fish diagrams; see microemulsions flatbands (semiconductors); II.3.174, Il.fig. 3.69
SUBJECT INDEX
flickering clusters; 1.5.42 FLIM = fluorescence lifetime imaging microscopy floating (objects on liquids); I.l.lOfl", l.flg. 1.2, l.fig. 1.4 flocculation, flocculants; 1.1.28, II.2.88, 11.5.97, IV. 1.5 see colloid stability, especially by polymers flocculation kinetics; V.1.12e orthokinetic; V.1.84 F l o r y - H u ^ n s interaction parameter iz); 1.3.45, II.1.56, II.2.34, II.5.5ff", V.1.4, V.1.8 flotation; 1.1.25, IL2.88, III.4.4d, 111.5.11b flow; see viscous flow flow birefiringence = streaming birefringence fluctuations;
1.2.68, 1.2.102, 1.3.1, 1.3.7, 1.4.26, 1.7.26
in micelles; V.4.2d; more illustrations in V.chapter 4 in surfaces; I.7.81ff, II.1.45 of dielectric permittivity; 1.7.6 fluctuation potential; II.3.52 fluidity; I.6.52(def.) fluorescence; 1.7.14 in surfaces and adsorbates; 1.7.11a, II.2.54, II.2.80, Ill.table 3.5 fluorescence correlation spectroscopy; III.3.7c.iv fluorescence lifetime imaging microscopy; III.3.7c.iv fluorescence recovery (after photobleaching) (FRAP); 1.7.104, III.3,7c.iv fluorescence resonance energy transfer; III.3.7c.iv fluorophores;
Ill.fig. 3.63
flux; I.6.5ff, 1.6.11, I.6.2b, 1.6.32 around polarized double layers; II.3.13c, IV.4.2-4.4 radial; 1.6.68 foam; l.fig. 1.7, 1.2.98, IV. 1.11 (classif.), breaking; III.5.99, V.7.6 characterization; V.table 7.1, V.7.4 coalescence; V.7.3b, V.7.6 definition; V.7.1 drainage; V.7.3a dry; V.7.1 foam film; V.6.1 (def.), see films, liquid foam fractionation; V.7.35 flotation; V.7.35 (also see: films, liquid) formation; V.7.2, V.figs. 7.6-7 general; V.chapter 7 old; V.7.2
39
40
SUBJECT INDEX
foam (continued), optical properties; V.7.5b Ostwald ripening; V.7.3c polyhedral; V.figs. 7.1-3, V.T.lb, V.fig. 7.13 rheology; V.7.5a stability; V.7.2, V.7.3 structure; V.7.1a, V.7.1b, V.fig. 7.1 wet; V.7.2 young; V.7.2 foaming agents; V.7.1c fog; 1.1.6 Fokker-Planck equation; I.6.3c, 1.6.73, IV.4.7, IV.4.9 forces (principles); conjugate; 1.6.12, L6.2b, conservative; 1.4.2 directional; 1.6.1, I.6.3b, electrostatic; 1.4.2 fields; 1.4.3 generalized interpretation; 1.6.1 Iff, 1.6.54 hydrophobic; see hydrophobic interaction and bonding internal vs. external; 1.6.13 mechanical vs. thermodjniamic; 1.2.27, 1.4.2, 1.4.49 steric; 1.4.2 stochastic; 1.4.2, 1.6.1, 1.6.3 Van der Waals; see Van der Waals forces vectorial interpretation; 1.4.3a, Lapp. 7 (also see: interaction and interaction force) force constant; 1.4.44 force (effect) microscope; 1.7.90 forced interaction; IV.3.10, IV.4.5, IV.5.3a forced Raylelgh scattering; 1.7.103 forced wetting; III.5.4, III.fig. 5.5 form drag; 1.6.47 form factor (in scattering); IV.2.44, IV.3.143, IV.5.21 Fourier transform infrared (spectroscopy) (FTIR); II.2.53, V.fig. 6.6 Fourier transforms; Lapp. 10 fractal dimensionality; IV.2.21ff, IV.4.6, IV.6.75 fractal growth; IV.2.21ff, IV.4.6 fractal structures; IV.4.6, IV.6.75ff, IV.fig. 6.40 fractionation; IV.2.7, IV.2.2h adsorptives of different sizes; IL2.45
SUBJECT INDEX
FRAP = fluorescence recovery after photobleaching free energy; see Helmholtz energy free enthalpy; see Gibbs energy free path (mean); 1.6.55 freezing point depression; 1.2.75 Fredholm integrals; II. 1.108 Frenkel defects; II.3.173 Fresnel equations; 1.7.10a Fresnel interfaces; 1.7.73, II.2.5c FRET = fluorescence resonance energy transfer Freundlich adsorption isotherm; see adsorption isotherm friction; 1.4.3,1.6.10 friction coefficient (intr.); I.6.21ff, I.6.30ff, 1.6.56, 1.7.101, Lapp. 11 frictional drag (intr.); 1.6.47 froth - foam FRS = forced Rayleigh scattering FTIR = Fourier transform infrared (spectroscopy) function of state (def.); 1.2.9, L2.14c functional adsorption; see adsorption, functional; 1II.2.22, II1.2.34, Ill.app. 3 fundamental constants (table); Lapp. 1 funnel technique (interfacial rheology); III.3.185 Fuoss-Onsager equation for limiting conductivity; [1.6.6.29] Fuoss theory for ion association; 1.3.2d Galvani potential; see potential galvanic cells; I.5.5e gas pockets (and nucleation); V.7.9, V.fig. 7.5 gases, adsorption on solids; chapter 1 ideal; 1.1.17, 1.2.40, I.2.17a, L3.1f, L3.6b, I.3.6c, 1.3.58 non-ideal; 1.3.9 Gauss distribution; 1.3.39, 1.6.21, L6.3c, 1.6.63, [IV.2.3.41] for surface heterogeneity; 11.1.106, ILfig. 1.43 Gauss' law (surface charge and field strength); I.4.53ff, Lapp. 7e, 11.3.59, IV.3.11, IV.3.54 Gauss(ian) beams; 1.7.23 Gauss(ian) curvature; L2.90(deL), III.1.4ff, 111.1.15, V.4.94ff, V.5.24 (also see: bending moduus) gel, gelation; IV.4.48ff, IV.fig. 4.26, IV.5.86ff, IV.6.13, IV.6.14, V.2.3d, V.5.86 gel electrophoresis; II.4.131 gel. thermoreversible; IV. 1.6
41
42
SUBJECT INDEX
generic phenomena, properties; I.5.67(def.), 11.3.6 Gibbs adsorption law; I.1.5(intr.), 1.1.16, 1.1.25, 1.2.13, 1.2.22, II. 1.2, II.2.27 Gibbs adsorption law for; charged species; 1.5.3, II.3.12a curved interfaces; 1.2.94 dissociated monolayer; 1.5.94 electrosorption; 11.3.12d liquid films; V.6.3d, [V.6.3.34] narrow pores; 11.1.96 polarized charged interfaces; 1.5.6c, 11.3.4, II.3.138 relaxed (reversible) charged interfaces; 1.5.6b, II.3.4, II.3.138 water-air interfaces; II.3.178 see III.chapter 4 for many examples Gibbs convention (for locating dividing plane); 1.2.5,1.fig. 2.3, V.6.3 Gibbs dividing plane; 1.2.5 (intr.), 1.2.22, II. 1.2, II.2.4, 11.2.64, III.4.4, V.6.2a, V.6.3 for curved interfaces; 1.2.23b Gibbs-Duhem relation; 1.2.10,1.2.13,1.2.78, 1.2.84, 1.5.92, [11.1.3.35-36], V.6.3c, [V.6.3.20], [V.6.3.36, 37] Gibbs elasticity; 111.3.30, V.6.2f Gibbs energy; 1.2.10, Lapp. 3, Lapp. 4 interfacial; 1.1.4, 1.2.10, 1.2.11, Lapp. 5, Il.table 1.2, V.1.3, V.8.2a, V.8.64 self; L4.5c, 1.5.17, L5.3a, L5.3b statistical interpretation; 1.3.18, [L3.3.14] Gibbs energy of; adsorption; see adsorption, 11.Gibbs energy chemical substances; 1.2.77 colloid interaction; IV.chapter 3, V.chapter 1 double layer; 1.5.7,11.3.5,11.3.9, 11.3.23, Il.fig. 3.6, Il.table 3.6 ll.fig. 3.26,11.3.142, 11.3.146, 11.3.155ff, llL3.4h, IV.chapter 3 ions; L5.17ff, (also see; solvation, hydration) hquid films; V.6.3 nucleation; 1.2.23d; IV.2.2b, IV.2.2f polarization; 1.4.55 proteins; V.3.2 solvation (hydration); 1.4.45, 1.5.3a, I.table 5.4, 1.5.3f transfer; I.5.3f, I.table 5.11,1.5.5a see further the pertaining system Gibbs free energy = Gibbs energy Gibbs triangle = phase diagram, ternary Gibbs-Helmholtz relations; 1.2.41. 1.2.15, 1.2.61. 1.2.78. II.3.156, 111.3.34
SUBJECT INDEX
Gibbs-Kelvin equation; see Kelvin equation Gibbs-Thomson equation; see Kelvin equation Girifalco-Good-Fowkes theory (for interfacial tensions); III.2.11b, III.table 2.3 glass, double layer; II.fig. 3.64 glass electrodes; 11.3.224 glass transition point; IV.5.90 goethite; see iron oxide gold sols; IV.1.2, IV.L3, IV.1.13; IV.2.27, IV.3.185 Gouy-Chapman length; [V.2.2.13] Gouy-Chapman theory (diffuse double layers); 1.5.16, 1.5.18, 11.3.5 (in) cavities; II.3.5g cylindrical surfaces; Il.S.Sf, V.2.2 defects; II.3.6a flat surfaces; II.3.5a-d, Il.fig. 5.18 improvements; II.3.6b, ll.figs. 3.18-19 spherical surfaces; II.3.5e (also see: double layer, Gouy-Stern model) grafting (macromolecules); V.1.10, V.1.11, V.3.9, V.fig. 3.30 grand potential; III.2.7, V.1.1, ¥.1.3-4, V.l.Sc, association colloids; V.chapter 4 translationally restricted; V.4.25ff also see interfacial grand potential graphite; see carbon Graphon, graphite; see carbon gravity (influence on colloid stability); IV.3.10a, see further sedimentation grazing incidence; II.2.56, III.3.147, III.3.152, Ill.fig. 59 ground state approximation (Edwards eq.); V.1.11 ground water table; 1.1.1 growth (particles, drops); V.8.31 GSA = ground state approximation guar solution; IV.fig. 6.34 Guggenheim convention (for treating interfacial excesses); 1.2.15, I.fig. 2.4 Guinier radius; IV.2.45 gum arable; 1.1.2, 1.1.7, IV. 1.3 Gurvitsch's rule; II. 1.94 gyration radius; see radius of gyration haematite (a-Fe203); see iron oxides Hageman factor; V.3.52 Hagen-Polseuille law; 1.6.42, II.4.47, II.5.62, IV.6.7a
43
44
SUBJECT INDEX
Hamaker constant, Hamaker function; 1.3.45, L4.59, [1.4.7.7], 1.4.79, II.2.5, II.3.129, (tables) Lapp. 9, IV.app. 3 and interfacial tensions; III.2.5c Hamiltonian; I.3.57ff, II.3.47ff hard core or hard sphere interaction (molecules or colloids); 1.3.65, 1.4.5, 1.4.42, IV.5.4 hard sphere Hquid; IV.5.3 heat, statistical interpretation; 1.3.16 (also see: enthalpy) heat capacity; 1.2.7,1.3.36,1.5.42 interfacial; 1.2.7, III.2.74 of ions; I.table 5.6 heavy metal pollution; II.3.221 Helfrich equation (bending); [III. 1.78], [III. 1.15.1 and 2], [V.5.5.1] h e l i x ( a ) ; V.fig. 3.2 Helmholtz energy; 1.2.10, Lapp. 3, Lapp. 4 interfacial; 1.2.10,1.2.11, Lapp. 5, Il.table 1.2, V.1.3b, V.1.4 hquid films, V.6.3 statistical interpretation; 1.3.17, II.especially [1.3.3.10] see further the pertaining system Helmholtz free energy = Helmholtz energy Helmholtz planes; see inner Helmholtz plane and outer Helmholtz plane Helmholtz-Smoluchowski equation; see electrophoretic mobility hematite = haematite, see iron oxides Henderson equation, for liquid junction potential; [1.6.7.11 ] for solvent structure contribution to disjoining pressure; [ 1.6.13] for-;i;-potential; [IL3.9.9] Henderson-Hasselbalch equation, plot; [1.5.2.34], [11.3.6.52, 11.53], II.3.88ff, V.2.19ff, V.fig. 2.12 Henry adsorption isotherm; see adsorption isotherm Henry constant, for adsorption; 1.1.19, 1.2.71 for solubility of a gas; I.2.20b Henry's law for gas solubility; 1.2.20b Herschel-Bulkley (rheological model); [IV.6.3.4] Hess'law; 1.2.16 heterodispersity (of colloids); I.7.8e, IV.5.31ff, IV.flg. 6.27 heterodyne beating; see optical mixing heterogeneity of surfaces; see surface, heterogeneity
SUBJECT INDEX
hetero-interaction; 1.4.72, l.fig. 4.17, IV.3.4, IV.3.12, IV.fig. 3.58, IV.fig. 3.61, IV.5.31ff, IV.fig. 5.64 hexadecylpyrldinium chloride (adsorption); II.fig. 2.22 higher-order Tyndall spectra (HOTS); 1.7.61 Hill plot; II. 1.48 HLB = hydrophile-lipophlle balance HNC = hypernetted chain Hofmeister series = lyotropic series holes (in semiconductors); II.3.171 homodisperse colloids; 1.1.14,1.1.28, 1.7.53, IV. 1.6, IV.fig. 1.3 homodyne beating; see optical mixing homogeneous condensation, see condensation homogenizer; V.fig. 8.17 homointer action; 1.4.72 homopolyelectrolytes; II.5.1 homopolymers; II.5.1 honeycomb symmetry; 1.1.14 Hooke (material, law); IV.6.9, IV.6.13 HOTS = higher order Tyndall spectra HPLC = high performance liquid chromatography; see chromatography HSA = human serum albumin; see albumin Hiickel-Onsager equation; see electrophoretic mobility Huggins constant; rv.6.61, V.2.48 Huggins equation (rheol.); [IV.6.11.91, [V.2.4.3] Huygens oscillator; V.fig. 1.26 hyaluronic acid (charge); V.fig. 2.7 hydration; 1.2.58, 1.5.3, II.3.121, Il.table 3.7 (also see: solvation) hydration number; 1.5.50 hydraulic radius; 1.6.50, II. 1.84 hydrodynamic radius, layer thickness; 1.7.50, II.5.61 hydrodynamics; 1.6.1, conservation laws; 1.6.la, 1.6.lb, II.4.6, II.4.8, IV.6.1 in colloid interaction; IV.4.5b in electrophoresis; II.4.3, II.4.6 in emulsification; V.8.2b in polarized double layers; II.3.215ff, II.4.6 hydrogen bonding, hydrogen bridges; I.4.5d, 1.5.3c hydrophile-lipophile balance (HLB); V.4.1b, V.8.5 hydrophilic; 1.1.7, 1.1.23, Il.table 1.3 (also see: colloids)
