CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 a-glucosidase 39: 56 a-Keto acid dehydrogenase 42: 135 a-Ketoaldehyde dehydrogenase 37: 197 a-Keto-b-methylvalerate 42: 135 a-Ketoglutarate dehydrogenase 31: 87 a-Mannan, a-Mannosidase 33: 57 a-Mannosidase, amphotericin resistance 27: 297, 298 a-mating-type gene 34: 158 a-mycolic acids 39: 160 a-N-acetyltrialanine 36: 16, 30 a-N-acetyltrilysine 36: 16 a-agglutinin 34: 90, 91 a-cells of Sacch. cerevisiae, sex hormones and 34: 87 – 96 passim a-factor, Sacch. cerevisiae 34: 87 – 96 a-factorase, Sacch. cerevisiae 34: 95 amino-acid sequence 34: 87 receptor 34: 90 signal transduction and 34: 132 passim 34: 102, 132 a -Tocopherol 46: 323 (+)-Torreyol, hydrophobicity of, fruiting and the 34: 151 a-(1– 3)-Mannosyltransferase, absence from mnn1 mutants 33: 114 compartmentalization in Golgi complex 33: 114 model for 33: 116, 117 a-1,4-Glucans 30: 184, 185, 189 enzymes hydrolyzing 30: 220 formation from sucrose and maltose 30: 189 a2 hormone of P. sylvaticum 34: 81 (b-chloro-a-aminoethyl)phosphonic acid 36: 58 (p-Aminophenyl) dichloroarsine 29: 207 3,30 ,40 ,5-tetrachlorosalicylanilide (TCS) 39: 209 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidine carboxylic acid 37: 293, 294 2,3,6,60 -tetraacyl a, a0 -trehalose-20 -sulfate 39: 151 4,5,6,7-Tetra-chloro-2trifluoromethylbenzimidazole (TTFB) 43: 197 20 ,70 -bis-(carboxymethyl)-5 carboxylfluorescein (BCECF) 40: 406
2,4...–Dichlorophenoxy acetic acid (2,4-D) 41: 23 2-6-Dichlorophenolindophenol [DCPIP] electron acceptor, cyanogenesis 27: 77 4 – [N-(2– mercaptoethyl]-aminopyridine2,6-dicarboxylic acid 36: 59 3-0-Methylglucose 33: 250 A mating-type gene 34: 158 dikaryon formation and the 34: 163–165 of U. maydis 34: 160, 161 Aa mating-type gene of S. commune 34: 159, 160 A. nidulans 43: 50, 53 A1 mutants in Physarum polycephalum 35: 34, 35 AAC motif, ECF sigma factors 46: 53, 80, 99 abaA A. nidulans gene, in conidiogenesis 38: 27 Abaecin 37: 138, 148, 149 ABC (ATP binding cassette) drug transporters 46: 20, 155, 166, 167– 174 ALDP subfamily 46: 171 efflux pumps 46: 181, 229, 230 see also CDR1 gene as drug transporters 46: 182– 184 as human steroid transporter 46: 184, 185 as phospholipid translocator 46: 185– 187 CDR1 46: 172, 173 ferric iron proteins 46: 293 functions 46: 181, 182 gene overexpression 46: 166, 167 mechanism of action 46: 167, 229, 230 MRP/CFTR subfamily 46: 171, 172 nucleotide-binding domains 46: 167 PDR subfamily 46: 171 proteins 36: 66 – 68 RL1 subfamily 46: 171 sequence homologies 46: 171 structure 46: 167, 171 substrate specificity 46: 181 transmembrane stretches (TMS) 46: 167, 183 transporters in specific fungi 46: 168– 170, 171
12
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Walker A and B motifs 46: 167 YEF3 subfamily 46: 171 see ATP-binding cassette (ABC) superfamily Abh, B. subtilis s w affecting 46: 77 – 79 ABH1 hydrophobin 38: 4– 6 in fruit bodies 38: 26, 27 Abietinella abietina 35: 255 AbrB protein and sporulation in Bacillus subtilis 35: 127, 128 Abscisic acid 37: 99 Absidia cylindrospora 30: 168 Absidia spinosa 40: 286, 292, 300, 309, 311– 313 Absorption spectra, hydrogenase from R. japonicum bacteroids 29: 14, 15 R. japonicum bacteroid membranes, cytochrome reduction 29: 33 R. japonicum hydrogenase-derepressed membranes, free-living 29: 29 Ac-AMP, peptide 37: 138, 151 Acanthamoeba castellanii 39: 299, 311– 313, 312 Acaulopage pectospora, 36: 122 ACC, see Aminocyclopropane Accessory colonization factor 37: 245 ACDQ (6-amino-7-chloro5,8 –dioxoquinoline) 36: 84 Acetabularia, ionic currents in 30: 93, 110, 111, 115 growth without ionic currents 30: 111, 115 inward, at rhizoid 30: 110 Acetabularia mediterranea 39: 298, 303, 304 Acetaldehyde 37: 194, 198; 41: 5, 11, 22, 23, 39 Acetaldehyde dehydrogenase 39: 95 Acetamidase 26: 75, 78 Acetate 37: 261, 305 adaptation to 45: 331 consumed during sporulation 43: 100 excretion 45: 286– 295, 321, 323, 325, 326 flux analysis of growth on 45: 297, 298 growth on 31: 242, 243, 251 in pulses – chase experiments of lipoteichoic acid synthesis 29: 252, 253 in sulphur reduction 31: 251, 252 M. leprae not able to metabolize 31: 88, 112 Nitrosococcus mobilis growth inhibition 30: 135 phenotype 45: 326– 331 production 33: 189, 194
production by Halobacterium saccharovorum 29: 177 role in E. coli O157:H7 adaptation to acid 46: 19 sites for intervention to diminish flux to 45: 287 Acetate kinase (AK) 39: 75, 77, 80, 101 Acetate/sulphate, growth on 31: 251 Acetazolamide, evidence for external carbonic anhydrase 29: 128 Acetic acid bacteria 36: 247– 297; 40: 39 alcohol- and sugar-oxidizing systems 36: 248– 263 in ethanol-oxidizing systems 36: 255– 258 in glucose-oxidizing systems 36: 258– 260, 259 in other sugar-oxidizing systems 36: 262, 263 in sorbitol-oxidizing systems 36: 261, 262, 261 functional aspects of alcohol- and sugar-oxidizing periplasmic oxidase systems 36: 294, 295 relation between oxidation reactions and energetics 36: 296, 297 respiratory chains 36: 294– 297 localization of 36: 253– 255, 253 membrane-bound dehydrogenases purified from 36: 250, 251 NAD(P)+-dependent and independent enzymes in 36: 249 primary dehydrogenases reconstitution of alchohol- and sugar-oxizing respiratory of G. suboxydans 36: 292– 294 chains 36: 286– 294 cyanide-insensitive respiratory chains 36: 291– 294 cyanide-sensitive respiratory chains 36: 286– 291 electron transfer through ubiquinone 36: 291, 292 ethanol oxidase respiratory chains 36: 289– 291 glucose oxidase respiratory chain of G. suboxydans, 36: 287–289 respiratory chains 36: 271–286 in Acetobacter aceti 36: 274, 280– 285 in Acetobacter methanolicus 36: 285, 286 in Gluconobacter suboxydans 36: 272– 280, 274 roles of alcohol and glucose dehydrogenases 40: 50, 51
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 terminal oxidases 36: 263– 271, 264, 265, 269 cytochrome d, 36: 271 cytochromes c in 36: 275 cytochromes o, 36: 265– 267 homology between cytochrome a1 and cytochrome o 36: 268– 271 Acetic acid, as antimicrobial agent 32: 94 carcass meat treatment with 32: 100 effect on DNA 32: 97, 98 egg washing 32: 103 food preservation 32: 103 in poultry processing 32: 102 utilization 32: 93 Acetivibrio cellulolyticus 37: 51, 52 Acetoacetate decarboxylase (AAD) 39: 79 Acetoacetate pathway and hopanoids 35: 260– 262, 264 Acetoacetyl-CoA 39: 77, 79, 82, 86, 88, 99 Acetoacetyl-CoA synthase 43: 140 Acetoacetylglutathione 37: 193 Acetobacter 35: 252, 258, 259; 37: 6, 7; 40: 9, 13, 19, 39, 50 Acetobacter aceti 35: 251; 39: 207, 222 ALDH in 36: 258 cytochrome a1 in 36: 267, 268 cytochrome o in 36: 265– 267 ethanol oxidase respiratory chain 36: 291 polypeptide structure 36: 257 quinoprotein ADHs in 36: 255 respiratory chain in 36: 274, 280– 285 cytochrome exchange in 36: 282, 283 grown in shaking culture 36: 280, 281 instability of ethanol-oxidizing system 36: 283–285 Acetobacter diazotrophicus 43: 196; 40: 50 Acetobacter mesoxydans, cytochrome a1 in 36: 267 Acetobacter methanolicus 40: 10, 16, 38 ADH from 36: 291 cytochrome o in 36: 265, 266 respiratory chain in 36: 285, 286 Acetobacter oxydans, cytochrome a1 in 36: 267 Acetobacter pasteurianum see Acetobacter pasteurianus Acetobacter pasteurianus 35: 251; 40: 15; 36: 263 cytocbrome d in 36: 271 cytochrome o in 36: 267 ethanol oxidation in 36: 284 Acetobacter peroxydans, cytochrome d in 36: 271 Acetobacter polyoxogenes 40: 14, 15; 36: 256– 258 Acetobacter rancens, 36: 258
13
Acetobacter spp. 36: 248 cytochrome a1 36: 267, 282, 283 cytochrome d 36: 271 cytochromes o in 36: 265– 267, 282, 283 NAD(P)+-dependent and -independent enzymes in 36: 252 Acetobacter suboxydans see Gluconobacter suboxydans Acetobacter xylinum 35: 167, 198, 214, 215, 227, 250; 37: 4, 13; 36: 282, 285 Acetobacterium woodii 39: 210 Acetogenium kivui 37: 37 S-layer glycoprotein, gene 33: 246 Acetohydroxy acid synthase (AHS) 42: 185, 187 Acetoin 41: 5 Acetol 37: 187, 188, 195, 198– 200 Acetol dehydrogenase 37: 180, 184 Acetone 37: 184 Acetone monooxygenase 37: 180 Acetone production, Clostridium 28: 36 Acetone, extraction of lipid 29: 21 Acetone-butanol (AB) fermentation 39: 33, 77 – 101, 78 Acetosyringone 37: 245 Acetyl phosphate 26: 129, 136; 31: 246 Acetyl-20 -deoxyguanosine 37: 189, 190 Acetyladenylate, in intracellular signalling 33: 317 Acetylase 37: 96 Acetylation in histone modification 35: 45, 46 Acetylation, in propolin to pilin conversion 29: 69, 92 Acetylcholine 37: 99 Acetyl CoA 42: 137
AcetylCoA 45: 206, 288, 290, 295, 299, 325, 326, 328, 332 Acetyl-CoA 43: 140, 141; 39: 37, 75 – 79, 82, 85, 86, 88, 101 affinity of citrate synthase for, ATP sensitivity 29: 210, 211 carboxylase, in M. leprae 31: 91 conversion into acetate in T. acidophilum 29: 180 formation from pyruvate 29: 175 evolution of reaction 29: 193 in archaebacteria 29: 186 oxidation in citric acid cycle 29: 175, 176 synthesis in methanogenic archaebacteria 29: 184 source in M. leprae 31: 91, 92 synthase 43: 96 synthetase, ADP-forming 29: 180 AMP-utilizing 29: 181
14
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Acetyl-CoA-dependent fatty-acyl-CoA elongase 31: 83, 91, 110 Acetyl-coenzyme A 37: 182, 183 Acetyldiaminobutyrate 37: 293 Acetylene reduction 29: 12 Acetylene test, non-Mo-nitrogenase 30: 9, 19 Acetylene, ammonia oxidation inhibition 30: 130, 168, 170 Acetylglucosamine 37: 33 Acetyl-glutaminyglutamine amide 37: 288, 289, 290 Acetylglutaminylglutamine amide 37: 293, 296 Acetyliaminobutyrate 37: 296 Acetyllysine 37: 288, 289, 293 Acetylornithine 37: 288, 289, 292, 293 Acetylserine b-cyanoalanine formation Chromobacterium 27: 82 effect on spectrum, various bacteria 27: 83 primary metabolic pathway 27: 85 Aceyl-HSL 45: 206 Achlya bisexualis 30: 96 –99, 113, 116 Achlya, ionic currents in 30: 93, 96 – 100 amino acid-proton symport model 30: 95, 98, 117 antheridial branches and 30: 100 applied voltage and ion gradients 30: 113, 116 differentiation and 30: 99, 100 growth and 30: 93, 96 – 99, 115 inward and outward 30: 96, 97 inward, branching stimulation 30: 97 – 99 nutrient uptake and 30: 99, 118 plasma-membrane proton ATPase 30: 98, 99 protons in 30: 97 – 99 sexual differentiation 30: 100 Acholeplasma laidlawii, plasma membrane, modification 27: 21 Achromobacter, modified EntnerDoudoroff pathway in 29: 179 Achyla spp. ambisexualis 34: 75, 76, 78 heterosexualis 34: 75, 79 sex hormones in 34: 74 – 80 Acid crash, non-culturable cells 47: 88 Acid mucopolysaccharides, as nutrients for M. leprae 31: 106, 107 Acid phosphatase 31: 96, 108 Acid production 39: 82 – 86 Acid proteinase, secreted by C. albicans 30: 73 Acid rain 30: 127, 155
Acid resistance 37: 251, 255, 256, 258, 259 Escherichia coli O157:H7 46: 18 – 20 Helicobacter pylori 46: 19 – 21 Acid secretion 42: 67, 68 Acid sensitivity, membrane role in 42: 261, 262 Acid shock proteins (ASP) 37: 254, 255 Acid stress 44: 242 Acid tolerance induced by weak acids 44: 231 responses affecting 44: 226–232 Acid tolerance response 37: 251, 256– 259 Acidaminococcus fermentans, AP1A hydrolases in 36: 92, 93 Acidianus ambivalens 43: 191, 192; 39: 239– 243, 243, 275 Acidianus brierleyi 39: 239 Acidianus infernus 39: 239 Acidic pH 44: 233, 234 Acidification tolerance response 37: 253– 258, 262 Acidophiles 37: 229 Acidophilic thiobacteria gene transfer systems 39: 273, 274 sulfur oxidation 39: 271– 273 Acids, see also individual acids; Organic acids tolerance, of bacteria 32: 91 Acinetobacter 40: 17, 42 Acinetobacter anitratum 29: 216 Acinetobacter baumanii 45: 124 Acinetobacter calcoaceticus 35: 278, 282; 27: 132; 31: 14; 40: 16 – 19, 18, 22, 25, 41, 52, 53, 54, 59, 61 glucose dehydrogenase in 40: 47 GDH in 36: 260, 287 lack of cytochrome c 27: 156, 157 reconstitution, PQQ group, methanol dehydrogenase 27: 149 Acinetobacter sp., surface composition affecting growth 32: 70 Acne vulgaris, lipase and tetracycline 28: 235 Acon mutation 34: 157– 159, 161, 165, 167, 172 Aconitase 46: 121, 332; 46: 131, 132 Acr gene 46: 23, 24 AcrB efflux pump, Escherichia coli 46: 230, 231, 233, 326 Acremonum chrysogenum 35: 296– 299 Acridines, and phenazines 27: 267 Acriflavine, inhibition of dimer excision 28: 15 Acrobeloides buetschlii 36: 128, 133 ACT1 gene 33: 129
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 act1ts mutants 33: 129 suppressor mutations 33: 129, 130 Actin 33: 129 secretion polarized to bud, regulation 33: 132 Actin and Physarum polycephalum 35: 13, 37, 38, 40, 41 Actin, calcium ions and cytoplasmic movement 30: 117, 118 in buds and hyphae of C. albicans 30: 60, 61 Actin-binding proteins 33: 130, 131 Actin-bundling proteins, genes coding induced by L. monocytogenes 46: 39 Actin-cytoskeleton, see also SAC1p functions, Golgi-complex functions coupled to 33: 129– 132 orientation correlated with cell growth polarity 33: 129, 131 structure/components 33: 129 Actin-like proteins 37: 120 Actinobacillus actinomycetemcomitans 44: 111 Actinobacillus pleuropneumoniae 37: 121; 44: 24 Actinomadura dassonvillei 27: 216, 234, 235 Actinomadura sp. 37: 14 Actinomyces 37: 251 Actinomyces viscosus 42: 241 Actinomyces viscous 37: 260 Actinomycetes 37: 53, 287; 42: 50 Actinomycetes cyanide utilization, report 27: 102, 103 Actinomycetes, CYPs 47: 142, 143 Actinomycetes, as ‘helper’ organism for M. leprae 31: 75 Actinomycetes, poly(glycerophosphate) lipoteichoic acids absent 29: 245 Actinomycin synthesis 38: 91, 111– 114 synthetase I 38: 112, 113 synthetase II 38: 113, 114 in amino acid epimerization 38: 116, 117 reaction priming on 38: 114– 116 synthetase III 38: 113, 114 in peptide bond formation 38: 117 synthetases in cell-free synthesis 38: 114, 115 Actinomycins, [phenoxazines] and phenazines 27: 267 Actino-myosin contraction 37: 84 Actinopolyspora halophila 37: 233, 291, 295, 297 Actinorhodin 46: 82
15
Activated sludge systems 30: 149 Activation energy 33: 29 in flocculation 33: 29 – 31, 39 Active transport, proton gradient 28: 146, 148, 149 Active-site coupling 29: 200 Aculeacins, glucan synthesis 27: 61, 62 ACVS see d-(L -alpha-aminoadipyl)cysteinyl-D -valine synthetase (ACVS) Acyl carrier protein (acyl-ACP) 45: 205 Acyl carrier proteins 34: 19 Acyl group, transfer between synthetase and reductase 34: 21, 22 Acyl peptide lactones 38: 111 see also actinomycin synthesis synthesis, actinomycin as model 38: 111, 112 Acyl transfer, by peptide synthetases 38: 92 Acyl trehaloses 39: 149– 152 Acyl-amino acid lactones 42: 38 Acyl-AMP, formation 34: 20 Acylation of synthetase 34: 20, 21 Acyl-CoA 39: 79 dehydrogenase 31: 88 -reductase 26: 255 Acylglycerol, M. leprae metabolism 31: 88 Acyl-HSL 45: 206 Acyl-protein synthetase 26: 255 Acyl-SAM 45: 206 Acyltransferase subunit (t; LuxD) of fatty-acid reductase complex 34: 18 – 20 amino-acid sequence comparisons with other lux proteins 34: 53 gene, see LuxD Adaptation of chemotactic response, see Chemotactic signal transduction Adaptation, of bacteria in biofilms 46: 232, 233 Adaptational network 44: 36 – 39 Adaptive acid tolerance response (ATR) 40: 269 ADE2 gene, cloning 30: 58 Adenoregulin 37: 138 Adenosine 50 -diphosphate (ADP) 39: 86, 254 Adenosine 50 -monophosphate (AMP) 39: 254 Adenosine 50 -phosphosulfate (APS) reductase 39: 254, 256 Adenosine 50 -triphosphate (ATP) 39: 1, 63, 71, 72, 75, 78, 79, 86, 88, 91, 106, 214, 215, 225, 254, 263 Adenosine deaminase 31: 106, 111
16
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Adenosine diphosphate (ADP), in conversion of acetyl-CoA into acetate 29: 180 specificity of succinate thiokinase 29: 215 stimulation, enzyme produced cyanide 27: 93 Adenosine diphosphate-glucose pyrophosphorylase 28: 35 Adenosine kinase 31: 110 Adenosine monophosphate (AMP), reactivation after NADH glucose-mediated repression, E. coli 28: 129 in S. typhimurium 28: 131, 132 inhibition of citrate synthase 29: 210 -utilizing acetyl-CoA synthetase 29: 180, 181 Adenosine phosphoselenate and selenium metabolism 35: 99 Adenosine triphosphatase (ATPase) 26: 128, 129, 139 absence from Thermoplasma acidophilum 29: 181 Ca2+, Mg2+-stimulated 26: 130, 131 chloroplast 26: 146 membrane-bound energy-transducing complex of bacteria 26: 140 membrane-bound, proton motive force generated 26: 136 Adenosine triphosphate (ATP) active transport 28: 146, 148, 149 citrate synthase inhibition, in archaebacteria 29: 214 in eubacteria and eukaryotes 29: 210, 211 concentration, antibiotic production 27: 262, 263 concentration in nitrogen fixation reaction 29: 3 coupling with methanol, oxidation 27: 199– 203 direct energy donor, arginine/ornithine transport 28: 174 energy-currency function 26: 126 formation, in Embden– Meyerhof pathway 29: 172, 191 in Entner – Doudoroff pathway 29: 172 reoxidation of NADH and FADH2, 29: 175 hydrogen oxidation coupled to, hup probes 29: 47 hydrolysis, for proton motive force generation 26: 137 increase, in host control of hydrogenase 29: 13
phosphorylation potential 26: 142 photo-affinity labelling 28: 168 requirements of hydrogen evolution by nitrogenase 29: 24 synthesis 26: 131 synthesis, by uptake hydrogenase action 29: 4 electron transport coupled to 29: 35 hydrogen oxidation-dependent 29: 24, 25, 47 Adenosine triphosphate, see ATP Adenosine triphosphate-dependent solute transport systems 26: 136 Adenosine, axenic culture of M. leprae 31: 113 Adenosine-50 -phosphosulphonate (APS) reductase 31: 245 Adenosyl homocysteine 37: 297, 298, 296, 298 Adenosyl methionine 37: 296, 297, 298 Adenosylhomocysteinase 34: 261 Adenosylhopanes and hopanoids 35: 249, 254 Adenylase 37: 96 Adenylate cyclase 37: 93, 96, 107, 108, 116, 118, 125 C. albicans, mammalian hormones affecting 34: 125 Sacch. cerevisiae sexual reproduction and 34: 94 V. fischeri luminescence and 34: 44 Adenylate cyclase toxin (ACT) 44: 146 Adenylate cyclase, defect, cyr1 mutation 32: 12 Adenylic acid 30: 204 Adhesin 29: 83 K88 pili 29: 95 N. gonorrhoea pili 29: 100, 101 Pap pili 29: 55, 61, 94, 95 genes for 29: 76, 77 pilE locus expressing 29: 74 Type I pili 29: 95 X 29: 95 Adhesins, flocculation, see Flocculation Adhesins, mannose-sensitive vs. mannoseinsensitive 28: 87 – 90, 92, see also Fimbriae Adhesion zones and cell-surface polysaccharide biosynthesis transport 35: 185– 188 Adipic acid 31: 61 ADP 45: 274, 275, 277, 279, 282, 284 ADP:ATP adenylyltransferase 36: 95 ADP-glucose 37: 300 ADPglucose pathway 30: 189, 191 activators and inhibitors 30: 191– 193 fructose 2,6-bisphosphate as activator 30: 191– 193, 196, 199
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 pyrophosporolysis, mutant vs. wild-type enzyme 30: 207 reactions 30: 189 regulation 30: 191– 193 mutants, activation and inhibition importance 30: 192, 193 site at ADPglucose pyrophosphorylase step 30: 191, 192 ADPglucose pyrophosphorylase 30: 189, 193– 196 activator 30: 191, 192, 196, 197, 199 affinity 30: 197, 198 affinity, changed by single-site mutation 30: 208 inhibitor, substrate binding sites overlap 30: 203– 205, 208 Rhodospirillum spp 30: 195 specificity 30: 191, 192, 195, 196 activator site 30: 196 arginine residues 30: 197 chemical modification 30: 196– 199 cysteine in R. sphaeroides 30: 198 E. coli 30: 195– 197, 199 Lys39 in 30: 197 Rhodopseudomonas sphaeroides 30: 197, 198 sequences comparison, E. coli and spinach leaf 30: 198, 199 spinach leaf 30: 196, 198, 199 amino-terminal sequences 30: 194, 195, 197 characterization 30: 193–217 E. coli allosteric mutant 30: 192, 209– 217 activator affinity and accumulation relationship 30: 192, 197, 209, 210 changes (residues 296, 336), effects 30: 211– 216 cloning 30: 209– 214 gene, see glgC gene; Glycogen gene inhibition by AMP 30: 191, 192 single-site mutation effect 30: 208 inhibitor 30: 191, 203 affinity in E. coli mutants 30: 192, 210 sensitivity modulated by activator 30: 205 inhibitor binding site 30: 196 AMP 30: 203, 208 chemical modification 30: 203– 205 Lys39 in 30: 203– 205 mutagenesis 30: 208 Tyr1.1mm>114 in 30: 203, 204, 208 kinetic constants, double mutant expressed in plasmids 30: 214, 215
17
wild-type vs. mutant 618 30: 214, 215 wild-type vs. Phe114 mutant 30: 206, 207 mutagenesis, double allosteric mutants 30: 211– 215 functional amino acids in binding 30: 205– 217 oligonucleotide directed Tyr114 to Phe114 30: 205– 209 single allosteric mutations 30: 216 reductive phosphopyridoxylation 30: 196, 198, 199 sequence homology and differences, E. coli and S. typhimuriurn 30: 194, 195 sequences 30: 193– 195 spinach leaf 30: 196 activators 30: 198, 199 subunits 30: 199 substrate 30: 200 affinity lowered by single-site mutation 30: 206– 208 binding, amino acids functional in 30: 205–217 protection from reductive phosphopyridoxylation 30: 200, 202 substrate binding site 30: 193, 199– 204 arginine residue in 30: 202 195 Lys in 30: 202, 204 predicted secondary structure 30: 201, 202, 204 tertiary structure 30: 202 1.1mm>114 Tyr in 30: 201, 204 8-azido-ADPglucose incorporation 30: 200, 201 synthesis increased, by cAMP and cAMP-receptor protein 30: 224 by ppGpp 30: 226 Tyr114 site 30: 201, 203, 204, 208 regulation of substrate/inhibitor/activator interaction 30: 205 ADPglucose-specific glycogen synthase, see Glycogen synthase ADP-ribosylation factor (ARF), see ARF ADP-ribosyl-transferase 44: 146 ADP-ribosyltransferase, pertussis toxin activity 46: 41 Adventitious embryony 30: 27 Aequorin 37: 104 Aeration, flocculation stimulation 33: 20
18
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Aerobacter aergones and cell-surface polysaccharide biosynthesis 35: 139, 155– 157, 160, 169, 177 Aerobes 37: 40 Aerobic and anaerobic processes, yeasts, see Saccharomyces cerevisiae, Saccharomyces uvarum Aerobic bacteria cell death 46: 136, 137 enzyme damage by oxygen 46: 130 free radical generation 46: 320, 321, 322 glutathione in 34: 241, 242 Gram-negative, bioluminescent 34: 2 Aerobic denitrifiers 45: 72– 77 Aerobic micro-organisms 29: 2, see also Eubacteria Aerobic respiration, terminal oxidase for 46: 291 Aerobic respiratory chains architecture 43: 170, 171, 171 historical perspective 43: 171, 172 in bacteria 43: 165– 224 organization in bacteria 43: 172– 193 Aeromonas caviae 37: 15 Aeromonas hydrophila 35: 278, 282; 45: 207, 213 S-layer, role in pathogenicity 33: 251, 252 Aeromonas salmonicida 37: 85, 86 S-layer protein, gene encoding 33: 248 secondary structure 33: 239 structural domains 33: 248 S-layer, in pathogenicity 33: 251 Aeromonas sobria, S-layer in pathogenicity, 251, 252 Aeropyrum pernix, haem proteins 46: 301 Aerotaxis, magnetotactic bacteria 31: 136, 143, 169 Aerotolerance 46: 136 Aeruginosins, see also Pseudomonas aeruginosa chemical nature 27: 217, 223 phenazine biosynthesis 27: 252 pigmentation mutants 27: 251 production, medium 27: 223 regulation, phosphate limitation 27: 262 structural formula 27: 220 AES see atomic emission spectroscopy Aeschna cyanea 37: 143 A-factor, glyoxalase 37: 208, 209 Affymetrix arrays 46: 8 AFP, peptide 37: 138 Agamospermy 30: 27 Agarase 42: 77
Agaricus bisporus 35: 278; 37: 12, 28, 41, 60; 42: 2 – 4, 8 – 14, 16 chromosome markers 42: 15 hydrophobins in fruit bodies 38: 26, 27 intracellular proteins 42: 5 secreted proteins 42: 6 see also ABH1 hydrophobin Agaricus naeslundii 42: 241 Agaricus spp. bisporus fruiting in 34: 148, 156, 179–181, 185, 186, 188, 190 genetic manipulation 34: 192 sex hormones in 34: 104 bitorquis, fruiting in 34: 156, 190 Ageing, of cultures, and antibiotic action 27: 278, 279, 284–286 Agglutinin, fungal sexual 34: 90, 91 a-agglutinin, Sacch. cerevisiae 34: 90, 91 Agglutinins, and hydrophobins 38: 8, 9 Aggregates, bacterial 46: 214, 215 see also Biofilms Aggregation of micro-organisms 33: 2, 39 see also Flocculation chain-forming, see Chain-forming strains of yeast definition 33: 3 mating 33: 2, 3 significance of 33: 2, 62, 63 Agitation, effects on flocculation, see Flocculation Agmatine 37: 240 Agressin, Staphylococcus, effect of clindamycin 28: 233 Agricultural soil, autotrophic nitrification 30: 168 Agriculture, apomixis, applications of 30: 46 biological nitrogen fixation and 30: 4, 12 Agriculture, bacterial ice nucleation as a problem in 34: 230, 231 Agrobacterium 35: 145, 146, 168; 37: 283; 45: 249– 253 A. radiobacter 35: 205 A. tumefaciens 35: 146, 179, 180, 198, 223, 228, 262 Agrobacterium 40: 215 Agrobacterium faecalis 37: 24 Agrobacterium radiobacter 45: 134 Agrobacterium tumefaciens 37: 231, 233, 245, 283; 41: 273; 42: 16; 43: 182; 45: 134, 182, 212, 249 chemotaxis 33: 279 haloalcohol dehalogenases 38: 154
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Agrocybe aegerita haploid fruiting in 34: 171 protein patterns in vegetative monokaryons and dikaryons of 34: 162 AHL 45: 225, 226, 240, 242 biosynthesis 45: 203– 208 signalling 45: 201 synthases 45: 207, 208 transport and turnover 45: 214, 215 AHL-mediated quorum sensing 45: 201 AhpFC proteins 46: 330 ALA dehydratase 46: 265– 267 structure 46: 265– 267 zinc-binding 46: 266 ALA see d -Aminolaevulinic acid (ALA) ALA synthase 46: 261– 263 see also d -Aminolaevulinic acid (ALA) bacterial 46: 262 distribution 46: 261 evolution/origin 46: 262 hemA gene encoding 46: 262, 263 see also hemA gene mutants 46: 262, 263, 286 regulation 46: 289 Alafosfalin 36: 56 – 58 Alamethicin 37: 159 Alanine 26: 147; 37: 38, 110; 42: 124, 130, 139, 140; 45: 24 – 28 Alanine dehydrogenase (ADH) 42: 139, 140; 43: 123– 125 Alanine racemase 36: 55, 58, 59 Alanine secretion 43: 121– 123 Alanine synthesis 43: 119, 122– 125 Alanine transport, thermophiles 28: 175, see also Amino acids proton gradient 28: 175 sodium ion gradient 28: 175 Alanine, codons 29: 218 in halophilic enzymes 29: 218, 219 Alanine/phosphate ratio, lipoteichoic acid 29: 290, 294 Alanine:2-oxoglutarate transaminase (AOAT) 42: 139, 140, 148 Alanyl residues in lipoteichoic acids, addition of 29: 262, 263, 276 anti-autolytic activity, effect on 29: 287, 290 base-catalysed hydrolysis 29: 263, 264 distribution of 29: 242, 243 effect on lipoteichoic acid carrier activity 29: 280, 281, 283 glucose effect on 29: 271 magnesium ion binding, effect on 29: 294 model of structure 29: 292
19
pH and temperature effect 29: 271 re-esterification after loss 29: 265, 266, 276 salt effect on 29: 270, 271 site of incorporation 29: 263 species with 29: 240, 241 transport to teichoic acid 29: 263– 265, 276 Alanylaminopimeic acid 36: 30 Alarmones 44: 220, 224, 225, 235; 46: 204, 234, 239 Alarmones, stress 47: 71 Alarmosome 26: 142, 144 Alaska, pea cultivar 29: 11, 12 A-layer 33: 251 see also S-layer A-layer, calcium 37: 85, 86 Alazopeptin, 36: 54 Albumin 37: 187 Alcaligenes 30: 167; 41: 270; 44: 158 Alcaligenes eutrophus 43: 25; 39: 257; 40: 104, 309; 45: 76, 81, 87 ATCC 29: 148, 149 cadmium resistance 38: 226 hydrogenase, genes on megaplasmid 29: 148 hydrogen as energy source with low oxygen 29: 8 hydrogen oxidation in, electron transport 29: 27 hydrogen oxidation-dependent ATP synthesis 29: 24 hydrogenase, absorption spectrum 29: 14 composition and antibody crossreactions 29: 14 electron acceptor reactivity 29: 16 ferricyanide stability of 29: 19 Km value 29: 16 NADH-linked hydrogen oxidation 29: 28 nickel in 29: 20 oxygen stabilization of 29: 18 RuBP correlation absence and 29: 9 mixotrophic growth 29: 8 oxygen sensitivity negative (Ose2) mutants 29: 8 phosphoribulokinase and RuBisCO gene location 29: 148 plasmids in 29: 42 RuBisCO, activation 29: 136 gene cloning 29: 149 gene number 29: 148 structure in 29: 134, 135 strain 345, plasmid pRA1000 31: 10 TF93 29: 42 TF931, Hox2 mutants 29: 42
20
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Alcaligenes faecalis 35: 145, 146; 37: 36 var. myxogenes 35: 159 Alcaligenes latus hydrogenase, composition and antibody crossreactions 29: 14 electron acceptor reactivity 29: 16 Km value 29: 16 Alcaligenes vinelandii, hydrogen oxidation in, electron transport 29: 27 hydrogenase, composition and antibody crossreactions 29: 14 electron acceptor reactivity 29: 16 molecular weight 29: 13 Alcaligenes, haloalcohol dehalogenases 38: 156, 157 modified Entner –Doudoroff pathway in 29: 179 Alcian blue 33: 46 Alcohol dehalogenation 38: 151– 159 dehalogenases 38: 152–159 classes 38: 154, 155, 158 pathway 38: 152, 153 profiles 38: 153, 154 properties 38: 156, 157 enzymatic oxidative dechlorination 38: 159 halogenated alkanoic acid formation 38: 152 Alcohol dehydrogenase (ADH) 36: 247, 252, 255– 257; 37: 187; 39: 81, 93, 97; 40: 39, 162, 163; 41: 6, 7, 10 – 13, 21 – 23, 25, 26, 32, 39 and reaction by-products 41: 9 – 11 calcium in 40: 20 – 24 in acetic acid bacteria 40: 50, 51 secondary structure 40: 32 structure and mechanism 40: 30 – 35 type I 40: 11, 37 type II 40: 12, 13, 24, 39 type III 40: 13 – 16, 15, 23, 24, 30 – 35, 39 Alcohol, decanol 26: 253 Alcohols 39: 366 electron transport chains in oxidation of 40: 39 methanol 27: 129, 130, 132 other alcohols 27: 131, 139 oxidation by methylotrophs 27: 129– 139 periplasmic quinoproteins that oxidize 40: 43, 44 photometabolism 39: 354, 355 substrate specificity Pseudomonas27: 135– 137 TOL+ Pseudomonas putida growth on 31: 5, 8
Aldehyde biosynthesis 26: 253– 255 Aldehyde dehydrogenase (ALDH) 26: 254; 36: 248, 252, 255, 256, 258; 37: 196, 245; 39: 81, 93, 97; 40: 19, 20 V. harveyi 34: 24 Aldehyde reductase 37: 180, 184, 194, 198– 200 Aldehyde(s) as glutathione S-transferase substrates 34: 282 fixation, M. leprae susceptibility 31: 76 in bioluminescence 34: 8, 9, 18 – 22 biosynthesis 34: 18 –22 requirement for 34: 8, 9 –11 substrate, formaldehyde oxidation 27: 139, 140 TOLþ Pseudomonas putida growth on 31: 5, 8 Aldehydes, see also Formaldehyde Aldo-acid 26: 261 Aldolase, class I and II 29: 183, 184 Aldose reductase 37: 180, 187, 198– 200, 306 Algae, apomixis in 30: 32, 33 ionic currents in 30: 93, 95, 105– 112 applied electrical fields/ionophores 30: 113, 114 Algae, lichen symbiosis, hydrophobins in 38: 33, 34 ‘Algal-bacterial’ cellulose 37: 6 algD-xylE gene fusion 31: 63 Alginate gene cluster 31: 62, 63 Alginate synthesis and cell-surface polysaccharide biosynthesis 35: 221, 222, 224 Alginates, in biofilms 46: 218 synthesis up-regulation 46: 219 Alicyclobacillus, see Bacillus Alimentary tract, non-pathogenic bacteria 28: 2 Aliphatic hydrocarbons 39: 356– 359 Alkali sensitization 44: 233, 234 Alkali stress, Bacillus subtilis s w role 46: 77 Alkali tolerance, responses affecting 44: 232– 235 Alkali-killed cultures 44: 243 Alkaline pH heat tolerance induced 44: 234, 235 responses to 44: 232– 235 Alkaliphile oxidative phosphorylation 40: 427– 432 Alkaliphilic Bacillus species energetics 40: 401– 438 pH homeostasis 40: 404– 420, 405, 408 Alkalogenes eutropha 31: 234
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Alkalophilic bacteria, flagellar motor function 32: 115, 153 Alkalophilic eubacterium 37: 36 Alkane dehalogenation 38: 159– 165 class 3B dehalogenases 38: 164 catabolism pathway 38: 161 evolutionary relationships 38: 162, 164 from Xanthobacter autotrophicus 38: 160– 162, 163 class 3R dehalogenases 38: 160– 164 cofactor-dependent dehalogenases 38: 165 discovery 38: 159 diversity of mechanisms 38: 160 methanogenic bacteria in 38: 159, 160 oxygenase-type dehalogenases 38: 164, 165 Alkanoic acid dehalogenation 38: 135– 151 dehalogenases characteristics 38: 135, 136 class 1D 38: 139, 140, 143, 144 class 2I 38: 139, 144, 145 class 2R 38: 139, 145, 146 class IL 38: 136, 137, 138, 140, 141– 143 classification 38: 136, 138, 139 genetic organization 38: 146, 147, 149– 151 synthesis regulation 38: 146– 149 hydrolytic mechanism 38: 135 Alkylamines 26: 32 Alkylammonium ions 26: 72 Alkylaromatics, catabolism 31: 58 Alkylcatechol, metabolism 31: 3 Alkylguanine (3,5,6,7)-tetrahydro-6,7dihydroxy-6-methylimidazo [1,2,-a]purine-9(8H)one 37: 186 Alkylhydroperoxide (AHP) reductase 44: 247; 46: 125, 126 Alkylhydroperoxide (AHP) tolerance 44: 228, 229 Alkylresorcinols, TNC 93 Allantoinase 26: 27 Allantoin– urea degradation 26: 24 – 31 ammonia effect 26: 27, 28 biochemistry 26: 25, 26 genetics 26: 25, 26 glutamate dehydrogenase 26: 27, 28 induction 26: 26 nitrogen catabolite repression more than one circuit? 26: 28, 29 starvation effect 26: 26, 27 Allomyces macrogynus 30: 100, 101, 118 sex hormones in 34: 71 – 74 Allomyces, apomixis in 30: 30
21
ionic currents in 30: 93, 1010, 1101 inward, at rhizoid 30: 100 nutrient uptake and 30: 101, 118 outward, at hyphal tip 30: 100, 101, 115 reversal of, growth despite 30: 101, 115 Allophanate 26: 26 Allosteric activation of cellulose synthetase 35: 228 Allylamines, structure 46: 158 Allylglycine, metabolism 31: 18 AlP-dependent proteolytic systems 31: 193, 195, 196 Altermonas genus 26: 238 Alternaria alternata 45: 214 Alternaria kikuchiana, peach black spot 27: 59 Alternaria solani 35: 278 Alteromonas hanedia, bioluminescence 34: 2, 50, 51 Alteromonas putrefaciens, organic acids effect on cell membranes 32: 95 Aluminium, toxicity 38: 182, 214– 216 Amaranthus caudatus 37: 138, 151 Amidase puzzle, Tat protein translocation pathway 47: 217, 218 Amine dehydrogenases 40: 4 Amino acid (s) 40: 145, 369; 42: 29, 120 arginase synthesis provoking/nonprovoking 26: 21 -auxin permeases (AAAP) 40: 130 biosynthesis, alternative routes 26: 75, 76 biosynthesis in streptomycetes 42: 200– 203, 204 catabolism 42: 126– 141 deaminase 37: 230 permease(s) 43: 146, 147 acidic 42: 125 basic 42: 125 -proton symport model in Achlya 30: 95, 98 sequences of proposed polypeptide precursor of PQQ 40: 52 repression of carbohydrate catabolism 42: 98, 99, 99 synthesis by bacteroids 43: 120– 128 Aminoacids affinities for clays 32: 71 analogues, effect on acquired thermotolerance 31: 207, 208 aromatic, phenazine biosynthesis 27: 263, 264 as compatible solutes 33: 175, 176 assimilation, hydrophobicity of surface affecting 32: 66, 67 availability, clay particles and 32: 71
22
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
biosynthesis from aspartate (M. leprae) 31: 98 chemotropism in Achlya 30: 99 composition of proteins 39: 366 effect on acquired thermotolerance 31: 207, 208 in S-layer hydrolysates 33: 237 L - and D -forms, in peptidoglycan 32: 180 oxidase-peroxidase, synthesis of cyanide 27: 91 – 93 oxidoreductases 27: 91 polar, in halophilic enzymes 29: 218 requirements, sporulation media 28: 40, 42, 43, see also specific names residues, variability 41: 198 selective utilization by attached bacteria 32: 72 selectivity coefficient 32: 71 stationary phase, C. albicans 27: 296 transport 28: 146– 175; 42: 121– 126 alanine 28: 175 arginine 28: 148, 174 aromatic, E. coli 28: 171– 173 branched chain, in E. coli 28: 150– 160 in central nervous system 36: 4 in higher plants 36: 4 in Ps. aeruginosa 28: 160– 163 glutamine 28: 174 histidine, S. typhimurium 28: 148, 163– 168 ornithine 28: 174 proline 28: 174 E. coli 28: 166– 171 systems 28: 148, 149 g-glutamyltranspeptidase and 34: 258– 260 uptake and biosynthesis by M. leprae 31: 96 – 99, 108, 109 protein synthesis in 31: 99 uptake by attached bacteria in oligotrophic waters 32: 78 Amino acids, see also specific names Aminoacetoacetate 37: 182 Aminoacetone 37: 182 Aminoacetone synthase 37: 180 Amino acyl residues 40: 99 Aminoadipate (AAA) 42: 188, 189 Aminoadipic acid 37: 296 Aminobutyro betaine 37: 303, 304 1-Aminocyclopropane-1-carboxylic acid pathway in ethylene production by higher plants 35: 281, 287, 288, 302 Aminoglycosides 37: 162, 166 2-Aminoimidazole 42: 132 a-Aminoisobutyric acid (AIB) 42: 121, 124
5-aminolaevulinic acid 39: 365 6-aminopenicillanic acid 36: 210 6-Aminopenicillanic acid 28: 215 Aminopropan-1-ol 37: 197 Aminosugar metabolism, in C. albicans 30: 75 – 77 Ammonia 26: 8; 37: 259 assimilation in Helicobacter pylori 40: 176 conversion into glutamate 26: 20 dinitrogen reduction to, by nitrogenase 29: 2, 4 effect 26: 27 on amino acid permease 26: 18, 27 glutamine synthetase repression 26: 35, 36 nitrite reduction to 45: 91, 96 –99 nitrogen catabolite repression 26: 20 nitrogen source, and cyanide utilization, bacterial 27: 102, 104 reduction of nitrate 27: 94 uptake 26: 8, 9, 51, 52 Ammonia concentrations in liquid cultures of nitrifying bacteria 30: 136, 137 in marine environments 30: 127 diazotroph response to 30: 14 free, inhibition of ammonia oxidation 30: 140 pools of 30: 163 transport 30: 143, 145, 158 Ammonia mono-oxygenase 30: 130, 145 destruction by ultraviolet light 30: 149 inhibitors 30: 130, 168, 170 chelation mechanism 30: 170, 171 methane mono-oxygenase similarity 30: 130 saturation constant(Km), 145 Ammonia oxidation 30: 130– 133 after release of ammonium ion into liquid medium 30: 162, 163 high oxygen concentration effects 30: 148 in acid soils, mechanisms 30: 163, 164 inhibitors 30: 169– 171 see also Nitrapyrin acetylene 30: 130, 168, 170 nitrous oxide 30: 139, 140, 159 light inhibition 30: 149, 150 low oxygen concentration effects 30: 150, 151 pH effect on 30: 158 stimulation by low concentrations of nitrification inhibitors 30: 173 substrate inhibition 30: 140 surface-associated 30: 162, 163
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Ammonia oxidizers 30: 125, 126, 128, 129 see also Nitrification; Nitrifying bacteria; Nitrosomonas accumulation above nitrite oxidizers in biofilms 30: 152, 155 ammonia production for, by nitrite oxidizers 30: 155 ammonia transport 30: 143, 145 pH effect 30: 158 assimilation of organic compounds 30: 135, 175 cell activity 30: 142, 143 existence of acidophilic strains? 30: 160 heterotrophic growth not observed 30: 135 heterotrophs with, effect on growth 30: 135, 165 in micro-enivronments, clusters per gram of soil 30: 164, 165 inhibition, mechanisms 30: 170, 171 isolation from acid soils 30: 160 maximum specific growth rate 30: 137, 138 mixotrophic growth 30: 135 nitrification in acid soils/conditions 30: 163, 164 nitrite reduction 30: 152, 153, 176 optimum pH and ammonium concentration 30: 158, 159 pH range 30: 157 photo-inhibition and recovery from 30: 149, 150 saturation constants for activity and growth 30: 143– 146 substrate inhibition 30: 139, 140 thermodynamic efficiency 30: 134 urease activity 30: 165, 166, 168, 176 yield and maintenance coefficients 30: 140, 141 Ammonia-oxidizing bacteria, carboxysome distribution and structure 29: 117, 118 Ammonia-sensitive permeases 26: 54 Ammonia-treated vermiculite (ATV), 163 Ammonium 39: 3, 15; 42: 144 assimilation 42: 147– 156 mineral origins 42: 145– 147 Ammonium analogues Cs+ 26: 72 Ammonium ion excretion, by Achlya bisexualis 30: 98 Ammonium ions as inhibitors of pileus expansion and sporulation 34: 187 Ammonium repression 26: 57, 71 Ammonium secretion 43: 122, 123 Ammonium sulphate, apomictic phenotype modification 30: 37 Ammonium, adsorption 32: 72
23
Ammonium, mechanism of movement across peribacteroid membrane 43: 144 Ammonium, nitrite reduction to 31: 256, 259 Ammonium, nitrogen acquisition 47: 20 – 31 Amoeba see also Physarum polycephalum amoebal mitosis 35: 29– 31 amoebal phase 35: 3, 4 -flagellate transition in cytoskeleton development 35: 23 – 26 -plasmodium transition in cytoskeleton development 35: 26 – 33, 38 Amoeba proteus, ionic currents in 30: 93, 102, 103 steady and spontaneous, possible functions 30: 102, 103 Amoebobacter 37: 282 Amoxicillin, effect, E. coli, mice, rabbits 28: 249 Amoxycillin 36: 4 AMP 37: 96, 107, 108 AMP, ADPglucose pyrophosphorylase inhibition 30: 191, 203 activator and substrate modulating 30: 205 double-mutant 30: 215 reductive phosphopyridoxylation prevention 30: 196 Amphibian peptides 37: 150, 151 Amphimixis 30: 26, 28 Amphipathic helix – loop– helix motif 32: 35 Amphiphiles 29: 234, 236 Amphitrichous cells 33: 281 Amphotericin B 30: 78, 79 action 27: 281, 282 candidiasis 27: 316 clinical usage, systemic fungal infections 27: 38, 39 combination with fluorocytosine, therapy 27: 58 nephrotoxicity 27: 38 interaction, sterols and surface structures 27: 286– 289 resistance, C. albicans, addition of allose 27: 307 b-glucanase activity 27: 306 cell wall barrier 27: 297– 303 enzymes, lysis of cell wall 27: 298 glucose, incorporation into glucans 27: 303– 305 oxidation and reduction 27: 293–297 thiol-reactive agents 27: 299 resistant fungi 27: 29, 30 selectivity 27: 280– 287
24
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
sensitivity, assessment 27: 283– 286 age of culture 27: 284– 286 methodology 27: 283, 284 structural formula 27: 21, 22 structure 27: 279, 280; 46: 158 Ampicillin anti-inhibitory concentrations, and serum effect 28: 240, 241 artificial E. coli infections 28: 249 inhibition of bacterial adhesions, list 28: 218 morphological changes 28: 215 mutation to resistance 28: 245 synergistic with complement 28: 240 uropathogens 28: 221, 250 Vibrio sp. 28: 224 Amycolatopsis methanolica 42: 53, 63 Amygdalin, release of cyanide 27: 91 a-amylase 39: 52, 53, 56 Amylase 37: 2, 9, 20, 44; 39: 56 – 58 a-Amylases 42: 69 – 74 Amylomaltase 30: 190 Amyloporia xantha 41: 55 Amylopullulanase 39: 57 Amylose 39: 53 Amylosucrase 30: 189, 190 Anabaena 37: 86, 93, 107, 125; 39: 1, 4, 9, 10, 12, 18, 20, 21, 245; 40: 331; 43: 211; 45: 55 carboxysome association with microtubules 29: 121, 122 failure to detect ionic currents 30: 92 glycogen accumulation 30: 185 7120, RuBisCO genes 29: 146 PCC 7120 44: 200, 205 PCC7 120, plasmid in 29: 129 Anabaena cylindrica 29: 20 aluminium accumulation 38: 215 hydrogen oxidation, reducing quivalent donation 29: 24 RuBisCO in carboxysomes, evidence 29: 131 Anabaena variabilis 37: 101, 117, 118; 39: 4; 40: 316, 331 carbonic anhydrase in 29: 127 Km (CO2) values of RuBisCO 29: 142 nickel in 29: 20 Anabolic pathways in Helicobacter pylori 40: 169 Anabolism/catabolism, non-culturable cells 47: 86 – 89 Anacystis nidulans 37: 91; 39: 4 R2, RuBisCO in carboxysomes, evidence 29: 131 RuBisCO, gene cloning and location 29: 146, 149
L subunit probe, hybridization 29: 147 nucleotide sequence of gene 29: 146, 147 in vivo, production of cyanide 27: 90, 92, 93 Anacystis nidulans, see also Synechococcus Anaerobes 31: 227 facultative error-prone repair activity 28: 5 oxygen toxicity 28: 5 –10 glycolysis in 29: 172 hydrogen evolution and oxidation 29: 2 in biofilms 46: 224 obligate, methanogens as 29: 167 obligate carbohydrates, and catalase 28: 10 catalase test 28: 9 media, cysteine 28: 10 oxygen toxicity 28: 5 –10 peroxidase enzymes 28: 10 photochemical oxidations 28: 14 superoxide dismutase theory 28: 6, 7 technical difficulties 28: 2 protoporphyrinogen IX oxidase 46: 272 pyruvate metabolism 29: 175 Anaerobic bacteria 37: 40, 275, 279, 287 crystalline surface layers 33: 216, 217 Gram-negative, bioluminescent 34: 2 Anaerobic conditions, 2-oxo acid oxidoreductases in 29: 202– 204 2-oxo dehydrogenase (NAD+) unsuitable in 29: 202 Anaerobic niches 31: 227– 230 Anaerobic nitrate reduction 45: 86 Anaerobic respiration 31: 225– 269 definition 31: 225– 227 importance of 31: 226, 265 oxidants 31: 2, 226– 228 see also Fumurate respiration; Methanogenesis; Nitrogen, oxides of; Sulphate DMSO 31: 226, 262, 263 iron(III) reduction 31: 226, 263, 264 TMAO 31: 226, 261, 262, 265 redox potentials of donor/acceptor couples 31: 227, 229 respiratory chains in, see Respiratory chains thermodynamics 31: 226, 234 comparison with aerobic respiration 31: 227, 228 Anaerobiosis 37: 240 –242, 248, 249, 258 obligate 46: 111, 135– 143, 289 effect of exposure to oxygen 46: 136, 137
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 evolutionary pressures to escape 46: 142, 143 inactivation of enzymes by oxidants 46: 137– 141 oxidative damage causing 46: 137 oxygen effect on availability of reduced growth substrates 46: 135, 136 scavenging systems 46: 141, 142 superoxide reductase 46: 142 Anaplerotic reactions 42: 65, 66 Ancestral forms, CYPs 47: 136–139, 156– 158 Anchaeoglobus fulgidus 40: 161, 286, 304 Ancylobacter aquaticus dehalogenase 38: 162 turgor pressure 33: 155 Androctonus australis Hector 37: 146 Andropin 37: 138 5-a-Androst-16-en-3a-ol metabolite ofT. melanosporum 34: 132 Angiotensin-converting enzyme 36: 3 Anhydrobiosis 37: 274 Anhydrobiotic organisms 33: 195 Anhydroglucose 37: 6 Animal ferritins iron core 40: 326– 329 sequence alignment 40: 309 Animal fodder 39: 220 Animal pathogens 41: 274– 276 Animal-feed additives, organic acids as 32: 99, 100 Anion accumulation, DpH-dependent 39: 211– 213 Anion flux across cell membranes 39: 210, 211 Anion mobility 41: 68– 72 Anion-exchange column, Nitrobacter growth 30: 147, 148, 161, 162 resin, E. coli adsorption 32: 71 Anions, uptake with changes in media salinity 33: 184 Anisomycin 39: 296 Anisotropic properties of cell walls 32: 202 model 32: 207– 214 Ankistrodesmus falcatus, tin accumulation 38: 231 Anodic stripping voltammetry (ASV) 38: 194, 195 Anoxigenic phototrophic bacteria 33: 220 Anoxygenic phototrophic bacteria (APB) 37: 287; 39: 339– 377, 358, 360 biotechnological applications with unusual carbon compounds 39: 364– 367 catabolism of aromatic compounds 39: 343
25
major central metabolic pathways 39: 340, 341 Anoxyphotobacteriae 26: 158, 159 (table) anaerobic CO-uptake 26: 173 Antheraea 39: 320 Antheridia branches antheridiol-induced chemotropism 34: 76 antheridiol-induced formation 34: 76 differentiation, antheridiol-induced 34: 76 Antheridiol 30: 100; 34: 74, 76 – 80, 102 activity 34: 76 – 80, 102 receptor 34: 79 structure 34: 75 Anthranilate 45: 129 Anthranilic acid 27: 243, 246 as fruiting-inducing substance in F. arcularius 34: 181 photobiotransformation 39: 352 Anti-s factors 46: 47, 71, 80, 98 Anti-actin antibodies 30: 75 Antiapoptotic factors, upregulation by Bordetella pertussis 46: 41 Antibacterial activity, of organic acids, see Organic acids Antibacterial antibiotics from fungi, glutathione and, structural similarities 34: 243 Antibiotic resistance, biofilms and 32: 75, 76 Antibiotic tolerance 44: 237, 238 Antibiotics 37: 315; 37: 151; 45: 243– 246; 46: 76 B. subtilis s w regulon control 46: 77 diarrhoea associated 46: 236, 237 diffusion limited by glycocalyx of biofilms 46: 221 discovery process 46: 28 efflux pump induction by 46: 235 induction of Bacillus subtilis s x 46: 71 inhibition of luminescence induction by 26: 279 macrolide, adsorptive losses in biofilms 46: 222 ‘resistance training’ of bacteria 46: 233 resistance, in biofilms see Biofilms selection of less susceptible organisms 46: 233 susceptibility of aggregated bacteria 46: 214 in biofilms see Biofilms Antibiotics, production, see also Phenazines ATP concentration 27: 262, 263 chemo-therapeutic (veterinary) applications 27: 267
26
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
defective regulation hypothesis 27: 263 extrachromosomal coding 27: 264, 265 safety-valve hypothesis 27: 265, 266 Antibiotics, see also specific names aminoglycosides, fimbriae 28: 133 effect of low concentrations Bacillus 28: 234 Clostridium 28: 234, 235 Escherichia 28: 235 Klebsiella 28: 236 Propionibacterium 28: 235 Pseudomonas 28: 236 Staphylococcus 28: 232, 233 Streptococcus 28: 233, 234 Vibrio 28: 235, 236 agglutinability 28: 239 antigenicity 28: 239 phagocytosis 28: 241– 243 serum effects 28: 239– 241 clinical response 28: 250 experimental infections 28: 249, 250 observed, in vivo 28: 248, 249 outcome 28: 247, 248 methicillin-resistance, Staph. aureus 28: 216 sub-inhibitory concentrations, in vitro 28: 245, 246 sub-inhibitory concentrations, in vivo 28: 246, 247 bacterial recovery 28: 243, 244 effects of phagocytosis 28: 241– 243 in vitro 28: 245, 246 in vivo 28: 246, 247 outcome of infections 28: 247, 248 bacterial adhesins, see Fimbriae bacterial recovery 28: 243, 244 enhancement of adhesions 28: 231 extracellular products, secretions 28: 231– 238 host defences, effects 28: 238– 243 host immune responses, references 28: 213 IC50 value, multiplication, bacteria 28: 244 lipid synthesis, effects 28: 238 minimum bactericidal concentration (MBC) 28: 212 minimum inhibitory concentration (MIC) 28: 212 resistance, expression 28: 247– 250 resistance, natural selection 28: 244– 247 selection for drug resistant mutants, bacterial morphology 28: 248, 249
summary 28: 251 excess doses vs. conventional treatments 28: 250 Antibodies to poly(glycerophosphate) chain of lipoteichoic acids 29: 274 Antibodies, accessibility, hydrophilic residues 28: 99 Anticancer drug studies, inhibitation of thymidylate synthase 27: 14, 15 Anticapsin 36: 53 Anti-endotoxins 37: 166, 167 Anti-F pilus antiserum 29: 86 Antifoaming agents 33: 8 Antifungal agents 30: 78 Antifungal drugs, see also names of specific substances dates of discovery 27: 4 summary 27: 57 – 63 Antifungals 46: 157 see also specific antifungals detoxification 46: 164 gene nomenclature 46: 159, 160 generation of new agents 46: 157 import by passive diffusion 46: 165 new targets 46: 158, 160 resistance in yeast see Drug resistance in yeast sites of action 46: 161 structures 46: 158 Antigen 85 complex 39: 144 Antigenic determinants, adhesive pili 29: 62, 94 conjugative pili 29: 85, 86 NMePhe pili 29: 97, 99 N. gonorrhoeae 29: 63, 94, 101, 102 Antigenic variation, adhesive pili 29: 62, 94 gonococcal pilin genes 29: 80, 81, 100, 102 Antigens artificial, S-layers as carriers 33: 259, 260 M. leprae 31: 79, 103, 210, 211 Antimalarial drugs interfering with glutathione metabolism 34: 280 Antimicrobial agents, organic acids as, see Organic acids Antimony 38: 182 Antimutagenic action 44: 239 Antimutagenic agent 44: 250 Antimycin A 43: 93 metabolic and cellular effects 43: 94 Antimycin A 29: 28; 40: 172 inhibition of respiration 27: 164 Antimycotic drugs, see Antifungal drugs, and names of specific substances
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Anti-oestrogen effects on C. immitis 34: 108 Antioxidant defences 46: 319, 321 see also under Free radical stress gene regulation by Fur protein 46: 327 low molecular-weight antioxidants 46: 323 Anti-oxidant defense system in micro-organisms 34: 242, 243, 269– 274 Antioxidants, low molecular-weight 46: 323 Anti-PAK antiserum 29: 81 Anti-PAO antiserum 29: 81 Anti-pED208 pilus antiserum 29: 85, 86 Anti-pilus antibodies 29: 72, 93 Antiporters 37: 100–102; 40: 410– 417 AP1 phosphorylases 36: 95, 96 AP1A hydrolases 36: 92 –95 4a-Peroxy-FMN intermediates in bioluminescent reaction 34: 12 – 14 Apf - mutation 34: 252, 259 Aphanothece halophytica 37: 304, 312 RuBisCO heterologous subunit reconstruction 29: 138, 139 RuBisCO S subunit function 29: 138 Apidaecin 37: 138, 148, 149 Apis mellifera 37: 138, 143, 145, 148, 149 Aplysia california 39: 302 Apocytochrome, cytochrome c biosynthesis 46: 277, 279, 281 Apogamic strains in Physarum polycephalum 35: 3, 6, 26, 28 –30, 33, 34 Apogamy 30: 28 Apomictic gene transfer 30: 46 Apomictic parthenogenesis 30: 27, 28 Apomicticrothallic interconversion 30: 35, 36 Apomixis 30: 23 – 52 see also individual yeast strains; Sporulation applications 30: 46, 47 culture conditions affecting 30: 24, 37 –39, 43 definitions 30: 26 – 29 diploid 30: 30 – 32 ecology 30: 43 –45, 45 environmental modification 30: 36 – 39 facultative 30: 29, 36, 44 nucleomitochondrial interactions 30: 41, 42 frequency, value and significance 30: 44 – 46 gametophytic 30: 27 haploid 30: 29 – 31 in algae 30: 32, 33
27
in ascomycetes and basidiomycetes 30: 30, 31 in eukaryotic micro-organisms 30: 29 – 33 in fungi 30: 30, 31 terminology 30: 28, 29 in plants 30: 26, 27, 35 in protozoa 30: 32 in rotifers 30: 32 in silkworms 30: 46 in slime moulds 30: 31, 32, 35, 36 in yeasts 30: 23, 25, 26, 28 ecology 30: 42 – 45 inheritance 30: 33 – 36 in zoology, terminology and definitions 30: 27 induction of, conditions favouring 30: 38 influence of cell cycle stage (age) 30: 24, 40, 43 meaning and terminology, development of 30: 26 – 29, 48 meiosis control, timing of events 30: 39 – 41 meiosis II before meiosis I complete 30: 34, 35, 39 origins of 30: 36 resistance to environmental stress 30: 42, 43, 45 Apoptosis see Programmed cell death Appendicitis 28: 67 Aquaspirillum autotrophicum 39: 260 Aquaspirillum magnetotacticum 31: 144 see also Magnetite; Magnetotactic bacteria axenic culture 31: 131, 139, 140 biotechnological applications 31: 177 fine structure 31: 146– 148 iron content and in medium 31: 144, 145 iron scavenging 31: 145 magnetic moment 31: 166 magnetite crystal 31: 148, 149 growth 31: 157 lattice images 31: 149, 150 morphology 31: 147, 150, 154, 155 magnetotaxis with aerotaxis 31: 136, 143, 169 micro-aerophilic 31: 144, 169 nitrate metabolism 31: 145 non-magnetic mutant (NM-1A) 31: 144, 159 occurrence 31: 131 optical birefringence 31: 145 outer-membrane proteins (OMPs) 31: 144, 145 oxygen tension for growth 31: 143– 146, 173 phenotypic properties 31: 139 physiology 31: 143– 146
28
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Aquaspirillum serpens, double S-layer 33: 234 flagella, basal body 33: 285 S-layer role in predation 33: 253 Aquatic environments 41: 269–271 ammonia concentrations 30: 127 particle-associated bacteria 32: 77, 78 Aqueous pores, cell membrane evidence, polyene-bounded 27: 26 –28 Aquifex aeolicus 44: 6; 46: 301 haem proteins 46: 295 Aquifex pyrophilus 39: 260 Aquiflex aeolicus 41: 263 ara genes 30: 226 Arabidopsis 43: 15, 23, 24; 41: 143, 194 Arabidopsis thaliana 35: 16; 36: 67; 37: 14; 45: 117, 185 mutant, RuBisCO not activated in light 29: 144 RuBisCO activase 29: 144, 145 Arabinitol 33: 168 accumulation 33: 169, 171, 173, 174 Debaryomyces hansenii 33: 170, 171, 187, 193 non-growing phases 33: 170, 173 regulation 33: 187, 188 solute-specific 33: 171 Zygosaccharomyces rouxii 33: 171, 179, 188 biosynthesis, pathway 33: 177, 179 catabolism, pathway 33: 179 in Debaryomyces hansenii, dynamics of increases 33: 170, 171 regulation of accumulation 33: 187, 193 osmoregulatory role 33: 171, 173, 174 evidence for 33: 169 uptake mechanism 33: 180, 181 Arabinofuranosidase 37: 32, 55, 56 Arabinogalactan (AG) 39: 140, 156– 160, 158, 168– 171, 174, 175, 177, 185 Arabinogalactan 31: 77, 79, 83 Arabinomannan (AM) 39: 140, 141, 143 Arabinose 31: 77; 37: 112 in repression of hydrogenase activity 29: 6 oxygen-insensitive mutants 29: 7 Arabinose-binding protein (ABP) 33: 298 Arabinoxylan 37: 57 Arabitol 37: 287 ArbB, B. subtilis s w affecting 46: 77 – 79 Archaea 39: 236, 237 gene transfer systems 39: 243, 244, 246, 247 physiological characteristics and inorganic sulfur-metabolising enzymes 39: 240– 242
Archaea 40: 124, 353, 361– 363, 366 classification of transport proteins 40: 81 – 136 origin 40: 364, 365 Archaebacteria 29: 166– 172; 30: 12, 17; 33: 214, 222– 225; 37: 120; 40: 285; see also individual species biochemistry 29: 170, 171 cell-envelope in 29: 170 central metabolism 29: 176– 193 citric acid cycle 29: 186– 190 evolutionary origins 29: 191 gluconeogenesis 29: 183– 185, 191 glycerol synthesis 29: 185, 186 hexose catabolism 29: 176– 182 patterns of 29: 190– 193 chemotaxis 33: 279 concept of phylogenetically distinct group 29: 167, 168 dihydrolipoamide dehydrogenase in 29: 206– 209 elongation factor, (EF-2) in 29: 171 enzyme diversity 29: 194–217, see also citrate synthase and succinate thiokinase 29: 213– 216 dehydrogenases with dual cofactor specificity 2-oxo acid: ferredoxin oxidoreductases 29: 193, 199– 205 enzymes, adaptation of for extreme conditions 29: 217 halophilic 29: 217– 220 salt bridges in 29: 221 structure 29: 217– 222 thermophilic 29: 220– 222 enzymology in 29: 171 eubacterial features 29: 171 eukaryotic characteristics 29: 171 evolution 29: 167, 172, 205 halophilic 29: 167, 169, 170, 217 alkaliphilic 29: 206, 213 amino acid and protein utilization 29: 176, 183, 186 carbohydrate-metabolizing strains 29: 176, 186 central metabolic pathways summary 29: 192 citrate synthase in 29: 213– 215 citric acid cycle in 29: 186, 187 class I aldolase in 29: 183, 184 classical 29: 206, 213 dihydrolipoamide dehydrogenase activity in 29: 206, 207 ferredoxins [2Fe-2S] in 29: 205 gluconeogenesis in 29: 183
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 glycerol synthesis 29: 185 hexose catabolism in 29: 176– 179 M6 strain, see Halobacterium saccharovorum succinate thiokinase in 29: 213, 215, 216 2-oxo acid oxidoreductases in 29: 202– 205, 209 hexose catabolism 29: 176– 182 histone-like proteins in 29: 171 lipids in 29: 170, 185 methanogenic 29: 167– 169 central metabolic pathways summary 29: 192 citrate synthase in 29: 214, 215 citric acid cycle in 29: 189, 190 dihydrolipoamide dehydrogenase in 29: 207 gluconeogenesis in 29: 182, 183, 191 glycerol synthesis in 29: 186 hexose catabolism 29: 182 malate dehydrogenase in 29: 198 reverse Embden-Meyerhof pathway 29: 182– 184, 191 succinate thiokinase in 29: 215 methanogens as, Lake’s terminology 29: 170 mRNA in, eukaryotic features 29: 171 phenotypes 29: 167 phylogenetic tree, based on 16S rRNA sequences 29: 168, 169 based on 16S/18S rRNA sequences 29: 167, 168 based on hybridization homologies 29: 169 phylogeny 29: 167– 170 main divisions 29: 167, 169 protein synthesis initiation in 29: 171 ribosome and rRNA in, eubacterial features 29: 170 S-layer, see also S-layer cytoplasmic membrane interactions 33: 230, 231 double 33: 234 gene sequences 33: 244– 247 growth 33: 235, 236 proteins, glycosylation of 33: 239 role 33: 253, 254 sulphur-dependent 29: 167, 170 thermoacidophilic 29: 217 central metabolic pathways summary 29: 192 citrate synthase in 29: 213– 215 citric acid cycle in 29: 187– 189 dihydrolipoamide dehydrogenase in 29: 207
29
dual cofactor specificity of enzymes 29: 194– 198 ferredoxins [4Fe-4S] in 29: 205 gluconeogenesis in 29: 183 glucose dehydrogenase in 29: 177, 196, 197 glycerol synthesis 29: 185 heterotrophic growth on yeast 29: 183, 187 hexose catabolism in 29: 178, 179– 181 isocitrate dehydrogenase in 29: 194– 196 malate dehydrogenase in 29: 198 phenotype 29: 169 range of (optimal temperatures), 221, 222 similarity in enzymology of species 29: 216 succinate thiokinase in 29: 214, 215 transcription in, eukaryotic features 29: 171 tRNA in 29: 170, 171 Archaebacteria, CYPs 47: 161, 162 Archaeoglobus 41: 204, 213 Archaeoglobus fulgidis 45: 180 ARF (ADP-ribosylation factor) 33: 102, 103 localization in Golgi complex 33: 103 ARF gene 33: 101– 103 ARF1 gene 33: 102 arf1 0 mutant 33: 103 ARF2 gene 33: 103 Arginase 26: 13, 15 – 22; 31: 106 ammonia effect 26: 27 induction mechanism 26: 21 nitrogen catabolite repression 26: 16 – 18 metabolic signal 26: 19, 20 release in NADP+-glutamate dehydrogenase mutants 26: 18, 19 non-specific induction 26: 21 synthesis 26: 22 nitrogen starvation effect 26: 20, 21 Arginine 26: 32; 42: 131, 183– 185 biosynthesis in E. coli 45: 285 catabolism 31: 109 degradation 26: 12 – 24 decarboxylase 37: 238, 240 deiminase system (ADS) 42: 252– 256 permease 26: 37 pool 26: 22 recycling of cofactors during biosynthesis 45: 286 residues, in periplasmic domains of transducers 33: 304
30
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
transport E. coli 28: 174 S. typhimurium, P protein transport 28: 164 Argp - mutation 34: 252, 259 ARO7 gene 33: 198 Aromatic acids, photometabolism of 39: 353 Aromatic amino acid transport, E. coli 28: 171– 173 aroP gene 28: 172 pheP gene 28: 172 tyrR gene 28: 171– 173 Aromatic amino acids 42: 126– 128; see Amino acids Aromatic catabolism 31: 3, 4 see also Pseudomonas putida mt-2; TOL plasmids; Toluene catabolism Aromatic compounds aerobic and anaerobic conditions 39: 354 carbon dioxide requirement 39: 354 catabolism by purple non-sulfur bacteria 39: 343, 344 cometabolism 39: 353 concentration 39: 352, 353 excretion by purple non-sulfur bacteria 39: 349– 352 factors regulating biodegradation 39: 352– 354 heterocyclic 39: 347, 348 metabolism of 39: 341– 354 photobiotransformation by purple non-sulfur bacteria 39: 348, 349, 349 position of substitutions 39: 353, 354 site of inhibition 39: 362, 363 Arrhenius plots 33: 29 Arsenate, piliated cell sensitivity 29: 73 Arsenate-adapted cells 32: 15 Arsenic 38: 182 bacterial resistance 38: 225, 226 Arsenical (Ars) efflux family 40: 92, 93 family transporters 40: 129 Arsenite metabolization 34: 271 Arsenite, induced heat-shock protein synthesis 31: 208 ArsR 44: 197, 199, 200 Arthrobacter 30: 167; 35: 278; 37: 310; 41: 118; 42: 194, 196 dehalogenases haloalcohol 38: 154– 157 haloalkane 38: 164 Arthrobacter crystallopoietes, organic acid effect on enzymes in 32: 97 Arthrobacter globiformis 42: 106 Arthrobacter paraffineus 27: 216, 234