45
46
SUBJECT INDEX
hydrophilicity/phobicity; Il.table 1.3, IIL5.5, III.5.11, 111.5.11a hydrophobic; 1.1.2, 1.1.7, 1.1.23, Il.table 1.3 (also see: colloids) hydrophobic interaction and -bonding, hydrophobic effect; 1.1.30, I.4.5e, 1.5.3c, 1.5.4, I.table 5.12, 11.2.7d, II.3.12d, V.3.2b, V.3.6b {also see: lyotropic sequences) hyperbolic functions; Lapp. 1.2 hypernetted chain (HNC); 1.3.69, [IV.5.3.41] hysteresis; 1.2.7 in rheology; IV.6.3b, IV.fig. 6.7 also see, (hysteresis of) adsorption, contact angles, monolayers ideal dilute (polymer solution); II.5.9 i.e.p. = isoelectric point IgG = immunoglobulin iHp = inner Helmholtz plane illites; II.3.165 image charges; II.3.48ff, Il.fig. 3.17, Il.table 3.3 imaginary quantities; Lapp. 8 imaging techniques; 1.7.lib (also see: transmission electron microscopy, atomic force microscopy, surface force microscopy, etc.) immersion method (to determine points of zero charge); IL3.105 immersion heats or enthalpies; 11.1.29, Il.table 1.3, IL2.5, 11.2.6, IL2.7, IL2.3d, Il.fig. 2.10, Il.fig. 2.20, II.3.98, IL3.114, III.5.2 (also see: wetting, immersional) immunoglobulins, adsorption; V.fig. 3.13, V.fig. 3.18 impedance (spectrum); II.3.92, Il.fig. 3.30, IL3.149, 11.4.8 incident angle (for radiation); 1.7.10a incident plane (for radiation); 1.7.10a index of refraction; see refractive index indicator electrode; 1.5.82 indifferent (ions, electrolytes); 11.3.6, II.3.103, IV. 1.11 inertia; 11.4.2 infrared spectroscopy; 1.7.12, 11.2.8, II.2.71ff, II.5.57; III.3.7c.i, Ill.fig. 3.62 infrared reflection-absorption spectroscopy; III.3.7c.i injection (emulsification); V.8.31 injection (foaming); V.7.8ff ink (Egyptian); 1.1.1, 1.1.2, 1.1.7, 1.1.27, IV. 1.3, IV.2.1 ink jet printing; III. 1.84 inner Helmholtz plane (intr.); IL3.61ff insoluble monolayers, see monolayers, Langmuir
SUBJECT INDEX
interaction (principles), energy, force; 1.4.2, 1.4.8, Il.figs. 2.2-3 multiparticle, Born-Green-Yvon; 1.3.69 Carnahan-Starling; I.3.69ff hypernetted chain; 1.3.69 Percus-Yevick; 1.3.69 relation to distribution functions; I.3.9d, I.3.9e relation to virial coefficients; I.3.9c pairwise; 1.3.8, 1.3.9, 1.4.1, 1.4.2, 1.4.3, 1.4.4 tabulation for electric repulsion; IV.app. 2 potential; see interaction energy sign; 1.4.4 solvent structure-originated; 1.5.15, 1.5.3, 1.5.4, ll.table 1.5.12, II. 1.95-96, ll.fig. 2.2, I1.3.184ff, IV.3.8C see further, colloids, interaction interaction between colloids and macrobodies, see colloid stability, Van der Waals forces and colloids, interaction interaction between ions; 1.5.2 interaction between molecules and surfaces; [1.4.6.1], II. 1.5, II.chapters 1, 2 and 5 interaction curves; I.fig. 3.4, I.fig. 4.1, figs. 1.4.2-3 interaction energy parameter; I.3.40ff, 1.3.43-45, [1.3.8.9], 11.1.56, II.2.34, I1.5.5ff excess; 1.3.45, especiadly [1.3.8.9] interaction forces, general introduction; I.chapter 4 interactions inside proteins; V.3.3 interaction in solution (excess nature of); 1.1.29, 1.4.5, 1.4.6b, 1.4.7 interface; 1.1.3 (intr.) curved; see capillary phenomena of tension; 1.2.94 optical study; 1.7.10, 1.7.11, II.2.5c reflection of light; 1.7.10a, II.2.5c refraction of light; 1.7.10a scattering; 1.7.10c (also see: purity criteria) inter facial area; see surface area interfacial charge; see surface charge interfacial concentration (intr.); 1.1.5, see further, interfacial excess interfacial energy; 111.2.9a, Ill.fig. 2.14, Ill.fig. 2.16 (relation to heat of evaporation)
47
48
SUBJECT INDEX
interfacial entropy; III.2.9a, III.fig. 2.14-1§5, III.2.55 (relation to entropy of vaporization), III.4.2d, Ill.flg. 4.19 interfacial excess; 1.2.5, 1.2.42, 1.2.22, III. 1.2, 11.2.2, Il.fig. 2.1, [II.2.1.2], II.2.3, III.2.2, V.6.3, [V.6.3.24] isotherm; 11.2.3, 111.4.2 interfacial Gibbs energy; 1II.2.2, V.1.3 interfacial grand potential; IIL2.2, 111.5.18ff, V.1.1, V.1.3-4, V.1.6, V.1.8, V.1.9c, V.1.53 (also see: adsorption, Gibbs adsorption law, surface excess) interfacial polarization; see potential difference, x interfacial potential jump (;|;); see potential difference, x interfacial potentials; 1.5.5, 11.3.9, III.4.4 also see: electrokinetic potential; Gouy-Chapman theory; monolayers, ionized; Poisson's law; potential difference between adjacent phases interfacial pressure; see surface pressure interfacial rheology; 111.3.6, Ill.tabie 3.5 Burgers element; I1I.3.129 compliance; Ill.tabie 3.4, I1I.3.105 compressibility; [1II.3.3.1], IIII.3.4.3], II1.3.93 compression; II1.3.83, 1II.3.91 creep; Ill.fig. 3.40, II1.3.61 deformation types; Ill.fig. 3.34 dilation; III.3.81, III.3.83, III.3.91, Ill.fig. 3.38 dilational elasticity (modulus); [III.3.4.4], III.3.40, III.3.81, Ill.tabie 3.4ff, [III.6.18-19], [III.3.6.34-39], III.3.6g, Ill.fig. 3.48, Ill.fig. 3.87, Ill.fig. 3.91, III.4.5, lll.figs. 4.26-27, Ill.tabie 4.3, Ill.fig. 4.38, V.fig. 3.27, V.7.6, V.7.16, V.8.1C, V.fig. 8.4, V.8.69, V.8.83, V.8.88 distance coefficient; III.3.113. Ill.fig. 3.44, I11.3.117ff distance damping; I1I.3.112 elasticity; III. 1.55, 1II.3.82, Ill.tabie 3.4 emulsification; V.8.2b, V.fig. 8.11, V.8.47ff equivalent mechanical circuits; II1.3.6i experimental methods; III.3.6f, 111.3.7e Fourier transform method; III.4.59ff Gibbs monolayers; Ill.tabie 4.2 Kelvin element = Voigt element Kelvin equation (damping); [111.3.6.63] kinetics; I1I.4.5 loss angle; [III.3.6.12], [1II.3.6.41a], [III.3.6.66], [II1.3.6.74]
SUBJECT INDEX
interfacial rheology (continued), Marangonl effect; 1.1.2 (intr.), 1.1.17, I.6.4.43ff, III.1.35, III.1.72, III.3.81 III.3.6e, Ill.figs. 3.35-37, III.3.239, V.6.2, V.6.37ff, V.7.6, V.S.lc, V.fig. 8.3, V.8.48, V.8.52ff Maxwell element; Ill.figs. 3.51-52 proteins; V.3.7, V.figs. 3.25-27 relation to interfacial tension; III.3.92, III.3.6d recovery; Ill.fig. 3.40, Ill.fig. 3.52 relaxation (Gibbs monolayers); Ill.fig. 4.20 relaxation (Langmuir monolayer); III.3.6h, III.3.6i respiratory stress syndrome; III.3.238-239 shear modulus; III.3.84, III.3.92 shear viscosity; III.3.84, III.3.92. [III.3.6.20], IIL3.6g, Ill.fig. 3.91, V.8.89 stress relaxation; Ill.fig. 3.39, I11.3.6i stress tensor; III.3.91ff, Ill.table 3.4, V.figs. 3.25-27 time damping; III.3.113 viscosity; III. 1.55, III.3.82, Ill.table 3.4, V.figs. 3.25-27 Voigt element; III.3.94, Ill.figs. 3.51-52 wave damping and propagation; III. 1.1, III. 1.58, III.3.6g, Ill.fig. 3.42-44, 111.3.183,111.3.185, also see: loss angle interfaciad science (first review); 1.1.2, 1.1.3, Volumes II and III interfacial tension, surface tension; I.1.4(intr.), 1.1.25, I.fig. 1.16 binary mixtures; III.4.2 data; Ill.app. 1, III.1.12 dynamic conditions; III.1.14b, Ill.fig. 1.31, Ill.fig. 1.32, V.fig. 8.3, V.S.lc, V.8.48ff interpretation; 111.chapter 2, III.3.6d Cahn-Hilliard; III.2.6 capillary waves; III.2.9c distribution function; III.2.4, [III.2.4.6-8], III.2.24 empirical; III.2.11 and geometric means; III.2.1 l b and grand potential; III.2.7 Hamaker-de Boer approximation; III.2.5c lattice theory; III.2.10 mechanical; III. 1.3, V.6.3b pressure tensor (interfacial); III.2.3, [III.2.3.5], I11.3.6d, V.6.3b scaling; [I1I.2.5.35], V.5.74ff simulations; III.2.7, Ill.figs. 2.9-10, Ill.table 2.2 statistical thermodynamics; III.2.4, III.2.30-31, III.2.51ff
49
50
SUBJECT INDEX
interfacial tension, surface tension, interpretation (continued), thermodynamic or quasithermodynamic; I.2.10ff, I.2.26ff, 1.2.11, 1.2.91, III.2.2, III.2.9 van der Waals; III.2.5 measurement; 1.1.11, 1.2.5, 1.2.96, II.3.139, Ill.chapter 1 'Biigler method'; III. 1.49 capillary rise; III.1.3, (differential) III.1.19 (inawedge), Ill.fig. 1.10 captive drops; Ill.fig. 1.11, further see sessile and hanging drops drop oscillations; III. 1.58 drop weight; III.1.6, III.1.72ff drops in a gradient; III. 1.5 (also see: growing drops, sessile drops, spinning drops, etc.) du Noxiy ring; 111.1.8b, III.1.72ff dynamic (conditions); III. 1.14, III. 1.3-4, III.1.53ff (also see; interfacial tension, relaxation) falling drop; Ill.fig. 1.17 (see further, drop weight) falling meniscus; III.l.ll, Ill.fig. 1.26 growing drops; III. 1.74 hanging drops; see sessile drops maximum bubble pressure; III.1.7, III.1.72ff micropipette; III. 1.57 'Padday's pencil'; III. 1.48 pendant drop = hanging drop; see sessile and hanging drops rheology; III. 1.57 sessile and hanging drops; III.1.4, III.1.72ff sphere tensiometry; III. 1.48 spinning bubbles; see spinning drops spinning drops and bubbles; III.1.9, Ill.fig. 1.24 surface light scattering; III. 1.10 tensiometers; III. 1.8 wave damping; Wilhelmy plate; III.1.8a, III.1.72ff of curved interfaces; 1.2.23, II.1.6d, III.1.1, III.1.15, V.5.4 of electrolyte solutions; III.4.4 of films; II.1.95ff of microemulsions; V.5.4 of solid surfaces; 1.2.24, III. 1.5 measurement; III. 1.13 pressure dependendence; III.2.9b relation to adsorption from binary mixtures; II.2.4f
SUBJECT INDEX
interfacial tension, surface tension, measurement (continued), relation to compressibility; IIL2.11a, [III.2.11.6-7] relation to interfacial Helmholtz, Gibbs or internal energy; 1.2.11, Lapp. 5, [nLl.la,b] relation to molar volume; III.2.11a relation to surface light scattering; 1.7.10c, III. 1.10 relation to work of cohesion; 1.4.47 relaxation; III. 1.14, Ill.fig. 1.29 temperature dependence; 1.2.42, [II. 1.3.42], III.2.9a, V.fig. 8.1, V.5.4 (also see: capillary phenomena, monolayers, wetting, interfacial rheology) interfacial turbulence; V.8.52ff interfacial viscometers; III.3.180ff, Ill.figs. 3.69-71 interfacial work; 1.2.10, 1.2.3,1.3.17 interference (intr.); 1.7.8,1.7.15 interferometry (contact angle); 111.5.43ff ion association (in solution); 1.5.2d ion binding; I.5.3ff, II.3.6d-e ion condensation; II.4.43, V.2.5 ion correlations; II.3.6b ion exchange; II.3.35, II.3.168ff ion mass spectroscopy (SIMS); 1.7.11a, I.table 7.4 ion pairs; 1.5.3 ion scattering spectroscopy (ISS); 1.7.11a, I.table 7.4, II.1.15 ion specificity; see lyotropic series ion transfer (resistance); II.3.95, IV.4.19-20 ion vibration potential; II.4.29 ionic atmosphere; 1.5.16, see double layer, diffuse ionic components of charge; see double layer, electric ionization, ionization (Gibbs) energy; 1.4.29, I.5.34ff, 1.7.86 ionomer; V.2.70 ions, activity coefficient; see there bound vs. free; 1.5.1a, II.3.6, III.3.4h, V.2.2, V.2.5a hydration; 1.5.3 hydrophilic; 1.5.47 hydrophobic; 1.5.46 radii: I.table 5.4, I.fig. 5.7 solvation; 1.5.3 structure-breaking; 1.5.47 structure-forming; 1.5.47 transfer; I.5.3f, II.3.9
51
52
SUBJECT INDEX