Arthrobacter pascens 37: 310 Arthrobacter photogominus 37: 121, 122 Arthrobacter spp., LED control in 36: 207 Arthrobotrys conoides induction of nematode trap formation 36: 120, 121 nutrition of 36: 115 Arthrobotrys dactyloides 36: 130 cuticle penetration in 36: 132 dense bodies in 36: 123 mechanical nematode traps in 36: 124 nematode trap forming on agar 36: 116 nematode trapping devices 36: 118 nutrition of 36: 115 Arthrobotrys oligospora adhesion in 36: 127– 129 adhesive trap in 36: 121, 122 colonization and digestion of the nematode 36: 133– 137 cuticle penetration 36: 130– 132 dense bodies in 36: 123 hyphal nets 36: 118 induction of trap formation 36: 120, 121 infection strategy 36: 138 nematode-fungal interactions 36: 125, 126 nematodes as nutrients 36: 116 nematode-trapping ability 36: 113 nutrition of 36: 115 trap forming on agar 36: 116, 119 Arthrobotrys robusta 36: 115 Arthrobotrys sp. 36: 128 induction of nematode trap formation 36: 121 Arthroderma spp. benhamiae disease caused by 34: 130 mammalian sex hormones affecting 34: 111, 130 mammalian sex hormones with binding sites in 34: 115, 119 incurvatum, sex hormones in 34: 101 as ‘units of proliferation’ 46: 207 As yet uncultured (AYU) bacteria 41: 99– 102 Ascocarps 34: 148 Ascochyta imperfecti 35: 278 Ascomycetes 26: 2 apomixis in 30: 30 hyphal structure 38: 2 Ascomycotina, fruit bodies of 34: 148 Ascorbate 29: 30, 32; 46: 323 enhancement, amphotericin activity 27: 294 peroxidase in cyanobacteria 34: 271 Ascospores, see also Ascus; Sporulation formation 30: 23 – 25, 33
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 yeast, low wall permeability and hydrophobic surface 30: 43 Ascosporogenous yeasts, sex hormones in 34: 86 – 97 Ascus, spore number 30: 23, 24 two-spored 30: 24 see also Apomixis; Sporulation diploid 30: 25, 40 factors influencing 30: 24 haploid with epiplasmic nuclei 30: 24 influence of cell cycle stage (age) 30: 24, 40, 43 prerequisites for development 30: 24, 40 asd gene 30: 219, 229 Asexual reproduction in yeasts, advantages and disadvantages 30: 44 Asparaginase I 26: 12, 31 Asparaginase II 26: 31 – 34 Asparagine 42: 136 production by cyanoalanine-utilizing bacteria 27: 101 Aspartate 42: 136 amino acids 42: 136– 139, 187– 190 aminotransferase 42: 136 amino-acid synthesis from, M. leprae 31: 98, 109 carbamoyltransferase 31: 111 CheY phosphorylation, effect on 33: 320 codons 29: 218 in halophilic enzymes 29: 218 -maltose transducer, see Tar protein residue (position 113) of luciferase a subunit 34: 17 synthesis 43: 127, 128 transcarbamylase 31: 93 Aspartic acid 37: 19, 24 cyanoalanine utilization 27: 101 metabolism to cyanide 27: 87 Aspartic semialdehyde 37: 296, 299 Aspartic-protease renin inhibitors 36: 3 Aspartokinase 46: 287 Aspergillus; 37: 198; 41: 77 A. candidus, A. clavatus, A. flavus, A. ustus and A. variecolor 35: 278 A. nidulans 35: 17, 21, 58 hydrophobins from 38: 13 rodlet layer 38: 11 – 13 Aspergillus aculeatus 37: 10, 17, 22, 26, 27 Aspergillus awamori 37: 15 Aspergillus chevalieri, minimum water potential 33: 161 Aspergillus flavus, ABC drug transporters 46: 169 Aspergillus fumigatus 43: 54 resistance to 5-fluorocytosine 27: 11
31
Aspergillus fumigatus, ABC drug transporters 46: 169 Aspergillus japonicus, glycerol utilization, pathway 33: 178 Aspergillus kawachii 37: 15, 17 Aspergillus nidulans 26: 57; 37: 237; see also Nitrogen metabolite repression ABC drug transporters 46: 170 ACV synthase from 38: 96, 97 allele areA-102 26: 61 allele xprD-1 26: 61, 62 carbon catabolite repression 26: 74, 75 cis-acting regulatory mutations 26: 76 – 78 compatible solutes in 33: 172, 174 conidiogenesis, molecular genetics 38: 27, 28 gene areA 26: 59 – 61 gene creA 26: 74, 75 gene gdhA 26: 70 gene nirA 26: 72 – 74 glutamate dehydrogenase, NADPlinked 26: 70 glycerol utilization pathway 33: 178 hydrophobin gene 38: 4 interaction a- and b-tubulins 27: 8 intracellular sodium/potassium ion levels 33: 184 L -glutamine as nitrogen metabolite corepressor 26: 70, 71 mutation areA-102 26: 76 mutation areAd 26: 60 – 62 mutation areB 26: 68 – 70 mutation nis-5, 26: 77 mutation uap-100 26: 76, 77 nitrite reductase in 26: 77 oxygen repression 26: 76 pathway-specific regulatory genes 26: 72 – 74 phosphorus regulation 26: 75 potassium ions as predominant cation 33: 183 pyrimidine auxotrophs 26: 60 sulphur regulation 26: 75 wild type 26: 60 Aspergillus niger 29: 249, 272; 37: 14, 15, 190, 192, 194, 195; 41: 54, 59, 61, 66 – 69, 77, 78 amine oxidase 27: 156 glycerol formation 33: 178 oxalate biosynthesis by 41: 53 polyol content 33: 171, 172 regulation 33: 190 Aspergillus oryzae 37: 17, 22 Aspergillus quadricinctus 43: 48
32
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Aspergillus spp. flavus, glutathione-related processes 34: 284 fumigatus, mammalian hormones affecting 34: 106 nidulans glutathione-related processes 34: 260 psi factors 34: 103, 104 spore rodlet-deficient mutant 34: 176, 177 oryzae, glutathione-related processes 34: 245, 246, 251 Aspergillus tubigensis 37: 15 Aspergillus wentii, osmotic potential 33: 153 turgor relationship to water potential 33: 154 Aspergillus, optimum water potential of species 33: 158 Assimilatory nitrate reductases (NAS) 45: 53 AT content of lux gene upstream DNA34: 30, 31 Atebrin 29: 33, 34 Atemia salina, 36: 82, 91 Atm1 iron transport protein 46: 294 Atomic absorption spectroscopy 38: 193 with chromatography 38: 198 Atomic emission spectroscopy 38: 193 Atomic fluorescence spectrometry 38: 194 ATP 44: 48, 49, 118; 45: 274, 275, 277, 279, 282, 283, 313, 314, 317, 318, 321, 326, 335 CheA phosphorylation 33: 320 CheY phosphorylation 33: 318 decrease in bacteria after organic acid incubation 32: 96 generation, at low water potentials 33: 198, 199 per unit of glucose 33: 199 hydrolysis 31: 233, 234, 245 in acetate utilization 31: 242, 243 in chemotaxis 33: 292, 318, 320 in M. leprae metabolism 31: 89, 112 in protein transport, to endoplasmic reticulum 33: 87 to Golgi complex 33: 92, 93 in vesicle budding 33: 89 relief from glucose starvation, PIP correlation 32: 16 requirements in bioluminescence 34: 6 substrate in ADPglucose pathway 30: 191 synthase 31: 233 synthesis in anaerobic respiration 31: 226, 230, 233, 234 carbon dioxide reduction 31: 238, 239
fumarate respiration coupling 31: 253–255 hydrogen/sulphate respiration 31: 248, 249 in sulphate reduction 31: 246 lactate/sulphate growth 31: 249, 250 nitrate/nitrite reduction 31: 256, 259 utilization in sulphate reduction 31: 245, 246 utilization, increase at low water potentials 33: 199, 200 ATPase 39: 7; 42: 249; 44: 104, 117, 204 activity, peribacteroid membrane 43: 145 calcium 37: 94, 96 – 98, 101, 114 Ca2+, in endoplasmic reticulum retention 33: 109 gene 33: 202 in Deb. hansenii, glycerol accumulation regulation and 33: 187 inorganic ion transport and 33: 184, 202 pH stress 37: 234– 237, 253, 254, 260 plasma-membrane proton, in Achlya 30: 97, 98 ATP-binding cassette (ABC) 39: 64 superfamily 40: 107, 109– 121, 111– 119, 123, 129 superfamily of membrane transporters 36: 66 – 68 ATP-binding proteins, SEC12p and N-thylmaleimide-sensitive factor as 33: 99 ATP-driven active transporters 40: 87, 91, 131 ATP-driven permeases 40: 124 ATP-gated cation channels (ACC) 40: 129 Attacins 37: 137, 147 Attenuation 33: 5 Attini 37: 63 Attractants (chemotactic) 33: 298, 299 see also Chemotactic signal transducers; Chemotactic signal transduction chemoreceptor interactions 33: 302– 305 chemoreceptors for 33: 298– 300 in chemotactic signalling model 33: 332, 333 transducer stimulation 33: 305– 310 A-type cells, glyoxalase 37: 208, 209 Aureobasidium pullulans 37: 16 Auricularia spp. 42: 2 Autoaggregation, in biofilms 46: 214, 215 Autoflocculation 33: 20 Auto-induction of lux gene expression 34: 35 – 43 Autolysin 26: 96, 97; 39: 173 B. subtilis peptidoglycan breakdown 32: 184, 185
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 chain substitution effect 29: 286, 287, 290 germination initiation protein 28: 38 inhibition by Forssman antigen 29: 283– 285 inhibition due to 29: 283– 286 lipoteichoic acid interaction 29: 283– 290 micelles and liposomes role 29: 289 phospholipid inhibition 29: 288, 289 synthesis linked with flagella synthesis 32: 149 Autolysis 40: 373 Automixis 30: 28, 30 Autonomous process following rules 32: 204, 205, 208 Autonomously replicating sequence (ARS), C. albicans 30: 58 Autophosphorylation 37: 111, 112, 119 Autoradiography 37: 88 Autotrophs 29: 2, 115, 132 see also Ribulose 1,5-bisphosphate carboxylase/oxygenase as ecological markers for 29: 116, 155, 156 carboxysomes in 29: 115, 155 evolution 29: 141, 142 methanogenic arcbaebacteria 29: 182 RuBisCO enzyme function 29: 116, 136, 155 Auxiliary transport proteins 40: 87, 88, 92, 131 Auxins, hyphal walls and the effects of 34: 187 Auxotrophies supplementation 26: 75, 76 Avicel 37: 6, 8, 9 Ax mutation 34: 157–159, 161, 163, 165, 167 Axenic culture, magnetotactic bacteria 31: 138 –141 Axisymmetric drop shape analysis, for hydrophobins 38: 16 Ay mutation 34: 157, 158 25-Azacholesterol 34: 80 Azasqualene and hopanoids 35: 257, 258, 266 Azelaic acid, effect on macromolecule synthesis 32: 97 8-Azido-AMP, inhibitor of ADPglucose pyrophosphorylase 30: 203– 205 8-Azido-ATP 30: 200 Azlocillin 36: 210 Azoarcus sp. 37: 39 Azole inhibition, CYPs 47: 158– 160, 169– 174 Azoles 36: 68 mechanism of action 46: 160– 162 resistance mechanisms
33
ergosterol synthesis pathway enzymes 46: 162– 164 P45014DM alterations 46: 162, 163 structures 46: 158 Azoreductases 42: 32 Azorhizobium 43: 119, 181; 40: 193 Azorhizobium caulinodans 43: 139, 182, 196, 209; 40: 191, 194, 196, 199; 45: 115 fixGHIS operon 40: 216, 217 fixNOQP genes 40: 214, 215 multiple oxidases 40: 208, 209 Azorhizobium tumefaciens 40: 195 fixNOQP genes 40: 215 Azospirillum 30: 17 Azospirillum brasilense 37: 290, 311; 40: 331; 41: 273; 45: 177 captan-resistant mutant 34: 283 Azotobacter 36: 263; 39: 1; 41: 118; 45: 136, 137 and cell-surface polysaccharide biosynthesis 35: 146, 166 and hopanoids 35: 251, 255, 261, 262 chroococcum 30: 12; 40: 286, 292, 331; 35: 255; 39: 4, 9, 10 electron acceptor reactivity of hydrogenase 29: 16 Hup2 mutants 30: 16 hydrogen oxidation, reducing equivalent donation 29: 24 nickel in 29: 20 hydrogenase activity in 29: 2, 4 lead resistance 38: 228 NifS function 46: 332 paspali 30: 17 vinelandii 30: 9, 12; 37: 100; 39: 4, 5, 9, 13, 14, 20 – 24, 23, 24; 40: 286, 292, 293, 294, 300, 309, 315, 323, 327, 328, 329, 331, 332; 43: 179, 194, 195, 201, 207, 208; 44: 9 – 11, 17; 45: 55, 66, 69, 137, 138 Aztreonam 36: 210, 211, 213, 214, 221 Azurin oxidase 40: 37 B mating-type gene 34: 158 dikaryon formation and the 34: 163–165 of U. maydis 34: 160, 161 b-(1 ! 3)-b-(1 ! 6)-Glucan, degradation, fruiting and 34: 154, 163 b-1,4-Glycanase cellulose hydrolysis 37: 2, 25, 27, 35, 38 cellulase systems 37: 46 –48, 53 genetics 37: 59
34
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
b2-Adrenergic receptor expresses in Sacch. cerevisiae, human 34: 127 B3 mutants, Pseudomonas putida 31: 40, 41 Bac, peptide 37: 138 Bacillus 39: 1, 13, 69; 41: 314; 45: 96, 215 YN-2000 40: 404, 424 Baccillus sp.; 36: 151 cellulose hydrolysis 37: 10, 13, 15 – 17, 22, 32, 37, 40, 55, 64 methylglyoxal 37: 198 osmoadaptation 37: 291, 292, 293 pH stress 37: 252 Bacillus acidocaldarius 35: 251, 255, 256, 259, 266, 209 Bacillus acidoterrestris 35: 251 Bacillus alcalophilus 40: 421, 425 Bacillus alvei, S-layer glycoprotein 33: 241 Bacillus amyloliquefaciens protease 28: 234 Bacillus anthracis 37: 93 Bacillus brevis 37: 37, 122 47 strain, S-layer genes 33: 244, 247 sequence 33: 244 S-layer proteins, biosynthesis 33: 249 structure 33: 244 HPD31 strain, S-layer protein, gene 33: 247 dinucleoside oligophosphates in 36: 83 S-layer overproducer strain 33: 260 Bacillus BTU 43: 197 Bacillus cereus 37: 115 cyanide degradation 27: 100 cyclic peptide antibiotics 27: 62 cytochromes in 36: 271, 272 dual-specificity glucose dehydrogenase 29: 197 ECF s factors 46: 65 glutathione-related processes 34: 248, 260 protease, penicillinase 28: 234 Bacillus chlororaphis, see Pseudomonas chloroaphis Bacillus circulans 37: 10, 13, 16, 22, 27, 36, 38; 39: 360 Bacillus coagulans, lipoteichoic acid, diacylglycerol as lipid anchor 29: 238 effect of temperature on alanine content 29: 271 glutathione-related processes 34: 284 Bacillus firmus 43: 177; 37: 236, 237; 40: 404, 405, 405, 407, 410– 413, 413, 416, 419, 421, 423, 424, 425, 426, 429
Bacillus halodurans, ECF s factors 46: 65 Bacillus japonicum 45: 129–131, 133, 136, 139–142 Bacillus lautus 37: 11, 17, 30 Bacillus lentus 40: 404, 406, 413, 414 Bacillus licheniform 39: 54 Bacillus licheniformis 44: 3, 27, 28 alkaline phosphatase 28: 234 alanylated short-chain homologues of lipoteichoic acid 29: 263 glycerophosphoglycolipids, glycolipids and lipoteichoic acids in 29: 235, 236 lipoteichoic acid synthesis, phosphate limitation 29: 268 lipoteichoic acid, diacylglycerol as lipid anchor 29: 238 magnesium-dependent enzymes 29: 293 749/C mutant NM105, S-layer glycoprotein 33: 246 Bacillus megaterium 35: 102; 37: 100, 155, 155, 247, 248; 39: 74, 357; 40: 417; 41: 273; 42; 245 b-cyanoalanine synthase activity 27: 83, 84 cyanide degradation 27: 101 cell lysis by organic acids 32: 95 growth and magnesium adsorption 32: 72 glutathione-related processes 34: 274 lipoteichoic acid diacylglycerol as lipid anchor 29: 238 estimates of content 29: 247 lipoteichoic acid synthesis effect of growth state 29: 267 sporulation effect 29: 270 phosphatidylethanolamine synthesis, site of 29: 276 phosphatidylglycerol pools 29: 261 Bacillus mycoides 35: 278, 282 Bacillus mycoides autoaggregation 46: 214 Bacillus pertussis 37: 115, 116 Bacillus polymyxa 37: 10, 30, 55 Bacillus pumilis 37: 16, 22, 26, 27 cyanide degradation 27: 100 glycerophosphodiesterase from 29: 272 Bacillus schlegelii 39: 260 Bacillus sphaericus 37: 37 2362, S-layer glycoprotein, gene 33: 246 P-1, S-layer role in phage adsorption 33: 253 S-layer assembly 33: 234 S-layer subunit incorporation site 33: 235
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Bacillus spp. antibiotic activity 28: 32 DNA synthesis, requirement 28: 48, 49 effect of cerulenin on natto, glutathione-related processes 34: 246 spore maturation 28: 51 sporulation, endotrophic completion 28: 40 energy-generating metabolic pathways 28: 34 factors determining 28: 39, 46 – 50 genetic loci 28: 27 nutrient starvation 28: 39 protein turnover 28: 38 protein-synthetic machinery 28: 50 substrate, conversion to biomass 28: 43 translational controls, sporulation 28: 50 Bacillus stearothermophilus 43: 189– 191; 37: 15, 16; 40: 423, 431; 44: 129 PV72, S-layer protein, gene 33: 248 metabolic fate of lipoteichoic acids 29: 272 salt bridges in thermophilic enzyme 29: 221 S-layer, assembly/structure 33: 232, 234 charged groups on, relevance 33: 255, 256 glycoproteins 33: 240, 242, 243 glycosylation ability loss with cultivation 33: 257 permeability studies 33: 255 subunit incorporation site 33: 235 Bacillus subtilis 35: 278; 39: 4 – 6, 5, 6, 8, 10, 12, 14, 15, 17, 20, 21, 39, 48, 54, 57, 61, 72, 73, 103, 149, 209, 360; 40: 98, 148, 286, 316, 331, 369, 375, 375, 380, 381, 384, 387, 388, 409– 411, 414, 415, 416, 417, 419, 423, 431; 41: 182, 183, 194, 197, 212, 213, 256, 259, 306; 42: 107, 183, 185, 261; 43: 186, 187, 194, 204; 3, 27, 28, 50, 52 – 57, 60, 62 – 66, 68, 70 –73, 75 –79, 94, 125, 128, 129, 150; 45: 55, 57, 58, 97, 160, 168, 171, 182, 183, 185, 187, 219; see also sporelation activation of s B by physical stress 44: 46 –48 activation of s B during energy depletion 44: 48, 49 adaptational network 44: 38bacilysin production 36: 53
35
ATP levels, after organic acids 32: 96 autolysins 32: 149, 184, 185 autolytic enzymes 26: 144 bacilysin production 36: 53 bacterial thread system 32: 186, 188– 192 b-N-acetylglucosaminidase inhibition 29: 285, 287, 288 C230 expression in 31: 62 calcium 37: 88, 92, 93, 97, 98, 100, 110, 114, 115, 123 cellulose hydrolysis 37: 10, 16, 24, 30, 58, 62 cell lysis by organic acids 32: 95 cell-wall twist 32: 185, 186 see also Bacillus subtilis FJ7 strain chemotaxis 33: 279 continuous signal generation 36: 168 ctaB gene 46: 276 cytochrome c maturation system 46: 280 cytochromes in 36: 270 DNA transformation in biofilms 32: 62 dual-specificity glucose dehydrogenase 29: 197 ferrochelatase 46: 274, 275 flagella and autolysin synthesis 32: 149 flagellar motor function 32: 152 flagellin C-terminal region deletions 32: 143 flagellin mutation 32: 127 FJ7 strain, cell walls 32: 188 Fur-related proteins 46: 327 genetic analysis, differentiation 28: 49 germanium accumulation 38: 227 glycan length in cell wall 32: 179 glycerophosphoglycolipids, glycolipids and lipoteichoic acids in 29: 235, 236 heat stress stimulon 44: 40 –42 hemD gene 46: 296, 297 hemH gene 46: 274 hemY gene 46: 273 initial (Young’s) modulus 32: 195, 198 ionic environment effect on 32: 197, 198 levansucrase 28: 234 lipoteichoic acid synthesis, in phosphatidylglycerol biosynthesis inhibition 29: 248 phosphate limitation 29: 268, 269 lysozyme effect on threads 32: 198, 199 Marburg, lipoteichoic acids in 29: 234 mercury resistance 38: 229 blotting analysis 38: 213 metabolic fate of lipoteichoic acids 29: 272 methylglyoxal 37: 198
36
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
osmoadaptation 37: 292, 302, 304, 313, 314 peptides in cell wall 32: 180 peptidoglycan turnover 32: 184 peptide transport in 36: 38 peptides 37: 145 peptidoglycan turnover 32: 184 percent competency 28: 25 pH stress 37: 232 poly(glycerophosphate) lipoteichoic acids in, chain composition 29: 242 polymers in cell wall 32: 181 pretreatment with sublethal peroxide, effects 31: 199 protoporphyrinogen oxidase 46: 273 mutants 46: 299 relaxed modulus 32: 200, 201 regulation of s B-activity – signa1 transduction after stress and starvation 44: 43– 49 sensitivity to dialaphos 36: 40 sigma factors 46: 64 –80 ECF s factors (others) 46: 80 s B-dependent general stress response 44: 42 – 72 s H 46: 52 s M 46: 79, 80 regulation 46: 79 s W 46: 71 – 79 alkali shock stimulon 46: 77 control on antibiosis regulon 46: 76, 77 differences from s x regulons 46: 75 expression in sigX mutants 46: 73 gene number 46: 71 overlap with s x regulons 46: 71, 74, 75, 99 PbpE transcription 46: 77 promoters 46: 72, 73 regulon 46: 78 regulon defined by promoter consensus searches 46: 75 regulon defined by ROMA 46: 76 regulon defined by transcriptional profiling 46: 75, 76 transition state regulators 46: 77 – 79 s X 46: 64, 65 – 71 cell envelope modification control 46: 68 – 71 differences from s w regulons 46: 75 induction by cell wall antibiotics 46: 71 modification of charge of cell 46: 69 overlap with s w regulons 46: 71, 74, 75, 99 regulon and promoters 46: 66
regulon characterization by promoter consensus search 46: 68 relationship to s Fecl 46: 65 resistance to CAMPs 46: 69 silencing of s B-activity during balanced growth 44: 43– 46 sporulation 28: 3 inhibition of DNA synthesis 28: 49 nutritional limitation 28: 47 specific and non-specific events 28: 32, 33 stress proteins in 31: 189 stress response 44: 35 – 72 stress/strain curves 32: 192, 193 subsp. niger 29: 271 teichoic acid in cell wall 32: 181, 209 teichoic acids, as ligands for autolysins 29: 285 teichoic acid-synthesizing enzymes 29: 277 teichoicases from 29: 272 tensile strength and humidity 32: 192, 194, 197, 199 tensile tests on ‘threads’ 32: 191, 192 ‘thread’ formation 32: 189– 192 twist angles 32: 213 twisting with elongation 32: 185, 203, 204, 207, 208 W23, biosynthesis of teichoic acid, location 29: 276 Bacillus thuringiensis 37: 97 Bacillus, see also alkaliphilic Bacillus species Bacilysin 36: 30, 53, 55 Bacitracin 33: 249 action 27: 62 cell wall synthesis inhibitors 28: 236 growth promotion, meat animals 28: 244, 245 haemolysin inhibition and enhancement 28: 232 structural formula 27: 63 Bactenecins 37: 137, 138, 166 Bacteraemia, E. coli 28: 78 Bacteria 39: 236, 237 gene transfer systems 39: 246, 247 physiological characteristics and inorganic sulfur-metabolising enzymes 39: 240– 242 Bacteria 40: 124, 129, 353–399 see also individual bacterial genera action on macromolecules 32: 73 – 75 activity in laboratory 32: 62 – 76 see also Growth, bacterial adsorbed electrolytes effect 32: 66 assessment by assimilation 32: 63 – 65
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 activity in natural environments 32: 77, 78 assessment by NMR 32: 64 adhesion to host cells via lectins 33: 53, 63 aerobic respiratory chains in 43: 165– 224 aerobic: see Aerobic bacteria; amino-acid assimilation 32: 66, 67 anaerobic: see Anaerobes; attached to solid surfaces 32: 53 – 85 see also Surfaces; Solid – liquid interface biofilms: see Biofilms; bioluminescent: see Bioluminescent bacteria brown sulphur, ecological distribution 26: 161 cell density-dependent gene regulation 46: 17, 22 cell-surface layers 33: 213– 275 see also S-layer nomenclature 33: 214 classification and crystalline surface layers 33: 214–225 classification of transport proteins 40: 81 – 136 comparison with free cells, activity in natural environment 32: 78 homeostatic mechanisms 32: 80 low molecular-weight nutrient utilization 32: 70 – 72 macromolecule utilization 32: 73 – 75 nutrient utilization 32: 69, 70 responses to conditions 32: 67, 68 energy circuit 26: 126– 130 energy requirements 26: 125, 126 flagella, see Flagellum, bacterial flocculent yeasts binding to 33: 13, 20 green 26: 158, 159 (table, n.) ferredoxin photoreduction 26:’194, 195 green sulphur 26: 159 (table, n.) 160 ecological distribution 26: 161 in heterologous flocculation 33: 20, 21 intracellular pH 26: 146 iron storage in see iron storage in Bacteria low molecular-weight substance transport 32: 73 mechanical behaviour of cell walls, see Cell walls motility and chemotaxis, see Chemotaxis; Motility mRNA 46: 7 labelling 46: 7 Northern analysis of abundance 46: 12
37
non-pathogenic, microarray expression studies 46: 15 nutrient availability in flowing system 32: 63, 70 nutrient utilization 32: 69 – 75 complex substrates 32: 59, 73 – 75 low molecular-weight 32: 56, 70 – 72 oligotrophic conditions 32: 69, 70 organic acids effects, see Organic acids pathogenic, microarray expression see Expression profiles; Microarray analysis permeability to glycerol 33: 182 photosynthetic see Photosynthetic bacteria primary/secondary transport systems 26: 128, 129 (fig) processes energized/regulated by proton motive force 26: 143 (table), 144 programmed cell death 46: 231, 232 purple 26: 158, 159 (table, n.) dark, fermentative metabolism 26:’170 nitrate reduction 26: 164 nitrogenase activity 26: 195 purple non-sulphur 26: 147, 159 (table, n.), 160 ecological distribution 26: 162 nitrate reduction 26: 164 purple sulphur, maximal rate of H2 photoproduction 26: 167 (table) quiescent state 46: 228, 229 reconstituted lyophilized luminous 26:’277 ‘resistance training’ 46: 233 response to environmental conditions 32: 67, 68 sensing of proximity of surfaces 46: 216 sigma factors see Sigma factors significance in natural environments 32: 76 – 79 epilithic 32: 79 particle association 32: 76 – 78 stationary phase cultures 46: 228 stress proteins in 31: 189– 192 substrate transport systems 32: 56 superoxide formation 46: 115– 118, 321 surface micro-environment 32: 54 – 62, 65 – 67 biofilm, see Biofilms hydrodynamic conditions 32: 54, 55, 65 macromolecule adsorption 32: 57 – 61 physicochemistry 32: 55 – 57, 66 survival in biofilms 32: 75, 76 tethered cells, rotation 33: 290, 315, 316 electrostatic charge 32: 67, 66 enhancement/reduction 32: 63
38
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
environmental conditions 32: 67, 68 growth inhibition 32: 70 substratum effect 32: 65 –67 types of 32: 63– 65Bacterial cell surface sensing 44: 248 Bacterial chemotaxis 45: 160 Bacterial clamping 39: 152 Bacterial ferritins 40: 302– 305 iron core 40: 326– 329 sequence alignment 40: 309 structure 40: 320 Bacterial flagella synthesis genetics 41: 309, 310 Bacterial flagellar filaments 41: 295 Bacterial flagellar gene expression and assembly regulation 41: 302 Bacterial flagellar motor 41: 291– 337 function 41: 310–322 driving force for rotation 41: 312– 316 relationship between torque and rotational speed 41: 320 reversibility 41: 316, 317 smoothness of rotation 41: 321, 322 torque versus rotation rate 41: 317– 320 measured characteristics 41: 323 models 41: 322– 328, 324, 325 Bacterial flagellar rotation, methods of measuring 41: 310– 312, 311 Bacterial flagellar structure 41: 296– 310, 297 basal body 41: 301 export apparatus 41: 308, 309 filament 41: 298, 299 hook 41: 299– 301 Bacterial flagellum 41: 235, 236 Bacterial genomes expression profiles see Expression profiles haem biosynthesis and see Haem biosynthesis paralogs 46: 10 reduced, haem synthesis genes 46: 293– 295 sequenced 46: 29, 292, 293 size and regulatory function 46: 97 Bacterial growth, effects of fermentation acids 39: 205– 234 Bacterial locomotion and mechanisms of control, history and terminology 45: 159– 162 Bacterial physiology, population-densitydependent determinant of 45: 199– 270 Bacterial swimming 33: 280, 287– 289; 41: 233 see also Flagellar rotation; Motility, bacterial
flagellar rotation, see Flagellar rotation in chemotactic signalling model 33: 333 mechanism 33: 289– 291 patterns 33: 289 patterns 41: 237, 238, 237, 292, 293, 294, 295 physical constraints 33: 288, 289 rate 33: 288 three-dimensional random walk 33: 289 biasing by chemical gradient 33: 296, 297 Bacterial tactic responses 41: 229– 289 Bacterial taxis, use of term 41: 232, 233 Bacterial thread system 32: 186, 188– 192 see also Bacillus subtilis FJ7 strain effect of lysozyme 32: 198, 199 tensile tests on threads 32: 191, 192 thread formation 32: 189– 191 Bacterial viability 41: 93 –137 definition 41: 95, 96 Bacterial wall elasticity 40: 382 fabric 40: 373– 379, 376– 379 in plane of stress 40: 380 first bacterium 40: 388– 392 formation 40: 367– 374, 369 growth aspects 40: 382– 388 non-growth aspects 40: 374– 382 porosity 40: 380– 382 Bactericidal/permeability increasing factor (BPI) 37: 136 Bactericidin 37: 138, 139, 151 Bacteriocin-like peptides, Streptococcus pneumoniae 46: 22 Bacteriocins 42: 37 – 41 Bacteriocytes 46: 33 Bacterioferritin 38: 216 heteropolymers 40: 311– 313 Bacterioferritin-associated ferredoxin (Bfd) 40: 281, 282, 286, 287, 329–333 Bacterioferritins 40: 281, 286, 287, 293– 302, 296, 299, 340 see also ferritin – bacterioferritin – rubrerythrin (F –B – R) superfamily haem group of 40: 298– 302 iron core 40: 326– 329 iron uptake in 40: 323– 326 native core properties 40: 327 properties of 40: 292 sequence alignment 40: 309 structure 40: 316– 320, 318 ubiquity 40: 314 Bacteriohopanepentol and hopanoids 35: 249, 254; 35: 255, 267; 35: 248, 254, 256, 259 ether 35: 249, 254, 259 glycoside 35: 248, 254, 259
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Bacterionema matruchotii 31: 79, 83, 84 Bacteriophage(s) 41: 108 adsorption via flagella 33: 280 fd 29: 65 filmentous DNA, attachment to F-like pili 29: 89 evidence for pilus retraction 29: 93 F pili interaction 29: 87 fl 29: 87 attachment to F pili 29: 90 interactions with F-like pili 29: 86, 87 lambda 29: 41 Pf 29: 65 Ps. aeruginosa pili, attachment 29: 96 QB 29: 86 attachment to F-like pili 29: 89, 91 R17 29: 54, 56 attachment to F-like pili, proteins in 29: 89, 91 interaction with F-like pili 29: 86, 87 sensitivity of conjugative pili 29: 58, 60, 61 S-layer role in adsorption 33: 253 Bacteriophage x, adsorption to flagellar filament 33: 280 Bacteriorbodopsin (BR) 41: 263 Bacteriorhodopsine 26: 130 Bacteriuria, E. coli 28: 78 Bacterodies fragilis, stress proteins 31: 189, 200 Bacteroid 30: 15 membrane, transport across 43: 145 Bacteroides 42: 30 Bacteroides buccae, pathogenicity and S-layer 33: 253 Bacteroides cellulosolvens 37: 51, 52 Bacteroides distasonis catalase production 28: 9 inducible superoxide dismutase 28: 21 Bacteroides fibrisolvens 37: 11, 55 Bacteroides fragilis 40: 286, 302, 303, 309 and enterobacteria 28: 3 antibiotic resistance, nonplasmid transfer 28: 4 Bf-2, induced protein, superoxide dismutase 28: 21 phage reactivation studies 28: 19 response to oxygen 28: 11, 12 catalase, production 28: 10 screening test 28: 9 colony formation 28: 14 conjugative ability, tetracycline 28: 246 DNA, error-free repair 28: 24, 25 repair deficient mutants 28: 25, 26, 51 error-prone system, absence 28: 24, 25 filament formation 28: 15 heat-shock stress 28: 21 – 23 induction of proteins 28: 22, 23
39
HS5 mutants 28: 23 HS9 mutants 28: 23 hydrogen peroxide, effect on DNA repair 28: 26 and phage reactivation 28: 26 and survival, UV irradiation 28: 21 induction of proteins, DNA damaging agents 28: 19 – 21 liquid-holding recovery, UV irradiated cells 28: 15, 24 macromolecular synthesis, effect of oxygen and hydrogen peroxide 28: 10 – 12 UV irradiation 28: 16 –18 minimal medium recovery 28: 15 MTC25 mutant, mitomycin C 28: 25 negative LHR 28: 26 phage reactivation 28: 26 wild-type excision repair 28: 26 mutagenesis 28: 4 nucleic acid synthesis, and UV irradiation 28: 17 oxygen and hydrogen peroxide 28: 5 – 10 DNA repair 28: 26 effect of macromolecular synthesis 28: 10 – 12 phage reactivation, induction 28: 18 – 21 protein synthesis, absence, and DNA synthesis 28: 17 pseudolysogeny 28: 4 superoxide dismutase, oxygen tolerance 28: 7 repair deficient mutants 28: 25, 26, 51 superoxide dismutase, induction by exposure to oxygen 28: 21 ultraviolet radiation 28: 13 – 19 aerobic vs. anaerobic conditions 28: 18 induction of proteins 28: 20, 21 repair of DNA 28: 26 sensitivity in presence of oxygen 28: 21, 26 UV59 mutant, DNA repair, fluence low LHR, anaerobe 28: 26 mitomycin C 28: 25 phage reactivation 28: 26 reduction factor 28: 26 Bacteroides nodosus, genetic organization of pili 29: 81, 82 NMePhe pili in 29: 63, 64, 81 non-conjugative pili 29: 57, 63 Bacteroides ovatus 37: 15, 56 Bacteroides ruminocola 37: 17, 40 amino acid uptake 28: 11 peptide transport in 36: 36 Bacteroides sp. 37: 52
40
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Bacteroides thetaiotaomicron 42: 43 macromolecular synthesis, and oxygen 28: 11 oxidative damage 46: 137, 138 oxidative stress 31: 200 Bacteroides, oxygen tolerance 46: 137 Bacteroids 29: 6, see also Rhizobium japonicum, bacteroids amino acid synthesis 43: 120– 128 nitrogen secretion products 43: 122, 123 Bactoprenol 40: 370– 372, 371 Bactoprenyl 40: 373 Balanced growth conditions 36: 151 b-amylase, 39: 52, 53, 55, 56 BAPTA 37: 117 buffer 30: 107 BAR1 gene 34: 91, 95 Barium ions 33: 15 Barotolerant growth 43: 205 “Barren ring” soil disease 27: 227 Basal body of flagellum 32: 114, 133– 137 additional components 32: 136, 137 as part of motor 32: 134, 137 assembly 32: 147– 149 genes 32: 134, 135 M rings 32: 133– 135, 137 assembly 32: 147 role 32: 135, 137 P and L rings 32: 133– 135 export and assembly 32: 147, 148 nucleation onto rod 32: 148 proteins 32: 134, 135 ring subunits 32: 135 rings 32: 114, 115, 134, 135 rod, assembly and proteins 32: 148 function 32: 136 proximal and distal portions 32: 135, 136 subunit proteins and genes 32: 136 switch complex location 32: 140 Basidiobolus ranarum, effects of griseofulvin, nuclear metabolism 27: 6 Basidiomycetes apomixis in 30: 31 fruit bodies 38: 3 hyphal structure 38: 2 Basidiosporogenous yeasts, sex hormones in 34: 98 – 100 Basiodiocarps (basidiomes), 148 Basiodiomycotina/basiodiomycetes fruiting in 34: 148, 149 in industrial mycology 34: 190, 191 Basipetospora halophila, optimum water potential 33: 158 Bathymodiolus thermophilus 39: 260 Bayer’s junctions 29: 69
BayK 8644 37: 98 b-Carbohydrates, and a-mannose derivatives 28: 82 b-Carotene, trisporic acid formation and 34: 82 – 84 BCG 39: 150, 161, 171, 175 vaccine, comparative genomics, M. tuberculosis and M. bovis 46: 31, 32 b-chloroalanine 36: 58, 59 bcn promoter 46: 54 Bcon mutation 34: 157– 159, 161, 163, 165, 167, 172 11b-Cortisol, C. albicans binding sites for 34: 113 bcy1 mutant 32: 12 b-Cyanoalanine assimilation 27: 100, l01 synthase, in bacteria 27: 81 – 84 in higher plants 27: 83, 84 b-Cyclodextrin (BCD) 41: 32 b-Cystathionase 34: 261 synthase 34: 261 b-D-Allose, see also Glucose analogues effect, amphotericin resistance, C. albicans 27: 307, 308 metabolism 27: 309, 310, 314, 316 Bdellovibrio bacteriovorus, flagellar sheath 33: 283 S-layer role in predation by 33: 253 Beauveria 38: 105 Beauvericin 38: 105 Bee – derived peptides 37: 148– 150 Beef, organic acid treatment 32: 100, 101 Beggiatoa 31: 142 Beijerincka 35: 255 B. indica and B. mobilis 35: 251 Beneckea alginolytica, glutathione-related processes 34: 264 Beneckea genus 26: 237 Benzaldehyde 41: 5, 8, 9, 13, 17, 21– 26, 29, 37, 39 Benzaldehyde dehydrogenase (BZDH) 31: 5, 14 Benzene dioxygenase 38: 61 ferredoxin 38: 58– 60 non-haem iron 38: 75 reductase 38: 57 spectroscopic analysis 38: 65 Benzimidazole drugs 27: 39 Benzoate 1,2-dioxygenase 31: 16 gene, chromosomal 31: 31 Benzoate 31: 3; 39: 344– 347, 346 catabolism 31: 3, 4, 6 pathways, see Toluene catabolism curing 31: 5, 24, 39 – 44 see also Benzoate, growth of TOL strains on
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 growth of TOL strains on 31: 39 – 44 counterselection explanation 31: 41 – 44 Ps. putida HS1 31: 39, 40 Ps. putida MT14, MT15, MT20 31: 40, 41 Ps. putida MT53 31: 40 induction of C230 31: 3, 23 Benzoate dioxygenases 38: 55 – 57 iron site 38: 74, 75 Benzoic acid, halogenated, catabolism 31: 57 – 60 Benzoyl-CoA 39: 342, 345 Benzyl alcohol 41: 9, 10, 21, 22, 24, 27 –29, 39 conversion to benzoate 31: 6, 14 Benzyl-alcohol dehydrogenase (BADH) 31: 5, 14 Benzylamine – montmorillonite complexes 32: 74 Benzylpenicillin 28: 218 endocarditis adhesions 28: 226 streptococcal adhesions 28: 225 Benzyl viologen 29: 16, 17 Berkland process 30: 6 Bermuda Atlantic Time-Series Station (BATS) 47: 32, 33 bet mutants 33: 96 BET1 gene 33: 96 bet1 sec22 double mutants 33: 96 BET1p 33: 96 Beta2-Adrenergic receptor expresses in Sacch. cerevisiae, human 34: 127 Betaine 37: 282– 285, 285 aldehyde 37: 296 effect on cyanide production 27: 89 high-level response 37: 288, 289, 291, 292, 294, 295, 297, 298, 301– 305, 305 molecular level 37: 307, 308, 310– 314, 317 Beta-lactam antibiotics, hydrolysis by metals 38: 222 Bfd-NifU-nitrite reductase family 40: 332 b-flavin 26: 268, 269 b-galactosidase 30: 223– 225, 227, 228; 36: 32; 37: 24, 166, 202; 39: 67; 42: 79 fusion gene with 31: 196 orosomucoid, haemagglutination inhibition after treatment 28: 90 selective inhibition, streptomycin 28: 237 b-glucan 37: 8 chitin and, links between, in hyphal walls 34: 188, 189 in yeast cell wall 33: 43
41
b-Glucanase, C. albicans activity, polyene resistance 27: 38 amphotericin resistance, various treatments 27: 306 Cytophaga LI 27: 297– 301 incorporation of glucose into glucans 27: 303– 305 presence/absence, stationary phase 27: 299– 303 reducible factor 27: 300– 303 sensitivity to thiol-reactive agents 27: 301– 303 b-Glucans, C. albicans in cell wall barrier 27: 298 strength and rigidity 27: 300– 303 in starvation 27: 291 incorporation of glucose 27: 303– 305, 308– 310 metabolism, action of glucose analogues 27: 310– 314 interpretation 27: 314– 316 model 27: 312 synthesis, inhibition 27: 61, 62 b-glucosidase 39: 69; 42: 78, 79 surface adsorption 32: 60 b-Glucuronidase 42: 30 – 32 M. leprae 31: 107 B-hydroxybutyrate dehydrogenase 39: 100 B-hydroxybutyryl-CoA 39: 79 dehydrogenase 39: 79 Bialaphos 36: 30, 40, 53, 54, 65; 38: 120– 122 Biastocladiella, ionic currents in 30: 93– 96, 118 membrane potential 30: 94 proton leakage and rhizoid formation/growth 30: 94 – 96, 118 Bicarbonate 37: 259 uptake by Chara 30: 95, 107, 110 RuBisCO stimulation 29: 142 Bifidobacteria 42: 36, 37, 37 Bifidobacterium 42: 34 –37, 35 Bifidobacterium bifidum, glycerophosphate-containing lipoglycan, fatty-acyl composition 29: 239 structure 29: 243– 245 surface location 29: 274 synthesis 29: 258 lipoteichoic acid 29: 243 Bile acids 42: 32, 33 Bile salt hydrolase 42: 32 – 34, 33 Bilins, synthesis 46: 261 Bilophococcus magnetotacticus 31: 130, 131, 138 fine structure 31: 146 phenotypic properties 31: 139
42
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Binary association coefficient, in oligonucleotide catalogue 29: 166 BIND assay 34: 233, 234 Binding protein-dependent uptake components 39: 7 –9 physiology 39: 9, 10 Binding proteins, see Periplasmic binding proteins; specific binding proteins Binding-protein-dependent transport systems 26: 136 Bioaccumulations, strains for 31: 61, 62 Biocides efflux pump induction by 46: 235 oxidizing, biofilm resistance 46: 223 persistent survival of bacteria 46: 204, 213, 232 resistance of biofilms 46: 217– 224 see also Biofilms; Glycocalyx resistance by bacteria in biofilms 32: 75 Biocompatibility, and hydrophobins 38: 35 Bioenergetic work 40: 420, 420 Biofilm(s) 32: 61, 62; 41: 271, 272; 42: 38, 39, 39; 45: 222– 225; 46: 203– 256 as micro-environment 30: 164 adaptation of bacteria 46: 232, 233 anaerobes 46: 224 antimicrobial susceptibility growth rate effect on 46: 225– 227 nutrient disposition effect on 46: 225, 226 phenotypic heterogeneity effect on 46: 224, 225 auto-aggregation/co-aggregation 46: 208, 211 bacterial attachment 46: 208, 217, 238 bacterial micro-environment, nutrient status 32: 76 bacterial sensing of proximity of surfaces 46: 216 bacterial survival 32: 75, 76 biochemical analysis of polymers 32: 61 build-up, heterotrophic activities 32: 79 catabolism of nutrients 46: 209 climax community 46: 209, 235, 236 changes, effect 46: 237 resistance 46: 209 colonization resistance, failure 46: 236 community dynamics 46: 236 community response to chronic sublethal stress 46: 235– 237 antibiotic-associated diarrhoea 46: 236, 237 conditions differing from bulk phase 32: 61 definition 32: 61
definition/concept 46: 205, 206 dimensions 46: 221 dispersal/colonization of new sites 46: 211, 212 drug-resistant physiologies 46: 227– 232 efflux pumps 46: 229– 231 quiescence/dormant cells 46: 228, 229, 239 suicide-less mutants 46: 231, 232 effect of pH on 30: 162 formation and conditioning film 46: 208 development 46: 208– 210 resistance to further colonization 46: 209 secondary colonizers 46: 208 thickening and density increase 46: 209 genetic exchange in 32: 62 glycocalyx see Glycocalyx, biofilms heterogeneity 46: 203, 213, 225, 238 immigration of cells 46: 236 impact on environment and man 46: 205– 208 clinical impact 46: 206, 207 detoxification 46: 207 in mass-transfer resistance 32: 61, 62 in natural environments 32: 79 interaction between colonizers 46: 208, 209 ‘killing experiments’ 212 matrix polymers 46: 218 exopolysaccharide synthesis 46: 219 implications for communities 46: 220– 224 implications for resistance see under Glycocalyx regulation of synthesis 46: 219, 220 synthesis 46: 219, 220 maturation 46: 209–211, 224, 235 increased resistance to treatment 46: 226 micro-organism interactions and competition for resources 32: 62 modelling 46: 226 nitrifying bacteria in 30: 148, 150, 164 nitrite oxidizers beneath ammonia oxidizers in 30: 152, 155 nitrite production and removal 30: 154, 155 outcomes of interaction with surface 46: 208 oxygen gradients 46: 226 persisters 46: 204, 213, 232, 239 recalcitrance to treatments 46: 203, 208, 210, 211, 238, 239 apoptosis potential of damaged cells 46: 231, 232
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 by adsorptive losses 46: 222 chemical/physiological gradients as incomplete reason 46: 226, 227 chronology 46: 211, 212 recalcitrance to treatments continued see also under Glycocalyx as community phenomenon 46: 212, 213 by diffusion limitation 46: 220– 222 by reaction – diffusion limitation 46: 222– 224, 227 mechanisms/reasons 46: 210, 211 of single cells and changes in 46: 211, 213 range of compounds used 46: 210 resuspension effect on antibiotic susceptibility 46: 220, 221 role and effect of 32: 61 selection pressures 46: 232– 234, 235 selection/induction of resistant physiologies 46: 232– 235 alarmones 46: 234, 239 efflux pump induction 46: 235 selection of less susceptible clones 46: 233, 234 shedding of cells 46: 212 sludge communities 46: 237 stationary-phase growth in 32: 76 sublethal treatments, selection of less susceptible clones 46: 232, 233 surface interface 46: 206, 208, 216 survival of cellular aggregates 46: 213, 214 survival of persisters 46: 204, 213, 232, 239 susceptibility changes associated with cellular aggregates 46: 213– 217 association with inert surfaces 46: 216, 217 autoaggregation 46: 214, 215 coadhesion 46: 216 coaggregation 46: 215 susceptibility changes associated with glycocalyx 46: 217 –224 see also Glycocalyx, biofilms TNC 47: 104 Bioluminescence 34: 1 – 67; 39: 295– 301, 310 applications 34: 5 control 34: 35 – 48 molecular biology 34: 5, 24 – 35 reaction giving 34: 11 – 14 intermediates in 34: 11 – 14 species of bacteria with 34: 2– 4, 43, 48, 49, see also individual species ecology 34: 2, 48 – 52 evolution 34: 48 – 57 identification 34: 49 – 52
43
Bioluminescent bacteria 26: 236– 291 see also Luciferase arginine requirement 26: 264, 265 auto-induction 26: 263, 264 biochemistry 26: 238– 256 catabolite repression 26: 265, 266 chemosensory behaviour 26: 262, 263 chemotaxis 26: 262, 263 continuous/pulsed emission 26: 259– 261 ecology 26: 269– 273 host-associated bacteria 26: 271–273 planktonic bacteria 26: 269–271 electron flow 26: 260, 261 emitter 26: 242– 244 precursors 26: 244 fish light organ symbiosis 26: 272, 273 immune assays 26: 274 inhibitors of bioluminescence in vivo 26: 261, 262 molecular biology 26: 256– 259 mutants 26: 278, 279 acid-/aldehyde-requiring 26: 278 bioluminescence test 26: 279, 280 (table) regulation defective 26: 278, 279 physiology 26: 259– 269 taxonomy 26: 237, 238 translation in vitro 26: 263, 264 Biomass activity of attached and free bacteria 32: 77 nitrifying bacteria 30: 137, 139 activity 30: 142, 143 specific rate of biomass formation 30: 139 yields 36: 152 yield on ammonia and nitrite 30: 141 Bioremediation 41: 76 –78 Biosensors 38: 211, 212 hydrophobins in 38: 35 Biosynthesis and ethylene production 35: 281– 288 and genetics of hopanoids 35: 259–270 see also isopentenyl pyrophosphate and selenium metabolism 35: 89 – 96 see also cell-surface polysaccharides see also selenoproteins seleno-tRNAs 35: 95, 96 Biotechnology 37: 63 – 66 fungi in 34: 190– 192 BiP (binding protein) 33: 103, 104 Bip (immunoglobulin heavy-chain binding protein) 31: 212, 213, 215 Biphenyl dioxygenases, substrate specificity 38: 61 Bipolar flagellation 33: 281
44
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Bis(Tributyltin) oxide (TBTO), bacterial degradation 38: 231 Bis-g-glutamylcysteine reductase 34: 275 b-Isopropyl malate dehydrogenase (IPMD) 42: 186 Bisphosphatidylglycerol 29: 250 Bisphosphoglycerate mutase 29: 174 Bisulphite reductases 31: 246 formation and reduction 31: 245, 246 b-Ketoadipate pathway, see Toluene catabolism, ortho-cleavage pathway b-ketodeoxyoctonate (KDO) 36: 60 “Black smokers” 29: 222 b-Lactam form of glutathione 34: 243 b-lactams 36: 4, 66, 198; see also Ampicillin, Benzylpenicillin, Mecillanum, Penicillin adhesins, enhancement 28: 231 cell-wall synthesis inhibition 28: 236, 237 effect on cell division, cell shape and peptidoglycan synthesis 36: 209– 211 effect on lateral-wall elongation and septum formation 36: 220 in Proteus mirabilis 28: 214 in staphylococci 28: 215 inhibition, siderophore enterochelin 28: 236 large staphylococci, phagocytosis 28: 241 morphological alterations 28: 231– 216 penicillin-binding proteins 28: 216 septum inhibition 36: 214 uropathogens, adhesions 28: 221 Blakeslea trispora, sex hormones in 34: 81 – 84 Blasia pusilla (liverwort) 29: 122 BLAST 38: 211 program 40: 99 Blastomyces dermatitidis 35: 278, 279 Blastospores, C. albicans 30: 58 monoclonal antibodies 30: 74 Bligh-Dyer phase partition 29: 252 Blood group P system 29: 55, 61, 94 human P system 28: 86 globoseries glycolipids 28: 87 – 89 MN system 28: 89, 90 Blotting hybridization techniques 38: 212, 213 BLP, peptide 37: 140 BlpC*, Streptococcus pneumoniae 46: 22 Blue-green prokaryotes 29: 123 b-mating-type gene 34: 158 s B-modulon 44: 52 – 56
b-N-Acetylglucosaminidase inhibition 29: 285 alanyl-ester effect 29: 287, 288 BNB2, peptide 37: 139 Boletus edulis, cultivation 34: 191 Bombina orientalis 37: 140 Bombina sp. 37: 150 Bombina variegata 37: 140 Bombinin 37: 140, 150 Bombinin-like peptides (BLPs) 37: 150 Bombolitin 37: 140, 149, 150 Bombyx mori 37: 140, 143 Bordetella 41: 276; 44: 143– 147 environmental sensing mechanisms 44: 141– 181 interaction with host immune system 44: 166– 168 intermediate phase proteins 44: 164, 165 intracellular stage 44: 168– 170 life cycle 44: 158– 160 pathogenesis 44: 144, 145 regulatory determinants 44: 148– 152 response to environmental change 44: 147– 158 virulence factors 44: 145– 147 Bordetella avium 44: 143, 145, 148, 158 Bordetella bronchiseptica 43: 47; 37: 116; 44: 141– 147, 151, 152, 158, 159, 162, 163, 166– 168, 170– 173 type III secretion system 44: 167, 168 Bordetella hinzii 44: 143, 144 Bordetella holmesii 44: 143, 144 Bordetella parapertussis 37: 116 Bordetella parapertussis 44: 143, 144, 145, 147, 151, 160, 172 Bordetella pertussis 35: 233; 37: 93; 40: 154; 44: 141–147, 149, 151, 153, 157, 159– 162, 166– 168, 170, 172, 173 bronchial epithelial cell gene regulation 46: 40– 42 cytochrome c maturation and redox requirement 46: 282 cytotoxin 46: 40, 41 microarray expression profiling of host cell response 46: 35, 40 – 42 mucin gene expression induction 46: 41 pili, structure 29: 68 S-layer 33: 237 Bordetella sp. 37: 125 Bordetella trematum 44: 143, 144 Bordetella, non-conjugative pili 29: 57 Bordetellosis 44: 144 Borreila burgdorferi 45: 184 haem pathway genes and proteins absent 46: 294 Bos taurus 37: 145, 146
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 BOS1 gene 33: 96 Bosea thiooxidans 39: 271 Botrytis allii, cell wall synthesis, effect of griseofulvin 27: 8, 9 Botrytis cinerea 43: 41 Botrytis spectabilis 35: 278 ‘Bottle effect,’ bacterial adhesion to inert surfaces 46: 216 Bottleneck models 36: 152– 157, 157 Botyris cinerea, captan-resistant mutant 34: 283 Boundary layer, hydrodynamics 32: 54 Bovine neutrophils 37: 139 Bovine tubercle bacillus 39: 133 b-Oxidation cycle 32: 94 b-Oxo-acyl thioester synthetase inhibition cerulenin 28: 232 haemolysin 28: 232 Boyle-van’t Hoff relation 33: 151, 163, 164 Brackets, fruiting in, see Fruiting Bradley system, pili classification 29: 57 Bradyrhizobium 43: 119, 181; 40: 193 Bradyrhizobium japonicum 30: 16; 35: 73, 87, 196; 37: 262; 43: 120, 125– 127, 130, 131, 134– 136, 140, 142, 181, 182, 196; 44: 112, 129, 130; 45: 115, 118, 124– 126, 132 aa3-type cytochrome c oxidase 40: 203, 204 ALA dehydratase 46: 266, 267 ALA synthase mutants 46: 263, 286 ALA transport 46: 287 ALA uptake 46: 286 coxA expression 40: 204, 205 CoxMNOP oxidase 40: 205, 206 CoxWXYZ oxidase 40: 206, 207 cytochrome bc1 complex 40: 199– 201 cytochrome cbb3-type oxidase 40: 212, 213 cytochrome CycM 40: 201, 202 ferrochelatase mutant 46: 274 fixNOQP genes 40: 210– 212 fixNOQP-related fixGHIS operon 40: 216, 217 haem biosynthesis regulation by iron 46: 288, 293 by oxygen 46: 291 hemA 46: 288, 293 nickel metabolism 38: 224 oxygen-independent coproporphyrinogen oxidase 46: 271, 291 Bradyrhizobium japonicun 40: 7, 172, 173, 191, 192, 194, 196, 198, 200, 331
45
Branched chain amino acids 46: 120; 42: 132– 136, 185– 187; 45: 24 – 28 Branching enzyme, in glycogen synthesis 30: 189 accumulation in E. coli mutant AC70R1 30: 231 characterization 30: 218 gene cloning 30: 218 Brassica jucea 35: 294, 295 Brassica napus 37: 138 Brassica rapa 37: 138 s B-regulon non-specific pre-emptive versus acutestress resistance 44: 56 – 60 size and integration into the regulatory network 44: 50 – 56 vegetative dormancy versus competence and sporulation 44: 68 –70 within adaptational network of starving cells 44: 68– 70 b-Resorcyclic acid as a fungal sex hormone 34: 104 Brevibacteria 37: 291, 294 Brevibacterium 37: 287 crystalloiodinum 27: 216, 233 iodinum 27: 212, 216, 233, 234 chorisimic acid 27: 244 iodinin formation 27: 245– 247 phenazine pathway 27: 256– 259 phosphate regulation 27: 263 shikimic acid 27: 243 stationis var. iodinofaciens 27: 216, 234 Brevibacterium ammoniagenes 37: 292 Brevibacterium linens 35: 278 Brevibacterium spp. 42: 194 Brevinin 37: 140 Brewing 33: 4– 9 see also Wort attenuation in 33: 5 fermenter design 33: 6, 7 flocculation 33: 4 – 6 see also FLO1 phenotype; Flocculation importance 33: 4 measurement 33: 10 flocculent strains, see Flocculent strains top-/bottom- fermenting strains 33: 6, 7 brlA A. nidulans gene, in conidiogenesis 38: 27 Brochothrix thermosphacta 32: 102 Bromopyruvate 30: 197 Bronchial epithelial cells, gene regulation by B. pertussis 46: 40 – 42 Brownian motion 33: 14, 23 – 25 collision frequency and 33: 26, 27 particle mass and size 33: 14, 24, 25, 27 yeast cell movements not due to 33: 25
46
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Brucella melitensis 40: 286, 309 Brucella suis 45: 134 Brush-border membranes, see Epithelial cells BSD1 gene 33: 121 BSD2 gene 33: 121 Bse mutation 34: 174 bsr mutants 33: 122, 123 BSR4 gene 33: 122 BTH6, peptide 37: 151 Buchnera, genome 46: 294 Budding bacteria, crystalline surface layers 33: 222 Budding, by immobilized cells 32: 64 Buffering, pH stress 37: 253 Buffers, effect on bacterial sensitivity to organic acids 32: 92 Bug’s ear fruiting body morphology 34: 174 Building materials, role of organic acids in corrosion 41: 72 – 74 Bulla gouldiana 39: 302, 307 Burkholderia cepacia 45: 226 Burns test 33: 10 Butaconazole, steryl demethylase inhibition 27: 45 2,3-Butanedione 37: 187 Butanol 39: 33, 81, 82, 93; 40: 44 production, Clostridium 28: 36 Butanol-forming clostridia 39: 77 Buthionine (S,R)-sulphoxime, glutathione biosynthesis inhibited by 34: 250 Butyl acetate 39: 33 Butylic alcohols 39: 219 Butyrate kinase (BK) 39: 78, 80, 101 Butyrate, E. coli growth on 32: 93 Butyrivibrio fibrisolvens 37: 10, 13, 15, 29 Butyrobetaine 37: 303 Butyryl CoA 45: 75; 39: 78 –80, 82, 85, 88, 96, 99 Bvg 44: 152– 158, 169, 170 BvgA 44: 149, 151, 157, 158 BvgA-P 44: 154, 155 BvgAS 44: 149– 152, 159, 160 BvgS 44: 149, 151, 152, 157, 169, 170 Bx mutation 34: 157– 159; 34: 157, 158 C. albicans 43: 58, 60 C120 (catechol 1,2-oxygenase) 31: 3, 23 C230 (catechol 2,3-oxygenase) 31: 3 applications, vectors for recombinant studies 31: 62 detection 31: 21, 62 enzyme characteristics 31: 16, 17 in haloaromatic/alkylaromatic catabolism 31: 59 in molecular analysis of xylS/xylR genes 31: 26
induction by benzoate 31: 23 xylE gene encoding 31: 17 see also xylE gene; xyl genes two, in TOL plasmids 31: 49, 50, 52 C4 – dicarboxylic acids 43: 129, 131– 133, 143 C4-HSL synthase 45: 207 C5 pathway, ALA formation 46: 261– 265 discovery 46: 263 steps in pathway 46: 263, 264 Ca(II)-calmodulin, in morphogenesis of C. albicans 30: 61, 62 Ca2+: cation antiporter (CaCA) family 40: 129 CaALK8 gene, overexpression 46: 165 CAAX box 33: 134 Cadaverine 37: 238, 239 CadC 44: 199 CAD-like proteins and extracellular regulation of cell-surface polysaccharides 35: 224, 225 Cadmium 37: 205 accumulation 32: 68 bacterial resistance 38: 226, 227 -binding polypeptide 44: 205, 206 -binding protein 44: 239 chloride and thermotolerance 31: 205 detoxification 34: 290 fungal toxicity, and pH 38: 187 precipitation 38: 209 -resistant cells, amplification of smtA 44: 202, 203 uptake, zinc competition 38: 224 Cadystins 34: 290 Caecal contents, enzyme activities in 42: 31 Caenorhabditis elegans 39: 319; 41: 143 Caesium chloride 33: 33 Caesium, radioactive, from Chernobyl 38: 183 Caffeine, apomictic process induced by 30: 38, 47 see also Methyixanthines, caffeine inhibition, degradation, DNA 28: 17 excision repair 28: 14, 15 phage reactivation 28: 20, 21 proteins, UV induced 28: 20 Cag pathogenicity island 46: 33 Cajanus cajun 45: 126 Calcium analysis 38: 191 and bacteria 37: 83 – 85, 123– 125 as essential metal 38: 180 -ATPase, in endoplasmic reticulum retention 33: 109 branching stimulation in Neurospora and Achlya 30: 98, 99 buffers, micro-injected 30: 107
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 -bridging hypothesis, see Flocculation carbonate, in Chara and Nitella 30: 107, 110 cell wall and cell membrane 37: 85 – 93 cellular concentration, and photoreactive ligands 38: 187, 188 channels and pumps in Paramecium 30: 103, 104 currents, in desmids 30: 112 in Noctiluca 30: 112 in slime moulds 30: 104, 105 microfilaments, polarity and tip growth relationship 30: 118 cytoplasm 37: 93– 118, 95, 98, 103 efflux, phosphatidylinositol metabolism 32: 17 for germination and tip growth but not cell polarity 30: 117, 118 galvanotaxis and 30: 114 hyphal extension in Neurospora 30: 102, 117 influx, in fucoid eggs 30: 95, 106, 107, 117 in alcohol dehydrogenase 40: 20 – 24 in methanol dehydrogenase 40: 20 – 24 in rhizobia 45: 143, 144 ionophore A23187 33: 109 ionophores 30: 108, 109 ions, as dipositive not divalent 33: 46 criticism of calcium-bridging hypothesis 33: 46 in endoplasmic reticulum retention of proteins 33: 109– 111 in flocculation 33: 14 activation of 33: 15, 16 in transport from endoplasmic reticulum to Golgi complex 33: 93 methylglyoxal 37: 205, 208, 209, 210, 262 migration in slime moulds 30: 105 oxalate 41: 55 – 61, 57, 73 prokaryotic nucleoid 37: 118– 123 phosphate precipitation 33: 13 removal in Blastocladiella, aberrant growth 30: 94 roˆle in cytoplasmic movement and exocytosis 30: 117, 118 wall deposition in Micrasterias 30: 112 Caldariella acidophila 35: 261 Caldocellum saccharolyticum 37: 10, 11, 14, 15, 17, 30, 32, 41, 56, 57 Caldwell’s proliferation hypothesis 46: 237 Calerythrin 37: 116, 117, 124 Calimycin 37: 99, 113
47
Calmodulin 37: 113– 118 cell wall and membrane 37: 87, 89, 90, 92 cytoplasm 37: 93, 95, 96, 95, 98, 105, 107, 108, 113– 120 methylglyoxal 37: 208, 209 prokaryotic nucleoid 37: 119– 121 morphogenesis control in C. albicans 30: 61, 62 -binding proteins in Rh. toruloides 34: 100 Calsequestrin 37: 94, 101 Calves E. coli, enterotoxigenic strains 28: 75 K99 detection 28: 128 low dose antibiotic administration 28: 244, 245 newborn, special susceptibility 28: 131 Calvin cycle 29: 116, 155 absence, in Sulfolobus 29: 187 carboxysomes and 29: 115, 116, 155 enzymes, absent from carboxysomes except RuBisCO 29: 152 in chemolitho-autotrophic bacteria from dark environments 29: 156 intermediates, in RuBisCO regulation 29: 142 Calyptogena magnifica 39: 260 CaMDR1 gene 46: 175, 181, 187 homologues in other species 46: 177 cAMP (cyclic AMP) C. albicans, mammalian hormones affecting levels of 34: 126 fruiting in fungi and 34: 177– 179 lux gene expression in luminescent bacteria and the role of 34: 43 – 45 Sacch. cerevisiae sexual reproduction and 34: 94 CAMP 39: 71, 305– 307, 318 cAMP 44: 6, 146, 250, 251 -dependent protein kinase 36: 150 phosphodiesterase 26: 144 receptor protein (CRP) 42: 99, 100; 45: 5, 232 receptor protein (CRP), lux gene expression and the role of 34: 43 – 45 receptor protein see CRP receptor protein-binding site (CRP-binding site), luminescence and 34: 30, 45 CAMP, phosphorus acquisition 47: 32 CAMP: CRP complex 40: 252, 253
48
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Campylobacter 44: 168 respiratory electron transport chains 43: 184 Campylobacter coli 43: 183– 185; 45: 176, 177 Campylobacter fetus 84 –32 strain, S-layer protein, gene 33: 247 S+ and S – , type-A lipopolysaccharide assay 33: 252 virulence comparison 33: 252 S-layer, antigenic changes 33: 252 gene 33: 247 in pathogenicity of 33: 252 structure 33: 243 Campylobacter jejuni 40: 139, 282, 286, 304, 305, 309, 333, 339; 41: 98, 274; 43: 183– 185; 45: 57, 87, 94, 180 Campylobacter mucosalis 40: 175 Campylobacter pyloridis 40: 139 Cancer 37: 93, 181, 188, 190, 192 promoters 40: 144 Candiciden lipid-polyene complexes 27: 33 polyene macrolide 27: 23 Candida 43: 5 CYPs 47: 164, 169– 174 Candida albicans 30: 53 – 88; 37: 11, 22, 247; 44: 188, 189 ABC drug transporters 46: 167, 168, 169 phospholipid translocation 46: 186 adherence to host cells 30: 71, 72 cell-surface antigens 30: 74 secretory proteinase and 30: 73 adherence-negative mutants 30: 72 alkane-inducible cytochrome P450s 46: 164 amphotericin, action 27: 278, 281, 282 age of culture effect 27: 284– 286 resistance, conclusions 27: 316– 318 sensitivity, assessment 27: 283–286 antifungal smugglins and 36: 55, 61, 62 antimycotic drugs 27: 4 as commensal 30: 68, 83 auxotrophs 30: 54, 56, 57, 80 b-glucan metabolism 27: 310– 313 incorporation into polysaccharide 27: 311 metabolism 27: 309– 316 b-glucanase, activity 27: 38 reducible factor 27: 300– 303 cell-surface antigens 30: 62, 63
in vivo expression in candidiasis 30: 74, 75 monoclonal antibodies against 30: 74, 75 variations in 30: 80 – 82 cell-wall barrier 27: 297–303 changes, stationary phase 27: 289– "293 colony morphology switching 30: 65– 67, 82, 83 frequency and number of changes 30: 67 master control gene 30: 62, 67, 83 roˆle in pathogenesis 30: 67 rough-colony mutants 30: 63 – 65, 72 culture methods 27: 278, 279 cure of infections 30: 77 – 79 denture stomatitis 27: 6 diagnosis, monoclonal antibodies in 30: 74, 75, 77 diploidy, evidence 27: 18, 19 DNA restriction fragment pattern 30: 80 drug resistance ERG11 alterations and 46: 164 mechanisms 46: 161 MFS genes role 46: 175 genetic analysis, drug resistance 27: 18 genetics 30: 54– 58 autonomously replicating sequence (ARS) 30: 58 chromosome loss induction 30: 56 chromosome number 30: 57 cloning of genes 30: 57, 58 differential gene expression 30: 62, 83 DNA content 30: 54, 56 gene map and linkage analysis 30: 57 gene-disruption and transformation techniques 30: 58, 82 mitotic recombination 30: 54 – 56 molecular 30: 57, 58 parasexual analysis 30: 56, 57 ploidy 30: 54, 55, 82 ploidy shift 30: 55 germ-tube formation 30: 55, 59 – 61 conditions favouring 30: 59, 60 heterogeneity 30: 79 high, low and non-responders 30: 79 mechanisms and associated changes 30: 60, 61 mutants defective 30: 62 – 64, 71, 80 regulation and inhibition 30: 61, 62, 72 specific surface antigens 30: 63, 74 glucose analogues, action, amphotericin resistance 27: 305– 308 glucose, effects of addition 27: 303 incorporation into glucans 27: 304– 306, 308
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 glyoxylate cycle enzymes 46: 157, 159 griseofulvin, resistance 27: 10 haploid and tetrapoloid strains 30: 54 hospital-acquired infections 30: 78 hybrids, instability of 30: 56 hydrolytic enzymes secreted by 30: 73 -induced immunity 30: 70, 84 inhibition by anticapsin 36: 53 lipids, reversal, imidazole action 27: 47 membrane modifications, mutant strains 27: 35 – 38 MFS drug transporters 46: 167, 176 morphogenesis 30: 58 – 67 morphology, pathogenesis and 30: 71 – 73 multidrug resistance gene regulation 46: 180, 181 Cap network 46: 180, 181 FCR network 46: 180 mutants defective in hypha formation 30: 62 –64, 71, 80 oxygen saturation effects of variation 27: 293, 294 pathogenesis 30: 67 – 79 adherence importance 30: 71, 72 aminosugar metabolism 30: 75 –77 causes of infections 30: 68 – 77 cell-surface antigens 30: 74, 75 immune system in 30: 69, 70 predisposing factors and host defense mechanisms 30: 68 – 71, 83 secretory proteinases importance 30: 73 superficial, locally invasive and systemic infections 30: 68 virulence factors 30: 71 – 73 peptide transport in 36: 46 – 48 protoplast fusion 30: 56, 57 reducible factor 27: 302, 303 reducing agents, effects of growth 27: 294– 296 sources 27: 296 research problems 30: 54, 56, 79 – 82 absence of sexual cycle 30: 54, 56, 79 resistant strains 27: 16, 17 review articles 30: 53 rough-colony mutants 30: 63 – 65, 72 secretory proteinase 30: 72, 73 secretory proteinase-defective mutant 30: 72 sensitivity, amphotericin, assessment 27: 283– 286 species typing 30: 77, 78 specific transport system 27: 10, 12 sterols, composition, polyene resistant strain 27: 31 miconazole-induced changes 27: 42 strain 3153A 30: 65, 66
49
strain CA2 30: 71 strain hOG30l 30: 71 strain WO-1 30: 65 – 67 surface structures, reaction, amphotericin 27: 286– 289 vaginal candidosis 27: 3, 318 white-opaque transition 30: 65, 66, 83 cell-surface antigens 30: 67, 74 cellular basis 30: 65, 67, 83 yeast-to-hypha conversion 30: 59 – 65, 83 actin localization 30: 60, 61 cell-surface antigens 30: 74 cell-wall expansion 30: 60, 61, 83 commitment and evagination time 30: 60 inducers 30: 59, 60, 80 invasiveness development 30: 71 morphogenesis-associated changes 30: 60, 61 morphological variants 30: 62 – 65 morphology-related gene products 30: 62, 63 regulation 30: 61 – 63 shape of daughter cells 30: 60 5-fluorocytosine, action 27: 11 5-fluorocytosine-resistant 30: 78 Candida dubliniensis ABC drug transporters 46: 169 MFS drug transporters 46: 176 Candida glabrata 44: 188, 189 ABC drug transporters 46: 169 CDR bomologues 46: 173 ERG11 overexpression and drug resistance 46: 163 ERG5 alteration and drug resistance 46: 163, 164 MFS drug transporters 46: 176 Candida krusei, ABC drug transporters 46: 169 osmotic hypersensitivity 33: 192 Candida maltosa, MFS drug transporters 46: 176 Candida parapsilosis, effect of naftifine 27: 56, 57 Candida sp., overflow reaction in 36: 152 Candida spp., 34: 109– 117, 124, 129, 130 albicans 34: 109–117, 129, 130 disease caused by (candidosis) 34: 129, 130 glutathione-related processes 34: 255 mammalian hormones affecting 34: 1, 24, 106, 109– 117, 124, 124, 125, 129, 130 mammalian hormones with binding sites in 34: 112– 120, 121