ions (continued), volumes; I.tables 5.7 and 8 ion-solvent interaction; see hydration, solvation ionic surfactants; see surfactants IRAS = infrared reflection-absorption spectroscopy iron oxides goethite (a-FeOOH), electrokinetic charge; II.fig. 4.13 point of zero charge; II.table 3.5, Il.app. 3b haematite (a-FegOg); Il.fig. 1.1, IV. fig. 2.1b adsorption of fatty acids from heptane; Il.fig. 2.26 conductivity of sols; Il.fig. 4.38 dielectric relaxation of sols; Il.fig. 4.38 double layer; II.3.94, Il.table 3.6, Il.figs. 3.59-62, Il.table 3.8 electrokinetic properties; Il.table 4.3 point of zero charge; Il.table 3.5, Il.fig. 3.37, Il.app. 3 b immersion, wetting; Il.table 1.1 irradiance (intr.); 1.7.5 IRRAS = infrared reflection-absorption spectroscopy irregular coagulation series; see coagulation irreversible thermodynamics; see thermodynamics irreversible colloids = colloids, lyophobic irreversible process; see process, natural Ising problem; 1.3.40, 1.3.43, V.2.20 isobaric (process, def.); 1.2.3 isochoric (process, def.); 1.2.3 isoconduction; II.3.215 isoelectric point; II.3.8, II.3.103, II.3.106, Il.fig. 3.78, Il.fig. 4.41, II.4.127ff relation to point of zero charge; II.3.8b, Il.fig. 3.35 isoelectric focusing; II.4.131ff isodisperse = homodisperse isomorphic substitution (in clay minerals); II.3.2, II.3.165 isosteric (process); 1.2.3 isosteric heat of adsorption; see adsorption, isosteric enthalpy isotachophoresis; II. 4.131 isothermal (process); 1.2.3 destination; see Ostwald ripening reversible work; 1.2.27 ISS = ion scattering spectroscopy Jones-Dole equation, coefficients (viscosity of electrolytes); 1.5.52, I.table 5.9, I.6.78ff, IV.6.53-54
SUBJECT INDEX
kaolinite; II.3.164, Il.fig. 3.66, IV.fig. 2.2b wetting; II.table 1.34, Keesom-Van der Waals forces; see Van der Waals forces Kelvin cells; V.7.5 Kelvin element (rheol.) = Voigt element; see interfacial rheology Kelvin equation; [1.2.23.24], [II.1.64, [II.1.6.17], [III.1.13.3], [IV.2.2.50], IV.2.2e Kelvin equation (wave damping); [III.3.6.63] Kerr effect; 1.7.100 Kiessing fringes; III.3.150, Ill.fig. 3.58 kinetics (coagulation); IV.4.3 kinetics (micellization); V.4.10 Kirkwood equation (electric polarization); [1.4.5.22] Kirkwood-Buff equation (interfacial tension); [III.2.4.6-9] Kirkwood-Frohlich equation (electric polarization); [1.4.5.23] Kolmogorov theory (for emulsification); V.8.4Iff Kozeny equation; [1.6.4.39], II.4.55 Kozeny-Carman equation; [1.6.4.41], II.4.55, [rv.2.2.67] Krafft temperature; V.4.13, V.8.5 Kramers-Kronig relations; [1.4.4.31,11.32], 1.4.36, 1.4.77,1.7.13, II.3.93 Krieger-Dougherty eq. (viscosity); [IV.6.9.10], V.8.15 Kugelschaum; V.7.2 Kuhn segment = statistical chain element lactalbumin ( a ) , adsorption; V.figs. 3.15-18 lactoglobulin ((3 ); V.figs. 3.25-26, V.fig. 8.20 Lambert-Beer's law; 1.7.13, 1.7.41 Landau-Ginzburg analysis (microemulsions); V.5.38ff Langevin equation (for forced stochastic processes); [1.6.3.4], 1.6.3d, Lapp. 11.2, IV.4.2 Langmuir adsorption isotherm; see adsorption isotherm Langmuir-Blodgett layers; 11.2.56, III. 1.42, IIL3.7a Langmuir monolayers, see monolayers Langmuir trough; see film balance Laplace's law = Young and Laplace's law, see capillary pressure Laplace pressure = capillary pressure Laplace transformations; Lapp. 10 lasers; 1.7.4c laser-Doppler microscopy = QELS; see electromagnetic radiation latex, (pi. latices or latexes); 1.1.6, 1.5.99, II.3.87, Il.fig. 3.29, IV. 1.9 compressibihty and scattering; IV.fig. 5.32 conductivity; Il.table 4.2, Il.fig. 4.34 crystallization; IV.S.Sa, IV.fig. 5.58
53
54
SUBJECT INDEX
latex (continued), distribution function; IV.fig. 5.4 electro-osmosis; II.table 4.2 electrophoresis; Il.fig. 4.29, Il.table 4.2 rheology; IV.fig.6.28-29 sedimentation; IV.fig. 5.60 stability; IV.3.13c, IV.fig. 4.8b, IV.figs. 4.19-21 streaming potential; Il.fig. 4.30, Il.fig. 4.35 structure factor; IV.fig. 5.19, IV.fig. 5.34, IV.fig. 5.36 surface charge; Il.fig. 3.29, IV.fig. 3.75 lattice statistics; I.3.6d, I.3.6e, I.3.8b, II.chapter 5, V.chapter 1 polymer adsorption; II.5.3Off random walk; 1.6.3d LC = liquid condensed {2D phase); III.3.3b LE = Uquid expanded (2D phase); III.3.3b lead oxides; IV. 1.3 LEED = low-energy electron diffraction Lennard-Jones pair interaction energy; I.fig. 4.9, 1.4.5b, [1.4.5.1] in adsorbates; [II. 1.1.14], II. 1.74 in liquids near solids; II.figs. 2.4-5 structure factor; IV.fig. 5.5 leucocytes; III.5.100 leukemia; III.5.100 Levich equations (for convective diffusion); I.6.92ff levitation; IV.3.12d Lewis acids, bases; 1.5.65, II.3.185 Lifshits theory; see Van der Waals interaction between colloids Lifshits-Slezov-Wagner (LSW) theory (Ostwald ripening); IV.2.26, V.8.66ff light scattering; see electromagnetic radiation line tension; III. 1.6, III.5.5, III.5.6 lipase; 1.1.3 lipids (phospho-); III.table 3.8 lipids (phospho-) films; V.6.67ff, V.fig. 6.35, V.fig. 6.41, V.fig. 6.45 lipids (phospho-) monolayers; Ill.fig. 3.8, Ill.fig. 3.12, Ill.fig. 3.14, Ill.fig. 3.29, III.3.140, Ill.fig. 3.55, Ill.figs. 3.62-62, Ill.fig. 3.67, III.3.8c, Ill.figs. 3.89-91, III.3.238 Lippmann capillary electrometer; see capillary electrometer Lippmann equation (for electrocapillairy curves); [1.5.6.17], 1.5.100, 1.5.108, II.3.138 liquid bridges, see capillary bridges liquid junction potentials; see potential difference
SUBJECT INDEX
liquid-fluid interface, general; III.chapter 1.2, III.2.8 (thickness). III.2.9b density profile; Ill.fig. 2.1, III.2.3, [III.2.5.31], III.2.8, Ill.figs. 2.11-13, Ill.fig. 2.19 double layer; II.3.10g thermodynamics; III.2.2 liquids, apolar, double layers; II.3.11, II.4.50 solvation; I.5.3f in pores; II.1.6d near surfaces; II.1.6d, II.3.123ff, II.4.38, Il.fig. 4.11 London-Van der Waals forces; see Van der Waals forces longitudinal waves; III.3.110, see interfacial rheology loops; see adsorption of polymers Lorentzian peaks; 1.7.50 Lorenz-Lorentz equation (electric polarization); [1.4.5.21], 1.7.43 loss angle (rheology), IIL3.90, [III.4.5.44] see interfacial rheology low-energy electron diffraction (LEED); 1.7.25, 1.7.86, Il.fig. 1.2, Il.l.llff LSA = linear superposition approximation, see colloids, interaction LSW (theory) = Lifshits-Slezov-Wagner (theory) lunar soil, spherules in; 1.1.1, 1,1.2 sorption of methanol; Il.fig. 1.35 lung surfactant; I . l . l , 1.1.2, III.3.219, III.3.238, V.6.8 lyotropic series; I.5.66ff(intr.) in coagulation; 1.5.67, IV.3.9i, IV.table 3.3 in ionic binding, double layer charge or double layer capacitance; I.5.66ff, II.3.15, II.3.109, II.3.132, Il.fig. 3.41, 11.3.135, Il.fig. 3.53, Il.fig. 3.55, II.3.147, Il.fig. 3.75, II.3.10h, Il.table 3.8, II.3.203, III.3.207ff, Ill.figs. 3.85-86, III.4.89ff, IV.3.149, IV.table 3.6, IV.3.162ff, IV.3.170, IV.3.173, IV.figs. 3.72-73, V.2.22, V.2.53. V.2.68 lysozyme; IV.fig. 5.27, V.fig. 3.24-25, V.fig. 8.20 macromolecules; see polymers, polyelectrolytes, proteins macropores; see pores magnetic birefringe; 1.7.100 magnetic colloids; IV.3.10c magnetic fields; I.7.1a, 1.7.2, 1.7.16, 1.7.13, IV.3.10c magnetic induction; 1.7.2, IV.3.10c magnetic permeability; 1.7.9, IV.3.10c magnetite; IV.fig. 2.2, IV.2.4d, IV.fig. A l . l
55
56
SUBJECT INDEX
magnetization; 1.7.9, IV.3.10c Mandelstam equation (for surface scattering); [1.7.10.24], [III. 1.10.1], V.6.43 manganese dioxide, double layer; II.table 3.8, Il.app. 3b JVIarangoni effect; see interfacial rheology IVIarangoni number; V.6.38, V.7.15ff, [V.8.I.4], V.8.57, V.8.83, V.8.89 marginal regime (polymer concentration); II.5.9,11.fig. 5.3 marginal regeneration (in films); V.6.4e IVIark-Houwlnk eq. (rheology); [IV.6.11.8] IVIarkov chain; 1.6.24, V.A1.7 Markov process, first order; 1.6.24, II.5.30 Martin eq. (rheology); [IV.6.11.14] masers; 1.7.4c m a s s action (micelle formation); V.4.2b m a s s conservation (in hydrodynamics); 1.6.la, IV.6.1 mass, reduced; 1.4.44 maximum term method (statistical thermodynamics); 1.3.37 Maxwell-Boltzmann statistics, distribution; 1.3.12,1.6.26ff, II.3.172, IV.4.6ff Maxwell element, see rheology and interfacial rheology Maxwell equations (for electromagnetic waves); 1.7.2 Maxwell (-Wagner) relaxation; 1.6.84, II.3.219, Il.fig. 3.89, IV.4.23 Mayer function; I.3.60ff, I.3.64ff mayonnaise; 1.1.6 mean curvature (of interfaces); 1.2.23a, III. 1.1, III. 1.15 mean field theories; II.5.7, II.5.29, III.2.5 membrane emulsification; V.8.32, V.fig. 8.8 membrane equilibrium; see equilibrium mercury-solution interface, double layer; 1.5.6c, 11.3.10b, Il.figs. 3.48-55, Il.table 3.8 interfacial tension; II.3.138ff, Il.fig. 3.48 mercury sulphide; IV. 1.3 mesopores; see pores mesoscopic = colloidal metabolism; see fats metal(s), contact angles on ...; III.table A4.1 Hamaker constants; Lapp. 9.4, IV.app. 3 points of zero charge; Il.app. 3a sol preparation; IV.2.37 methyiviolo^en; fll.3.14.1], II.3.224
SUBJECT INDEX
mica; II.3.165, IV.fig. 3.56 interaction; IV.3.12b, IV.fig. 3.57 micelle; I.1.6(def.), 1.1.24,1.fig. 1.15, III.4.6 complex coacervate; V.2.6f reverse (or inverted); 1.1.25 for general discussion, see V.chapter 4 micellization, critical concentration of (c.m.c); I.1.24ff(intr.), III.4.6a, Ill.table 4.4, IV. 1.5 determination; I.1.25ff, V.4.1c critical temperature; V.4.11 for general discussion, see V. chapter 4 microelectrophoresis; II.4.45ff, Il.figs. 4.14-16, IV.fig. 5.14 microemulsions; 1.1.3,1.1.7,1.2.68, rv.1.6, V.chapter 5 (mostly non-ionic) applications; V.5.6 bending; V.5.5a, V.fig. 5.34, V.fig. 5.36, V.5.93 bicontinuity; V.5.1 Iff, V.5.30 conductometry; V.5.3f, V.fig. 5.21 correlation lengths; V.5.39, V.5.3h, V.fig. 5.25, V.fig. 5.27a, V.5.4e, V.5.5 curvatures; see microstructure diffusion; V.5.3e, V.fig. 5.20 efficiency boosting; V.5.6e emulsification failure boundary; V.5.21, V.5.49 experimental methods; V.5.3 fish diagrams; V.figs. 5.6, 5.13, 5.22, 5.38-39, 5.41, 5.43, 5.47 Gibbs triangle = ternary phase diagram interfacial tensions; V.5.4, V.figs. 5.28-33, V.5.5, V.fig. 5.37 Landau-Ginzburg approach; V.5.38ff micros true tures; V.5.3 middle phase (= one of the Winsor states); V.5.2g optimalization; V.5.2d, V.5.2e phase behaviour (-diagrams); V.5.2, V.5.4b binary systems; V.5.2a quaternary systems; V.5.84, V.fig. 5.39, V.fig. 5.43 quinary systems; V.5.87, V.fig. 5.43 ternary systems; V.5.2b phase inversion (intr.); V.5.3 (many examples in chapter V.5) phase inversion temperature; V.5.6ff phase trajectories; V.5.2g and elsewhere in V.chapter 5 plumbers nightmare = bicontinuity scaling; V.5.2h, V.fig. 5.27, V.5.4e, V.5.73ff, V.fig. 5.37 surfactant solubility; V.5.2f, and elsewhere in V.chapter 5
57
58
SUBJECT INDEX
microemulsions (continued), theory; V.5.5 wetting; V.5.4C, V.fig. 5.30 Winsor states (def.); V.5.1, V.fig. 5.1 micropores; see pores microscopies of sols; IV.2.4Iff middle phase (microemulsions); V.5.2g Mie theory (light scattering); see electromagnetic radiation milk; V.8.1 mixtures, athermal; 1.2.55 colloidal; 1V.5.7C, IV.5.8c homogeneous, thermodynamics; 1.2.16 ideal; 1.2.17 non-ideal; 1.2.18 mobile films; V.6.48 mobility (of ions); 1.6.6a molality; I.2.45(def.) molarity; 1.2.45(def.) mole fraction; I.2.44(def.) molecular condensor; I.fig. 5.1, II.3.59 molecular dynamics; I.3.1e(intr.), association colloids; V.4.3a, V.fig. 4.7 electrolytes; I.5.57ff, I.fig. 5.9 liquids in pores; II.fig. 1.38 liquids near surfaces; ll.figs. 2.5-7, 11.3.55, Il.fig. 3.39 wetting; Ill.fig. 5.36 molecular mass (of colloids); see polymers, particles molecular sieve, adsorption of krypton; Il.fig. 1.19 adsorption of methane; Il.fig. 1.36 molecular state; see state molecular thermodynamics; see statistical thermodynamics moment, of a distribution; 1.3.7b of a double layer; [11.4.6.50] moment expansion; IV.2.45, IV.app. 1 momentum; 1.3.57(def.) momentum conservation (in hydrodynamics); 1.6.lb, IV.6.4 (also see: transport of momentum] monatomic crystal; see Einstein crystal
SUBJECT INDEX