50
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
boidinii, glutathione-related processes/methanol dissimilation 34: 288, 289 budding yeast and mycelial growth phases of 34: 110 glabrata (Torulopsis glabrata) glutathione-related processes 34: 245, 290 heavy-metal detoxification 34: 290 mammalian hormones affecting other (non-C. albicans) 34: 106 mammalian hormones binding sites in other (non-C. albicans) 34: 114, 116 surface lectins in adhesion to host cells 33: 52 tropicalis, glutathione-related processes 34: 255 utilis, glutathione-related processes 34: 258, 276 Candida tropicalis 28: 182 Candida utilis 26: 35, 36; 41: 6 – 8, 10, 15, 19 – 24, 26, 32, 34, 38, 39 inositol biosynthesis, enzymes 32: 7 organic acid effect on enzymes in 32: 97 Candidacidal factors 30: 69, 84 Candidiasis 30: 67, 68 cell-surface antigen expression 30: 74, 75 cure 30: 77 – 79 Cannibalism, TNC 47: 104, 105 Cantherellus cibarius, cultivation 34: 191 Cap network 46: 180, 181 CAP see CRP CAP, peptide 37: 136 CAP1 gene 46: 180, 181 Capillary method 41: 234 ‘Capillary racetrack’ method 31: 136– 138 Capsular polysaccharides (CPS) and cell-surface biosynthesis 35: 137, 169, 170 export 35: 172, 173, 177– 184 genetics 35: 190, 199– 204, 207, 208 process 35: 156, 159– 161, 164– 166 regulation 35: 227 structure and attachment 35: 139– 144, 146, 148, 149 Capsule 39: 139– 154 and bacterial clumping 39: 152 and electron-transparent zone 39: 152– 154 biological properties 39: 140– 152 chemical analysis 39: 140– 152 isolation 39: 140– 152 Captan 39: 363 resistance, glutathione metabolism and 34: 283
Captopril 36: 4 Carbamate, in RuBisCO activation 29: 136, 137 Carbamoylglutamine amide (CGA) 37: 288, 289, 290, 293, 296 Carbendazim 39: 363 Carbenicillin a-haemolysin, inhibition 28: 232 resistant mutations 28: 245 Carbohydrate assembly, yeast Golgi complex and 33: 113, 114 assimilation mechanisms and control 39: 41 – 75 clostridia 39: 36 conversion to acids and solvents by effect on lipoteichoic acid content and synthesis 29: 267, 268 general features of breakdown 39: 34 – 37 metabolism, by halophiles 29: 176, 186 metabolism in clostridia 39: 34 – 37 regulation of metabolism 39: 37 see also Oligosaccharides; Sugars solvent conversion by clostridia 39: 31 – 130 structure in yeast 33: 114 synthesis, by methanogenic archaebacteria 29: 182, 184, 191 Carbohydrate catabolism amino acids, repression of 42: 98, 99, 99 gene regulators 42: 109 in streptomycetes 42: 87 – 92, 88, 89, 114 Carbohydrate-degrading enzymes 42: 69 – 78 Carbohydrate repression and diauxic growth 42: 101, 102 in streptomycetes 42: 98 Carbohydrate transport systems 42: 114 Carbohydrate uptake in streptomycetes 42: 82, 83, 84, 85 – 87 Carbon activity 29: 6, 9 oxygen hypersensitivity mutants 29: 7 oxygen-insensitive mutants 29: 7 anabolic and catabolic fluxes at onset of sporulation 43: 90 – 97 and energy coupling during sporulation 43: 98 – 100 apomictic phenotype modification 30: 37 assimilation pathways 43: 151 assimilation 37: 105, 106 (C)-compound catabolic enzymes 40: 241– 245
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 carbohydrate repression in streptomycetes 42: 101 catabolic pathways in streptomycetes 42: 68 – 92 catabolism 26: 7 catabolite repression 26: 74, 75 catabolite repression in streptomycetes 42: 96 catabolites 42: 110 compounds biodegradation and metabolism 39: 339– 377 biotechnological applications of APB with 39: 364– 367 effect on purple non-sulfur bacteria 39: 361– 364, 361 coupling index 43: 98 hydrogenase repression insensitivity by Alcaligenes eutrophus Ose2 mutants 29: 8 in derepression of hydrogenase in regulation of cytochrome pattern of Hupc mutant 29: 31 in regulation of hydrogen metabolism of Rhizobium 29: 6 –9 limited, carboxysome numbers 29: 152, 154 metabolism in Rhizobium 43: 117– 163 metabolism, by nitrifying bacteria 30: 126, 128, 133– 135, 175 organic, production by Calvin cycle prokaryotes 29: 116 source, spore number/ascus 30: 24, 37 yield from nitrification 30: 141, 142 Carbon-concentrating mechanisms (CCM) 47: 14 – 17 Carbon dioxide assimilating enzyme, see RuBisCO by methanogenic archaebacteria 29: 182, 184, 191 carboxysomes as sites in vivo 29: 150– 152 concentrating mechanisms 29: 142 carboxysomes as 29: 152 enhancement of hydrogenase activity 29: 6, 9 fixation 29: 9, 10, see also Ribulose 1,5-bisphosphate carboxylase fixation, by nitrifying bacteria 30: 133, 134 fruiting and effects of 34: 181– 184 hydrogen as reductant for 29: 2 in hydrogen-derepressed cells 29: 9 in RuBisCO activation 29: 135, 136, 145 S subunit role 29: 138 limitation, RuBisCO activity increase 29: 150, 151
51
metabolic functioning 44: 241 microbes utilizing, carboxysomes in 29: 115 mutants (Cfx2), Hup+ and Hup2 (R. japonicum) 29: 9, 10 oxidoreductase reaction 29: 202 Dp generation 31: 236, 238, 239 reduced in ageing cultures 30: 137 reduction 31: 228, 235– 239 reductive citric acid cycle in thermophiles 29: 187–189 release by M. leprae 31: 87, 88 RuBP-dependent 29: 124, 140 inhibition 29: 140 substrate oxidation and 30: 140, 141 uptake by Chara 30: 95, 107, 110, 119 Carbon dioxide/oxygen specificity of RuBisCO 29: 140– 142 Carbon distribution in CMPs 45: 336 Carbon flow pathways 39: 76 Carbon metabolism 42: 110– 115 carbon fixation 47: 14 – 17 in streptomycetes 42: 62 photosynthetic physiology 47: 11 – 14 Synechococcus 47: 11 – 17 Carbon monoxide 39: 355, 356; 43: 209 competitive inhibitor of hydrogen in hydrogen evolution 29: 23 growth on 31: 241, 243 reaction of cytochrome c 27: 169, 170 spectra, b-type cytochrome in hydrogen oxidation 29: 29, 30, 32 Carbon sources energy production on 45: 318 entering as C2 monocarboxylic acids 45: 309– 313 entering glycolysis 45: 304 entering Krebs cycle 45: 313 entering pyruvate pool 45: 304– 309 magnetotactic bacteria 31: 140 membrane transport 43: 142– 150 M. leprae, see Alycobacteriurn leprae Pseudomonas strains 31: 5, 8 used for nitrogen fixation 43: 128– 132 Carbon storage compounds in streptomycetes 42: 92 – 96 Carbonic anhydrase 29: 152 as possible carboxysomal protein 29: 127, 128 inhibitors 29: 128 Carbon-monoxide dehydrogenases and selenium metabolism 35: 73 Carbonyl cyanide m-chlorophenyl hydrazone (CCCP) 37: 237; 43: 197 energy uncoupling, tyrosine transport 28: 173 protein ionophore 28: 153, 154
52
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Carbonylation 46: 127 Carbonylcyanide m- chlorophenylhydrazone (CCCP) 36: 38, 253; 39: 208, 209; 41: 295 0 2 -Carboxy-3-keto-D -arabinitol 1,5bisphosphate (CKABP) 29: 137 2-Carboxyarabinitol 1,5-bisphosphate (CABP) 29: 139, 150 20 -Carboxyarabinitol-1-phosphate (2CA1P) 29: 144 Carboxyl groups, in cell wall 32: 182 in flocculation 33: 45, 46, 48 Carboxylation reaction by RuBisCO, see RuBisCO Carboxylic acid-dependent decarboxylation-driven active transporters 40: 87 Carboxylic acids 45: 309– 313 + TOL Ps. Putida growth 31: 5, 8 Carboxymethylcellulose 37: 8, 34, 40, 42, 52, 56, 59 – 61 Carboxymethylchitin 37: 38 Carboxymycolates 39: 168 Carboxypeptidase 31: 82 biogenesis in sec14– 1ts mutant 33: 118 precursor, accumulation in sec7ts mutant 33: 115 translocation into endoplasmic reticulum 33: 83, 87 Y (CPY) 33: 83 Y, Sacch. cerevisiae 34: 88 Carboxysomes 29: 115– 164, see also Cyanobacteria; individual organisms abundance and photosynthetic characteristics 29: 151, 152 as carbon dioxide concentrating mechanism 29: 152 assembly, DNA role in? 29: 130 Calvin cycle enzymes absent except RuBisCO 29: 152 composition 29: 124– 132 DNA in 29: 128– 130 proteins in 29: 124–128 distribution and structure 29: 117– 123, 153 ecological marker for autotrophy 29: 116, 155, 156 function 29: 116, 149– 155 as carbon dioxide concentrating mechanism 29: 127 as site of carbon dioxide fixation in vivo 29: 150– 152 as storage bodies 29: 154, 155 different in different autotrophs 29: 153
protection of RuBisCO from inhibition 29: 152– 154 immuno-electronmicroscopy 29: 130– 132 in chemolitho-autotrophic prokaryotes 29: 117– 121, 153 in colourless sulphur-oxidizing bacteria 29: 119, 120, 153 in cyanelles 29: 123, 153 in cyanobacteria 29: 121, 122 in hydrogen-oxidizing bacteria 29: 120, 121, 153 in nitrite- and ammonia-oxidizing bacteria 29: 117, 118, 153 in Oscillatoria (Trichodesmium) erythraea 29: 156 in photo-autotropic prokaryotes 29: 121– 123 in Prochlorophyta 29: 122 isolation and studies in vitro 29: 124– 130 man-made containing RuBisCO 29: 156, 157 membrane, permeability 29: 150, 152 number/cell, in carbon limitation 29: 152, 154 RuBisCO in, see also Ribulose 1,5bisphosphate carboxylase designation dependent upon 29: 117 evidence for 29: 124, 125 stability in vitro 29: 124 Carcass meat, organic acid treatment 32: 100– 103, 104 Carcinogenesis 40: 144 Carcinogens, flocculation loss 33: 19 Carcinoscorpius rotundicauda 37: 151 Cardiolipin 28: 238; 29: 22; 32: 23; 39: 180 content in Staph. aureus, in energy deprivation 29: 270 Carnitine 37: 303, 304 Carotenoid biosynthesis 39: 363 Carotenoids and hopanoids 35: 258 CarR 45: 210, 233 Carrier-type facilitator 40: 87, 89, 90 CAS phenotypes 45: 126 test 45: 118 Casamino acids 26: 31 E. coli medium 28: 128, 129 Cascade hybridization 34: 161, 162 Cascade theory, of flocculation 33: 38 – 41 Casein 37: 187 Cassia fasciculata 39: 307 Catabolic genes, see also Plasmid pWWO; TOL plasmids; xyl genes organization 31: 18 – 23 plasmid-coded nature 31: 10
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 recombination and transposition 31: 34 – 39 regulation 31: 23 – 34 Catabolic pathway, aromatic substrates, see Toluene catabolism Catabolic plasmids, see Plasmid pWWO; Plasmids; TOL plasmids Catabolic synergism 26: 21 Catabolic systems in streptomycetes 42: 111– 113 Catabolism in vitro 36: 92 – 97 AP1 phosphoylases 36: 95, 96 AP1A hydrolases 36: 96 non-specific cleavage 36: 97 symmetrical AP1A hydrolases 36: 92 – 95 Catabolism in vivo 36: 97 – 99 Catabolite activator protein (CAP) 44: 197 Catabolite control protein (CcpA) 39: 13 Catabolite repression 39: 71 – 75; 43: 85 – 89; 45: 13, 14 flagellar assembly decreased 33: 287 flagellar operon control 32: 122 of sporulation, 37, 38, 41, 47 industrial applications of mutations releasing 30: 37, 47 Catabolite responsive elements (CREs) 39: 73 Catalase 31: 198, 199; 37: 189; 46: 114, 115, 125, 126, 330 description 28: 9 functions 46: 330 in antioxidant defense 34: 272 in hydrogen peroxide detoxification 31: 199– 201 in M. leprae axenic cultures 31: 112 increased activity, miconazole, yeast 27: 51 induction 31: 199, 200 induction by oxygen, anaerobes 28: 9 inhibitation of cyanide production, Chlorella 27: 91 Catalysis in selenium metabolism versus sulphur 35: 96, 97 Catalytic domains, cellulose 37: 19 – 27, 21, 22, 25 Catechol 1,2-oxygenase (C120) 31: 3, 23 Catechol 2,3-oxygenase, see C230 Catechol 39: 341, 341 metabolism 31: 3, 4, 6, 23, 56 see also Toluene catabolism Catecholamines, fungal responses to 34: 127, 128 Catenaria anguillulae 36: 127, 128 adhesion in 36: 128 trapping devices 36: 118 Catepsine B 37: 187
53
Cathepsin B-like protease, Sacch. cerevisiae 34: 88 Cathepsin G 37: 136 Cation-exchange column, Nitrosomonas colonization 30: 147 Cationic antimicrobial peptides (CAMPs) resistance, B. subtilis s x role 46: 69 – 71 Staphylococcus aureus dlt mutants 46: 70 Cations, see also individual cations; Inorganic ions intracellular, changes with medium changes 33: 183, 184 lipoteichoic acid interaction 29: 291– 294 Caulobacter crescentus 41: 235, 251, 256, 257, 300; 42: 207; 45: 174 chemotaxis 33: 279 complex flagella and flagellins 33: 283 flagella, basal body rings 33: 285 flagellar assembly and cell cycle linkage 32: 150, 151 flagellin, packing arrangement 32: 124 size 32: 130– 131 periplasm in 36: 9, 10 S-layer extension 33: 235 S-layer glycoprotein, biosynthesis 33: 249 sigma factors 46: 98 surface-layer protein (rsaA) gene 33: 246 Cavia cutteri 37: 142 cbb3 oxidase 46: 290, 291 CcdA 46: 282 ccm genes 46: 278 Ccm proteins 46: 280 CCM see carbon-concentrating mechanisms CcmC protein, role in haem delivery 46: 284 CcmE protein accumulation 46: 283, 284 function in haem delivery 46: 283– 285 CcmF protein, role in haem delivery 46: 283, 284 CcmG protein, cytochrome c biosynthesis 46: 281, 282 ccoNOQP operon 46: 289, 290 CcsA and CcsB, function 46: 285 CcsX 282 cdc 5 and cdc 14 mutants 30: 35 cdc mutants, heat-shock response 31: 202, 203 cdc34 gene, product as ubiquitin-carrier protein 31: 195 cdg1 mutant 32: 23
54
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
cDNA 44: 172 probes biotin-labelled 46: 8 RNA, microarrays 46: 7 CDP-choline pathway 33: 122 mutations in, SEC14p requirement bypass 33: 122, 123, 125, 126 CDP-diacylglycerol synthase 32: 10, 22 inositol repression of 32: 22, 23 regulation 32: 22 – 23 growth phase and 32: 23 subunits 32: 22 CDP-diacylglycerol, biosynthesis, regulation 32: 10 PI synthesis from 32: 8 CDP-glycerol 29: 233, 234 no rule in lipoteichoic acid metabolism 29: 247 structure 29: 235 CDP-ribitol 29: 234 Cdr lp 46: 183, 185, 187 CDR1 gene 46: 172, 173 drug resistance 46: 172, 173 efflux of drugs and 46: 182, 183 homologues in non-albicans species 46: 187 steroid transport and 46: 184, 185 CDR2 gene, efflux of drugs and 46: 182, 183 Cecropins 37: 137, 140, 141, 147–150 lipid interactions 37: 157– 160, 160, 162, 163 structure function relationships 37: 152, 153, 153, 154, 155, 156, 155 Cefepime 37: 164 Cefotaxime 28: 218 Cefotiam 28: 245 Cefratrizine 36: 4 Cefsoludin 46: 222 Ceftizoxime 28: 245 Cell cycle, arrested, PIP2 as rate-limiting factor 32: 16 – 17 CDP-diacylglycerol activity and 32: 23 flagellar assembly and 32: 150– 151 G1, arrest 30: 39, 40 in immobilized cells 32: 64 number of, apomictic dyad formation 30: 24, 40, 43 Cell cycle, Synechococcus 47: 39– 43 Cell death see also longevity, bacterial TNC 47: 68, 69 Cell differentiation, pH 37: 246– 248 Cell division 37: 88 – 90, 93; 40: 387– 392 cessation, in inositol-starved cells 32: 14 Cell envelope, modification, control by B. subtilis s x 46: 68 – 71
Cell growth 37: 93 mechanisms regulating 36: 185–188 Cell lines J-937 46: 37 macrophage 46: 36, 37 THP1 46: 38, 39 Cell lysis, organic acids causing 32: 95 Cell membrane stability see hopanoids Cell membrane(s), anion flux across 39: 210, 211 antibiotic interactions 27: 286– 289 antimycotic drugs, primary target 27: 19 imidazole antimyotics 27: 39 – 56 naftifine 27: 56, 57 polyene macrolide antibiotics 27: 20 –39 aqueous pores, polyene-treated cells 27: 26 – 28 function impairment 27: 46 – 49 M ring of basal – body of flagellum association 32: 133, 134, 147 molecular model, interaction with polyene macrolide antibiotics 27: 24 –26, 58 organic acid effect on 32: 95 – 96 disruption 32: 95 functions of 32: 95 – 96 integrity of 32: 95 permeability of 32: 95 polyene antibiotics 27: 286– 289 sterols in 27: 28 – 33, 55, see also Sterols transport, inhibition 27: 49 – 51, 55 Cell morphology, effect of imidazoles 27: 53 – 55 Cell ploidy, heat-shock acquisition of thermotolerance 31: 210 Cell polarity, ionic currents and 30: 90, 113 applied electrical fields effects 30: 107, 113, 114 calcium currents, microfilaments and tip growth relationship 30: 118 evidence for/against relationship 30: 106, 114, 115 in Achlya, indications of 30: 96, 97 in fucoid eggs 30: 105–107 calcium influx roˆle? 30: 106, 107 membrane protein polarization 30: 114, 116 Cell recycling 36: 177, 178 Cell surface 32: 175 Cell wall 39: 154– 179 bacterial 32: 173–222 barrier, C. albicans biological activity 39: 171– 173 biosynthesis, Tat protein translocation pathway 47: 217, 218 calcium 37: 85 – 93
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 deformation measurements 32: 189 dynamic structure 32: 183– 185 turnover at poles 32: 184, 206 effect of griseofulvin 27: 9 elasticity, water loss and 33: 164– 166 functions 32: 176– 177 fungal 46: 157 in anchorage of structures 32: 176 lytic enzymes, interaction with lipoteichoic acid, see Autolysins lysis, glucose analogues 27: 310 mannoproteins 27: 62 materials/components 32: 174, 177– 181 see also Peptidoglycan anionic polymers 32: 181 peptides and cross-linking 32: 179– 181 mechanical properties 32: 189– 202 anisotropic 32: 202, 207–214 early observations 32: 189 environmental effects 32: 196– 200 extensibility 32: 192, 199 hoop and longitudinal stress 32: 194, 206, 207 humidity effect 32: 192– 194, 197 initial (Young’s) modulus 32: 192, 195, 198 measured properties 32: 192– 196 measurements using bacterial thread 32: 189– 192 molecular arrangement 32: 202 relaxed modulus 32: 200– 201 stress and turgor pressure 32: 194, 205 stress/strain curves 32: 192– 193, 197 visco-elasticity 32: 200– 201 mechanical requirements 32: 174– 176 elasticity and flexibility 32: 175 stiffness 32: 175 strength 32: 174, 175 structural polarity 32: 175 turgor pressure changes and 32: 176, 183, 189 models 32: 202– 218, 219 aims of 32: 202– 203, 219 analysis of stress 32: 207–211, 216 anisotropic material 32: 207– 214 cell-wall growth 32: 203– 204, 214– 218 cell-wall twist 32: 211– 214 geometrical 32: 203–205 surface tension-like stress 32: 205–207 ‘thick-shell’ 32: 214– 215 ‘thin-shell’ 32: 209– 214, 217, 218 visco-elastic 32: 217 reducible factors 27: 298–303
55
resistance to amphotericin methylester (AME) 27: 286– 289, 297, 298 permeability 32: 176 physical state 32: 182– 189 charged polymers 32: 181, 182– 183 macrofibre formation/development 32: 187 macrofibre significance 32: 186– 188 order in arrangement of material 32: 185– 186 rod-shaped and square 32: 185, 186 twisted macrofibres 32: 185– 188 wet density 32: 183 rod growth 32: 185, 186, 203– 204 ‘autonomous process following rules’ 32: 204, 205, 208 model for 32: 214–217 surface tension and 32: 205, 206 role in gene regulation 32: 177 skeleton (CWS) 39: 154– 180 stress, response by s E in Streptomyces coelicolor 46: 81, 82 synthesis inhibitors 28: 236, 237 synthesis, see also Chitin strength 32: 174, 175, 189 transfer of information into cells 32: 176, 177 twist 32: 185–188 models 32: 211–214 rapid changes, models 32: 212 reversal 32: 213 twisting-with-elongation 32: 185, 203, 204, 207, 208 ultrastructural appearance 39: 173, 174 ultrastructure, changes in stationary phase 27: 289– 291 yeast, structure 33: 43, 44 yeast, biosynthesis inhibition, in inositol starvation 32: 14 Cell, envelope, major classes 33: 227 outer component, see S-layer shrinkage with low water potential 33: 161 size, changes with water potential changes 33: 161, 162 Cell-cell, interactions, in flocculation, see Flocculation repulsion, see Repulsion Cell-division cycle (CDC) 39: 305– 307, 313, 314, 318 genes 30: 39 cdc 5 and cdc 14 mutants 30: 35 cdc25 and cdc35 genes 30: 40 spo12–11 and spo13-1 mutants defective in 30: 39, 40
56
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Cell-division mutants 36: 212– 220 Cell-envelope, in Archaebacteria 29: 170 Cell-mediated immunity, defective, C. albicans infections 30: 69, 70 Cellobiohydrolase 37: 8, 9, 19, 23, 41 – 46, 43, 50, 51, 56, 63 Cellobiose 37: 41, 56, 58, 59, 61, 62; 39: 67, 69, 70 Cellobiose dehydrogenase (CDH) 41: 62; 43: 61 Cellobiose, sporulation media 28: 40 Cellobioside 37: 23 Cellodextrin 37: 47, 61, 62 Cellodextrinase 37: 20, 23 Cellooligosaccharides 37: 8, 41 a-cells of Sacch. cerevisiae, sexhormones and 34: 87 – 96 passim Cell-surface layers, see Bacteria, cell-surface layers Cell-surface polysaccharides in gramnegative bacteria, biosynthesis and expression of 35: 135– 246 structure and attachment 35: 138– 153 see also Export; Genetics of polysaccharide biosynthesis; Processes; Regulation of cellsurface polysaccharides multiple, expression of 35: 149 repeating unit structure 35: 144– 148, 150– 153 surface association 35: 138– 144 Cell-to-cell communication 45: 200 Cell-to-cell signals 45: 202 Cellular development 37: 105 Cellular differentiation during sporulation 43: 89 – 106 Cellular energetics during sporulation 43: 78 – 89 Cellular regulation 37: 93 Cellulase 39: 45 – 47 Cellulase A 37: 92 Cellulase see cellulose hydrolysis Cellulase, Achyla spp., antheridiol effects 34: 77, 78 Cellulases 42: 74 – 76 Cellulolytic bacteria 32: 74 Cellulomonas fimi 37: 3, 10, 12 – 17, 19, 21, 22, 23, 24, 27, 29, 30, 30 – 34, 35, 36, 38 cellulase systems 37: 39, 41, 51, 53, 56, 60 Cellulomonas flavigena 37: 10, 12, 29, 36 Cellulomonas sp. 37: 53 Cellulomonas spp. 42: 194 Cellulomonas thermocellum 37: 53 Cellulomonas uda 37: 13, 20, 21
Cellulose 42: 74 – 76 -binding domains (CBDs) 37: 8, 19, 21, 27 – 35, 28 – 31, 44, 51, 52 degradation mechanism 39: 42 – 45 degradation regulation 39: 45 – 49 digestion 39: 225, 226 hydrolysis 37: 2, 65, 66 biotechnology 37: 63 – 65 cellulase systems 37: 39 – 53, 43, 49 cellulose structures 37: 2 –9, 3, 5, 7 genetics of cellulases and related hydrolases 37: 53 – 63 structure and function 37: 9 – 39, 10 – 18, 21, 22, 25, 28 –31, 36, 37 integrating protein (CipA) 39: 44 mechanical properties, humidity relationship 32: 194 synthetase, allosteric activation of 35: 228 Cellulosome integrating proteins 37: 47 – 50, 49 Cellulosomes 37: 40, 46 – 51, 49 Cellvibrio mixtus 37: 56; 37: 39 Cement, corrosion, nitrification roˆle in 30: 127, 128 Central metabolic pathways. See CMPs Central metabolism, Archaebacteria, see Archaebacteria in eubacteria and eukaryotes, see Eubacteria; Eukaryotes Cephalexin 36: 4, 57, 211 Cephalosporins, sub-inhibitory concentrations 28: 245 mice 28: 248, 249 rabbits, Ps. mirabilis 28: 249 Cephalosporium acremonium 35: 294– 298 ACVS from 38: 97 Cephalosporium gramineum 35: 12, 17 Cephalosporium spp., glutathione and antibiotics from, structural similarities 34: 243 Ceramide (phosphoinositol)2 mannose 32: 3 Ceratitis capitata 37: 141 Cerato-ulmin 38: 4, 6, 13 disulphide bridges 38: 9 function 38: 19 hydropathy pattern 38: 6, 7 phytotoxic mechanism 38: 31, 32 sequence determination 38: 18 surface activity 38: 18 Cerebrosides, S. commune, as sex hormones or as fruiting-inducing substances 34: 104, 181
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Cerulenin 30: 72 fatty-acyl residue inhibition 28: 236, 237 a-haemolysin suppression 28: 232 protein production, inhibition, bacilli 28: 234 ceuE gene, H. pylori adaptation to acidic environment 46: 20 cfa gene, E. coli O157:117 adaptation to acid 46: 19 CFA/I, CFA/II, see Pili Cfx2 mutants 29: 9, 10 CgCDR1 and CgCDR2 46: 173, 174 Chaetomium chlamaloides 35: 278 Chaetomium globosum 35: 284 Chain-forming strains of yeast 33: 2 flocculation by 33: 8, 41 flocculation comparison 33: 3 in classification system 33: 8 Chainia sp. 37: 16 “Chameleon phenomenon” 27: 219 Channel protein families 40: 129 Channel-forming colicins 40: 129 Channelling reactions to 39: 344–346 Channels, calcium 37: 96 – 99, 98 Channel-type facilitators 40: 86 – 88, 89 Chaperones 33: 54 HSP70 as 33: 82 pH stress 37: 253 Chaperonins 33: 79 Chapteronin 31: 214 Chara 37: 6 Chara corallina, ionic currents in 30: 93, 107, 110, 119 Characteristics, clade-specific physiological 47: 20 –27 Charge couple device (CCD) camera 39: 310 Charged coupled device (CCD) cameras 41: 109 Charybdotoxin 37: 141, 148 CHC1 gene 32: 117; 33: 128 chc1 mutants 33: 128 che (genes) 32: 117; 33: 313, 314 see also individual genes in chemotactic signal analysis 33: 317 in chemotactic signalling model 33: 332, 333 sequence homologies with other signalling systems 33: 317 Che (proteins), see also individual proteins complexes identification 33: 321 CheA 41: 238, 239, 244– 247, 249, 253, 255, 260, 267; 45: 162 cheA gene, null mutation 33: 313 CheA histidine kinase 45: 163 cheA mutants 33: 319
57
CheA protein 33: 318 CheW complex/interaction 33: 320, 321, 332 dual initiation sites 33: 314 in model of chemotactic signalling 33: 332, 333 phosphorylation 33: 319, 320, 332 inhibition/stimulation 33: 320 phosphorylation of CheB 33: 331 states 33: 320, 332 determining signalling state 33: 320, 321 open/closed/sequestered 33: 320 repellents/attractants effects 33: 320, 321 CheA/CheY two-component system 45: 162 CheA2 41: 266 CheA-CheA-CheW complex 33: 321 CheB 41: 238, 239, 245, 246, 249, 251, 266; 45: 163 cheB gene 33: 326 cheB mutants 33: 327, 328 CheB protein 33: 318, 330, 331 activities associated 33: 326, 330 CheW interaction 33: 331 in chemotactic signalling model 33: 333 phosphorylation, methylesterase activation 33: 331, 333 CheC 41: 259 cheC gene, mutations 33: 314 CheD 41: 259 cheD gene, mutations 33: 314 Chelators, nitrification inhibitors 30: 170, 171 Chelex-100 for copper metabolism study 38: 222 for metal removal from medium 38: 189 Chemical inducers, TNC 47: 92 – 94 ‘Chemical potential of water’ 33: 148 Chemical reactions, flocculation analogy 33: 29 – 32, 39 Chemical sensitivity, glutathione in the modulation of 34: 277– 280 Chemicals, resistance of biofilms see Biofilms; Glycocalyx Chemiosmotic energization of bioenergetic work 40: 420 Chemi-osmotic theory 31: 230; 39: 208 Chemoautotrophs, R. japonicum oxygeninsensitive mutants 29: 7 Chemoheterotrophic eubacteria 37: 295, 297 Chemoheterotrophic growth, RuBisCO production in 29: 154 Chemolitho-autotrophic prokaryotes 29: 116
58
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
aerobic, RuBisCO substrate specificity 29: 142 carboxysomes in, distribution and structure 29: 117– 121, 153 in dark deep-sea environments 29: 155 Chemolithotrophic bacteria 33: 221, 222 Chemolithotrophic growth, cytochrome spectra 29: 36 nickel in 29: 20 oxygen-dependent hydrogen oxidation rate 29: 36 Chemoluminescence, phagocytosis, and lysosomes 28: 91, 92 Chemoreception 32: 112; 33: 296– 310 chemical gradients sensed 33: 296, 297 shallow gradients 33: 298, 316 chemical memory 33: 298, 324 see also Chemotactic signal transduction, adaptation classical phase 33: 296–298 recognition of attractant not energy release, evidence 33: 296 three-dimensional random walk biasing 33: 297, 298, 316 transducers, see also, Chemotactic signal transducers transport and metabolism required in 33: 299 Chemoreceptors 33: 296, 298– 302; 45: 160, 162 binding proteins, see Periplasmic binding proteins cellular distribution 33: 302 random 33: 302 enzyme II for sugars 33: 299 for attractants, see Attractants for oxygen 33: 299 for repellents, see Chemotactic signal transducers; Repellents primary and secondary 33: 301 structure and ligand-interactions 33: 302– 305 transducers as, see Chemotactic signal transducers Chemosensory apparatus 37: 88 Chemosensory pathway 33: 299 Chemosensory protein combinations 41: 256 Chemotactic response 45: 160 Chemotactic signal transducers 33: 299, 300 see also individual transducers; Tar protein as homodimers 33: 311, 312 binding proteins affinity 33: 303, 304 cellular distribution 33: 302 CheW protein interaction 33: 319 copy number/cell 33: 302
cytoplasmic domain 33: 305, 310, 311 deamidation 33: 326, 327 methylation 33: 325– 327 action 33: 327 feedback control of adaptation 33: 330– 332 in adaptation 33: 327– 330 overmethylation 33: 331, 333 sites 33: 325 periplasmic domain, see Tar protein as primary or secondary chemoreceptors 33: 301 repellent sensing 33: 301, 304, 305 low-affinity receptors 33: 301 required for clockwise (CW) signal 33: 314, 333 stimulation by attractants 33: 305– 310, 312 see also Tar protein stimulation by binding proteins 33: 305– 310 structure and topology 33: 300 transmembrane regions (TM1 and TM2) 33: 300, 307 cysteine mutagenesis 33: 311 in signal transduction 33: 312 mutations and suppression of 33: 312 of homodimers and heterodimers 33: 312 transmembrane signalling 33: 310–312, 334 conformational changes 33: 312 tryptic peptides (K1 and R1) 33: 325 Chemotactic signal transduction 33: 310–333 adaptation of response 33: 324– 332 covalent modification 33: 326– 330 covalent modification model 33: 329, 330 feedback control 33: 330–332 methylation affecting signal produced 33: 328 methylation and deamidation 33: 325, 326 short-term memory 33: 298, 324 to oxygen and phosphotransferase substrates 33: 330 biochemical nature 33: 316– 322 see also CheA protein; CheY protein; Intracellular signalling cross-talk 33: 322 flagellar switch events 33: 322– 324 genetics and 33: 313, 314 integrated model 33: 332, 333 intracellular, see Intracellular signalling physical properties 33: 315, 316 transmembrane, see under Chemotactic signal transducers
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Chemotaxis 32: 110– 114; 37: 98, 106, 108– 112, 137 as model behavioural system 33: 278 ATP requirement 33: 292, 318 bacterial 33: 277– 346 see also Chemoreception; entries beginning Chemotactic adaptation of response, see Chemotactic signal transduction flow of information 32: 112, 114 genes encoding components (che) 32: 117 gliding bacteria 33: 298 historical aspects 33: 278 importance 33: 278, 279 biological 33: 334 clinical 33: 279 survival strategies and selective advantages 33: 278, 279 in rhizosphere and aquatic environments 33: 279 negative stimuli, tumbling episodes increased 32: 111, 112 positive stimuli, tumbling episodes suppression 32: 111 proton-motive force 33: 299 reverse 33: 323 reviews on 32: 112 see also Flagellum, bacterial; Tumbling episodes signal transduction, see Chemotactic signal transduction transport required in 33: 299 spatial gradient information 32: 112 Synechococcus 47: 39 TNC 67 transducers 45: 157– 198, 160, 162 chronology of significant findings 45: 161 domain structure 45: 186 evolutionary considerations 45: 177 genomic distribution 45: 178– 181 in various microbial species 45: 170– 177 of enteric bacteria, periplasmic domain of 45: 184 postgenomic era 45: 178– 187 topology analysis 45: 181, 182 topology classes 45: 168 Chenopodiaceae 37: 297 CheR 41: 238, 239, 251, 259; 45: 163, 170 cheR mutants 33: 313, 315, 326, 328, 330 adaptation defective 33: 327 cheRB deletion mutants 33: 328, 330 Chernobyl fall-out 38: 183 CheW 41: 239, 244, 245, 253, 255; 45: 162, 163, 170
59
cheW gene, expression control 33: 319 mutations 33: 319 null mutation 33: 313 CheW protein, CheA protein complex/interaction 33: 320, 321, 332, CheB interaction 33: 331 function 33: 319 in model of chemotactic signalling 33: 332, 333 transducer interaction 33: 319 CheW2 41: 266 CheY 41: 238, 239, 245– 249, 255, 267, 316; 45: 162, 163 cheY gene, mutations 33: 319, 324 null mutation 33: 313, 319 CheY protein 32: 114, 158 crystal structures 33: 319 events at flagellar switch 33: 322, 324, 332 in flagellar rotation direction 33: 317– 319 clockwise 33: 318, 319, 332, 333 in model of chemotactic signalling 33: 332, 333 K109R mutant 33: 318 Lys residue involvement 33: 313– 319 phosphorylation 33: 318, 319, 332 see also CheY-P aspartate effect 33: 320 CheA protein in 33: 320, 321 CheZ effect 33: 319, 320, 332 cheY suppressors 33: 324 CheY-P 33: 318, 320, 321 accumulation 33: 319 factors affecting 33: 319, 320 limited by CheZ 33: 320, 332 as clockwise (CW) signaller 33: 318, 319, 332, 333 in model of chemotactic signalling 33: 332, 333 levels in absence of chemotactic gradient 33: 322 CheZ 41: 238, 239, 247 cheZ gene, mutations 33: 315, 324 null mutation 33: 313 CheZ protein 32: 158 CheY, effect on 33: 319, 320, 332 flagellar rotation direction 33: 318, 333 function 33: 3, 22, 333 in chemotactic signalling model 33: 333 regulation, by CheA 33: 321, 322 cheZ suppressors 33: 324 Chicken erythrocytes, agglutination 28: 82 Chimeric mitosis in Physarum polycephalum 35: 29, 30
60
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Chinia rubra 35: 262 Chitin 37: 56 abnormal deposition in sac1c9 mutants 33: 130 Clostridium spp. and fermentation of 34: 264 deacetylase 37: 40 hyphal wall 34: 187– 189 inhibitors, applications 27: 59 in yeast cell wall 33: 43 in yeast-to-hypha conversion of C. albicans 30: 61 mechanical properties, humidity relationship 32: 194 Sacch. cerevisiae sexual reproduction and formation of 34: 91 synthase 30: 61, 114; 34: 91, 92 Chitinase 37: 2, 9, 20, 32, 33, 53; 42: 78 amphotericin resistance 27: 297, 298, 306 Chitins 42: 78 Chitooligosaccharides 37: 40 Chlamydia trachomatis 35: 163 Chlamydiae, crystalline surface layers 33: 217 Chlamydomonas capensis 26: 91 Chlamydomonas eugametos 26: 90 agglutination factor mt2 26: 110, 113, 115 agglutination factor mt+ 26: 113, 115 cell wall release 26: 96 flagellar interaction among mating cells 26: 92, 93 flagellar surface outgrowths 26: 103 flagellar surfaces in gametes, mt+-mt2 interaction 26: 109 flagellar tips 26: 99, 100 (fig) gametogenesis 26: 91, 92 isoagglutinins 26: 103, 104 monosaccharides 26: 109, 110 O-methylated sugars 26: 109, 110 mating structure activation 26: 94, 96 primary zygote membrane 26: 93 sexual agglutination 26: 92, 93, 116– 118 receptor activation 26: 112– 116 sexual adhesion mechanism 26: 111, 112 signalling action 26: 116– 118 Chlamydomonas gymnogama cell wall release 26: 96 Chlamydomonas moewusii 26: 90 Chlamydomonas monoica 26: 91 Chlamydomonas reinhardtii 35: 11, 16, 17, 62; 26: 90; 39: 11, 302, 303, 314, 315; 46: 331 agglutination factor mt2 26: 113 agglutination factor mt+ 26: 110, 111, 113
autolysin 26: 96, 97 Ca2+ in flagellar signalling 26: 117 lidocaine interference 26: 117 calcium efflux 26: 118, 118 (fig) cell wall release 26: 96 – 98 fertilization tubule elongation 26: 94, 95 (fig) flagellar interaction among mating cells 26: 92, 93 flagellar membrane agglutinins effect 26: 100, 101 (table) flagellar regeneration experiments 26: 114 flagellar surface motility 26: 98 flagellar tip 26: 98, 99, 99 – 102 FTA blocking 26: 100 gametogenesis 26: 91 glutathione-related processes 34: 271 mating structure activation 26: 94, 96 non-agglutinative mutants 26: 116 RuBisCO activase polypeptides 29: 145 sexual agglutination 26: 92, 93, 111– 116 receptor inactivation 26: 112– 116 sexual adhesion mechanism 26: 111, 112 signalling action 26: 116– 118 Chlamydomonas spp. flagellar interaction between mating cells 26: 93 flagellar surface 26: 103 flagellar surface motility 26: 98 flagellar tip activation 26: 99 – 102 gametic fusion cf. that of green algae 26: 96 isoagglutinins 26: 103, 104 Chlamydomonas zimbabwiensis 26: 91 Chlamydospores 30: 59, 83 Chloramine, bacterial susceptibility 46: 214 Chloramphenicol 36: 62; 42: 56 DNAase, streptococcal 28: 234 endocarditis, adhesions 28: 226 fibronectin binding, decrease 28: 225 fimbrial subunit synthesis, E. coli 28: 129, 133 haemolysin, inhibition 28: 232 inhibition, excision repair, DNA 28: 17 oxygen induced reactivation 28: 19 stringent response, mannose-sensitive adhesins 28: 220 resistant mutants 28: 245 streptolysin-S production 28: 234 sub-inhibitory concentrations, and human serum 28: 240 uropathogens 28: 221 Chlorate 26: 72; 30: 170
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Chlorella 39: 304, 305 Chlorella, inhibition of carbon dioxide assimilation 29: 140 Chlorella kessleri 40: 100 Chlorella vulgaris amino acid oxidase-peroxidase 27: 91 – 93 cyanogenesis 27: 90 glyoxylic oxime system 27: 93 inhibition, nitrate reductase 27: 94 Chlorhexidine, inhibition of adhesins 28: 223 Chloride channel (ClC) family 40: 128 efflux, in fucoid eggs 30: 106 ions, accumulation in vacuoles 33: 185 uptake, by fungi 33: 184 uptake by Chara 30: 95, 107 Chlorite, nitrification inhibition 30: 170 Chlormidazole, structural formula 27: 39 1-chloro-2,4-dinitrobenzene 39: 363 Chloroate, nitrate reductase detection 31: 258 3-Chlorobenzoate (3CB) 31: 58, 59 4-Chlorobenzoate (4CB) 31: 58 Chlorobenzoic acid degradation, plasmid pWWO 31: 58 Chlorobiaceae 26: 160 ecological distribution 26: 161, 162 growth properties 26: 161 Chlorobiales 26: 158, 159 (table), 160 Chlorobium 37: 282 Chlorobium limicola f. sp. thiosulfatophilum 39: 248, 249, 251, 275 Chlorobium sp., superoxide dismutase, presence 28: 6 Chlorobium tepidum 39: 251 Chlorobium thiosulfatophilum 29: 189; 39: 248, 249, 258 Chlorobium vibrioforme 39: 251 Chlorobium vibrioforme f. sp. thiosulfatophilum 39: 248 Chlorobium, sulfur-oxidizing enzymes 39: 248, 249 Chlorocatechol dioxygenase 38: 73 iron site 38: 75 Chlorochromatium aggregatum 41: 270 Chloroflexaceae 26: 160 Chloroflexus aurantiacus 39: 360 Chloroform, permeabilization of carboxysome membrane 29: 150 Chlorogloeopsis fritschii, carbonic anhydrase in, external enzyme 29: 127, 128, 152 carboxysomes in, phosphoribulokinase activity 29: 127
61
polypeptide composition 29: 126 role in carbon dioxide fixation 29: 151, 152 stability in vitro 29: 124 extrachromosomal DNA absent 29: 129, 147 immuno-electronmicroscopic localization of RuBisCO 29: 130, 131 phosphoribulokinase in, localization 29: 127, 131 RuBisCO number of genes 29: 147 pool localization 29: 131 4-Chlorophenyl acetate benzoate dioxygenase 38: 55 – 57 Chlorophyll a and b 29: 122 Chlorophyll, biosynthesis 46: 261, 272 Chloroplast ATPase 26: 146 Chloroplast(s) 26: 148 C. paradoxa cyanelles genome similarity 29: 123 eubacterial origin 29: 167 protein, RuBisCO activity increase 29: 144, 145 RuBisCO L and S subunit genes in 29: 145, 146 Chloroplast-membrane proteins, phosphorylation of 26: 140 Chlororaphine 27: 212, 217 production P. aeruginosa 27: 222– 224, 253 structure 27: 220 Chlorosomes 26: 160 Chlorpicolinic acid 30: 171 Chlorpromazine 37: 98, 118 C. albicans germ-tube formation block 30: 61 Chlortetracycline (CTC) 30: 106 CHO1 gene, cloning and sequence analysis 32: 26, 30 fusion gene with lacZ gene 32: 27 transcriptional regulation 32: 26, 27 cho1 mutant 32: 25, 26, 30 Opi – phenotype 32: 31 phosphatidylethanolamine/phosphatidylcholine synthesis 32: 26 phosphatidylserine synthase activity defective 32: 25, 26 CHO2 clone 32: 28, 29 cho2 mutation 32: 28 Opi – phenotype 32: 31 pem1 mutation similarity 32: 28 Cholera toxin 37: 245 Cholesterol 37: 159 biosynthesis, inhibition by imidazoles 27: 41
62
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Choline 37: 296, 297, 305, 307, 308, 309, 310, 313 combined effect with inositol in enzyme repression, see Inositol in teichoic acid, in action of N- acetylmuramyl-L -alanine, amidase 29: 284 kinase gene (CKI) 33: 122 oxidase 37: 305, 305 phosphatidylcholine biosynthesis restoration, in opi3 mutant 32: 31 Choline-o-sulfate 37: 303, 304 Chorionic gonadotrophin, human, C. albicans binding sites for 34: 121, 122, 125, 126 Chorismic acid precursor of phenazines 27: 244– 247 structure 27: 246 Chorobium limicola f. sp. thiosulfatophilum 39: 245 Chou-Fasman analysis 30: 201 Chromatiaceae 26: 160; 39: 252 growth properties 26: 161 hydrogen uptake stimulation 26: 164 maximal rate of H2 photoproduction 26: 167 (table) nitrogenase-mediated H2 evolution –carbon metabolism relationship 26: 170 Chromatin and Physarum polycephalum 35: 44 – 47 Chromatium 41: 233, 234 Chromatium salexigens 41: 264 Chromatium sp. 37: 282, 290 Chromatium vinosum 29: 138, 139; 37: 100; 39: 254– 256, 264, 268, 269, 275, 357, 359, 364 gene transfer 39: 256, 257 nickel in hydrogenase 29: 20 RuBisCO gene cloning 29: 146 S subunit function 29: 138– 140 8L molecules, catalytically competent 29: 139 Chromatium warmingii 39: 254 Chromatography affinity, detergent-solubilized brush borders 28: 85 ion chromatography 38: 197, 198 of metals 38: 198 Chrome azurol (CAS), in siderophore assay 38: 217, 218 Chromobacterium iodinum, see Brevibacterium iodinum Chromobacterium violaceum 35: 278; 45: 211– 213, 226, 246, 247 anaerobiosis 27: 77 cyanide degradation 27: 101
cyanide producing enzymes 27: 79– 81, 83, 84 cyanogenesis 27: 74 – 77 Chromosomally encoded control elements, pilus expression 29: 71, 72 Chromosomes see also genetics C. albicans 30: 56, 57 chromosomal genes forO-poly saccharides 35: 190– 196 replication in Physarum polycephalum 35: 48 – 52 origins 35: 51, 52 timing in individual genes 35: 49 – 51 RuBisCO L and S subunit genes in 29: 145, 146 Chrysophyceae 37: 289 Chrysosporium fastidium, glycerol increase with increasing salinity 33: 172 intracellular sodium/potassium ion levels 33: 184 osmophilic response and water potential 33: 157 osmotic potential 33: 153 CHS1 gene and Chs1 product 34: 91 CHS1 gene and Chs3 product 34: 91, 92 CHS2 gene and Chs2 product 34: 91, 92 Chytridiomycetes, sex hormones in 34: 71 – 74 ciaH gene 46: 22 CipA (cellulose integrating protein) 39: 44 Ciprofloxacin biofilm susceptibility 46: 226 resistance to, mechanism 46: 230, 231 Circadian pacemakers 39: 299 Circadian rhythm future questions 39: 321– 324 in unicells 39: 295– 311 models and mechanisms 39: 319– 321, 320 unsolved problems 39: 321 CIRCE/HrcA system 44: 128 cis,cis-Muconate 31: 3, 23, 24, 41, 61 cis-acting regulatory mutations 26: 76 – 78 cis-Crotylglycine 31: 18 cis-Dihydrodiols 31: 62 Citrate 37: 296 ATP inhibition in Gram-positive bacteria 29: 210, 211 control, in eubacteria and eukaryotes 29: 211, 212 in methanogenic archaebacteria 29: 214 formation from glucose via anaplerotic CO2 fixation 41: 66
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 in archaebacteria 29: 213– 215 ATP, NADH and 2-oxoglutarate effect 29: 214 in eubacteria and eukaryotes 29: 210– 213 properties (summary) 29: 212 in halophilic archaebacteria 29: 186, 213– 215 in methanogenic archaebacteria 29: 214, 215 in S. acidocaldarius 29: 189 in thermophilic archaebacteria 29: 187, 214, 215 large and small 29: 211 NADH inhibition in Gram-negative bacteria 29: 210 reaction catalysed by 29: 210 sensitivity to ATP and acetyl-CoA affinity 29: 210, 211 structure, sequencing 29: 215, 216 synthase 26: 139; 29: 209– 217 uptake and synthesis, in rhizobia 45: 130 Citric acid see also Organic acids fungal production 41: 47 – 92 metal chemistry 41: 50 – 53 role of metals in production 41: 67, 68 Citric acid cycle 40: 160 enzyme diversity in 29: 175, 209 evolution 29: 193 in archaebacteria 29: 186– 190 in eubacteria and eukaryotes 29: 175, 176 in halophilic archaebacteria 29: 192 in Helicobacter pylori 40: 166– 168 in methanogenic archaebacteria 29: 189, 190, 192 in thermophilic archaebacteria 29: 187, 191, 192 incomplete, in methanogenic archaebacteria 29: 189, 190 in Thermoproteus neutrophilus 29: 188, 189 oxidative, in halophilic archaebacteria 29: 186, 187, 191 in Sulfolobus, little evidence for 29: 189 in thermophilic archaebacteria 29: 187, 191 incomplete 29: 190 reductive, in Sulfolobus spp. 29: 187, 189, 191 in Thermoproteus neutrophilus 29: 188, 189 incomplete in
63
M. thermoautotrophicum 29: 189, 191 origin 29: 193 Citrobacter 35: 145, 146, 278 Citrobacter freundii 35: 98, 214, 220, 227; 45: 214 cyanide resistance 27: 99 CKAZ gene 33: 62 ckI null mutations 33: 122 CKI, gene 33: 122 Cladophora 37: 6 Cladosporium cladosporioides extracts, fruiting induced by 34: 181 Clams, bacterial, symbionts, carboxysomes in 29: 156 Class I promoters 44: 22 – 24 Class II promoters 44: 24 – 28 Clathrin, antibodies 33: 128 coats, structure 33: 127 gene for heavy-chain 33: 128 localization 33: 128 protein transport to cell surface, role disputed 33: 128 retrieval function 33: 128 role in Golgi-complex protein retention 33: 127, 128 Clavate spores, Clostridium 28: 31 Claviceps purpurea 38: 108 Clavulanic acid 36: 210 Clay minerals, ammonia adsorption, effect on nitrification and pH 30: 162, 163, 176 batch culture of nitrifying bacteria, effect 30: 146, 147 Clays, amino-acid affinities/availability 32: 71 bacterial activity stimulation 32: 67 bacterial adsorption, effect on nitrification 32: 72 utilization of proteins 32: 73 surface adsorption of enzymes 32: 59 Cleavage 39: 346, 347 Clindamycin adhesions, enhancement 28: 231 inhibition 28: 218 effect on penicillinase 28: 233 a-haemolysin production 28: 232 inhibition, streptolysin S 28: 234 M-positive Streptococcus, phagocytosis 28: 243 toxin production, enhancement 28: 238 uropathogens 28: 221 Clindamycin, diarrhoea associated 46: 236, 237 Clockwise rotation, see Flagellar rotation Cloning vector 29: 41
64
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Closterium, ionic currents in 30: 93, 112 Clostridia 37: 53; 44: 73, 80 butanol-forming 39: 77 carbohydrate metabolism in 39: 34 – 37 conjugative gene transfer 39: 39 conjugative transposons 39: 40 fermentation products 39: 35 genetic manipulation 39: 37 – 41 genetic transfer 39: 38 – 41 mutagenesis 39: 38 solvent conversion of carbohydrate by 39: 31 – 130 solvent formation 39: 35, 75 – 106 solvent-forming, transport mechanisms 39: 60 transformation 39: 40, 41 Clostridium 35: 76; 42: 30 Clostridium acidiurici 35: 73, 77, 81, 86 Clostridium acetobutylicum 31: 190, 200; 37: 10, 16, 196, 232, 240; 39: 32 – 35, 38 – 42, 47, 48, 50 – 52, 54, 60 – 62, 64, 66, 72, 74, 77, 79 – 82, 84 –87, 89 – 94 – 96 –104, 106, 219; 40: 286, 304 acid end product production 28: 44 – 46 acid inhibition of cell division 28: 45 endospores 28: 32 fruiting bodies 28: 46 growth media 28: 30 oxygen derivates, toxic, generation 28: 46 polyglucan accumulation 28: 36 RNA polymerase inhibitors 28: 50 solvent production 28: 36, 44 sporulation, fruiting bodies 28: 46 high temperatures 28: 46 induction 28: 46, 48 inhibition, DNA synthesis 28: 49 repression 28: 40 Clostridium acetobutylicum, age of culture effect 27: 279 butyrate and acetate uptake 32: 93 Clostridium aurantibutyricum 39: 77 Clostridium barkeri 35: 87 Clostridium beijerinckii 39: 34 – 36, 38 – 41, 52, 60 – 62, 66, 69, 74, 77, 79, 80, 82, 87, 97, 99, 100, 102– 103, 106 growth media 28: 30 spore shape 28: 31 Clostridium bifermentans growth media 28: 29 spore shape 28: 31 sporulation, optimum pH 28: 44 Clostridium botulinum acid end product production 28: 44 C2 neurotoxin product 28: 34 fermentation pathways, specific 28: 38
polyglucan reserves 28: 36 spores, bipolar 28: 32 pH, optimum 28: 44 production 28: 41 shape 28: 31 sporulation, amino acid carbohydrate requirements 28: 41 energy source 28: 39 media, autolysis 28: 29 requirements 28: 42 switch in metabolic activity 28: 37, 45 stationary phase metabolism 28: 41 stress factors, responses 28: 27 toxin production 28: 33 correlation, spore formation 28: 34 type A and E strains 28: 29 Clostridium botulinum, sigma factors 46: 54 Clostridium butylicum 37: 196; 39: 91, 92, 103 growth media 28: 30 proteolytic end products 28: 45 sporulation, induction, and nutrients 28: 39 polyglucan reserves 28: 35 repression, glucose 28: 40 Clostridium cellulolyticum 37: 11, 13, 14, 17, 22, 30, 50, 55; 39: 44, 45 Clostridium cellulovorans 37: 11, 14, 17, 29, 30, 50, 58; 39: 41, 44, 45, 48, 49 Clostridium cylindrosporum 35: 73, 81, 86 Clostridium difficile 28: 234, 235; 39: 224 diarrhoea associated 46: 236, 237 sigma factors 46: 54 Clostridium fervidus 40: 406 Clostridium formicaceticum 35: 80 Clostridium histolyticum 35: 73 repression, glucose 28: 42 spore formation, change of shape 28: 31 toxin production 28: 33 Clostridium innocuum 39: 103 Clostridium josui 37: 10, 13, 14, 18, 50 hemD-like gene 46: 268 Clostridium litorale 35: 73 Clostridium longisporum 37: 11, 29 Clostridium novyi, toxin formation 28: 33 Clostridium oceanium, bipolar endospores 28: 32 Clostridium oedomatiens, sporulation 28: 31 Clostridium pasteurianum 35: 77, 81, 99; 39: 36, 39, 41, 60 – 66, 74, 92, 93, 103 ADP-glucose pyrophosphorylase 28: 35 glucose concentration 28: 39 granulose synthesis 28: 35
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 hydrogenase I, oxygen sensitivity 29: 18 hydrogenase II, electron acceptor reactivity 29: 17 Km value 29: 16 hydrogenase, nickel absence 29: 21 minimal media 28: 30 polyglucans, intracellular 28: 35 repression, glucose 28: 40 spore shape 28: 31 sporulation media 28: 30 Clostridium pectinovorium, sporulation 28: 31 Clostridium perfringens 39: 71; 40: 286, 309 energy source 28: 39, 40 proteolytic activity 28: 38 sigma factors 46: 54 sporulation, catabolite repression 28: 41 decoynine, action 28: 48 enterotoxin formation 28: 28 in RNA, role in enterotoxin synthesis 28: 50 media 28: 28 – 30 neomycin resistance 28: 27, 28 nitrogen source 28: 42 optimum pH 28: 44 purine nucleotides 28: 48 spore shape 28: 31 temperature inhibition 28: 46 stress factors, responses 28: 27, 28 toxin production 28: 33, 34 Type A, optimum pH, sporulation 28: 44 Clostridium purinolyticum 35: 73, 95 Clostridium roseum, sporulation, specific peptides 28: 42 Clostridium saccharolyticum 39: 105 Clostridium saccharoperbutyl acetonicum 39: 34 Clostridium septicum 41: 275 growth media 28: 29 Clostridium sp 37: 19, 32, 33, 35 cellulase systems 37: 39, 40, 46 – 51, 49 NRRL B643 39: 81 P262 39: 63, 66, 67, 74, 81, 89, 104 P270 39: 47 Clostridium sporogenes 35: 73 Clostridium spp. acidogenic phase 28: 43 – 46 anaerobe 3679, sporulation, amino acids 28: 42 glucose requirement 28: 41, 42 stimulation of 28: 39 autolysis, onset of sporulation 28: 38, 51 fermentation pathways 28: 43 gene expression, sporulation-specific sigma factors 28: 50 glutathione-related processes 34: 264 nitrogen requirements 28: 43
65
nutrient starvation 28: 52 oxygen toxicity 28: 45, 46 polyglucan storage 28: 31, 32 proteolytic species 28: 28, 44 induction of sporulation 28: 45 sporulation of requirements 28: 39 reserves, intracellular 28: 35 saccharolytic species 28: 28, 30 pH and buffering 28: 43, 44 sporulation 28: 39 solvent-producing strains 28: 36, 37, 45, 46 spores 28: 31, 32 sporulation, autolysis, vegetative cells 28: 38 coat production 28: 51 elongation after 28: 32 energy requirement 28: 39 extracellular slime capsules 28: 32 genetic regulation 28: 52 glucose inhibition 28: 40 growth rates 28: 47 heat injury 28: 27 initiation, factors responsible 28: 47 morphological events 28: 30 – 32 multiple loci 28: 32 mutants 28: 49 nitrogen source 28: 42, 43 nutrient starvation 28: 52 pH, vegetative growth 28: 43 – 45 specific enzymes 28: 33 technical difficulties 28: 51 temperature 28: 46 triggering 28: 39 stationary phase, intracellular reserves 28: 40 toxin production 28: 28 autolysis, vegetative phase 28: 38 exotoxins and endotoxins 28: 33 translational changes, role 28: 50 Clostridium stercorarium 37: 14 – 16, 18, 30, 33, 50; 39: 45, 49 – 51 Clostridium sticklandii 35: 73, 74, 88, 98 Clostridium symbiosum HB25, S-layer charges 33: 256 AP1A hydrolases in 36: 93 S-layer glycoprotein 33: 241 Clostridium tertium, growth media 28: 29 Clostridium tetani optimum pH 28: 44 repression, glucose 28: 42 Clostridium tetanomorphum 39: 77 Clostridium thermaceticum 35: 77, 80 Clostridium thermoaceticum 39: 69, 103 Clostridium thermocellum 32: 74; 39: 31, 42 – 50, 51, 55, 58, 60, 63, 66, 70, 104, 105 calcium 37: 92
66
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
cellulase systems 37: 39 – 51, 49 cellulose hydrolysis 37: 10, 11, 13 – 15, 17, 18, 21, 22, 24, 27, 30, 31, 37 genetics 37: 55, 57, 58, 62 growth media 28: 29 Clostridium thermohydrosulfuricum 39: 41, 46 see also Thermoanaerobacter ethanolicus; Themoanaerobacterium thermosulfurigenes; Thermobacter themohydrosulfuricus S-layer 33: 226 S-layer glycoproteins 33: 241, 242 sporulation media 28: 29 Clostridium thermosaccharolyticum 39: 46, 52, 64, 68, 104–106 growth rate, pentose sugars 28: 40, 41 S-layer glycoproteins 33: 241, 242 sporulation, cell division, inhibition 28: 36, 37 critical pH range 28: 44 ethanol production 28: 37 fluoroacetic acid, effect 28: 38 glucose consumption 28: 41 media 28: 28 nitrogen source 28: 42 repression, glucose 28: 40 solvent production 28: 37 spore shape 28: 31 Clostridium welchii, sporulation 28: 31 Clostridium, modified Entner – Doudoroff pathway in 29: 179 Clostridiun acetobutylicum AP1A hydrolases in 36: 93 dinucleoside oligophosphates in 36: 83, 85 Clotrimazole hepatic aryl hydrocarbon hydrolase, inhibition 27: 44 inhibition of membrane transport 27: 50 sterol demethylase inhibition 27: 45 structural formula 27: 40 Cloxacillin effects on Staphylococcus 28: 215 endocarditis, large staphylococci 28: 249 mutation resistance 28: 245 ClpAP 44: 121, 126 ClpB 44: 93, 130 ClpXP 44: 121 Cluster algorithms, microarray data 46: 12, 13 supervised 46: 13 unsupervised 46: 13 hierarchical vs self-organizing maps 46: 13
Cluster program 46: 13 CMPs 45: 274–276, 286, 294, 295, 298, 299, 309, 313, 332– 334 allosteric controls exerted on irreversible enzymes 45: 321 control 45: 319– 332 distribution of carbon 45: 336 efficiency 45: 313– 316, 315 energetics 45: 317– 319, 318 energy provision 45: 335 entry of carbon sources into compartments of 45: 299 flux control 45: 336 improvement of flux through 45: 337 input and outputs during growth on glucose 45: 280 pool sizes and control 45: 331, 332 CmtR 44: 199 CO2 fixation 45: 79 requirement of Helicobacter pylori 40: 168, 169 fruiting and effects of 34: 181– 184 Coadhesion, in biofilms 46: 216 Coaggregation, in biofilms 46: 215 Coagulase, Staph. aureus effects of cerulenin 28: 233 clindamycin 28: 233 lincomycin 28: 233 oxytetracycline 28: 233 Coagulase-negative staphylococci, antibiotic resistance 32: 75 CoaT 44: 204 CobA (uroporphyrinogen III methyltransferase) 46: 268 Cobalamin cofactors, Tat protein translocation pathway 47: 211, 212 Cobalt 37: 205 Coccidioides immitis 34: 107, 108, 118, 128 action of 5-fluorocytosine 27: 11 disease caused by (coccidioidomycosis) 34: 107, 128 growth phases 34: 109 mammalian hormones affecting 34: 106– 108, 128 mammalian hormones with binding sites in 34: 115, 118 Cochliobolus carbonum 37: 16 HC-toxin synthetase from 38: 110 Codium latum 35: 279, 280 Coenzyme A (CoA) 37: 193; 39: 81, 85 transferase 39: 79, 80, 88 glutathione metabolism and 34: 244 Coenzyme F430 46: 261, 296 Coenzyme M 31: 237, 240 methylreductase 31: 238
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Coffee 37: 189, 190 Coflocculation 33: 21 – 23 see also Flocculation different non-flocculent yeasts 33: 51, 52 Cognate receiver domains 41: 206– 211 CoH1 hydrophobin 38: 4, 5 in aerial hypha formation 38: 21, 22 Co-inducer molecules 37: 248, 249, 263 Colanic acid 35: 145, 146 Cold detection 44: 252 Cold-shock 44: 221 Coleoptericin 37: 137, 141 Coli surface antigens (SCl, CS2, CS3), see Pili, CFA/II Colibacillosis, calves and pigs 28: 66, 67 Colicin B2 (ColB2) pilin 29: 83 – 85 Colicin E1 37: 97 (ColE1) replicon 29: 41 Colistin 28: 218 decrease, meningococcal adhesions 28: 224 Colitis, pseudomembranous 28: 234 Collagen 37: 187 Colloid stability 32: 65 Colloidal particles 33: 14, 23, 24 forces attracting/repulsing 33: 14 Colloidal suspension 33: 23, 24 particle size restrictions 33: 24 Colloidal theory 33: 17, 27 of flocculation, see Flocculation Colon bacteria inhabiting 42: 26 flora, disturbance and infections after 46: 236, 237 “Colonization factor antigen” (CFA/I, CFA/II) 29: 54, 62, see also Pili Comamonas testosteroni 40: 7, 9, 12, 21, 31, 39, 44 comC gene 46: 21 ComE, Streptococcus pneumoniae 46: 21 Commitment 43: 89 Comparative genomics 46: 4 microarray-based studies 46: 29 – 34 distantly related species 46: 33, 34 H. pylori strain diversity 46: 32, 33 M. tuberculosis clinical isolates 46: 32 M. tuberculosis, M. bovis and BCG vaccine strains 46: 31, 32 methods 46: 29, 31 summary 46: 30 problems 46: 31 ‘Compatible solute’ concept 33: 146 see also under Osmoregulation Compatible solute function 37: 315– 318, 316 Competence factor (CF) 37: 123
67
Competence induction, Streptococcus pneumoniae 46: 17, 21, 22 Competence stimulating peptide (CSP) Streptococcus pneumoniae 46: 17, 21, 22 up-regulated and down-regulated genes 46: 21, 22 Competition during incorporation in selenium metabolism 35: 97 Competitive Exclusion Principle 40: 356 Complement, bactericidal effects 28: 239 Gram-negative bacteria 28: 240 subinhibitory antibiotic concentrations 28: 240 Complementation groups, flocculation mutants 33: 61 genetic analysis 27: 18 sec mutants 33: 75, 76 Complexed systems 37: 40, 46 – 53, 49 Component 559-H2 29: 35 evidence against 29: 35 –38 low redox potential, evidence against 29: 37 quantification in presence of cyanide 29: 36 Compound 48/80 37: 98 Concanavalin A inhibition, E. coli 28: 83 receptors 30: 114 Conditioned media 45: 215–218 Conditioning films 32: 57, 58 “Conformational protection” syndrome 30: 14 Conidia, hydrophobins in formation 38: 27 – 29 Conidial traps 36: 120 Coniophora marmorata 41: 55 Coniophora puteana 43: 61, 62; 41: 55, 61 Conjugation 29: 57, 68, 87, 89 deficient cells (Con2) 29: 87 Conjugation tube of shmoo, formation 34: 92, 93 Conjugation, absence in apomictic strains of yeasts 30: 25, 26 see also Apomixis glutathione 34: 281– 284 Conjugative transposons 39: 40 Consensus search, sigma factor function analysis 46: 58, 100 see also Bacillus subtilis sigma factors Streptomyces coelicolor s R 84, 85 Consensus sequences, constitutive promotors 31: 27, 28 E. coli promotors 30: 221, 222 heat-shock proteins 31: 211 OP1 and xylS(Ps) promotor 31: 27, 28, 31 OP2 promotor 31: 27, 28
68
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
stress protein genes 31: 194 xylR (Pr) promotor 31: 27, 28 Consensus tree, Synechococcus 47: 7 Conserved orthologous groups (COG) database 46: 53 Conserved signaling module 45: 182– 184 Contractile function 37: 113 Controlled chaotic attractor 39: 322, 322 Cooperative behaviour, TNC 47: 105, 106 Copiotrophic conditions 42: 52 intracellular transport 43: 16 – 18 regulation of uptake 43: 18, 19 transport in Saccharomyces cerevisiae 43: 14 uptake in Saccharomyces cerevisiae 43: 13 – 19 Copper 37: 121 binding proteins 38: 222, 223 cellular uptake 38: 221, 222 cofactors, Tat protein translocation pathway 47: 207– 210 -containing amine oxidases 40: 4 -containing nitrate reductases 45: 89 in oxygenase catalysis 38: 49 in rhizobia 45: 144 insufficiency, production, methyl monooxygenase 27: 118 microbial corrosion 38: 207, 208 resistant bacteria 38: 214 speciation, and cell growth 38: 186 transport 38: 181 Copper-zinc superoxide dismutase 38: 223 Coprinus cinereus 42: 16 Coprinus spp. cinereus (lagopus), fruiting in 34: 148, 149, 154, 156– 160, 165, 170, 171, 174, 181, 184– 188, 189 congregatus, fruiting in 34: 148, 154, 179, 181, 183, 184 radiatus, fruiting in 34: 185 Coprogens 43: 52 Coproporphyrinogen I 46: 268 Coproporphyrinogen III oxidase 46: 270, 271 oxygen-dependent 46: 270 oxygen-independent 46: 270, 271, 290,’291 Coproporphyrinogen III, synthesis, alternative pathway 46: 299, 300 Cord factor 31: 82; 39: 149 Coriolus hirsutus and C. versicolor 35: 278 Coriolus versicolor 41: 54, 55, 61 Corn-steep liquor 39: 366 Corrinoids 31: 240, 243 Corticosteroid-binding proteins, C. albicans 113, 130
Corticosterone Candida albicans binding sites for 34: 112– 114, 130 Candida spp. other than C. albicans with binding sites for 34: 114 dermatophyte binding sites for 34: 118, 119 Corynebacteria 39: 157; 37: 290 Corynebacteria, as ‘helper’ organism for M. leprae 31: 75 Corynebacterium 35: 282 Corynebacterium aquaticum 35: 278; 42: 194 Corynebacterium dehalogenases haloalcohol 38: 154– 158 haloalkane 38: 164 Corynebacterium diphtheriae 39: 161 Corynebacterium glutamicum 37: 292 glutathione-related processes 34: 245 Corynebacterium hydricarboclastum 27: 216, 236 Corynebacterium sp. 37: 287; 42: 187 Corynebacterium, CYPs 47: 150 heterotrophic nitrifier with 30: 167 Cosmid, complementing Hup2 mutants 29: 43, 44 pHU52 29: 44 pHUl 29: 43, 44 pLAFR1 29: 41, 43, 44 pSH22 29: 44 Cotranslational translocation 33: 79, 87 Cotton 37: 6, 7, 9 ‘cotton-ramie’ cellulose 37: 6 Counter-clockwise (CCW) rotation, see Flagellar rotation Counter-ions 32: 56 Covalent bonds, cellulose 37: 6 Cow dung, hydrogen produced from 26: 214 Cowpea (V. unguiculata), hydrogenase activity control 29: 10 Cox 10p mutant 46: 276 coxA 40: 203, 204 Coxiella burnetii 31: 211 cp £ AB gene product 29: 71 CPS see capsular polysaccharides CPT1 gene 33: 122 Crabrolin 37: 141, 150 “Crabtree effect”, yeast growth 28: 187, 188, 199–202 Crabtree-negative yeasts 41: 10 Crabtree-positive yeasts 41: 10 Crambe abyssinica 37: 141 Crambin 37: 141 Creep 32: 200 Crenarchaeota 39: 236–238