monochromatic (waves, radiation); 1.7.2 monochromator; 1.7.3 monodisperse = homodisperse monolayers (at liquid-fluid interfaces); I.fig. 1.15b adsorbed = Gibbs monolayers bending moduli; III.tables 1.6 and 7 binary mixtures; see Gibbs monolayers characterization; III.3.7 cholesterol; III.3.8d curved; see Gibbs monolayers; diffraction; 111.3.7b dilute solution; see Gibbs monolayers electrolytes; see Gibbs monolayers in emulsions; V.S.lf film balances; III.3.3a fatty acids; alcohols; III.3.8b Gibbs (monolayers); III.chapter 4 binary mixtures; III.4.2, V.8.7 curved; III.4.7 dilute solutions; III.4.3 distinction from Langmuir monolayers; III.3.1 dynamics; III. 1.14b, III.4.5 electrolytes; III.4.4 Gibbs equation; 1.5.94 ionized; II.3.2, Il.fig. 3.1b, V.6.5b proteins; V.3.7 rheology and kinetics; see interfacial rheology surfactants; III. 1.14b, III.4.6 temperature dependence; V.fig. 8.1 Langmuir (monolayers); III.chapter 3 Brewster angle microscopy; III.table 3.5 characteristic functions; III.table 3.2 cholesterol; III.3.8d collapse; Ill.fig. 3.46 diffraction; III.3.7b distinction from Gibbs monolayers; III.3.1 ellipsometry; Ill.table 3.5, III.3.7b energy-entropy compensation; III.3.37 fluorescence; Ill.table 3.5 hysteresis; III.3.13, III.3.8a, Ill.fig. 3.79 ionized; III.3.4h
59
60
SUBJECT INDEX
monolayers {at liquid-fluid interfaces), Langmuir (continued), Langmuir trough; III.3.3a Langmuir-Blodgett; see there lattice theory; III.3.5e mixed; IIL3.4f molecular dynamics; III.3.5d molecular thermodjniamics; III.3.5 Monte Carlo; III.3.5c
'
neutron reflection; Ill.table 3.5, III.3.7b optical techniques; III.3.7b-c permeation; III.3.238 phase behaviour; III.3.3 phospholipids; IIL3.8c polymer brushes; III.3.4J, III.3.8f polymers; III.3.4i, III.3.8e, V.8.8, V.fig. 8.2, V.1.77 preparation; III.3.2 proteins; V.3.7 reflection; III.III.3.7b relaxation; III.3.6h, V. 1.12b reproducibility; III.3.8a, Ill.fig. 3.79 rheology; see interfacial rheology; scanning probe; III.3.7d, Ill.table 3.5 simulations; III.3.5c, III.3.5d spectroscopy; III.3.7c, Ill.table 3.5 thermodymamics; III.3.4 thermodynamics; III.3.4 transfer; III.3.7a, Ill.fig. 3.5,, Ill.flgs. 3.53-54 Volta potential; see there, For the optical techniques see the entry in question X-ray diffraction; Ill.table 3.5, III.3.7b X-ray reflection; Ill.table 3.5, IIL3.7b monolayer formers; III.3.200 monolayer spreading; III.3.2 montmorillonite; II.3.165 adsorption of alcohols + benzene; II.fig. 2.21 adsorption of methane + benzene; II.fig. 2.22 adsorption of poly(acryl amide); II.fig. 5.39b adsorption of water vapour; Il.flg. 1.30 disjoining pressure; IV.fig. 3.55 Monte Carlo simulations; I.3.1e(intr.), I.fig. 5.4, 1.5.30, IV.fig. 5.16, IV.fig. 5.30 adsorbed Hquids; II.fig. 2.4 adsorbed polymers; II.5.30
SUBJECT INDEX
Monte Carlo simulations (continued), association colloids; V.4.3a, V.figs. 4.5-4.6 electric double layer; II.fig. 3.18 Mountain lines; 1.7.45 moving boundary electrophoresis; 11.4.5 Iff, II.fig. 4.17 mushrooms (polymer ads.); V. 1.1 Id, V.fig. 1.27 muscovite; II.3.165 myoglobin (ads.); V.fig. 3.19 natural; see process nanoparticles = small colloids nanoscience = science of small colloids Navier-Stokes equation; [1.6.1.15], 1.6.51, 11.4.18, [II.4.6.4]ff NBF = Newton black film; see films, liquid negative adsorption; see adsorption, negative Nernst-Einstein equation; [1.6.6.15], [11.3.13.14], [II.4.3.55] Nernst-Planck equation; I.6.7a, 1.6.89, II.2.85, [11.3.13.12], [11.4.6.2] Nernst's heat theorem; 1.2.24 Nernst's law for distribution equilibrium; 1.2.20a, 1.2.81 Nernst's law for electrode potential; 1.2.34, L5.5c, I.5.5e, 11.3.8, II.3.91, II.3.147ff, 11.3.150 networks; IV.6.14 also see: gels, percolation Neumann triangle; [111.5.1.3], Ill.fig. 5.6 neutron reflection (by surfaces); II.2.7, II.5.66ff neutron scattering (by colloids); 1.7.9, 1.7.102, IV.fig. 5.25, IV.fig. 5.33, IV.fig. 5.36 Newton films; see films, liquid Newton(ian) fluids; 1.6.8, I.table 6.1,1.6.4a, III.3.6b, IV.6.1, IV.6.2, IV.fig. 6.5, IV.table 6.3 Newton's second law; [1.6.1.12], 1.6.4 NMR = nuclear magnetic resonance non-ionic surfactants; see surfactants non-linear optical techniques; III.table 3.5 non-Newton(ian) flow; 1.6.36, III.3.6b, IV.6.7a, IV.fig. 6.17 non-solvent; 1.1.27 normal stress; see stress nuclear magnetic resonance (NMR); 1.7.16, 1.7.13,1.7.102 chemical shift; I.5.54ff, I.fig. 5.8 of emulsions; V.8.23 of interfaces; II.2.8, 11.2.55, II.5.58ff. 11.5.71 of microemulsions; V.5.3e, V.fig. 5.20 of pores; II. 1.90
61
62
SUBJECT INDEX
nuclear magnetic resonance (NMR) (continued), of water; I.5.54ff, I.flg. 5.8 (also see: spin, etc.) nucleation, in colloid preparation; IV.2.9ff, IV.2.2b, IV.2.2c in emulsification; V.8.31 heterogeneous; 1.2.100, II. 1.42 homogeneous; I.2.23d, IV.2.9ff in pores; see capillary condensation number of realizations; 1.3.4 (def.) octupole moment; 1.4.19 odd-even parity; 111.3.302, Ill.fig. 4.31, lll.fig. 4.36 oHp = outer Helmholtz plane Odijk-Skolnick-Fixman theory (polyelectr.); V.2.27ff oil recovery, tertiary; see enhanced oil recovery ointments; 1.1.6, 1.1.28 Onsager formula (for limiting conductivity); [1.6.6.26] Onsager formula (for polarization); [1.4.5.20] Onsager relations (irreversible thermodynamics); 1.6.2b application to electrokinetics; 1.6.2c, II.4.2, II.4.7, II.4.21, II.4.27, 11.4.61, II.4.106 Onsager theorem (for approach to equilibrium); 1.7.44, 1.7.48, Lapp. 11.3, Lapp. 11.5, Lapp. 11.7-8 optical activity; L7.99ff optical axes; 1.7.14 homodyne; L7.37, L7.6d optical levitation; IV.3.157ff optical mixing (beating); 1.7.37 heterodyne; 1.7.37, I.7.6d optical trapping; IV.3.12d optical tweezers; IV.3.158 ordering parameter; 1.6.73, IIL3.71ff, lll.fig. 3.61, IIL3.166, [III.3.7.13] open circuit potential; II.3.149 ore benification; 1.1.25, 11.5.97 orientation of adsorbed molecules; II.2.55 Ornstein-Zernike equation (for compressibility); [1.3.9.32] Ornstein-Zernike equation (for correlation functions); [IV.5.3.19], [IV.5.3.33b] Ornstein-Zernike equation (for critical opalescence); [1.7.7.10] orthokinetic coagulation or flocculation; IV.2.41, IV.4.5b, IV.fig. 4.18, IV.4.47-48, V.1.84, V.fig. 1.50 oscillating drop; lll.fig. 3.72
SUBJECT INDEX
oscillating liquid jet; Ill.figs. 1.28 and 29, III. 1.84 oscillation, harmonic; 1.4.38, 1.4.44, I.7.3d, III.3.80ff, III.3.105ff, Ill.fig. 3.41, Ill.fig. 3.45 oscillator; 1.7.3b oscillator, harmonic; 1.3,5a, 1.4.37 oscillator strength; 1.4.38 osmotic coefficient; 1.2.18a osmotic compressibility; lV.5.3d osmotic equilibrium; 1.2.34, IV.5.2 osmotic pressure; 1.2.34, 1.2.64, 1.2.20d, IV.3.144, IV.5.46ff, V.1.5, V.l.IO, V.2.11ff, V.figs. 2.2-3, V.2.39 osmotic repulsion; 1.2.72, I.fig. 2.11 Ostwald equation; [1.2.23.25], II. 1.19, [III. 1.13.2] Ostwald ripening; 1.2.97, II. 1.103, II.3.1I0, IV.2.2e, V7.14ff, V.7.3c, V.8.3b Ostwald viscometer; IV.fig, 6.18 outer Helmholtz plane; II.3.17, II.3.59ff Overbeek equations (for retarded London-Van der Waals forces); [1.4.4.23a, b], 1.4.74 overcharging; Il.fig. 3.20c, IV.3.9J, IV.3.164ff, IV.figs. 3.62-64, IV.fig. 3.67, IV.3.74 overflowing cylinder (in rheology); Ill.fig. 3.73, V.fig. 3.25 overpotential; 1.5.79 overrun (foams); V.7.7 oxides (in general), contact angles on ...; III.table A4.3 double layer; 1.5.6a, 1.5.6b, II.3.7Iff, ll.table 3.5, 11.3.8, II.3.71ff, 11.3.10c point of zero charge; 11.3.112, Il.app. 3b, ll.table 3.5 (for specific oxides, see under the chemical name) paints; 1.1.22, 1.1.28, IV.2.1ff, IV.3.185 pair correlation function; 1.3.66, II.3.51ff, IV.5.3 pair interaction; see interaction pair potential; see interaction Padlmann effect = suspension effect pancake (polymer ads.); V.1.11, V.fig. 1.27 paper electrophoresis; II.4.131 papermaking; IV.2.1 papyrus; IV. 1.3, fig. IV. 1.1 parachor; III.2.67 paramagnetism; rV.3.I24
63
64
SUBJECT INDEX
parameter (def.), extensive; 1.2.10 intensive; 1.2.10 mechanical; 1.3.40 thermodynamic; 1.3.40 paraquat; [II.3.14.1] partial molar quantities; 1.2.46 particle-in-a-box problem; 1.3.23 particles (colloidal), form factor; 1.7.56, 1.7.70ff interaction and rheology; IV.6.9, IV.fig. 6.26 networks; IV.6.14a shape; I.6.5g (2), 11.(3), 1.7.8c, I.7.8d, 1.7.69 size; 1.7.8, 1.7.26, 1.7.63, 1.7.67, IV.4.32 size distributions; see separate entry structure factor; I.7.64ff (see separate entry) also see: charged (colloidal) particles particle-wave duality; 1.7.5 partition; see distribution partition coefficients (micelles); V.4.9b partition function; I.3.2(intr.), 1.3.3, 1.3.4,1.3.5, Lapp. 6 canonical; I.3.2(intr.), 1.3.3, 1.3.4, 1.3.5, 1.3.51, 1.3.54, 1.3.59, 1.3.63, Lapp. 6 for ideal gas; I.3.6b, L3.6c for localized adsorbate; 1.3.6d for subsystem; 1.3.5 grand (canonical); L3.2(intr.), 1.3.3, 1.3.4, 1.3.31, 1.3.33, I.3.54ff, 1.3.63, Lapp. 6,11.1.95,11.1.99 isobaric-isothermal; 1.3.13, 1.3.18, 1.3.19 microcanonical; I.3.2(intr.), 1.3.3, 1.3.4 separable; 1.3.20 Pascal's law; 1.2.90, III.2.9 Pauh principle: 1.4.5, 1.4.42, II.3.172 PCS = photon correlation spectroscopy = QELS; see electromagnetic radiation Pearson's rule; II.3.185 Peclet number; 1.7.97, [IV.4.5.11], [V.8.1.18], [V.8.3.5], [V.8.3.21] pendant drop; see drop, pendant penetration depth (evanescent waves); [1.7.10.12] Percus-Yevick (PY) equations [1.3.9.29 and 30], [IV.5.3.40], IV.5.4b, IV.fig. 5.16 percolation (threshold); IV.5.86fL IV.6.83 perlkinetic coagulation (deL); IV.4.37
SUBJECT INDEX
65
period (of a wave); 1.7.4 permeability, of liquid films; V.6.2h of monolayers; III.3.239ff also see: porous plugs perpetual motion; 1.2.8 of second kind; 1.2.23 persistence length; see pol3rmers/polyelectrolytes in solution for worm-like micelles; V.4.6d persistence parameter; see polymers/polyelectrolytes in solution persistence time; 1.5.45 PFM = polarized fluorescence microscopy phagocytosis; 111.5.2, III.5.100 phase angle; Lapp. 8, see further loss angle phase diagrams of microemulsions; see V.chapter 5 phase diagrams of surfactants; V.4.1e, V.fig. 4.4 phase diagrams (2D); III.fig. 3.15, Ill.fig. 3.19, (see the 7r{A] curves in Ill.chapter 3) phase diagrams and nucleation; IV.fig. 2.3, IV.figs. 5.37-41, IV.fig. 5.43, IV.figs. 5.445.45, IV.figs. 5.49-53, IV.fig. 5.56, IV.fig. 5.62, IV.fig. 5.63c. phase integral; 1.3.57 phase inversion; V.5.2c, V.8.64 phase inversion temperature; V.5.6ff, V.8.5, V.8.49ff, V.fig. 8.14, V.8.89 phase rule (Gibbs); 1.2.13 phase separation, transitions and coexistence; 1.2.19, II.5.2e IV.5.7 in capillaries; II.1.6e in interfaces; III.2.18, III.3.3b, Ill.table 3.1, III.3.4d, III.3.217ff (also see: demixing, critical point, condensation: two-dimensional, polymers in solution and microemulsions) phase space; I.3.57(def.) phase stability (cone, colloids); IV.5.7 phase transitions (cone, colloids); IV.5.8 phenomenological approach; I.1.29(def.), 1.2.2 phosphate binding (soils); 11.3.222 phospholipids, see lipids photobleaching; 1.7.103 photocatalysis; II.3.222 photochromic probes; 1.7.103 photoconduction; II.3.173 photocorrelation spectroscopy = QELS; see electromagnetic radiation photoelectric effect; 1.7.85 photographic emulsion; IV. 1.9
66
SUBJECT INDEX
photolysis of water; II.2.87, II.3.223 photons; 1.7.5, III.3.168 (counting) physisorption; II. 1.5, II. 1.18, II.1.30ff Pickering (emulsion stabilization); III.5.99, V.8.4 pipettes, emptying; Ill.fig. 1.8 p.i.t. = phase inversion temperature plant growth in arid regions; 1.1.1, 1.1.2 plastic behaviour (rheology); IV.6.3a Plateau border; 1.1.16, I.fig. 1.11, V.6.2, V.6.3, V.6.48, V.fig. 7.2 Plateau rules (foam structure); V.7.4 plumber's nightmare; V.4.18, see further microemulsions, bicontinuous pluronics (in micelles); V.4.4e point of zero charge; 1.5.90, I.5.6e, II.3.8, II.3.11, II.3.17, II.3.74, II.3.8, Il.app. 3, II.3.118, II.3.120, Il.fig. 3.61, II.3.162 experimental determination; II.3.8a influence of organic additives; II.3.12d, Il.figs. 3.77-80, Il.fig. 3.82, II.3.223 influence of specific adsorption; II.3.68ff, II.3.103ff, Il.fig. 3.34 interpretation; IL3.8c pristine; 1.5.102, II.3.8, II.3.103ff, Il.fig. 3.34, II.3.140, 11.3.152 relation to isoelectric point; II.3.8b, Il.fig. 3.35 tabulation; app. II.3 temperature dependence; 3.75ff, II.3.115ff, Il.figs. 3.36-37 Poiseuille's law; see Hagen-Poiseuille's law Poisson-Boltzmann equation; 1.4.16, 1.5.18, [II.3.5.6], [II.3.5.44], [II.3.5.57ffl Poisson-Boltzmann theory; II.3.6a for flat interfaces = Gouy-Chapman theory for low potentials = Debye-Huckel theory improvements; 1.5.2c, II.3.6b, Il.figs. 3.18-19 Poisson distribution; [IV.2.3.46] Poisson's law (electrostatics); 1.4.53, 1.5.10, [L5.1.20-20a], II.3.19. II.3.35, [II.3.5.43], [II.3.6.14], II.3.211, II.4.18, II.4.70, [n.4.6.12]ff, IL4.116, II.5.55 Poisson ratio; IV.6.9 polarimeters; 1.7.99 polarizability (intr.); I.4.22ff, I.4.4d, I.4.4e, 1.7.18, 1.7.53, 1.7.94 data for molecules; I.table 4.2 molar; 1.4.24 polarization, dielectric (phenomenon); I.4.4b, I.4.4e, I.4.5f of colloids; see dielectric dispersion of sols of interfaces; 1.5.5b, II.3.9, (see potential difference, x) polarization, dielectric (physical quantity); I.4.5f, 1.7.2, 1.7.6, IV.3.10 polarization (of radiation, etc.); see electromagnetic radiation
SUBJECT INDEX
polarized fluorescence microscopy; III.3.7c.iv polarizer; I.fig. 7.7, 1.7.99 polarizer-sample-analyzer; III.3.7b.i polar molecules; 1.4.4b poly(phenylene), V.fig.2.3 polyampholytes; II.5.13, V.2.1, V.2.6d polydispersity; 1.1.13, IV.2.2d, IV.figs. 5.15-17, IV.flg. 6.27 relative; IV.2.61, IV.app. 1 also see, size distributions polyelectrolytes in solution; 1.1.6, II.5.2f, V.chaper 2 (general) annealed; V.2.2 brushes; V.2.3c chain statistics; V.2.3 charge; II.5.14ff, V.2.2, V.fig. 2.4 chemical composition; V.2.1b, V.table 1 colloid floccuiation; V.2.7a colloid stabilization; V.2.7b complex coacervation; V.2.6e, V.2.6f (compl, coac. micelles) complexation; V.2.6 concentration regimes; V.2.3, V.fig. 2.15 conductivity; V.2.5 configurations; V.2.3 dielectrics; V.2.5d dissociation; V.2.2d electrokinetics; V.2.5a gels; V.2.3d grafts, see adsorption of polyelectroljrtes interaction; V.2.15, V.fig. 2.5 multilayers, see adsorption of polyelectrolytes persistence length; 11.5.14, II.fig. 5.5 phase separation; V.2.6 quenched; V.2.2 solubility; V.2.6a viscosity; V.2.4 polyelectrolyte adsorption; see adsorption of polyelectrolyte effect; 11.3.71, II.3.76, V.2.2d polyelectrolyte gels; V.2.3d polyhedral (foams); see foams polymer brush, monolayers; III.3.8f, Ill.figs. 3.96-98. Ill.fig. 3.100, V.1.11 polymer colloids; see latex, latices
67
68
SUBJECT INDEX
polymer melt near a wall; II.5.45ff polymer surfactants; V. 1.51 polymers in solution; 1.1.2{intr.), I.fig. 1.17, 1.3.34, IV.6.11-12; V.1.2 concentration regimes; II.5.9ff, II.fig. 5.3, IV.6.11-12 conformation; Il.figs. 5.1-2, II.5.Iff, IV.fig. 6.30 end-to-end distance; II.5.4, Il.fig. 5.2, IV.6.6I entanglements; IV.6.67ff excluded volume (parameter); II.5.3, II.5.2b, 11.5.5b, IV.6.62, [IV.6.11.5] expansion coefficient; II.5.6ff, IV.6.62 Flory-Fox constant; IV.6.63, V.2.51 ideal chain; II.5.3, II.5.2a intrinsic viscosity; IV.6.11 light scattering; I.7.56ff, I.7.62ff molecular mass; 1.7.26, I.7.62ff, I.7.68ff, IV.6.11, also see, size distributions networks; IV.6.14a overlap; II.5.2c, V.chapter 1 persistence (stiffness) parameter; II.5.4 phase separation; Il.fig. 5.3, II.5.2e, Il.fig. 5.4, V.2.3a reptation; IV.figs. 6.36-37 solvent quality; II.5.2b swollen chain; II.5.3, II.5.2b, II.5.9 thermodynamics; II.5.2c viscous flow- IV.6.12 (also see: radius of gyration, adsorption of polymers, colloid stability) polymers, contact angles on ...; Ill.table A4.2 poly(acrylic acid), adsorption; V.fig. 2.19 charge; V.fig. 2.12 transference number; V.fig. 2.30 viscosity; V.fig. 2.24 poly(acryl amide), adsorption on montmorillonite; Il.fig. 5.39b poly(diallyl dimethylamm. chloride), conductivity; V.fig. 2.31 poly(ethylene imine) (charge); V.fig. 2.8 poly (ethylene), AFM image; Il.fig. 1.3 poly (ethylene oxide or oxyethylene). adsorption on latex and Si02; Il.fig. 5.25 adsorption of poly(styrene sulfonate): Il.fig. 5.35
SUBJECT INDEX
poly(maleic acid) (charge); V.fig. 2.9 poly(methacrylic acid), adsorption on silver iodide; II.fig. 5.36-37 charge; V.figs. 2.11, 2.12 polylmethacrylic ester), monolayer; IIL3.8e, Ill.figs. 3.94-95 poly(oxyethylene) (PEO), influence on interaction; V.figs. 1.43-45 surface pressue; V. 1.77 poly(phenylene); V.fig. 2.3 poly(styrene), adsorption on silica; II.fig. 5.28, Il.fig. 5.30 mixtures with coated silica; IV.fig. 5.64 poly(styrene) latex, adsorption of Cg(t)P/^vE/j^v (non-ionic); Il.fig. 2.32 adsorption of Cg(|)P/j3xE/27\ (non-ionic); Il.fig. 2.33b adsorption of lactalbumin; V.figs. 3.15-18 adsorption of poly (ethylene oxide or oxyethylene); Il.fig. 5.25a coagulation; IV.sec.3.13c, V.figs. 1.47-50 rheology; IV.figs. 6.28-29 poly (styr ene sulfonate), adsorption on poly(oxymethylene); Il.fig. 5.35 brushes and stability; V.fig. 1.36 conductivity; V.fig. 2.32 diffusion; V.fig. 2.17 overlap cone; V.fig. 2.16 stabilization of mica; V.fig. 1.42 viscosity; V.fig. 2.23, V.fig. 2.25-28 poly(styrene co 2-vinyl pyridine), AFM image; Il.fig. 1.4 poly(vinyl alcohol) (PVA); V.fig. 3.24 poly(vinyl chloride), flow behaviour; IV.fig. 6.31 poly (vinylpyrr olidone), adsorption on Si02; 11 fig. 5.22 influence on flocculation; V.fig. 1.46 pores (in surfaces); II. 1.6 ad- and desorption of gases; II.figs. 1.32-35 classification into macro-, Il.meso- and micropores; II. 1.6a connectivity; 11.1.82 mesopore fiihng; II. 1.6b micropore filling; II.1.82, II.1.6c molecular dynamics: Il.fig. 1.38
69
70
SUBJECT INDEX
pores (in surfaces) (continued), radius (effective); II. 1.84 size distribution; 11.1.85, II. 1.88 volume; II.1.84ff (also see: porosity, hysteresis, capillary condensation) porosity, mesoporosity; II. 1.6b microporosity; II. 1.6c of plugs; I.6.50ff of surfaces; II.1.6, II.2.67, II.3.161 by mercury penetration; II. 1.90, II. 1.100 classification; II. 1.6a (also see: adsorption hysteresis, capillary condensation, pores (in surfaces)) porous plugs, permeability; I.6.4f, II. 1.90, II.4.55ff, Il.fig. 4.18, IV.2.32ff, IV.fig. 4.26 electro-osmosis; II.4.3b, Il.fig. 4.6, II.4.5b, Il.fig. 4.18 other electrokinetic phenomena; II.4.5b, Il.fig. 4.18-19, II.4.7, Il.figs. 4.34-35 wetting; III.5.4i, III.5.9 porous surfaces; see pores (in surfaces) potential-determining ions; see surface ions or charge-determining ions potential difference (between adjacent phases); I.table 5.13, II.3.7b, II.3.138 X. 1.5.73-74, II.2.19, II.3.91, II.3.102, II.3.115, II.3.9, Il.figs. 3.38-39, Il.table 3.7, II.3.179, Il.fig. 3.75, Il.table 3.9, II.3.200ff, Il.fig. 3.79, III.2.47, [III.3.7.22], III.4.4a,b, Ill.fig. 4.20, Ill.fig. 4.24 electrokinetic (^); see electrokinetic potential Galvani; I.5.5a, 1.5.5c, II.3.14, II.3.90, II.3.119ff, Il.fig. 3.38, II.3.138 liquid Junction (diffusion); I.5.5d, I.fig. 5.12, 1.6.7b real; 1.5.75, II.3.121ff, Il.table 3.7 Volta; I.5.5a, II.3.119ff, Il.fig. 3.38, Il.figs. 3.74-75, II.3.179, III.3.7f, Ill.fig. 3.75, Ill.fig. 3.76, Ill.fig. 3.85, Ill.fig. 3.88, Ill.fig. 4.14 (also see: suspension effect) potential of a force; 1.4.3b electric; 1.4.12, 1.5.3, 1.5.7ff, 1.5.10, Lfig. 5.1, II.3.3 interfacial; 1.5.5, II.3.6b in diffuse layer, Stern layer etc.; see there of mean force vs. mean potential; I.4.3c, 1.5.18, I.5.24ff, I.5.27ff, II.3.51ff, IV.5.2b potentiometric titration (of colloids); see colloid titration pouring (foaming); V.7.13 powder technology; II.5.97 powders (wetting); III.5.4b, III.5.9 Poynting vector; 1.7.5, 1.7.10, 1.7.97
SUBJECT INDEX
precursor film; III.5.8, III.fig. 3.35 preparation of colloids; IV.chapter 2 kinetics; IV.2.2c preparation of emulsions; V.8.2 pressure, two-dimensional; see surface pressure pressure tensor; III.2.3, IV.6.1, V.6.3b prefixes (table); Lapp. 2 primary minimum; see colloids, interaction primary structure (proteins); V.3.3 primitive (liquid model); I.5.1(def.) in conduction; 1.6.79 in diffusion; 1.6.56 in hydrodynamics; 1.6.1 ff in solvation; 1.5.3b principal axes (in optics); 1.7.98 principal radii of curvature; see curvature, radius of probability; 1.3.1, L3.2d, 1.3.3 probability distributions; 1.3.2d, 1.3.7b, IV.app. 1 process; I.2.3(def.) endothermic; 1.2.8 exothermic; 1.2.8 isobaric; 1.2.3 isochoric; 1.2.3 isosteric; 1.2.3 isothermal; 1.2.3 natural (or irreversible); 1.2.4, 1.2.8 reversible; 1.2.3, 1.2.21 spontaneous; 1.2.4, 1.2.8 stochastic; 1.6.3 (also see: transport) protection, of colloids against aggregation; 1.1.2(intr.), 1.1.27 of colloids against aggregation by (bio-) polymers; V.chapter 1 see further; colloid stability proteins; 1.1.23 conformation; V.3.2a, 2b relaxation at interfaces; V.3.3b structure changes upon adsorption; V.3.4 structures in solution; V.3.2, V.table 3.3 proton acceptor; 1.5.65 proton donor; 1.5.65
71
72
SUBJECT INDEX
Prussian blue; IV.2.2 PSA = polarizer-sample-analyzer pseudoplastic behaviour (rheology); IV.6.3a pullulan (radius of gyration); V.fig. 2.14 pulmonary surfactant = lung surfactant purity criteria (of interfaces); III. 1.7, III. 1.14c PY = Percus-Yevick p.z.c. = point of zero charge QELS = quasi-elastic (light) scattering; see electromagnetic radiation, scattering quadrupole moment; 1.4.19, 1.5.42 quartz; see silica, etc. quasi-chemical approximation (in statistical thermodynamics); I.3.8e quasi-elastic (light) scattering (QELS); see electromagnetic radiation, scattering quaternary structure (proteins); V.3.3ff quenched (polyelectrolytes); V.2.2 quenchers; III.3.165 radial distribution functions; see distribution function radiant intensity; 1.7.5 radiation; see electromagnetic radiation radius, Guinier;IV.2.45, IV.A1.4 hydrauHc; 1.6.50 hydrodynamic (viscometric); 1.7.51; IV.6.9, [IV.6.9.2], IV.6.13, rV.Al.4 (of) gyration; 1.7.57, II.5.4, II.5.6ff, IV.6.11, V.2.3, V.fig. 2.14 ionic; I.table 5.4, I.fig. 5.7 Raman scattering; see electromagnetic radiation scattering Raman spectroscopy; 1.7.12, III.3.7c.ii Randies circuit; II.fig. 3.31 random coil (intr.); II.5.3 random flight or random walk; 1.3.34, 1.6.3, II.5.3ff, Il.fig. 5.2, II.5.24, IV.4.2 random phase approximation (interaction); IV.5.50ff, IV.fig. 5.30 random sequential adsorption; V.3.16ff Raoult's law for vapour pressure lowering; 1.2.74, II. 1.70 rate of coagulation; IV.4.3 rate of strain; see strain tensor, [IV.6.1.5] Rayleigh-Brillouin scattering; see electromagnetic radiation scattering Rayleigh-Debye (-Gans) scattering; I.7.8d, 1.7.67 Rayleigh instability: III.5.1 Id, III.fig. 5.47 Rayleigh line; 1.7.44 Rayleigh ratio; [I.7.7.6](def.), 1.7.3 (table) recipes for sol preparation; IV.2.4
SUBJECT INDEX