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Criconemella xenoplax 36: 118 Crithidia fasciculata 39: 314 glutathione-related processes 34: 272 Critical micellar concentration of lipoteichoic acids 29: 274 Crop plants, bacterial ice nucleation as a problem with 34: 230, 231 Cross protection 37: 262, 263 Cross-feeding by EICs 44: 240, 241 Cross-linking index 32: 180, 181 Crotonyl-CoA 39: 79; 45: 206 CRP 44: 2, 3, 201, 232; 45: 6, 13, 14 and CRP-binding site, see AMP crp gene 30: 224, 232 CRP-cAMP 45: 6 CRP-FNR superfamily 44: 1 – 34 interactions with DNA 44: 18 – 22 interactions with environment 44: 7 –17 interactions with transcription machinery 44: 22 – 27 phylogenetic relationships 44: 3 – 7 unrooted phylogenetic tree 44: 5 Cryofixation 38: 202, 203 Cryparin 38: 4, 6, 13 function 38: 19 hydropathy pattern 38: 6, 7 lectin-like activity 38: 9 Cryptdins 37: 136, 141 Cryptic growth, starvation survival 47: 71, 72 Cryptococcus 43: 5 Cryptococcus albidus 37: 15; 35: 278, 279, 281– 284, 289, 302 Cryptococcus flavus 37: 12 Cryptococcus laurentii 35: 278, 279 Cryptococcus neoformans 43: 60 action of griseofulvin 27: 11 cryptococcosis, therapy 27: 58 Cryptococcus neoformans, ABC drug transporters 46: 170 Crystalline surface layers on bacteria, see S-layer CseA and CseB proteins 46: 81 CsrA 45: 232, 233, 234 ctaB gene, Bacillus subtilis 46: 276 C-terminus 45: 162, 165, 167, 169, 170, 182, 187 CTT g-lyase (g-cystathionase) 34: 261, 262 CuA redox centre 40: 198 Cucumis melo 35: 289 Culturability 41: 93 – 137 as operational definition of viability 41: 124, 125, 126 conceptual and operational definitions 41: 96, 97 use of term 41: 95
69
Culturability tests adaptation and differentiation effects 41: 115– 117 ageing effect 41: 113– 115 cell-to-cell communication (quorum sensing) 41: 120– 122 environments affecting 41: 124– 126 factors influencing outcome of 41: 111– 122 injury and recovery 41: 112, 113 lysogenic bacteriophages 41: 119, 120 metabolic self-destruction 41: 117– 119 substrate-accelerated death 41: 117–119 toxin-antitoxin systems 41: 119, 120 Culture conditions, affecting nuclear division timing 30: 39 apomictic phenotype modification 30: 24, 37 – 39, 43 Culture medium, yeast-to-hypha conversion in C. albicans 30: 59 Cunninghamella elegans, glutathione and the transferase system in 34: 284 CUP1 44: 188 “Cuprimixin”, see Mixin cwp operon 33: 244 CXXCH motifs 45: 64 Cya 44: 232 cya gene 30: 224, 232 Cya gene, V. fischeri luminescence and 34: 44 Cyanelles, see also Cyanophora paradoxa; Glaucocystis polyhedral bodies in 29: 123, 153 RuBisCO gene location and number 29: 146, 147 gold immunoelectronmicroscopy 29: 132 Cyanide F-pili disappearance 29: 90, 93 industrial effluents 27: 97, 98 in quantification of component 559-H2 29: 36 in R. japonicum bacteroid hydrogen oxidation 29: 34 inhibition of cytochrome c oxidase 29: 34 spectra, b-type cytochrome in hydrogen oxidation 29: 29, 30, 32 Cyanide hydratase 27: 96, 97 Cyanide inhibition 45: 68 Cyanide metabolism, microorganisms bacterial cyanogenesis 27: 74 – 85 and primary metabolism 27: 82 – 85 degradation, Chromobacterium 27: 79 –82 pathways 27: 77 –79 cyanide, degradation 27: 100, 101 hydratase 27: 96, 97
70
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
resistance 27: 99, 100 utilization 27: 102– 105 cyanogenic plants 27: 98 effection length of viability 27: 85 fungal cyanogenesism 27: 86 – 90 plant diseases 27: 86, 87 pure cultures 27: 87 – 90 non-cyanogenic species 27: 95 industrial potential 27: 97, 98 relationship, pathogenicity 27: 95, 96 oxygen content 27: 77; 27: 77 photosynthetic microorganisms 27: 90 – 94 cyanide pathways 27: 91 – 93 summary 27: 105, 106 Cyanidium caldarium 29: 146 Cyanobacteria 39: 1, 4, 5, 8, 14, 308– 311, 310; 44: 78, 207, 208 aerobic nitrogen-fixing filamentous, RuBisCO absent from heterocysts 29: 122, 131 calcium 37: 91, 92, 99, 112, 113 carboxysomes in 29: 121, 122 chromosomal DNA association 29: 129 function 29: 153 phosphoribulokinase in 29: 127 role in carbon dioxide fixation 29: 151 endosymbiotic, cyanelles derived from 29: 123 extrachromosomal DNA in 29: 129, 147 filamentous, carboxysome size and shape in 29: 121, 122 gene transfer systems 39: 245– 248 heterocystous 30: 12, 14 hydrogenase activity in 29: 2 hydroperoxide scavenging in 34: 271 osmoadaptation 37: 282, 287, 290, 291, 297, 301, 314 protein reserves, carboxysome storage function 29: 155 RuBisCO gene cloning and location 29: 146 localization of 29: 131 regulation, by effectors 29: 143 sulfur oxidation 39: 244– 248 see also Carboxysomes; individual species 2-oxo acid dehydrogenase and 2-oxo acid oxidoreductase in 29: 204 Cyanobacteria, sigma factors 46: 51 Cyanobacterial genomes, CCM related genes 47: 14 – 17 Cyanobacteriales 26: 159 (table) hydrogen metabolism, literature reviews 26: 157 (table) oxygenic photosynthesis 26: 157
solar energy conversion into hydrogen 26: 211 Cyanogenesis, various spermatophytes 27: 95 – 98 Cyanophora paradoxa 40: 286, 309, 313 DNA attachment to 29: 129 RuBisCO in, gold immunoelectronmicroscopy 29: 132 L and S subunit genes 29: 146 polyhedral bodies and 29: 123 subunit gene, number of 29: 147 Cyanophycin 29: 155 CYC8 gene 33: 61, 62 Cycas revoluta 29: 122 cycHJKL genes 45: 126, 127 Cyclacillin, penicillin-resistance, phagocytosis 28: 241 Cyclic 30 ,50 -AMP (cAMP) 42: 57, 99, 100, 103, 104, 106 Cyclic AMP (cAMP) 40: 238; 44: 3 binding site 29: 73 cya (synthesis) and crp (receptor protein) mutants 29: 72 -dependent protein kinase 32: 12, 13, 24 effector synthesis, ADPglucose pyrophosphorylase 30: 224 hydrogenase expression in R. japonicum 29: 7 metabolic functioning 44: 241 phosphatidylinositol kinase activity relationship 32: 12, 13 phosphatidylserine synthase phosphorylation and 32: 24, 25 pilus expression 29: 72, 73 regulation of flagellar master operon 32: 121, 122 receptor protein (CRP) 29: 72, 73; 40: 248; 44: 197 regulation of glg gene expression 30: 224– 226, 231 binding site and model 30: 229, 230 yeast-to-hypha conversion of C. albicans 30: 61 Cyclic AMP, see AMP Cyclic AMP – CRP complex, regulation of pap B transcription 29: 77 transcriptional control in pilus expression 29: 73 Cyclic AMP-receptor protein (CRP), inhibition and activation of transcription 30: 224, 226 regulation of glg gene expression 30: 224– 226, 231 binding site and model 30: 229, 230 Cyclic nucleotide metabolism 37: 93 Cyclin and mitotic regulation in Physarum polycephalum 35: 55 – 58
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Cycloartenol and hopanoids 35: 258, 267 Cyclohexane-diaminetetraacetic acid 37: 191 1,2-Cyclohexanedione 37: 189 Cyclohexanone mono-oxygenase 26: 241 Cycloheximide 26: 35; 36: 45; 39: 296 flocculation inhibited 33: 54, 57 heat-shock acquisition of thermotolerance 31: 207 polyol accumulation and 33: 188, 189, 194 Cyclopropane C17 residues, b-lactam antibiotic effects 28: 238 Cyclopropanization 29: 240 Cyclopropyl mycolates 39: 165 2,3-Cyclopyrophosphoglycerate 29: 184 Cyclosporins 38: 105 see also SDZ 214– 103 structure, cyclosporin A 38: 106 synthesis 38: 91, 105– 107 synthetase 38: 105, 106 molecular structure 38: 107 substrate specificity 38: 107 cydAB expression, model of regulation 43: 206 mutants 43: 199– 201 cydDC mutants 43: 199– 201 CydR, monitoring oxygen and redox stress 44: 10, 11 Cylindrotrichum oligospermum 38: 107 CymA 45: 96 CYP107A1 (P450 eryF) 47: 143, 144 CYPs 47: 143– 150 cyr1 mutant 32: 12, 24 PI biosynthesis increase with cAMP32: 25 cysG gene 45: 91 g-Cystathionase (CTT g-lyase) 34: 261, 262 g-Cystathionine synthase 34: 261 Cysteine 37: 200; 42: 118, 191–194 b-cyanoalanine formation 27: 82 cysteine synthase activity, various plants and bacteria 27: 84 media anaerobic 28: 10 sporulation 28: 30 mutagenesis, Tar and Trg proteins 33: 311 pathway 27: 99, 101 residue of luciferase a-subunit, position 106 34: 16 of synthetase of fatty-acid reductase complex (position 364) 34: 20, 21 residues, fimbrial subunits 28: 98, 100– 104
71
residues, in S-layer proteins, species with 33: 237, 247 Cysteinylglycine dipeptidase 34: 248, 261 Cystic fibrosis 36: 67 chloride channel 36: 25 gene product, transmembrane conductance regulator (CFTR) 40: 111 Cystine reaction with cyanide 27: 99 Cystitis, pathology, E. coli 28: 67, 78 – 81 Cystopage sp., nematode trapping devices in 36: 118 Cytochemical methods, Golgi complex identification 33: 112, 113 Cytochrome 37: 91, 178, 236 Cytochrome aa3 45: 291 as terminal oxidase 29: 28, 30 in hydrogen oxidation in R. japonicum 29: 28 – 30 in P. denitrificans 29: 28, 29 proposed electron-transport pathway in R. japonicum (free-living), 32 repression, at low oxygen tensions 29: 28, 30 Cytochrome aa3-type cytochrome c oxidase (CtaI) 43: 209– 211 Cytochrome assembly 43: 200 Cytochrome ba 43: 196 Cytochrome bc1 31: 232, 233, 256, 260, 264 complex 46: 118 Cytochrome bc1 – aa3 respiratory chain 40: 199 Cytochrome bd 31: 233 quinol oxidases 43: 175–178, 205, 209 Cytochrome bo0 43: 196– 198, 211 Cytochrome bo 31: 233 Cytochrome b-type 29: 14, 30, 31, see also Cytochrome o in electron-transport pathway in R. japonicum (free-living) 29: 32 in hydrogen oxidation R. japonicum 29: 29, 30 in R. japonicum bacteroids 29: 32 – 34 in Thermoplasma acidophilum 29: 181 unique in hydrogen oxidation? 29: 35 – 38, see also Component 559-H2 Cytochrome c 30: 149; 31: 233; 45: 127; 46: 259, 260, 275, 276, 277 as extracytoplasmic proteins 46: 279 biosynthesis 46: 276– 286 complexity 46: 278, 279 inhibition 46: 283, 284 mitochondrial 46: 277, 278 mutants 46: 278 novel gene discovery 46: 278 redox requirements 46: 281, 282
72
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
covalently-bound haem 46: 276 deficiency (mutants) 278 distribution 46: 279 import into mitochondria 46: 277 maturation 46: 277, 278, 279 genes involved 46: 280 haem delivery 46: 283– 285, 286 mitochondrial 46: 277, 279, 280 mutants 46: 281 redox requirements 46: 281, 282 system I 46: 280, 281, 283 system II 46: 280–282, 285 systems 46: 279– 281 mitochondrial, maturation 46: 277, 278 multi-haem types 46: 279 signature sequences (C-X-X-C) 46: 276, 277, 279, 281 Cytochrome c biogenesis 40: 218– 221 Cytochrome c haem lyase (CCHL) 46: 276, 277 genes 46: 277 Cytochrome c oxidase 36: 267, 285; 40: 197; 43: 208 inhibition by atebrin and cyanide 29: 33, 34 yeast decreased activity, miconazole 27: 51 Cytochrome c, 2 CN and Co2 reactive 29: 34 electron acceptor reactivities 29: 16, 17, 28 in R. japonicum bacteroids 29: 32, 33 reduction by R. japonicum (free-living) 29: 32 Cytochrome c1 haem lyase (CC1HL) 46: 277 Cytochrome c3 31: 248 electron acceptor in Desulfovibrio 29: 17 Cytochrome c551 31: 260 Cytochrome c552 31: 257, 259; 45: 92 Cytochrome c-552, 29: 34 Cytochrome cbb0 43: 210 Cytochrome cbb3-type oxidase 40: 210–214 Cytochrome ccm 31: 249 Cytochrome cd1 31: 260; 45: 89 Cytochrome d 29: 27 Cytochrome o 43: 209; 29: 7, 8, 27, 29, 30 arguments that cytochrome 559-H2 are like 29: 35, 36 genes in Buchnera 46: 294 in electron-transport of free-lining R. japonicum 29: 32 in electron-transport of R. japonicum bacteroid 29: 34 in hydrogenase-constitutive strains 29: 37
in low oxygen concentrations and oxygen affinity 29: 30 P. denitrificans expression 29: 37 reducibile by succinate and NADH 29: 37 reduction rate 29: 35, 36 Cytochrome o-type oxidase complex 41: 114 Cytochrome oxidase 33: 19; 46: 117 protohaem modification for 46: 275, 276 Cytochrome P450 26: 247; 29: 35; 37: 184, 200 alkane-inducible in Candida 46: 164 characteristics and interactions 46: 162 detoxification of drugs 46: 164 mutations, antifungal resistance and 46: 162 P450alk gene family 46: 164, 165 type I and II spectra after interactions 46: 162 Cytochrome spectra 29: 33, 36, 38, 39 Cytochrome system, luciferase as alternative electron carrier to 34: 46 Cytochrome, b-type 30: 136 Cytochrome, component 559-H2, see Component 559-H2 Cytochrome-c oxidase (cytochrome aa3) 31: 233 Cytochrome-c peroxidase 31: 201 Cytochromes 46: 258, 259 electron transport systems, summary 27: 182, 183 involvement in methanol oxidation, autoreduction 27: 170– 173 coupling with methanol dehydrogenase 27: 164– 168 cytochromes of methylotrophs 27: 166– 169 evidence, whole bacteria 27: 162– 164 genase 27: 164– 168 properties 27: 168 reactions with carbon monoxide 27: 169, 170 methanol: cytochrome c oxidoreductase activity, methanol dehydrogenase 27: 173– 176 induced autoreduction 27: 170– 179 products 27: 176– 170 Cytochromes P450 (CYPs) actinomycetes 47: 142, 143 ancestral forms 47: 136– 139, 156– 158 antibiotics biosynthesis 47: 143– 150 anti-mycobacterial activity 47: 158, 159 archaebacteria 47: 161, 162 azole inhibition 47: 158– 160, 169– 174
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 bacterial 47: 139– 143, 158– 162 biodiversity 47: 131– 186 Candida 47: 164, 169– 174 carbon monoxide difference spectrum 47: 134, 135 catalytic cycle 47: 135, 136 classes 47: 161, 162 Corynebacterium 47: 150 CYP101 (P450cam) 47: 139, 140 CYP102A1 (P450 BM-3) 47: 140, 141 CYP105D5 47: 146 CYP107A1 (P450 eryF) 47: 143, 144 CYP107s 47: 156 CYP158A2 47: 150 CYP51 47: 136– 139, 156– 158 discovery 47: 134– 136 drug resistance 47: 169–174 ergosterol 47: 170, 171 eukaryote-like 47: 153 evolutionary scenario 47: 153, 154 ferredoxin fusion protein 47: 159– 161 fungal 47: 163– 174 fusion proteins 47: 159– 161 future research 47: 174, 175 gene transfer, horizontal 47: 138, 139 genomes, bacterial 47: 141, 142 M. leprae 31: 89 mitochondrial, Sacch. cerevisiae 28: 192, 195, 196, 202, 204 MTB CYP51 47: 154– 156 mycobacteria 47: 150– 158 Nocardia 47: 150 nomenclature 47: 133, 134 oil-protein conversion 47: 164 phylogenetic tree 47: 138 phylograms 47: 136, 137, 152 protists 47: 162, 163 roles 47: 143– 145 Streptomycetes 47: 143–150 Cytokines, upregulation B. pertussis infection 46: 40 L. monocytogenes infection 46: 38, 39 S. typhimurium infection 46: 37 Cytolysins 37: 157 Cytophaga 41: 294 Cytophaga LI, see Glucanase Cytoplasm, acidification 32: 96 active, fruiting and the redistribution /movement/ translocation of 34: 151–153 calcium 37: 93 – 118, 95, 98, 103 Cytoplasmic energy coupling, phylogenetic tree for 40: 121 Cytoplasmic membrane 40: 370, 371, 372, 373; see Cell membrane and cell-surface polysaccharide biosynthesis 35: 136, 137
73
see also Export of polysaccharides; Transport of polysaccharides Cytosine deaminase 30: 78 antimicrobial action 5-fluorocytosine 27: 12 Cytosine triphosphate (CTP), 168 Cytoskeletal organization of Physarum polycephalum 35: 13 – 39 see also Tubulins in development see Development inferences 35: 38, 39 microtubule organization 35: 13, 14 microtubule-associated proteins 35: 22, 23 other genes differentially expressed 35: 37, 38 Cytoskeletal proteins, see also Actin-cytoskeleton SEC2p homology 33: 138 Cytosolic transport factors, in protein transport, to endoplasmic reticulum 33: 82 –85, 88, 89 see also RNA, 7SL; SSA gene products to Golgi complex 33: 89, 91 d -Aminolaevulinic acid (ALA) biosynthesis 46: 260– 262 see also ALA synthase C5 pathway 46: 261– 265 from glycine via ALA synthase 46: 261– 263 genes 46: 287 mutants 46: 286 pathways 46: 262 transport 46: 286, 287 B. japonicum 46: 287 uptake by B. japonicum 46: 286 E. coli 46: 286, 287 uroporphyrinogen III formation 46: 261, 266, 267 d-(L -a-aminoadipyl)-cysteinyl-D -valine (ACV), structure 38: 96 d-(L -a-aminoadipyl)-cysteinyl-D -valine synthetase (ACVS) 38: 96 – 99 activation sites 38: 97 epimerization in synthetic action 38: 97, 98 genes 38: 98, 99 2,4-D, bacterial degradation 32: 74 Dactylaria brochopaga dense bodies in 36: 123, 130 induction of trap formation 36: 121
74
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
trapping devices 36: 118, 119, 124 Dactylaria candida colonization and digestion of the nematode 36: 136 trapping devices 36: 118, 119 Dactylaria sp. 36: 128 Dactylella arcuata, dense bodies in 36: 123 Dactylella cionopaga cuticle penetration in 36: 132 dense bodies in 36: 123 Dactylella lysipaga cuticle penetration in 36: 132 dense bodies in 36: 123 Dactylococcopsis salina 37: 304 Daedalea dickinsii 35: 278 Dahlem conference 33: 11 DAHP synthase 42: 199, 205 D -Ala-D -Ala synthetase 36: 57 Dalapon 38: 135 Pseudomonas putida growing on 38: 144 Dam methylation 45: 8, 9, 17 d-aminolevulinic (ALA) synthase 40: 207 Dansyl chloride label 36: 13 DapA 44: 104, 105 Dapsone 31: 99, 114 Dark, chemolitho-autotrophic bacteria in 29: 155 Darwinian evolution 40: 356 Data analysis, microarray data 46: 11 – 15 Databases, metabolic 46: 13– 15 DcrA 45: 173 DcrH 45: 173 DDEL sequence 33: 108 Deamidase 33: 326 Deamidation, of transducers 33: 325–327 Deaminase, pH stress 37: 238–240 Deazaflavin derivative 29: 202, 204 Debaryomyces 26: 2 Debaryomyces hansenii, adjustment to water potential changes 33: 171, 186 at low water potentials 33: 171, 186 polyol accumulation required 33: 186, 203 respiration/fermentation affected 33: 198 compatible solutes, amino acids 33: 176 polyols, see Debaryomyces hansenii, intracellular polyols (below) glucose transport 33: 199 glycerol, content 33: 169, 171, 186 transport system 33: 180, 187 increased maintenance costs at low pH 33: 200
intracellular polyols, arabinitol 33: 170, 171, 187, 193 dynamics during growth cycle 33: 170, 171, 187 erythritol 33: 174, 187 glucose-limited chemostat cultures 33: 170, 171 glycerol increase 33: 169, 171, 186 growth medium influence 33: 174, 187 metabolism of 33: 177, 178 regulation of 33: 171, 186, 187 requirement for growth 33: 203 solute-specific 33: 171, 187 total polyol pool 33: 171 uptake and accumulation 33: 174, 187 mutants, impaired glycerol production 33: 203 osmotic dehydration, resistance to 33: 165 osmotic hypersensitivity 33: 192 osmotolerance 33: 165, 171, 186 adaptation to reduce cost of osmoregulation 33: 201 sodium/potassium ion changes with salinity 33: 171, 183, 187, 202 turgor pressure 33: 154 Decanol 26: 253 Decarboxylase, pH stress 37: 230, 238– 240 Decarboxylation 37: 180 Decarboxylation-driven active transporters 40: 91 Decoynine inhibitor, purine synthesis 28: 48 Deep-sea, microbial growth, chemolitho-autotrophic bacteria 29: 155 Defence mechanisms see peptides Defensin 37: 136, 137, 141– 144, 147– 149, 151, 152, 165, 166 lipids and membranes 37: 158, 159, 162– 164, 166 structure function 37: 154– 156 Defensins, cysteine residues 38: 9 Deflocculation, see also Floc(s), dispersal thermal 33: 18 Dehalogenation, microbial of alcohols see alcohol dehalogenation of alkanes see alkane dehalogenation of alkanoic acid see alkanoic acid dehalogenation Dehydration, cellular 33: 165, 167, 195 see also Osmotic response; Water potential resistance, see Osmotolerance structural changes with 33: 161, 162
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Dehydrobutyrine 37: 151 Dehydroepiandosterone effects on T. mentagrophytes 34: 111 Dehydrogenases 31: 232 anaerobic CO 26: 174 and selenium metabolism 35: 73, 86, 87 see also FDH glucose dehydrogenase 29: 177, 196, 197 isocitrate dehydrogenase 29: 194– 196 malate dehydrogenase 29: 197, 198 with dual cofactor specificity 29: 194– 199 Dehydro-oogoniol and 34: 24(28)Dehydro-oogoniol-1 34: 76 Deinococcus radiodurans 40: 286; 45: 178 S-layer gene 33: 245 S-layer glycoprotein 33: 243 Deleya 37: 314 Delisea pulchra 45: 214 Dematium pullulans 35: 278 Demethylation, in adaptation of chemotactic response 33: 327 Demethylmenaquinone (DMK) 43: 178 Demethylsulfoniopropionate (DMSP) 41: 270 Dendryphiella salina 30: 101 arabinitol production, pathway 33: 179 glucose transport system 33: 199 inorganic ions not accumulated in vacuoles 33: 186 intracellular sodium/potassium ion levels 33: 184 polyol concentration increase 33: 173, 174 nitrogen-compound in media 33: 175 Denitrification 30: 127, 152– 157, 176 by ammonia oxidizers 30: 152, 153 by nitrite oxidizers 30: 153– 155 ecological implications 30: 155, 156 Denitrification, free radical generation 46: 322, 323 Denitrifiers, aerobic 30: 168, 169 interactions with nitrifiers 30: 155– 157 Denitrifying bacteria 31: 256, 259, 260 Dense alignment surface (DAS) algorithm 45: 181 Dental caries 30: 188; 37: 260, 261 Dental plaque 46: 207, 213 Deoxycorticosterone effects on T. mentagrophytes 34: 111 3-Deoxy-D-arabino-heptulosonic acid phosphate synthetase [DAHP], defective regulation hypothesis 27: 263, 264
75
3-deoxy-D-manno-Octulosonic add (KDO) and cell-surface polysaccharide biosynthesis 35: 183, 191, 202 process 35: 163, 165, 166 structure and attachment 35: 140, 144, 148 3-Deoxyfructose 37: 198, 199 Deoxyglucose 27: 310– 313, 317, see also Glucose analogues 2-deoxyglucose (2DG) 39: 54 ATP depletion and PIP content 32: 16 3-Deoxyglucosone 37: 187, 198, 199 Deoxyribonuclease, effect of lincomycin 28: 233 Depolarization 37: 89 Depsipeptide formation, enniatin synthetase in 38: 103, 104 Derjaguin – Landau – Verwey– Overbeek theory 32: 65 Dermaseptin 37: 141, 142, 150 Dermatophytes 34: 110, 111, 118, 119, 130, 131 disease caused by (dermatophytosis) 34: 130, 131 mammalian hormones affecting 34: 106, 110, 111, 130, 131 mammalian hormones with binding sites in 34: 118, 119 Dermonecrotic toxin (DNT) 44: 146 Desaturase 31: 85 Desferrioxamine B 42: 139 Desiccation 33: 195 biofilms role in protection 32: 61 trehalose, accumulation of 33: 195 protective function 33: 195, 196 Desmids, ionic currents in 30: 112 Desulfobacter postgatei 31: 251 Desulfobacterium niacini 35: 87 Desulfococcus multivorans 35: 88 Desulfomicrobium/Desulfovibrio D. baculatum 35: 84, 85, 87 D. gigas 35: 85, 86 D. salexigens 35: 84 D. vulgaris 35: 84 – 86 Desulfotomaculum nigrificans 31: 246 assemblies 33: 232 glycoproteins 33: 243 S-layer 33: 226 Desulfovibrio africaans 46: 38 Desulfovibrio desulfuricans 45: 57, 65, 66, 69 – 71, 92, 93, 95 nickel in hydrogenase 29: 20 selenium resistance 38: 229 Desulfovibrio gigas 30: 14 hydrogenase, nickel and iron– sulphur clusters 29: 21 nickel in 29: 20
76
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Desulfovibrio sp., 244, 247 superoxide dismutase, presence 28: 6 Desulfovibrio vulgaris 31: 245, 246, 251; 41: 256, 267; 45: 172, 173 coproporphyrinogen III synthesis 46: 299, 300 hydrogenase, aerobically stable 29: 18, 19 composition and antibody crossreactions 29: 14 nickel absent 29: 21 Desulfurococcus mobilis, introns in tRNA genes 29: 171 2-oxo acid oxidoreductases 29: 202 Desulfurococcus mucosa, dihydrolipoamide dehydrogenase in 29: 207 Desulfurolobus ambivalens 39: 238, 239 Desulfuromonas acetoxidans 31: 251, 252 Desulphovibrio gigas 37: 91, 113 Desulphovibrio vulgaris 40: 285, 309 Desulphoviridin 37: 91 Deuterium oxide, ice nucleation and effects of substituting water with 34: 223, 224 Deuterium, hydrogenase oxidation 29: 23 Deuterium– water exchange reaction 29: 24 Development of Physarum polycephalum cyctoskeleton 35: 23 – 33 amoeba-flagellate transition 35: 23 – 26 amoeba-plasmodium transition 35: 26 – 33 mutants 35: 33 – 37 dewA A. nidulans gene, in conidiogenesis 38: 27, 28 D -fructose dehydrogenase 36: 262, 263 D -Glucosamine 33: 198, 199 D -glucose dehydrogenase 36: 258 Diabetes 37: 181, 187, 199 Diacetyl 37: 188, 199 Diacyl trehaloses 39: 151 Diacylglycerol (DAG) 37: 94, 95, 95, 107, 108 as lipid anchor in Bacillus spp. lipoteichoic acid 29: 238 biosynthesis, regulation 32: 21 conversion into glycolipid 29: 250, 259, 276 in M. luteus, lipomannan 29: 245 kinase 29: 260; 37: 261 phosphatidylglycerol, as acceptor substrate in lipoteichoic acid synthesis 29: 250, 254 recycling in Staph. aureus 29: 248, 259, 260 enzyme in 29: 260, 261
recycling to phosphatidylglycerol 29: 258, 259, 276 synthesis 29: 250 in Staph. aureus 29: 259, 260 location of 29: 276 Diamide, glutathione oxidized by 34: 278 Diamino acids 37: 291, 292, 293, 295 Diaminobutyrate 37: 296, 299 2,4-Diaminobutyrate acetylase 37: 299, 299 2,4-Diaminobutyrate transaminase 37: 299, 299 Diaminobutyric acid 37: 293, 294 Diaminopimelate (DAP) 42: 188, 189 Diaminopimelic acid (DAP) 44: 104 Diaminopimelic acid 32: 151, 180; 37: 296; 40: 369 Dianthus caryophyllus 35: 294, 295 Diarrhoea, CFA/I, CFA/II pili in E. coli 29: 62 K99 in E. coli 29: 63 Diarrhoeal disease, see also Fimbriae, LFA I and II, K88, K99 adult 28: 66 “dysentery-like” syndrome 28: 66, 77, 78 infantile 28: 66 neonatal, pigs 28: 66 Diauxic growth and carbohydrate repression 42: 101, 102 Sacch. cerevisiae 28: 183 Diazaborine 46: 179, 180 resistance 46: 180 1-Diazo-2-oxoundecane 26: 252 6-Diazo-5-oxo-2-norleucine 26: 197 6-diazo-5-oxo-L -norleucine 36: 54 Diazotrophs, nif genes in 30: 10 – 12 Diazotrophy 37: 112, 113 see also Nitrogen fixation: Nitrogenase eukaryotic 30: 13 exotic systems 30: 18, 19 initiation, uptake hydrogenase effect 30: 16 new systems, strains 30: 17, 18 physiology 30: 13 – 16, 19 psychrophilic 30: 18 thermophilic 30: 17, 18 Dibenzofuran dioxygenase ferredoxin 38: 59 reductases 38: 57, 58 Dicarboxylate, mechanism of movement across peribacteroid membrane 43: 144 Dicarboxylic acid, transport system 43: 147– 150 1,3-Dichloro-2-propanol, enantioselective dehalogenation 38: 158
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 1,2-Dichloroethane, Xanthobacter autotrophicus degradation 38: 152 Dichloromethane, microbial dechlorination 38: 165 Dichlorophenol – indophenol (DCPIP) 29: 16, 17 2,6-dichlorophenol-indophenol (DCPIP) 40: 207 2,4-dichlorophenoxyacetic acid (2,4-D) 39: 363 2,2-Dichloropropionic acid (22DCPA) 38: 135 Dictylosteium discoideum 35: 8; 37: 14, 29, 31, 32; 39: 313, 318 dinucleoside oligophosphates in 36: 83 methylene bis-phospbonate inhibition of 36: 103 Dictyostelium discoideum, stress proteins 31: 187, 192 Dictyostelium mucoroides 37: 247 Dictyostelium, ionic currents in 30: 104, 105 Dictyuchus spp., sex hormones 34: 80 Dicyandiamide (DCD) 30: 169 DIDI control (division inhibition by DNA interference) 36: 191, 237, 242 Didymium iridis 35: 4, 8, 11; 30: 31, 32 Dietary regulators, intestinal ecosystem 42: 34 – 37 Diethyldithiocarbamate metabolism 34: 278, 279 Diethylstilbestrol (DES) 36: 45, 48 Diethylstilboestrol P. brasiliensis and effects of 34: 107 P. brasiliensis binding sites for 34: 117 Diffuse electrical double layer 32: 56 Diffuse reflectance IR spectra (DRIFT) 38: 207 Diffusion chambers, mice, rabbits, pretreated staphylococci and phagocytosis 28: 249, 250 Diffusion limitation, antibiotics, in biofilms 46: 220–222 Diffusion uptake of introduced molecules and Physarum polycephalum 35: 58 Diffusion, mass transfer of nutrients 32: 55 Digalactose receptor 29: 77 Digalactosyl residues in lipoteichoic acids 29: 243 Digital image analysis systems 41: 109 Diglycerophosphoglycolopid, galactosylated 29: 261 Dihydro-4a-peroxy-FMN in bioluminescent reaction 34: 12, 13
77
Dihydrofolate reductase 31: 99 Dihydrolipoamide 29: 200, 206 dehydrogenase 29: 200, 204, 206– 209 in halophiles 29: 206, 207 lack of homology with E. coli enzyme 29: 207 in other archaebacteria 29: 207, 208 membrane association 29: 208, 209 metabolic function 29: 208, 209 purification and structure 29: 206 reaction catalysed by 29: 200, 201, 206 Dihydrolipoyl acyltransferase 29: 200 Dihydropteroate synthase 31: 99 Dihydrotestosterone C. immitis binding sites for 34: 118 dermatophytes and effects of 34: 111 4-Dihydrotrisporic acid, trisporic acid formation and 34: 82, 84 4-Dihydrotrisporol, trisporic acid formation and 34: 82, 83 Dihydroxyacetone 37: 179, 183, 183– 185 phosphate 29: 172, 185; 37: 184, 185, 185, 195, 296 Dihydroxyacid dehydratase 46: 120, 121 Dihydroxyethyl-thiamine intermediate 46: 122 8-Dihydroxylinoleic acid (psi B) in A. nidulans 34: 103 5,8-Dihydroxylinoleic acid (psi C) in A. nidulans 34: 103, 104 Dihydroxyphenazines 27: 213–216, see also Griseolutein, Iodinin classification 27: 217 isolation 27: 227 proposed pathway 27: 257 structural formulae 27: 226, 229, 230 3,4-Dihydroxyphenylacetate 2,3dioxygenase 38: 49 3,4-Dihydroxyphenylalanine (DOPA) 31: 99 3,4-Dihydroxyphenylalanine-oxidizing activity 31: 76 6,8-Dihydroxypurine (DHOP) 42: 143 Dikaryon 34: 163– 170 formation 34: 158, 163– 165 biochemical changes during 34: 163– 165 RNA and protein regulation in, during fruiting 34: 165– 170 Diltiazem 37: 116, 117 Dimannosyldiacylglycerol 29: 258 Dimethoxyphenazines 27: 213–216 intercalative model, ligand-DNA complex 27: 267 Dimethyl glycine, effect on cyanide production 27: 89 Dimethyl sulphoxide (DMSO) 26: 171; 40: 175
78
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
reduction 31: 226, 262, 263 6,7-Dimethyl-8-ribityllumazine 26: 242, 243 Dimethylalanine, light emission inhibited by 26: 247 Dimethylallyl pyrophosphate and hopanoids 35: 265 Dimethylbenzamil (DMB) 37: 98, 123 Dimethyldithiocarbamate metabolism 34: 278, 279 Dimethylethanolamine 32: 31 Dimethylglycine 37: 291, 295, 296 Dimethylglycine transmethylase 37: 298 2,5-Dimethylhydroquinone 43: 61, 62 Dimethylsulfonioacetate 37: 289, 303, 304 Dimethylsulfoniopropionate (DMSP) 37: 288, 289, 290, 292, 295, 296, 297, 300 Dimethyl-sulphoxide (DMSO) reductase 31: 261– 263 Dimorphism 37: 247 Dimycoloyl trehalose 39: 149– 152 Dinitrogen 30: 5, 6 complexes of transition metals 30: 5 fixation, see Nitrogen fixation Dinitrogenase 26: 190 reductase 26: 190; 30: 12 nif gene products required 30: 8, 10 2,4-Dinitrophenol (DNP) 43: 197 Dinitrophenyl 2-deoxy-2 fluoro-D cellobioside 37: 24 Dinoflagellates 39: 295– 301 Dinucleoside oligophosphates 36: 81 – 103 adenylated dinucleodies tetra- or triphosphates by aminoacyl-tRNA synthetases 36: 86– 89 APD24N by aminoacyl-tNRA synthetases 36: 89 – 91 biosynthesis 36: 86 – 91 by alternate enzymes 36: 91 Dioxovalerate 37: 194 Dioxygen 44: 207, 208 chemistry 38: 48 electron transfer 43: 168– 170, 168 four-electron reduction to water 43: 169 Dioxygenases, ring-hydroxylating 38: 49 amino acid sequence comparisons 38: 67, 68, 71 classes 38: 61 – 63 ligand analysis 38: 63 site-directed mutagenesis 38: 68 – 72 spectroscopy 38: 63, 65 – 67, 66 biochemical organization 38: 50, 51 catalytic non-haem Fe centre 38: 72 – 75 catalytic terminal oxygenase component 38: 60, 61, 62