red shift (of spectra); 1.7.19 reference electrode; 1.5.82 reference state; see state, standard reflection, multiple; 1.7.80, II. 1.18 total; 1.7.74 reflection angle; 1.7.72 reflection at interfaces; 1.7.10a, III.fig. 3.57 reflection coefficient; 1.7.73, 11.2.50 reflection electron spectroscopy; see scanning electron spectroscopy reflectometry; 1.7.10b, IL2.5c, Il.figs. 2.15-16, 11.5.64, HI.2.47, V.figs. 6.4-6.5 refraction angle = transmission angle refraction by interfaces; 1.7.10a refractive index; 1.7.12,1.7.14 complex; 1.7.2c, 1.7.61, 1.7.98 regular solutions; 1.2.18c, II.2.30, 11.5.8 regulation (of double layers), see colloids, interactions relaxation (time); I.4.4e, I.6.6c, II.3.13, II.4.10ff, II.4.6c, n.4.8, IV.4.4, IV.table 4.3 adsorbed proteins; V.3.3b colloid interaction; IV.4.4 Debye; 1.6.73 dielectric; see dielectric relaxation double layers; see there (in) external fields; IV.4.5 Maxwell (-Wagner); 1.6.84, II.3.219, ll.fig, 3.89, II.4.111, IV.4.23 mechanical; IV.6.4 of interfaces (electric); 1.5.5b in Langmuir monolayers; III.3.6h, III.figs. 3.46-47 retardation (in ionic conduction); 1.6.6b, 1.6.6c thermodynamic; 1.2.3 (also see: diffusion, rotational, double layer, relaxation) reptation; IV.6.69ff, IV.figs. 6.36-37 repulsion, electric; 1.1.2 Iff osmotic; 1.2.72 (see further: colloids, interaction) residence time, and adsorption; 11.1.46ff, [II.2.4.1] and hydration; 1.5.53 resonance band = absorption band resonance (electric); I.4.4e
73
74
SUBJECT INDEX
resonance frequency; 1.4.34 resonators; 1.7.4a respiratory distress syndrome (RDS); III.3.238, V.6.87-88 retardation (of dispersion forces); see Van der Waals forces retention volume; see chromatography reversible, reversibility (in thermodynamic sense); 1.2.3, 1.2.9, 1.2.8 colloids = colloids, lyophilic interfaces (in electrical sense); 1.5.5b (also see: process; for adsorption reversibility, see (adsorption) hysteresis) Reynolds eq. (film thinning); see Stephan-Rejmolds eq. Reynolds limit (wave damping); Ill.fig. 3.44, III.3.117ff Reynolds number; 1.6.4b, I.table 6.2 rheology (general); IV.chapter 6 rheology; III.3.6b, IV. 1.3 (and) colloid interaction; IV.2.41, IV.3.144, IV.6.13 compliance; IV.6.23ff concentrated dispersions; IV.6.10 creep compliance; IV.6.24 creep; IV.6.6b, IV.fig. 6.12 definition; IV.6.1 descriptive; IV.6.3 dilute sols; IV.6.9 distribution functions; IV.3.144 electroviscous effects; IV.6.9b emulsions; V.8.15ff foams; V.7.5a (and) fractals; IV.6.13 fracture; IV.6.5, IV.figs. 6.8-6.9 (of) gels; IV.6.14 instrumentation; see measurements Kelvin element = Voigt element Maxwell element; IV.6.16, IV.fig. 6.11, IV.6.20-21 Maxwell modulus; IV.6.16 measurements; IV.6.6 constant strain rate; IV.6.6c creep; IV.6.6b d3mamic; see oscillatory oscillatory; IV.6.6d stress relaxation; IV.6.6a also see, viscometers overshoot; IV.6.6c
SUBJECT INDEX
Theology (continued), particle networks; IV.6.14b polymer networks; IV.6.14a polymer solutions; IV.6.11, IV.6,12 principles; IV.6.1 quantities; IV.6.2 structure; IV.6.8 time scale effects; rv.6.4 Voigt element; IV.fig. 6.13 yield; IV.6.5 yield stress; IV.fig. 3.73, IV.6.3a yield value = yield stress also see: interfacial rheology, stress, strain rheopexy = antithixothropy ribonuclease; V.fig. 3.3, V.fig. 3.5 adsorption; V.fig. 3.23 rigid (films); V.6.48 ring trough (interfacial rheology); III.fig. 3.71 ringing gels; rv.2.41 RIS = rotational isomeric state RNase = ribonuclease Ross Miles test (foams); V.7.13ff rotating molecule; I.3.5e rotational correlation time; see correlation time rotational isomeric states (RIS); V.4.38 rotational diffusion (coefficient); see diffusion Rouse-Zimm theory (polym.); IV.6.64-65. Rowllnson-Widom equation (for surface tension); [III.2.5.40] RSA = random sequential adsorption RSD = respiratory distress syndrome rubber, adsorption on carbon black; Il.fig. 5.31 rupture (of films); see films, stability ruthenium dioxide, double layer; Il.fig. 3.56, Il.fig. 3.59 point of zero charge; Il.app. 3 b XPS (= ESCA) spectrum; Il.fig. 1.5 rutile; see titanium dioxide saddle splay modulus = Gauss modulus Sackur-Tetrode equation; [1.3.1.9], 1.5.35, [111.2.9.12] (for surfaces). III.3.37 salt-sieving; 1.1.1, 1.1.3, 1.1.2Iff. II.3.28. II.3.223, II.4.56. IV. 1.6
75
76
SUBJECT INDEX
salting-out; 1.5.71 salting-in; 1.5.71 Sand equation; [1.6.5.23], l.fig. 6.15b SAMS = self assembled monolayers; III.3.240 SANS = small angle neutron scattering saponine (films); V.fig. 6.27 Saxen's rule (electrokinetics); L6.17, IE4.2 SAXS = small angle X-ray scattering SCAF = self-consistent anisotropic field scaling theory; IE5.11, II.5.4c, III.3.8e,f scanning electron microscopy (SEM); 1.7.11b, Il.fig. 1.1 scanning, optical; in.3.7c.iv, III.3.7d scanning probe microscopy (SPM); III.table 3.5 (includes STM and AFM), IIL3.7d scanning transmission electron microscopy (STEM); 1.7.lib scanning tunnelling microscope (STM); 1.7.90, IE 1.12, IIE3.7d Scatchard plot; IE 1.48 scattering, length density; E7.70, IE5.66 length; E7.70, IE5.66 plane; E7.27(deE) from surfaces; HE 1.10 wave vector; E7.27(deE), III. 1.54 scattering of, neutrons; see neutron scattering, small angle neutron scattering (SANS) radiation; see electromagnetic radiation X-rays; see X-ray scattering Schiller layers; IV.2.40 Schottky defects; IE3.173 Schulze-Hardy rule (for coagulation of colloids); E5.67, 1.6.83, II.3.129ff, IV.1.11, IV.3.9f SCF = self-consistent field Schrodinger equation; E3.1, 1.3.11, I.3.20ff, V.1.7 screening (of charges); E5.11, also see: double layer charge, capacitance, etc. Searle viscometers/rheometers; IV.6.7b second harmonics, generation; IE2.55, IIE3.7c.v, IIEfigs. 3.64-65 second central moment; 1.3.35, IV.app. 1 Second Law of thermodynamics; see thermodynamics Second Postulate of statistical thermodynamics; see statistical thermodynamics second virial coefficient; see virial coefficient secondary ion mass spectroscopy (SIMS); 1.7.11a. I.table 7.4. IE 1.15. Il.fig. 1.6
SUBJECT INDEX
secondary minimum; see colloids, interaction secondary structure (proteins); V.3.3 sediment, sedimentation; 1.1.2, 1.1.22, I.fig. 1.14, 1.6.48, IV. 1.2, IV.2.40ff, IV.2.3d, V.8.3d, V.8.23, V.fig. 8.24 equilibrium; IV.fig. 5.11, V.8.75 groupwise; V.8.77 hindered; V.8.76 sedimentation coefficient; IV.2.51 sedimentation current; II.4.24 sedimentation-diffusion equilibrium; IV.2.52ff sedimentation field flow fractionatin (FFF); IV.2.61ff sedimentation potential (gradient); II.table 4.1, II.4.6-7, II.4.3c sedimentation profiles; IV.2.3d, V.8.80 seeding, seeds (in nucleation); 1.2.100, IV.2.2f segment weighting factors; II.5.37ff selection rules, infrared; I.table 7.5 Raman; I.table 7.6 self-assembly; see III.chapter 3, V.chapter 4 self-avoiding walk; II.5.6 self-consistent anisotropic field (SCAF); V.4.39 self-consistent field (SCF) theory; II.5.29, II.5.5, V.1.4, V.appendix 1 association colloids; V.chapter 4 polymers; II.5.29, II.5.5, V.1.4 self-diffusion; see diffusion self Gibbs energy; see Gibbs energy self-similarity, in Brownian motion; 1.6.18 in fractal structures; rv.6.71ff in scaling theory; II.5.34 SEM = scanning electron microscopy semiconductors; II.3.10e double layer; II.3.10e, Il.figs. 3.60-72 intrinsic; II.3.170 n-type andp-type; II.3.173 semidilute (poljoner) solution; II.fig. 5.3, II.5.2d settling ~ sedimentation SER = surface enhanced Raman spectroscopy SF = ScheutJens-Fleer (polymer adsorption theory) SFG = sum frequency generation
77
78
SUBJECT INDEX
SFM = scanning force microscopy, (including scanning, probe microscopy, scanning tunnelling microscopy); IV.3.12c, IV.table 3.5, IV.3.58 also see AFM = atomic force microscopy shaking (foam formation); V.7.13 shear rate; 1.6.32, IV.fig. 6.2, IV.fig. 6.3, IV.6.2, IV.table 6.1 shear stress; see stress shear thickening, thinning; III.3.87, IV.fig. 6.5, IV.6.3a SHG = second harmonic generation Shinoda cut (microemulsions); V.5.42, V.flg. 5.22b), V.5.46 silica, silicium dioxide, adsorption of poly(oxyethylene); Il.fig. 5.25b adsorption of poly(styrene); Il.flg. 5.28, Il.fig. 5.30 adsorption of poly(vinyl pjrrrolidone); Il.fig. 5.22 crystals; fig. IV. 14 point of zero charge; Il.app. 3b Aerosil, adsorption of C9(|)P/j3xE/27\ (non-ionic); Il.fig. 2.33a adsorption of various organic substances from carbon tetrachloride; Il.fig. 2.27 adsorption of water vapour; Il.fig. 1.28 Cab-o-Sil, adsorption of water vapour; Il.fig. 1.26 adsorption of nitrogen, Il.fig. 1.26 double layer; II.table 3.5 hydrophilic, adsorption of C12E5 (non-ionic); II.figs. 2.30-31 immersion, wetting; 11.table 1.3 Ludox, adsorption of Cj2Eg (non-ionic); Il.fig. 2.31 oxidized wafers, adsorption of C22^3 (non-ionic); Il.fig. 2.31 precipitated, adsorption of nitrogen; Il.fig. 1.34d double layer; Il.figs. 3.64-65, Il.table 3.8 P3n-ogenic, double layer; Il.fig. 3.65 quartz, double layer; Il.fig. 3.65 wetting by water; III.5.3c
SUBJECT INDEX
79
silica sols; IV.fig. 2.1a, IV.2.4, IV.fig. 2.8, IV.3.13b, IV.fig. Al.l Ludox; IV.figs. 3.71-72 mobility; IV.fig. 3.68, IV.fig. 3.72, IV.fig. 3.74 preparation; IV.2.4a stability and structure; II.3.161-2, IV.3.13b, IV.fig. 5.13, IV.fig. 5.17, IV.figs. 5.24-25, IV.fig. 5.35, IV.fig. 5.62 Stober; IV.2.63 silicium dioxide-zirconium dioxide catalyst, SIMS spectrum; II.fig. 1.6 silver bromide, point of zero charge; Il.app. 3c silver iodide, adsorption of alcohols; Il.figs. 3.77-79, Il.table 3.9 adsorption of dextrane; Il.fig. 5.26b, II.5.80ff, Il.fig. 5.29 adsorption of poly(methacrylic acid); Il.figs. 5.36-37 adsorption of tetraalkylammonium salts; Il.figs. 3.80-81 double layer; II.3.8, Il.fig. 3.28, Il.fig. 3.32, Il.table 3.6, II.3.10a, Il.figs. 3.40-46, II.3.112, Il.figs. 3.52-53, Il.fig. 3.56, Il.table 3.8, II.3.202ff, Il.figs. 3.77-81, Il.table 3.9 electrokinetic charge; Il.fig. 4.13 electrosorption; II.3.12d, Il.fig. 3.77-81, Il.table 3.9 negative adsorption of ions; Il.fig. 3.40 point of zero charge; II.3.1 lOff, Il.fig. 3.36, Il.figs. 3.41-43, Il.figs. 3.77-80, Il.app. 3c, Il.fig. 5.37 relaxation of double layers; IV.fig. 4.9 sols;IV.2.16 site binding (adsorption); II. 1.47-48, II.3.6e, II.3.159, Il.fig. 3.63 SIMS = secondary ion mass spectroscopy single ionic activities; 1.5.1b (also see: activity coefficient) size distributions and averages; IV. 1.9, IV.2.2d, IV.2.45ff, IV.2.3f, IV.2.61ff, IV.app. 1, V.8.4, V.S.le, V.table 8.1, V.8.66 relative dispersity; IV.app. 1 self-sharpening; IV.2.17ff viscometric; IV.6.63 sky (blue colour); 1.3.34, 1.7.25 slip plane, slip process; 1.5.75, II.4.lb, Il.fig. 4.3 interpretation; II.4.4, V.2.5a sludges; 1.1.23 small-angle neutron scattering (SANS); 1.7.9b, IV.fig. 5.25, IV.fig. 5.31, IV.fig. 5.33, IV.fig. 5.36, V.5.3d, V.fig. 5.18, V.fig. 5.19 small-angle X-ray scattering (SAXS); 1.7.9a
80
SUBJECT INDEX
smectite, wetting; ILtable 1.3, II.3.165 smoke; 1.1.6 Smoluchowski eq. (electroviscous effect); [IV.6.9.15] Smoluchowski's theorem (electrokinetics); 11.4.21-22 Smoluchowski's theory (coagulation); IV.4.3a Snell'slaw; 1.7.11,1.7.72 soap bubbles; I.fig. 1.4, I.figs. 1.9-10 soap films; see films, liquid sodium dodecylsulphate; see surfactants, anionic sodium laurylsulphate = sodium dodecylsulphate soft depletion; V. 1.1 I h soils (permeation in); 1.1.2, 1.1.3, 1.1.22ff, 1.1.28 soil structure; IV.3.184 sol; L1.5(def.) ageing; 1.2.99, IV.fig. 2.8 colour; I.7.60ff, IV.2.39ff preparations; IV.2.4 sol-gel processing; IV.2.37 solar energy conversion; II.3.223 solid surfaces and interfaces, characterization; II. 1.2 solid-liquid; II.2.2, Il.figs. 2.4-7 thermodynamics; 1.2.24 (for adsorption, double layers etc. see there; also see, interfacial tension of solid surfaces) solubility, of colloids; IV.2.2e, IV.fig. 2.7 of gas in liquid; 1.2.20b of liquid in Hquid; 1.2.20c of monomers in microemulsions; V.5.2f of small drops and particles; 1.2.23c of solid in liquid; 1.2.20c of surfactants in microemlusions; V.chapter 5 solubilization; IV. 1.5, V.4.9b solubihty parameter (Hildebrand); 1.4.47 solutions, principles, (ideally) dilute; 1.2.17c, 1.2.20 non-ideal; 1.2.18 also see regular solutions solvation; 1.2.58, 1.4.42, 1.4.5c. 1.5.3
SUBJECT INDEX
^
solvent, quality of; 1.1.7, I.1.25ff, I.fig. 1.17,1.1.30,11.5.2, II.fig. 5.24 solvent structure; 1.5.3, 1.5.4 near surfaces; see distribution functions of liquids near surfaces (see; interactions, solvent structure-mediated) space charge (density); 1.5.9, II.fig. 3.70 speciation; I.5.2(def.) specific binding, specifically bound charge; 1.5.3; see further, double layer, Stern specific vs. generic (properties, phenomena); 1.5.67, II.3.6 specific adsorption; I.5.6d, I.5.104ff, II.3.6, Il.fig. 3.20b, II.c, II.3.6d, IL3.6e, IV.3.9i criteria for absence or presence; 1.5.102, II.3.108ff, II.3.132 first and second kind; II.3.64 site binding models; II.3.6e speckle pattern; IV.2.46 spectral density; 1.7.34 (intr.) spectroscopy, of adsorbed proteins; V.3.4a of surfaces; 1.7.11,1.table 7.4,11.2.7ff, Ill.table 3.5, III.3.7c also see, microscopies spectrum analyzer; 1.7.37 (intr.) spin- echo techni ques; 1.7.102 spin (electronic); 1.7.16, 1.7.13 spin labels; 1.7.13 spin-lattice relaxation; 1.7.96 spin (nuclear); 1.7.16,1.7.13 spinning drop; see inter facial tension, measurement spinodal; 1.2.68, II.5.12, Il.fig. 5.4 decomposition; IV.2.8, IV.figs. 2.3-4, IV.5.65ff, IV.fig. 5.41, IV.fig. 5.62 SPM = scanning probe microscopy spin quantum number; 1.7.16 spin-spin relaxation; 1.7.96 spontaneous; see process spontaneous curvature; III. 1.15, III.4.7 spreading; 1.1.8, III.3.2 rate of; III.3.12 spreading coefficient = spreading tension spreading parameter = spreading tension spreading tension; III.3.8, III.5.4, III.5.6, [111.5.1.1], III.5.15ff spring (and dashpot); IILfig.3.50, IV.6.20ff see further; (interfacial) rheology, Maxwell element and Kelvin (Voigt) element sputtering; II. 1.1 10
82
SUBJECT INDEX
square gradient (across interfaces); [III.2.5.28], [111.2.5.30], III.2.28ff, III.2.36, V.1.7, V.1.4e square gradient method (polymer adsorption); II.5.33ff, V.1.4e stability, stabilization, thermodynamics; 1.2.7,1.2.19 (see colloids, stability of, emulsions, stability; steric stabilization, state) stability ratio; IV.figs. 3.65-67, IV.fig. 3.71, IV.4.17, IV.fig. 4.14, IV.fig. 4.21 stagnant layer (electrokinetics); IL2.15, 11.4.1b, II.4.4, IL4.128ff, V.2.5a standard deviations; I.3.7a, I.6.19ff, [II. 1.5.11], IV.5.33 starch; 1.1.2 Stark effect (for spectral lines); 1.7.16 state (def.), metastable; 1.2.7 molecular; 1.2.3, 1.3.2 stable; 1.2.7 standard; 1.2.4 thermodynamic; 1.2.3 (also see: equation of, function of) state variables; 1.2.3 stationary state; 1.6.8, 1.6.13,1.6.15, II.4.2, II.4.6 statistical chain element; I.3.5f, II.5.5 statistical mechanics; see statistical thermodynamics statistical thermodynamics; I chapter 3 classical; 1.3.9 postulates; 1.3.2,1.3. I d (also see: adsorption isotherm, Fermi-Dirac, Maxwell-Boltzmann, interfacial tension: interpretation, self-consistent field theories and the various applications) Stefan-Ostwald rule (for surface tensions); [III.2.11.25] Stephan-Reynolds eq. (for film thinning); [V.6.4.2 and 3] STE]VI = scanning transmission electron microscopy step-weighted lattice walk; 1.6.28, II.5.5 steric stabilization; see colloid stability (by polymers) Stern layer; see double layer stiffness parameter = persistence parameter, see poljmiers in solution Stirling approximation; [1.3.6.5] STM = scanning tunnelling microscope Stober sols (silica); IV.2.63ff stochastic; see processes, forces Stockmayer-Fixman equation (vise); [V.2.4.11] Stokes' law; [1.6.4.30], 1.6.56, II.4.18, II.5.62, V.8.74ff Stokes limit (wave damping); Ill.fig. 3.44, III.3.117ff
SUBJECT INDEX
stopping mechanism (in micelle formation); V.4.8ff strain; III.3.6b, IV.6.2, IV.6.1 strain rate; 111.3.85ff strain tensor; [IV.6.1.4] strain energy release; IV.fig. 6.9 strain hardening; IV.6.12 strain (rate) thinning; IV.6.12 stratification (in films); see films, liquid streaming, or flow birefringence; 1.7.97,1.7.100 streaming current; I.6.16ff, Il.table 4.4, II.4.7, II.4.3d, Il.fig. 4.8, II.4.55 streaming potential; 1.6.16ff, Il.fig. 3.78, Il.table 4.4, II.4.7, II.4.3d, Il.fig. 4.8, II.4.5b, Il.fig. 4.30, Il.fig. 4.35, II.5.63 stress; IV.fig. 6.4 normal; 1.6.7, III.3.6b, IV.6.1, IV.fig. 6.1 shear; 1.6.7,1.6.1 Iff, I.6.4a, II1.3.6b, IV.fig. 6.1, V.8.2 stress overshoot; V.fig. 7.11 stress relaxation; IV.figs. 6.9-10, IV.6.6a modulus; IV.6.20-21 spectrum; IV.6.20-21 stress tensor; I.6.6ff, [111.3.6.1-2], [IV.6.1.1] also see: interfacial rheology stretching of solid surfaces; 1.2.103 structural forces; 1.4.2, II. 1.95 structure breaking; 1.5.38, 1.5.3d structure factor; 1.3.67, 1.7.64, Lapp, l i e , IV.3.143, IV.5.3, IV.5.21, IV.figs. 5.5-5.6, IV.figs 5.16-18, IV.figs. 5.21-23, IV.5.49, [IV.5.6.8], IV.fig. 5.30, IV.figs. 5.33-36, V.2.26, structure of colloids; IV.chapter 5 rheology; IV.5.1, IV.6.8-10 structure of water; see water, structure structure promotion; 1.5.38,1.5.3d substantial derivative; 1.6.5 subsystems (statistical thermodjmamics); 1.3.5, 1.3.6 dependent; 1.3.5, 1.3.20,1.3.8 independent; 1.3.5, 1.3.20, 1.3.6 sulphur sol (preparation); IV.2.4b sum frequency generation; III.3.7c.v superadditivity (in coagulation); IV.3.9k supercooling; 1.2.23d supermolecular fluids; 1.7.63 supersaturation; 1.2.23d, IV.2.9ff, V.7.8
83
84
SUBJECT INDEX
supersaturation ratio; [IV.2.2.14], IV.2.15 surface; I.1.3(intr.), acidity/basicity (dry surfaces); II. 1.18 characterization in general; II. 1.2, II.table 1.1, 11.2.2a external vs. internal; II. 1.6a heterogeneity; 1.1.18{intr.), 1.5.106, II.1.5, II.1.7, II.2.29, II.3.83 patchwise vs. random; Il.l.lOSff 'high' vs. 'low' energy; 11.1.35 hydrophilicity/hydrophobicity; II. 1.19, II. 1.35, 11.2.7, II.2.87, II.3.130 imaging techniques; 1.7.1 l b modulus; see interfacial rheology porosity; see porosity of surfaces reconstruction; II. 1.8 scattering by; 1.7.10c spectroscopic characterization; 1.7.11, II.l.Qff, II.figs. 1.1-6 (also see: interface, especially for 'wet' surfaces, equations of state) surface (or interfacial) area, (molecular, in monolayers), 111.3.15, III.3.24, see further the TztA) isotherms in Ill.chapter 3, Ill.fig. 3.16, Ill.fig. 3.82, III.3.84, V.5.3h(ii), V.fig. 5.24 specific; I.1.18(def.), 1.1.20, I.6.4f, Il.l.Sf, II.2.67, II.2.73, II.3.7e, II.3.127, II.3.131ff, IV.fig. 2.8, IV.fig. 2.10, IV.2.33ff, IV.2.3c surface charge (density); 1.1.20, 1.5.3, 1.5.9, 1.5.6, II.3.3, II.3.21, Il.fig. 3.18, Il.fig. 3.28, Il.fig. 3.41, Il.fig. 3.52, Il.figs. 3.56-59, Il.figs. 3.63-65, Il.figs. 3.69-70, Il.fig. 3.77, Il.fig. 3,.80, Il.fig. 3.82-83, IV.fig. 3.75 determination; I.5.6e, II.3.7a dipolar contribution; II.3.126 discrete nature; II.3.46, II.3.6e for clay mineral-type particles; II.3.10d for polarized interfaces; 1.5.6c, II.3.10b, II.3.163 for relaxed (reversible) interfaces; 1.5.6a, II.3.10a, II.3,10c, II.3.163 formation thermodynamics; II.3.1 lOff Gouy-Stern layer; Il.figs. 3.23-25 relation to D and E; I.4.53ff site-binding models; II.3.6e (from) statistical theories; Il.fig. 3.18 (see double layer, diffuse, charge) surface concentration; see interfacial concentration surface conduction and conductivity; 1.5.4, I.6.6d, II.3.208, II.4.1, II.4.28, II.4.3f, Il.fig. 4.9, II.4.91, Il.table 4.3 behind slip plane; II.4.32ff, IL4.37ff, II.4.67, II.4.94, II.4.6f, Il.table 4.3
SUBJECT INDEX
surface conduction and conductivity (continued), in diffuse double layer; II.4.32ff, Il.fig. 4.10 Bikerman equations; [II.4.3.59]ff influence on ^-potential; IL4.6e, ILfigs. 4.29-31, II.4.6f, Il.table 4.3 measurements; II.4.5c surface correlation length; II.2.10 surface diffusion (coefficient); I.6.69ff, IL2.14, II.2.29 surface excess; see interfacial excess surface energy; see energy surface enhanced Raman spectroscopy; III.3.7c.ii surface equation of state; see : equation of state, two-dimensional surface force apparatus; 1.4.8, IV.3.12b surface forces versus body forces; I.l.Sff, 1.4.2 surface ions; 1.5.89 surface modification; II.l.llO, II.2.88, II.5.97, IV.2.2i surface porosity; see pores (in surfaces), porosity of surfaces surface potential; 1.5.5 ('surface potentials' of monolayers = Volta potentials; see under potentials) surface pressure; I.1.16(def.), 1.3.17,1.3.32ff, I.3.47ff, I.3.51ff, 11.1.3,11.1.3b, II. 1.28,11.1.51, Il.fig. 1.15, Il.L59ff, ll.app. 1, II.3.14, II.3.140, m.chapters 3 , 4, V.fig. 8.2, V.8.8ff (also see: equation of state, two-dimensional; for measurement, see film balance) surface pressure isotherms; III.chapter 3 surface rheology; see interfaciad rheology Marangoni effect; I.1.2(intr.), 1.1.17, 1.6.43ff surface roughness, and Van der Waals forces; 1.4.68 in colloid interaction; IV.3.82ff in electrokinetics; II.4.39 in optics; 1.7.10 surface states (semiconductors); II.3.172ff, II.3.176 surface tension; see interfacial tension surface of tension; 1.2.93, V.6.5 surface undulations; 1.7.77, 1.7.10c surface wave; 1.7.75 surface work; see interfacial work surfactants; I.1.4(def.), I.1.6(intr.), I.1.23ff. ll.figs. 1.1.15-16, III.4.6a. Ill.table 4.4 anionic; I.I.23ff, I.fig. 1.15, III.4.6d adsorption of; Il.fig. 3.Id, also see monolayers
85
86
SUBJECT INDEX
surfactants, anionic (continued), in films; V. figs. 6.23-24, V.fig. 6.28, V.fig. 6.32, V.fig. 6.34, V.6.64ff, V.fig. 6.36, V.fig. 6.44 in microemulsions; V.5.60 monolayers; Ill.fig. 1.30, III.4.6d, Ill.fig. 4.36 association behaviour etc.; see V.chapter 4 bending moduli of monolayers; III.tables 1.6 and 7 cationic; 1.1.23, IIL4.6d adsorption, see monolayers interfacial tension (dynamic and rheological); 111.figs. 3.43-44, Ill.fig. 4.17 monolayers; 111.4.6d, Ill.fig. 4.35, lll.table 4.6. Ill.fig. 4.38 coalescence; V.8.83ff emulsifiers; V.S.lb, V.8.2c, V.fig. 8.13, V.8.15 interfacial tension (dynamic and rheological); Ill.fig. 1.31, III.4.6 monolayers; Ill.fig. 3.65, III.4.6 non-ionic; 1.1.23 adsorption of; see poly(styrene) latex, silica, and monolayers cloud point; Ill.fig. 4.29 in emulsions; V.fig. 8.13, V.fig. 8.14, V.8.49ff in films; V.fig. 6.26, V.6.66ff, V.fig. 6.40 in microemulsions; V.chapter 5 interfacial and surface tension (static, dynamic and rheological); Ill.fig. 1.31, lll.table 4.5 monolayers; III.4.6c, lll.figs. 4.30-34 packing parameter; V.4.1d, [V.4.1.4] surroundings (in thermodynamic sense); 1.2.2, 1.3.2 susceptibility (electric); 1.4.52 (intr.) suspension; 1.1.2, 1.1.22, I.fig. 1.14 ageing; 1.2.99 suspension effect; I.5.5f, I.fig. 5.15, II.3.105 Svedberg equation (sedimentation); [IV.2.3.23] swelling; V.2.23, V.2.39, V.2.3d, V.4.115ff swollen dilute (polymer solution); II.5.9, II.fig. 5.3 synergism (in coagulation); IV.3.9k system, (in statistical sense); 1.3.1a (in thermodynamic sense); 1.2.2 Szyzskowski isotherm; [III.4.3.14] factoids; II. 1.80 tails; see adsorption of polymers t-plot; see adsorption
SUBJECT INDEX
tangential stress = shear stress; see stress Tate's law; [III. 1.6.1] Taylor number; 1.6.36 Taylor vortices; fig 1.6.8 Teflon, wetting; Il.table 1.3 tensiometers; III. 1.8 tensors; Lapp. 7f TEM = transmission electron microscopy ternary phase diagrams; V.chapter 5 tertiary oil recovery; see enhanced oil recovery tertiary structure (proteins); V.3.3ff tethered chains; V.1.11 thermal diffusion; 1.6.12, 1.7.44, 1.7.48 thermal neutrons; 1.7.25 thermal wavelength; [1.3.5.14] thermodynamic state; 1.2.3 thermodynamics (general); I.chapter 2 First Law; 1.2.4, 1.4.3 irreversible; 1.6.2, I.6.5a, I.6.6a, 1.6.7 Second Law; 1.2.8 'Third Law'; 1.2.24 (also see: statistical thermodynamics) thermodynamics of small systems; V.4.2a theta(6)) solvent; 1.6.28 thickness of adsorbed layers; see adsorbate thin liquid films; see films thixotropy, thixotropic; 1.1.23, 111.3.87, IV. 1.3, IV.6.14, IV.fig. 6.7 tilt angle; Ill.fig. 3.60 tilted plate; lIL5.4d, Ill.fig. 5.24 time correlation functions; see correlation functions TIRF = total internal reflection fluorescence TIRM = total internal reflection microscopy titanium dioxide; Il.table 1.3, Il.table 3.6, IV.3.13a anatase, double layer; 11.3.94 point of zero charge: Il.table 3.5, Il.app. 3b rutile, adsorption of anionic surfactants; II.figs. 3.82-83 adsorption of water vapour; II.fig. 1.9 double layer: II.figs. 3.58-60, II.fig. 3.63, Il.table 3.8. Il.figs. 3.82-83 electrokinetic charge: II.fig. 4.13
87
SUBJECT INDEX
titanium dioxide, rutile (continued), mobility; IV.figs. 3.62-64 point of zero charge; Il.table 3.5, Il.fig. 3.37, II.fig. 3.82, Il.app. 3b stability ratios; IV.figs. 3.65-67 ^'-potential; Il.fig. 3.63 topology (vesicle formation); V.4.7ci torque; lV.6.7b total internal reflection fluorescence (TIRF); II.2.54, III.3.7c.iv total internal reflection microscopy (TIRM); IV.3.157 total reflection; 1.7.74, II.2.51, II.2.54 trains; see adsorption of polymers trajectories (of particles); IV.fig. 4.2, IV.fig. 4.20, V.fig. 8.7 transfer in galvanic cefls; I.5.5e transfer, of molecules; 1.2.18a (ions to other phases); I.5.3f, 1.5.5 (molecules to other phases); 1.2.20, 1.4.47, 1.6.44 (also see: transport, II.viscous flow) transference numbers; see transport numbers transmission angle; 1.7.72 transmission coefficient; 1.7.73, II.2.50 transmission electron microscopy (TEM); 1.7.11b, Il.fig. 1.1, V.5.3b cryo-direct imaging; V.5.3b freeze fracture direct imaging; V.5.3b, V.figs. 5.15-17 transport processes; I.chapter 6 (also see: hydrodynamics, diffusion, conduction) transport, linear laws; 1.6.Ic, I.table 6.1 of charge; I.table 6.1 in double layers; IV.4.4a of heat; I.table6.1 of mass; 1.6.1a, Liable 6.1 through interfaces; 1.6.44 of momentum; 1.6. l b , Liable 6.1, L6.4a transport numbers; I.6.76ff, [1.6.6.14](def), V.2.5b, V.fig. 2.30 transverse waves; III.3.110, Ill.fig. 3.43, see further: interfacial rheology trapping (optical); IV.3.157 Traube's rule; 1.4.51 triboelectricity; II.3.187 Trouton number; V.8.37 Trouton ratio: IV.6.10
SUBJECT INDEX
Trouton's rule; III.2.54 (also for surfaces) tunnelling (of electrons); 1.7.90 turbidity; 1.7.41. 1.7.47, V.fig. 8.6 turbulence; I.6.4b, V.8.40ff Tyndall effect; 1.7.26, II.4.45, IV. 1.3 Ubbelohde viscometer; IV.fig. 6.18 ultracentrifuge; IV. 1.13 ultracentrifugation, see sedimentation; IV.2.3d ultramicroscope; 1.7.26, II.fig. 4.14 ultrasonic emulsification; V.8.33 ultrasonic vibration potentiail; II.4.7, II.4.3e UltraTurrax; V.fig. 8.17 uncertainty principle (Heisenberg); 1.3.4, 1.3.58 undulations (of fluid interfaces); III. 1.78 undulation forces (membranes, etc.); V.4.8 uniaxiality; 1.7.97 UPES = UPS = ultraviolet photo-electron spectroscopy; 1.7.11a UVP = ultrasonic vibration potential vacancy (in semiconductor); II.3.171 valence band (solids); Il.fig. 3.68, II.3.173 Van der Waals interactions; I.chapter 4, IV.3.8a between molecules (general); I.4.I0ff, 1.4.4 additivity;I.4.18ff London (or dispersion); 1.4.17, I.4.4d, I.table 4.3, I.4.4e, 1.4.5, 1.4.6, 1.4.7 Debye; 1.4.17, I.4.4c, I.table 4.3, 1.4.41 Keesom; 1.4.17, I.4.4c, I.table 4.3, 1.4.41 retardation; 1.4.17, 1.4.31, I.4.78ff between colloids and macrobodies; 1.4.6, IV.3.9 Hamaker-De Boer; 1.4.6 Lifshits; 1.4.7 measurement (direct); 1.4.8, I.fig. 4.19 macroscopic; see Lifshits microscopic; see Hamaker-De Boer repulsive; 1.4.72, 1.4.78 retardation; 1.4.6c in thin films; II. 1.101 Van der Waals equation of state; [1.2.18.26], [1.3.9.28], [1.4.4.1], III.2.17, [III.2.9.3] (reduced), rv.5.7a Van der Waals loops; 1.3.47, 1.4.17, Il.fig. 1.20, II. 1.101, Il.fig. 1.42, IV.5.7a, IV.fig. 5.37
89
90
SUBJECT INDEX
Van der Waals' theory (interfacial tensions); III.2.5, III.2.3.1 (generalized ) Van 't Hoffs law, for boiling point elevation; 1.2.74 for freezing point depression; 1.2.74 for osmotic pressure; I.2.20d, 1.7.50 vapour pressure, lowering; 1.2.74 of small drops; 1.2.23c variance; 1.3.35 vector, vector field etc.; Lapp. 7 velocity correlation function; Lapp. 11a, IL2.14 velocity distribution; 1.6.2Iff, L6.3c, Lflg. 6.4 velocity persistence length; IV.4.5 vermiculite, wetting; 11.table 1.3 vertical plate, wetting of; III. 1.3b end effect correction; III. 1.22 vibration; 1.3.5a, 1.4.44 vibrational spectroscopy; III.table 3.5 vlrial coefficients; 1.2.18d, L3.8f, I.3.9c second; L2.18d, L3.8f, L3.9b, [L3.9.121, [1.4.2.8-111, 1.7.51,1.7.57, IV.table 5.1, IV.fig. 5.24, [IV.5.6.21, IV.fig. 5.29, IV.fig. 5.55 two-dimensional; [11.1.5.241, II. 1.60 virial expansions; L2.18d, I.3.9b, I.3.9c, L5.27ff, 1.7.51, [11.1.5.301, IV.5.2e viscoelasticity; L2.7(intr.), III.3.88, IV.chapter 6, IV.6.1, IV.6.11, IV.6.14, IV.fig. 6.10, IV.fig. 6.12, IV.6.6, IV.fig. 6.15 viscoelectric coefficient; II.4.40 viscoelectric effect; 11.4.40 viscometers, capillary; IV.6.7a Couette; IV.6.7b Ostwald; IV.fig. 6.18 rotation(al); I.6.36ff, IV.6.7b Searly; lV.6.7b Ubbelohde; IV.fig. 6.18 viscosity; 1.5.43, I.6.10ff, IV.6.1, IV.6.2 apparent; IV.6.11 definitions; IV.table 6.3 dispersity effect; IV.fig. 6.27 dynamic vs. kinematic; 1.6.11 Einstein; IV.B.Qa extensions; IV.table 6.3. IV.table 6.4
SUBJECT INDEX
viscosity (continued), (in) electrokinetics; II.4.4 elongational; IV.6.9 emulsions; V.8.15ff, V.fig. 8.5 examples: I.table 6.3, I.6.4g, IV.figs. 6.28-29, IV.figs. 6.31-32, IV.figs. 6.34-35, IV.fig. 6.38, V.2.4 intrinsic; IV.6.47, IV.fig. 6.24, V.2.4c Newton, definition; IV.table 6.4 polyelectrolytes; V.2.4 polymer solutions; IV.6.11, 6.12 shear vs. elongational; 1.6.8 viscosity-averaged molecular mass; IV.6.63 viscous flow; L6.1,1.6.4, IV.6.1, IV.6.2, IV.fig. 6.5, IV.6.8-13 around spheres; I.6.4e, II.4.6, II.4.8 between parallel plates; I.6.40ff, IV.fig. 6.3 dilational vs. rotational; I.fig. 6.7 due to Marangoni effects; 1.1.17, 1.6.44 due to temperature gradients; 1.6.4c fluid-fluid interfaces; I.6.42ff in cylindrical tube; 1.6.4Iff in porous media; I.6.4f laminar linear; I.6.4a, I.6.4d turbulent; I.6.4b Volta potential; see potential Volmer adsorption isotherm; see adsorption isotherm volumes, of ions (partial); I.table 5.7 Vonnegut equation (for spinning drops); [III. 1.9.6] vortices; 1.6.4b Vroman effect (protein ads.); V.3.52 Warburg coefficient; 11.3.96 Ward-Tordai equation; [1.6.5.36], [II.1.1.15] Washburn equation; [III.5.4.4] III.5.57ff, III.5.84ff waste water treatment; IV.3.184 water, interactions in; I.4.5d, I.4.5e structure; 1.5.3c, 1.5.4, II.2.16 near surfaces; II.2.2c, II.figs. 2.6-7, II.3.122ff, Il.flg. 3.39, II.4.38ff water-air interface, double layer; 11.3.lOf, II.fig. 3.78, III.4.4, III.fig. 4.20 reflectivity; III.fig. 3.57
91
92
SUBJECT INDEX
water-air interface (continued), surface relaxation; III.fig. 1.29 surface tension; III.1.12, III.table 1.2 influence of electrolytes; II.3.180, Il.fig. 3.73 influence of temperature; IIL1.12b, Ill.table 1.3, III.table 1.4, Ill.fig. 1.27 simulation; Ill.table 2.2, III.figs. 2.12-13 waterglass; IV.2.2 wave damping; see interfacial rheology waves, electromagnetic; I.chapter 7 evanescent; 1.7.75 in a vacuum; 1.7.1 plane; 1.7. l a films; V.8.87 polarization; 1.7. l a spherical; 1.7. l b surface; see surface wave (also see: electromagnetic radiation) wave vector; I.7.4(def.) wave vector transfer = wave vector Weber number; [V.8.2.3], V.fig. 8.12, V.fig. 8.15, [V.8.3.25], V.table 8.4, V.8.89 Wenzel equation; [III.5.5.1] wet foam; V.7.2, V.fig. 7.12 wetting (general); III.chapter 5 wetting; 1.1.2, 1.1.8, 1.1.3, I.fig. 1.13, Il.table 1.3, lll.fig. 5.7 adhesional; 11.2.5, 111.5.2 and gas adsorption; II. 1.19, III.5.3, Ill.fig. 5.16 and Van der Waals forces; 1.4.72 complete; III. 1.5, 1II.5.1, III.5.4 dynamics; III.5.8 enthalpy or heat; [II. 1.3.43], Ill.table 1.3, Il.fig. 1.10b, II.2.6, II.2.3d, Il.fig. 2.10, Il.fig. 2.20, I1I.5.2, III.5.20 entropy; II.2.7 immersional; II.2.5, Il.fig. 2.10, III.5.2 liquids by liquids; III.5.3 microemulsions; V.5.4c molecular d3mamics; Ill.fig. 5.36 (and) nucleation; IV.fig. 2.9, IV.2.2f partial; III. 1.5, III.5.1, Ill.fig. 5.1, Ill.fig. 5.13, porosity; III.5.9 scales; III.5.5 selective; II.2.88
SUBJECT INDEX
93
wetting (continued), silica by water; III.5.3c surfactant influence; III.5.10 thermodynamics; III.5.2 wetting agents; III.5.86, III.5.10 wetting films; III.5.3 wetting transition; II.1.101, II.fig. 1.41, III.5.14, III.5.30, Ill.fig. 5.14, V.5.60, V.fig. 5.30 Wiegner effect; see suspension effect Wien effect (in electrolytic conductance); 1.6.6c Wilson chamber; 1.2.100 wine tears; 1.1.1, 1.1.2,1.1.17 wolfram surface, covered with palladium; II.fig. 1.2 work; 1.2.4 of adhesion; III.2.34, 111.2.7 Iff isothermal reversible; 1.2.27 statistical interpretation; 1.3.15, [1.3.3.11] (also see: interfacial work, transfer, potentials) work function; 1.5.75, II.3.114, II.3.174 work hardening or softening; 111.3.88 worm-like chain; V.2.27 Wulff relations; IV.2.23 XAFS = X-ray absorption and fluorescence spectroscopy; 1.7.11a XPS = XPES = X-ray photoelectron spectroscopy; I.7.11a, I.table 7.4, II.1.15, Il.fig. 1.5 X-ray reflection and diffraction; III.2.47, Ill.table 3.5, III.3.7b, IV.2.40 X-ray scattering; I.fig. 5.6, 1.7.9a of films; V.6.9 yield stress; see rheology (of) emulsions; V.8.17 young foam; V.72 Young and Laplace's law; see capillary pressure Young's law for capillary pressure; see capillary pressure, Young and Laplace Young's law for contact angle; [III. 1.1.7], 111.5.1b, [III.5.1.2], III.5.2 Yukawa pair interaction; IV.5.6a, IV.fig. 5.30 Z-average; 1.7.63 Zeeman effect (for spectral lines); 1.7.16 zeolithe; see molecular sieve zero point of charge; see point of zero charge zero point vibrations; 1.3.22, 1.4.29 Zimm plot; I.7.57ff, I.fig. 7.12, I.fig. 7.16 zinc oxide. SEIVI; Il.fig. 1.1
94
SUBJECT INDEX
Zisman plot; III.fig. 5.42 zone electrophoresis; 11.4.131 zwitterionic surfaces; II.3.74 a -helix; V.chapter 3 P -sheet; V.chapter 3 ;^-parameter (polymers etc.); see Flory-Huggins interaction parameter 2^-parameter (polymer ads.); [II.5.4.1], 11.chapter 5 Z^^^; II.5.40, Il.fig. 5.22 ^-potential; see potential f-potential; see electrokinetic potential 0-point, 0-temperature; IL5.6ff, II.5.2b