classification 38: 51– 53, 75, 76 ferredoxin component 38: 58 – 60 ferredoxins sequence analysis 38: 58, 59 specificity 38: 58 iron– sulphur clusters 38: 61 – 72 reductase component 38: 51, 55 – 58 subunit composition 38: 50, 54 Dipeptide permease (Dpp) system 46: 286 Dipeptide transducer (Tap) 33: 299 as repellent receptor 33: 301 Dipeptide-binding protein (DBP) 33: 298, 325 Dipeptidyl aminopeptidase, S. cerevisiae 34: 88 Diphenylamine (DPA) 39: 363 2,2-Diphenylpropylamine 26: 252 Diphosphoglycerate 37: 182 Diploid apomixis 30: 30 – 32 parthenogensis 30: 28 two-spored asci, see Apomixis; Ascus; Sporulation Diploptene and hopanoids 35: 248, 250, 251, 253, 266, 267 Diplopterol and hopanoids 35: 248, 250, 251, 253, 258, 259, 266, 267 Diplosoma virens 29: 122 Diplospory 30: 28 Dipoles at surface 32: 56 Diptera 37: 147 Diptericins 37: 137, 142, 147, 148 Dipyrromethane cofactor 46: 267 Disaccharidases in streptomycetes 42: 80, 81 Disaccharide degrading enzymes in streptomycetes 42: 78, 79 pentapeptides 40: 368– 371, 371, 376 transport in streptomycetes 42: 86 Disease states, non-culturable cells 47: 89 – 92 Dispersal 45: 247, 248 Dissemination 45: 248, 249 Dissimilatory nitrate reductases (NAP) 45: 53 Dissociation constant organic acids 32: 89 –91 pKa, reactants in anaerobic respiration 31: 243, 244 DISTANCES program 41: 197 Disulphide bridges, in hydrophobins 38: 9 isomerase (PDI) 34: 263, 266; 46: 331 stress 46: 99 s R role 46: 83, 84, 86
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Disulphide(s), in microorganisms, mixed 34: 244, see also Glutathione disulphide; Thiol – disulphide exchanges 5,50 -Dithiobis(2-nitrobenzoate) 37: 197 Dithio-disulphide groups, redox-sensitive 26: 145 Dithiol– disulfide switch 44: 15 –17 Dithionite 29: 18, 19, 29, 33 assay for luciferases 34: 10, 11 Dithiothreitol cyanide synthase, O2 toxicity 27: 78 Divalent anion: sodium symporter (DASS) family 40: 129 Divalent metal ions in glucose dehydrogenase 40: 25 in PPQ-containing quinoproteins that oxidize alcohols 40: 21 in PQQ-containing quinoproteins 40: 20 – 26 in relation to glucose dehydrogenase 40: 22 Diversity development 40: 359, 360 genetic, Synechococcus 47: 6 physiological, Synechococcus 47: 1 – 64 Division cycle Prochlorococcus 47: 41 – 43 Synechococcus 47: 41 –43 DL -b-Aspartylhydroxamate 26: 72 DL-b-hydroxybutanoyl-CoA 45: 206 dlt operon 46: 68, 69, 70 mutants 46: 70 DLVO theory, surface interactions 28: 93 – 95 D -Lysergylpeptide assembly 38: 108– 111 D -Mannose E. coli, dysentery-like disease, adhesion to HEp2 cells 28: 77, 78 haemagglutination, Type I fimbriae, inhibition 28: 72, 82 pyranose ring, necessity, inhibitory effect 28: 82 DM-nitrophen 38: 188 DMSO 41: 268 reductase 45: 69 – 71, 72 DNA 35: 103; 39: 68, 73, 95, 98, 103, 207; 44: 100, 101, 156; 45: 60 attachment to exterior of carboxysomes 29: 129, 130 binding 42: 99, 100; 44: 12, 14, 20 – 22, 28, 29, 187, 197, 200; 45: 13, 19 binding proteins 42: 57 content of C. albicans 30: 54, 56 damage, error-free repair 28: 24, 25 induction of protein 28: 19 – 21 repair-deficient mutants, 25, 26 effect of organic acids on 32: 97, 98
79
extrachromosomal, see also Plasmid absent from Chlorogloeopsis fritschi 29: 129, 147 in autotrophic prokaryotes 29: 129 in cyanobacteria 29: 129, 147 RuBisCO genes on, evidence 29: 148 gyrase 44: 105; 45: 31 in carboxysomes 29: 128– 130 interactions with 44: 18 – 22 metabolism in conjugation, genes involved 29: 69, 70 microarray see also Microarray analysis comparisons 46: 9 – 11, 31 definition 46: 1, 3 oxidative damage see Oxidative damage primase in Synechococcus PCC 7942 44: 207 rearrangements and IS elements in instability of polysaccharides 35: 225– 227 recombinant technology, microbial RuBisCO production 29: 149, 156, 157 repair 42: 257– 261 repair-deficient mutants, organic acids effect on 32: 97 replication 37: 89, 90; 40: 391, 391; 45: 11, 217 see also Genetics, Nucleic acids, Microarray analysis, Fimbriae, genetics sequence 45: 12, 121, 188, 209 analysis 42: 107 sequencing, determination, fimbrial primary structures 28: 101 supercoiling 45: 31 synthesis 44: 145 limiting growth of M. leprae 31: 74, topology 37: 249, 250 transfer 45: 249– 253 cloning vectors for Rhizobium 29: 41 – 47 plasmid-specific genes (orIT) in conjugative pili 29: 68 transformation and Physarum polycephalum 35: 7, 47– 52, 54 – 62 gene targeting 35: 61, 62 mitochondrial 35: 10 – 13 nucleolar genome, 8 –10 replication 35: 52, 53 stable expression 35: 61 transient expression 35: 59 – 61 transformation, in biofilms 32: 62 DNAase I 45: 10
80
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
DNA-binding domain of oestrogen-receptor proteins in fungi 34: 123, 124 DNA-binding proteins, INO2, INO4, Opi1 gene products 32: 43, 35, 46 DNA-damaging agents, stress 37: 229 DNA-dependent RNA polymerase 29: 169 properties 29: 13 – 15 DnaJ 44: 100, 112– 118 homologues 44: 120 in vivo roles 44: 113– 117 interactions with other chaperones 44: 113– 117 DnaJ protein 33: 82 DnaK 44: 60, 93, 100, 101, 112– 118, 119, 122, 124, 126, 127, 130, 221 homologues 44: 120 in vivo roles 44: 113– 117 interactions with other chaperones 44: 113– 117 mechanism of action 44: 117, 118 structure-function relationships 44: 117, 118 dnak gene 31: 186, 213 DnaK protein 37: 119 dnaK756 mutant, thermotolerance acquisition 31: 205 DNA-mediated transformation systems for fruiting basidiomycetes 34: 191 Dodecanol 26: 253 Dogs, tetracycline-resistant E. coli 28: 247 Dolichol, in S-layer glycoprotein biosynthesis 33: 250 Domain analysis 45: 182– 187 organization 45: 164– 170 repertoire sensing 45: 184– 187 shuffling 41: 211– 214 Domains 40: 353, 357, 358, 359 evolution 40: 356– 367 formation 40: 394, 395 in taxonomy 33: 214 splits 40: 361– 363, 365, 366, 374 Dormancy drug-resistant mechanism in biofilms 46: 228, 229 induction in M. tuberculosis 46: 17, 23, 24 Dorylaimida sp. 36: 127, 128 Downshock adjustment 37: 300– 302 Doxycycline 28: 218 M-positive Streptococcus spp, phagocytosis 28: 243 Dps families 40: 315, 316 protein 46: 133 drdX 45: 15
Drechmeria coniospora 36: 117, 138 adhesion in 36: 127– 129 cuticle penetration in 36: 132– 137 dense bodies 36: 122 mechanical traps in 36: 124, 125 nematode-fungal interactions 36: 125, 126 trapping devices 36: 118, 119 Drechmeria sp. 36: 124 DRIFT spectra 38: 207 Drosocin 37: 137, 142, 147 Drosophila 39: 293, 306, 318– 321, 320, 323, 324; 42: 74; 43: 24; 44: 123 Drosophila melanogaster 35: 6, 7, 16, 17, 20, 21, 41; 37: 138, 140, 142, 147 hsp70 homology with human hsp70 31: 193 Hsp70 multigene family 31: 185 phosphatidylinositol/phosphatidylcholine transfer protein 33: 126 stress protein, discovery 31: 184 induction, oxidative stress 31: 201 Drosophila sp. 37: 147, 148 hsp70-E. coli b-galactosidase fusion gene 31: 196 Drug efflux pumps ABC see ABC (ATP binding cassette) as multifunctional proteins 46: 181– 188 basic principles 46: 230 biofilm response to chronic sublethal stress 46: 236 drug resistance by biofilms 46: 229– 231 induction by sublethal exposures 46: 235 membrane-associated 46: 229, 230 MFS proteins 46: 187, 188 mutations, selection of less susceptible organisms 46: 233, 234 purification 46: 183, 184 superfamilies 46: 229, 230 Drug resistance in bacteria biofilms see Biofilms efflux pumps role 46: 229– 231 quiescence role 46: 228, 229 suicide-less mutants 46: 231, 232 Drug resistance in yeast 46: 155– 201 gene nomenclature 46: 159, 160 mechanisms 46: 157– 177 see also Drug efflux pumps ABC drug transporters see ABC (ATP binding cassette) chromosome alterations 46: 164 drug efflux changes 46: 166, 167 drug import 46: 165, 166 factors contributing to 46: 161 modification/degradation of drugs 46: 164, 165 overexpression 46: 160, 163
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 sites of action and 46: 161 target alteration 46: 160– 163 multiple see Multidrug resistance (MDR) Drug resistance, CYPs 47: 169– 174 Drug target, fungal CYPs 47: 169– 174 Drug targets, new antifungals 46: 158, 160 identification by expression profiles 46: 28, 29 identification for Mycobacterium tuberculosis 46: 17, 27 – 29 Drug toxicity, glutathione protecting against 34: 277– 280 Drug transporters 46: 155 ABC drug extrusion pumps 46: 182– 187 human steroids 46: 184, 185 in yeast, mechanisms of action 46: 166, 167 mechanism of action 46: 183 multidrug 46: 184, 185 Drug-screening, M. leprae 31: 114– 117 D -sorbitol dehydrogenase (SLDH) 36: 261, 261 Dual intracellular/extracellular sensors 44: 246, 247 Duazomycin B 36: 54 Dunaliella primolecta, glutathione-related processes 34: 271 Dunaliella salina 33: 162, 163 half-life of glycerol leakage 33: 181 ion accumulation in vacuoles 33: 185 Duodenal ulceration 40: 143 Dutch elm disease, cerato-ulmin in 38: 18, 31, 32 Dwarfing response, surface hydrophobicity and 32: 69, 70 Dye displacement metal analysis 38: 198, 199 Dynamics of metabolism 43: 75 – 115 Dynamics of sporulation 43: 89 – 90 “Dysentery-like” syndrome 28: 66 haemagglutination test 28: 77, 78 eas N. crassa gene, in conidiogenesis 38: 28, 29 Ebselen as an antioxidant in disease therapy 34: 279, 280 ECA see enterobacterial common antigen Echinocandia, structural formula 27: 61 Echinocandins, structure 46: 158 EcoCyc pathway database 46: 14 Ecological considerations 45: 253, 254 Ecological implications, apomixis 30: 43 – 45
81
denitrification 30: 155, 156 diazotrophic systems 30: 17 –19 nitrification 30: 126– 128 Econazole effect on mitochondrial membrane 27: 52 sterol demethylase inhibition 27: 45 structure formula 27: 40 Ecophysiological marker, carboxysomes as 29: 116, 155, 156 EcoR1 31: 19 Ecosystem, microbial component 42: 28 Ectoine 37: 282, 288, 289, 291, 292, 300, 299, 301– 304, 310, 311 Ectomycorrhiza, hydrophobin genes in formation 38: 33 Ectorhodospiraceae 39: 252 Ectothiorhodosphira 26: 159 (table, n.) Ectothiorhodospira 37: 297, 298 Ectothiorhodospira abdelmalekii 39: 252 Ectothiorhodospira halochloris 37: 294, 298, 299, 300, 301, 304, 312– 314, 314; 39: 252 Ectothiorhodospira halophila 39: 254; 41: 264 Ectothiorhodospira marismortui 37: 290 Ectothiorhodospira mobilis, growth property 26: 161 Ectothiorhodospira shaphoshnikovii, growth property 26: 161 Ectothiorhodospiraceae 39: 252 EDP (oedema disease principle) 28: 66 EDTA 37: 86, 119, 191, 192; 39: 360 floc dispersal 33: 3, 12, 15, 47 inhibition of hydrogenase derepression, nickel role 29: 20 EF hand proteins 37: 95, 112 –118, 119, 125 Efflux pumps see Drug efflux pumps Eggs, acetic acid for washing 32: 103 EGTA 33: 93; 37: 85, 87, 117, 119; 39: 360 Elastase, Ps. aeruginosa 28: 236 Elastic modulus 32: 210 Elasticity, of cell walls 33: 164 Elastin, mechanical properties, humidity relationship 32: 194 Electrical fields, applied 30: 108, 109, 113, 114, 116 effects on cell polarity 30: 107, 113, 114 electrophoretic distribution of proteins 30: 114, 116 fucoid eggs 30: 107, 113 in Achyla, effect on hyphal growth 30: 99 sizes, cell polarity and 30: 113 Electrical gradient 32: 96 Electrochemical metal analysis, voltammetry 38: 194, 195
82
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Electrochemical potential gradients 26: 142– 146 Electrogenic proton pumps 26: 130, 131, 132 Electrogenic uptake 39: 10, 11 Electron acceptors 41: 267, 268 Electron carrier, luciferase as alternative, to cytochrome system 34: 46 Electron flow direction 39: 89 – 93 pathways 39: 76 Electron flow-driven active transporters 40: 87 Electron microscopy 39: 135, 136 see transmission electron microscopy Electron paramagnetic resonance (EPR) 45: 62 Electron spin resonance (ESR) 37: 88 spectroscopy 38: 208 Electron transfer 39: 13 – 15; 45: 75, 78, 79 components 45: 76 flavoprotein 45: 75 Electron transfer dioxygen 43: 168– 170, 168 in E. coil by thioredoxin and glutaredoxin system 34: 264, 266– 269 systems 26: 130, 131 Electron transport chains in glucose dehydrogenase 40: 41, 42 in oxidation of alcohols 40: 39 involved in oxidation of glucose 40: 41 involving soluble alcohol dehydrogenases 40: 37 Electron transport, in Nitrobacter hamburgenesis 30: 133, 134 in Nitrosomonas 30: 132 Electron, acceptors, allocation by nitrogenase, host control of 29: 11 carrier, in model for hydrogenase mechanism 29: 23, 24 flux in nitrogen fixation, reaction, 3 host control 29: 11 in 2-oxo acid dehydrogenases in eubacteria 29: 200 in 2-oxo acid oxidoreductase reactions in archaebacteria 29: 202, 205 transport, in free-living R. japonicum 29: 28 – 32 in hydrogen oxidation 29: 27 – 38 in R. japonicum bacteroids 29: 32 – 35 unique cytochrome b in 29: 35 – 38
Electronegative charge, bacterial cell walls 32: 181– 183 Electron-transparent zone(s) (ETZ) 31: 103; 39: 152– 154 Mycobacterium 31: 81, 82, 101– 103 Electron-transport chain 31: 231– 233; 32: 152 M. leprae 31: 89 Electrophile tolerance 44: 237 Electrophoresis 37: 158 Electrophoretic redistribution of proteins 30: 114, 116 Electroporation 32: 16, 17 Electrostatic attraction 32: 56, 65 Electrostatic charges 33: 14, 24 bacterial cell walls, stress due to 32: 209 collision frequency and 33: 27 of surface, effect on bacterial activity 32: 65 – 67 see also Flocculation; Repulsion Electrostatic interactions, protein conformation/utilization by bacteria 32: 74 Electrostatic repulsion, bacterial cell walls 32: 182 model 32: 211 of surfaces/substratum 32: 56, 65 Eln mutation 34: 174 Elongation factor (EF-2), in Archaebacteria 29: 171 Embden– Meyerhof pathway 29: 172, 173; 39: 340 absent from halophilic archaebacteria 29: 177, 179 ATP yields 29: 172, 191 enzymes, in eubacteria and eukaryotes 29: 174, 175 not detected in H. halobium 29: 179, 183 not detected in T. acidophilum 29: 181 evolutionary origin, random association of enzymes 29: 174 simple energy-conversion process 29: 191 in methanogenic archaebacteria 29: 182 in thermophilic archaebacteria (possible presence) 29: 181 reversal, in methanogenic archaebacteria 29: 182– 184, 191 Embden– Meyerhof – Parnas (EMP) pathway 39: 36; 42: 62 Emericella (Aspergillus) 39: 17 Emericella (Aspergillus) nidulans 35: 296– 298; 39: 11, 24; 40: 331 Enalopril 36: 4
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Enantiomers 37: 156 Enantioselection, microbial 38: 158 Endiol(ate) phosphate 37: 183 Endo-b-(1,4)-glucanase 37: 23, 26, 27 Endocarditis vegetations, antibiotic concentrations 28: 248 Endocrine regulation, peptides 37: 137 Endoglucanase, cellulose hydrolysis 37: 9, 19, 20, 21, 24, 34 cellulase systems 37: 40 – 47, 51, 52 genetics 37: 56, 57 Endoglycosidase H 33: 114 Endometrial carcinoma 29: 100, 101 Endomyces 43: 5 Endomycopsis fibuliger 30: 26, 30 Endoplasmic reticulum (ER) 33: 74 in secretory pathway 33: 74 phosphatidylcholine synthesis 33: 123, 125 protein flux from (levels) 33: 103 protein transport from, to Golgi complex, see Protein transport protein transport to, from cytoplasm, see Protein transport quality-control function 33: 103 retention of proteins 33: 103–111 BiP and KAR2 gene 33: 104, 105 calcium-ion possible mechanism 33: 110 calcium-ion role 33: 109– 111 disruption of calcium-ion-protein matrix effect 33: 110 HDEL sequence in 33: 106– 108 incompletely assembled polypeptides 33: 103– 106 mechanisms 33: 106, 110 mutants defective, see erdl mutants of resident proteins 33: 106– 109 saturability of system 33: 106 summary of model 33: 110 signal recognition particle (SRP) receptor 33: 78 Endoplasmic reticulum, phosphatidylinositol anchors in 32: 15 Endoskeleton 40: 362, 363 Endosymbionts 29: 123 Endotoxin 37: 97 Endozepine 37: 142 Enediolate 37: 185 Energetics during sporulation 43: 89 –100 Energetics, flagellar 33: 288, 292, 293 Energy circuit, bacterial 26: 126– 130 Energy coupling index 43: 98, 99 mechanisms 40: 124– 126, 126
83
Energy intermediates regulation 26: 138– 146 electrochemical potential gradients 26: 142– 146 phosphorylation potentials 26: 140–142 redox potentials 26: 138– 140 Energy metabolism, M. leprae 31: 89, 90 Energy minimization studies 37: 7 ‘Energy of maintenance’ 30: 188 Energy requirements bacterial 26: 125, 126 of bioluminescence 34: 6, 7 Energy transduction in cytoplasmic membrane 26: 130– 138 ATP-dependent solute transport systems 26: 136 group translocation 26: 134 primary transport systems 26: 131, 132 proton motive force generation by end product efflux 26: 136– 138 secondary transport systems 26: 132, 133 Energy transduction advances 40: 360, 361 electron flow, % total electron transport 27: 181 electron transport and proton translocation, in Methylophilus methylotrophus 27: 191– 199 in Methylosinus trichosporium 27: 184– 186 in Paracoccus dentrificans 27: 189– 191 in Pseudomonas AMI 27: 186– 189 methanol oxidation 27: 180, 184 methanol oxidation, coupling to ATP synthesis 27: 199– 202 Energy, deprivation and lipoteichoic acid synthesis 29: 269, 270 expenditures, at low water potentials 33: 200 for carbon metabolism in nitrifying bacteria 30: 134 from ammonia oxidation 30: 138 from nitrite oxidation 30: 133, 134, 138 supplies, minimum water potential determined by 33: 201 surface free 32: 55 Energy-conservation equations 32: 205 Energy-storage compounds 30: 188 glycogen as 30: 185, 188 Enniatin synthetase 38: 100– 104 depsipeptide formation 38: 103, 104 gene structure 38: 102, 103 molecular structure 38: 102 N-methylation mechanism 38: 100, 101 structure/function 38: 100, 101 substrate specificity 38: 101, 102
84
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Enniatins 38: 99, 100 synthesis 38: 91 Enolaldehyde 37: 185 Enrichment culture, magnetotactic bacteria, see Magnetotactic bacteria Entamoeba histolytica 29: 180 glutathione not produced in 34: 242 Enteric bacteria glucose repression in 42: 99 – 101 periplasmic domain of chemotaxis transducers of 45: 184 Enterobacter aerogenes and E. cloaceae 35: 278 survival and glycogen accumulation 30: 187 transducers 33: 300 Enterobacter agglomerans 45: 214 Enterobacter spp b-cyanoalanine synthase activity 27: 83, 84 cyanide degradation 27: 100, 101 cyanide resistance 27: 99 Enterobacteria 37: 302, 314; 39: 12; 44: 247 stress affecting 44: 218, 219 Enterobacteriaceae, bioluminescent 34: 2 Enterobacterial common antigen (ECA) and cell-surface polysaccharide biosynthesis 35: 175 process 35: 161– 163 structure and attachment 35: 139, 142, 144, 145, 148, 149 Enterobacterial repetitive intergenic consensus (ERIC) sequence 34: 33, 34 Enterococcus (Streptococcus) faecalis anionic peptide permease in 36: 57 energetics of peptide transport in 36: 49 PBPs in 36: 199 peptide exodus in 36: 12 peptide transport in 36: 38 Enterococcus faecalis 37: 232, 235, 236; 39: 40, 72, 210 ATCC 9790 29: 290 lipoteichoic acid, autolysin inhibition 29: 286 biosynthetic sequence 29: 250, 251 chain composition 29: 242 chain elongation 29: 249 chain structure 29: 240, 241 estimates of content 29: 247 extracellular, deacylated 29: 273 fatty-acyl composition 29: 239 glycosylation of 29: 243, 261 metabolic fate 29: 272 metabolism 29: 247
role in autolysin regulation in vivo 29: 290 substitution, protein synthesis effect 29: 271 synthesis, effect of growth stage 29: 267 synthesis, membrane lipid metabolism 29: 259, 260 NCIB 8191, NCIB, 39 29: 243, 242 phosphatidyldiglucosyldiacylglycerol incorporation 29: 250, 252 phospholipid inhibition of autolysins 29: 288, 289 Enterococcus faecium 36: 201 lateral-wall elongation and septum formation 36: 222 Enterococcus hirae 36: 199; 40: 387, 388, 417; 43: 15 Enterococcus sp. 37: 251, 254 Enterocytes, see Fimbriae, adhesive properties Enterohepatic circulation 42: 30 Enterotoxin, heat-stable (ST enterotoxin) 29: 77, 78 Enterotoxins, E. coli, Staph. aureus, cerulenin, inhibition 28: 233 Entner – Doudoroff enzymes 40: 159 ATP yields 29: 172, 191 classical 29: 173, 178 evolutionary origins 29: 191 in eubacteria and eukaryotes 29: 172, 173 modified in halophiles 29: 176– 179, 177, 178, 191 enzymes in 29: 179 modified in non-archaebacterial species 29: 179 non-phosphorylated pathway, in thermoacidophiles 29: 177–181, 191 reversal in thermoacidophiles 29: 183 pathway 29: 175; 39: 340; 40: 44, 48, 49; 43: 131 system 45: 299, 304 Entropy 32: 56, 59 Envelope layers of mycobacteria 39: 131– 203 Envelope bacterial interaction between DNA and 36: 236– 242 role of 36: 183– 185 bacterial, adsorbed electrolytes affecting 32: 66 M. leprae, see Mycobacterium leprae Environment
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 fruiting in higher fungi and effects of 34: 180–184 ice nucleation in bacteria and its significance for the 34: 230, 231 Environmental conditions during growth 44: 245 Environmental stress, resistance, apomictic strains 30: 42, 43, 45 Environments fluctuating 47: 66, 67 natural 47: 76 – 79 non-culturable cells 47: 76 – 79, 99 EnvZ 37: 112; 45: 167 Enzyme activities in caecal contents 42: 31 Enzyme classification 40: 84, 85 Enzyme Commission (EC) 40: 81, 84, 86 classification system 40: 85 Enzyme II 42: 100 Enzymes activity in precursor formation and cell-surface polysaccharide biosynthesis 35: 227, 228 adsorption on surfaces 32: 59 – 61 factors affecting activity 32: 59, 60 hydrophobic interactions 32: 60 archaebacteria 29: 171, 194–217 as targets for antifungals 46: 157 dithiol/disulphide-controlled 26: 139 diversity 29: 216 flavin-dependent 26: 139 halophilic 29: 217– 220 immobilized in glycocalyx of biofilms 46: 220 inactivation by oxidants 46: 137– 141 induced by superoxide 46: 131, 132 inducible 26: 185, 186 in glucose catabolism in eubacteria and eukaryotes 29: 172–174 in inositol metabolism, see individual enzymes; Inositol organic acids effect on 32: 97 M. leprae, carbon source catabolism 31: 87, 110 cell envelope 31: 76, 79, 82 oxidative damage 46: 321 oxygen-sensitive families 46: 139, 141, 142 reaction – diffusion limitation mediated by, biofilm resistance 46: 223, 224 see also individual enzymes see also Archaebacteria: individual enzymes selenium-containing 35: 72 –88 see also prokaryotic selenoproteins not containing selenocysteine residues 35: 86 –88
85
superoxide formation 46: 115, 118, 321 surface structure, erythrocytes 28: 90, see also specific names TOL plasmids encoding 31: 5 – 7, 13 – 18 thermophilic 29: 220–222 Eocytes 29: 170 Eosinophil cationic protein (ECP) 37: 136 Eosinophil-derived proteins 37: 136 Ephedra spp. 41: 3 Epidermophyton sp, effect of griseofulvin 27: 10, 11 Epilithic bacteria 32: 79 Epimerization, by peptide synthetases 38: 92 Epistasis analysis, sec mutants 33: 76 Epistatic relationships, ino2, ino4, opi1 mutations 32: 38, 39, 43 Epithelial cells, human (H-Ep2) and E. coli 28: 75 – 77, see also Fimbriae, adhesive properties adhesion tests 28: 76, 77 brush border attachment 28: 76 brush border components 28: 85 Epithelial Naþ channels (ENaC) 40: 129 Epoxides as glutathione S-transferase substrates 34: 282 1,2-Epoxypropane 33: 46 EPR 45: 65, 66, 68, 69, 72 EPS see extracellular polysaccharides erd mutants 33: 107– 109 ERD1 gene 33: 108 sequence 33: 107, 108 erd1 mutants, failure to retain invertase 33: 107 Golgi-complex defect in 33: 108 KAP2p secretion 33: 107 erd1 null mutants 33: 108 ERD1p, integral membrane protein 33: 108 location in Golgi complex 33: 108 erd2 mutants, Golgi-complex dysfunction 33: 109 ERD2p, as HDEL receptor 33: 108, 109 multiple functions 33: 109 ERG11 gene alterations 46: 162, 163 azole resistance 46: 164 overexpression 46: 163 ERG3 gene, defective and drug resistance 46: 163 ERG5 gene, defective and drug resistance 46: 163, 164 Ergosterol 33: 182; 46: 184
86
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Ergosterol biosynthetic pathway, enzymes as drug targets 46: 157 defects causing drug resistance 46: 163, 164 genes 46: 159, 160 P45014DM see P45014DM enzyme Ergosterol, CYPs 47: 170, 171 micanazole-induced changes, Candida 27: 42 PIP turnover 32: 17– 18 role 32: 18 see also Sterols Ergot peptide alkaloids 38: 108– 111 Ergotamine 38: 108, 109 ERIC (enterobacterial repetitive intergenic consensus) sequence 34: 33, 34 Erwinia 35: 202; 41: 273 diazotrophic strains 30: 17 Erwinia rhapontici 35: 278, 286 Erwinia stewartii 35: 190, 199, 204, 214, 220 Erwinia amylovora 35: 168, 204, 214, 220; 37: 232; 45: 232 Erwinia carotovora 37: 10, 17, 30; 45: 212, 215, 233 subsp. atroseptica 45: 230, 231 subsp. betavasulorum 45: 232 subsp. carotovora 45: 230– 238, 243– 246 Erwinia chrysanthemi 35: 144; 37: 11, 13, 20, 30, 36, 39; 45: 210, 230– 232 Erwinia herbicola 35: 278; 45: 231, 232 Erwinia spp. ananas, ice nucleation gene and protein product in 34: 212, 220, see also specific gene herbicola, ice nucleation in 34: 209 genes and proteins 34: 212, 220, 221, 233, see also specific genes Erythritol, as compatible solute 33: 173 in Debaryomyces hansenii 33: 174, 187 increase with increasing salinity 33: 171, 173 formation and utilization, pathways 33: 179, 180 osmoregulatory role, fungi species 33: 173 glycerol accumulation regulation 33: 187 Erythro-b-hydroxyaspartate 37: 299 Erythrocytes bovine, agglutination 28: 72
haemolysis, miconazole 27: 47 human 28: 72 Erythrogenic toxins 28: 233 Erythromycin 36: 62 adhesions, enhancement 28: 231 inhibition 28: 218 biosynthesis, CYP107A1 (P450 eryF) 47: 143, 144 DNAase, streptococcal 28: 234 effect on penicillinase 28: 233 fibronectin-binding, decrease 28: 225 a-haemolysin production 28: 232 lipase synthesis, delay 28: 235 Streptococcus, effect on Tn917 28: 246 yeast meiosis inhibition 30: 41, 42 Escherichia 40: 42; 41: 118 Escherichia coli 39: 3, 11, 17, 38 – 40, 54, 57, 60 – 62, 67, 71– 73, 94, 95, 101, 144, 178, 206– 208, 211, 212, 214–218, 223, 224, 251, 270, 271, 273, 274; 40: 7, 17, 18, 22, 25, 31, 41, 55, 61, 88, 98, 100, 104, 111, 112, 122, 123, 154, 155, 236, 282, 285, 286, 292, 294–297, 296, 299, 300, 303, 304, 309, 315– 320, 318, 323, 325, 326, 327, 331, 332– 335, 337– 340, 369, 375, 375, 380, 381, 382, 384, 387, 411, 424, 426; 41: 112, 120, 141, 182, 197, 213, 232, 237, 292, 296, 299, 303, 306, 310, 320; 42: 64, 100, 118, 149, 185, 187, 198, 245–247, 249, 250, 256– 260, 262; 43: 15, 42, 47, 146, 170, 183, 196, 197, 201– 203, 205, 207, 208, 211;44: 1, 2, 5, 7, 11, 12, 14, 16, 17, 48, 56, 59, 79, 93 – 95, 103, 111– 113, 116, 118– 120, 122, 123, 125, 127, 128, 130, 153, 186, 201, 206, 232, 236– 238, 241; 45: 1– 49, 57 – 59, 61, 71, 82 – 97, 100, 124, 130, 137, 138, 157, 159, 164– 170, 180– 182, 184, 188, 205, 208, 212, 216, 219, 221, 232– 234, 274, 304, 321, 536 Escherichia coli mutant SG5 30: 210, 216 Escherichia coli 36: 44, 151 acquired thermotolerance, stresses inducing 31: 205 acrB efflux pump 46: 230, 231, 233, 326 acriflavine inhibition, dimer excision 28: 15 adhesins, see Fimbriae adhesive pili, see Pili, adhesive
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 ADPglucose pyrophosphorylase activator sites 30: 195– 197, 199 ALA dehydratase 46: 266, 267 alafosfalin resistance 36: 33 ALA uptake 46: 286, 287 alcohol- and sugar-oxidizing systems 36: 253 amino acid transport, branched chain binding proteins, secretion, model 28: 154, 155 gene organization 28: 151, 152 genes/locations 28: 148, 149 leucine, and transport activity model 28: 154– 158 leucine-binding protein secretion 28: 152– 154 LIV I and LS transport, regulation 28: 154– 160 LIV I/LIV II mutants, leucine secretion 28: 150 LIV II system, basal level activity 28: 147, 150– 152 LivJ gene, nucleotide sequence 28: 158– 160 LS binding protein, C-terminal sequences 28: 153 secretion, leucine-binding proteins 28: 152– 154 amino acids 26: 134 and cell-surface polysaccharide biosynthesis export 35: 172, 174, 175, 177– 185, 187, 188 genetics 35: 190– 197, 199– 204, 206– 208, 210, 211 process 35: 157, 159– 165 regulation 35: 212– 221, 224, 225 structure and attachment 35: 139– 144, 146– 148, 151– 153 and ethylene production 35: 277, 278, 281, 282, 292, 293, 302 and hopanoids 35: 261, 262, 264, 268, 269 and selenium metabolism 35: 71 and sulphur 35: 96, 97 enzymes 35: 77– 79, 83 geochemistry 35: 100 transport and metabolism 35: 93 – 95 tRNAs and selenoprotein biosynthesis 35: 89, 92, 93 – 95 antibiotic action, pyocyanine 27: 267 antibiotic resistance 46: 230, 231 antibiotic treated, effect of serum 28: 240, 241 AP1A hydrolases in 36: 96, 92 – 94, 94, 96 AP1N concentration and growth 36: 102
87
apaH gene encoding AP1A hydrolase in 36: 97, 98 arginine transport 28: 174 arginyl- and glutaminyl-tRNA synthetases in 36: 87 aromatic amino-acid transport 28: 171– 173 energetics 28: 173 gene characterization 28: 172, 173 regulation 28: 171, 172 arsenic resistance 38: 226 b-cyanoalanine synthase activity 27: 83, 84 branched-chain amino acids, see Escherichia coli, amino acid transport, branched chain BrecA mutants 28: 26 CA8000 29: 73 C5 pathway of ALA synthesis 46: 264 calcium 37: 85 –87, 89, 90, 92, 98, 100– 108, 103, 110, 111, 117, 119 catabolite repression 28: 187 cell growth kinetics 36: 186 cellulose 37: 24, 58 cell walls, peptidoglycan breakdown 32: 185 peptidoglycan turnover 32: 184 che and mot genes, location 33: 314 chemoreception 33: 296– 298 motility response 33: 297, 298 response to shallow gradients 33: 298, 316 chemoreceptor dimer 41: 241 chemoreceptors 33: 296; 41: 240 chemosensory pathways 41: 239, 268 chemosensory signalling pathway 41: 255 chemosensory system 41: 238– 263 chemotactic signal transducers 33: 299, 300 chemotaxis 32: 110; 33: 278 membrane potential in 33: 316, 317 nature of intracellular signal 33: 317 chemotaxis, calcium ions in 38: 188 citrate synthase sequence 29: 216 class I aldolase in 29: 184 colony morphology 28: 127, 128 conjugative pili, see Pili, conjugative consensus sequences of promotors 31: 27, 28 copper metabolism study 38: 222 cpxA and cpxB genes, protein export 28: 228 cya crp mutants 29: 72 cyanide degradation 27: 101 sensitivity 27: 99
88
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
cytochrome bd quinol oxidases 43: 175– 178 cytochrome d in 36: 271 cytochrome c maturation system 46: 280 haem delivery 46: 283, 284 din (damage inducible) genes 28: 13 dinucleoside oligophosphates 36: 82 – 84 dipeptide permease in 36: 29, 30, 32, 33 dipeptide binding protein, DppA 36: 30 –32, 41 DNA repair-deficient mutants 28: 25, 26 error-free repair 28: 24, 25 error-prone repair 28: 13 DnaJ protein 33: 82 effect of mecillinam 36: 238, 240, 242 on cell shape 36: 199, 202, 204, 205, 207, 215– 218 effect of oxidants on 46: 134 enterotoxigenic, CFA/I, CFA/II 29: 56, 62 K99 positive 29: 63 enterotoxins 28: 235 LT and ST 28: 77 eukaryotic polypeptides expressed, in inclusion bodies 29: 156 excision repair 28: 12, 13 and caffeine 28: 14, 20, 21 ferrochelatase mutant 46: 274 FFH protein 33: 84 filament formation 28: 15 fimbriae, see Fimbriae flagella, filaments, helix 33: 280, 281 genes 33: 286 number/cell 33: 281 rotation, intervals between 33: 290 structure 33: 283 flagellin, genes 33: 283 flagellum, assembly and cell cycle 32: 150 genes 32: 117 hook protein overproduction in mutants 32: 149 motor function, power source 32: 154 flavoproteins 46: 118 flocculent yeasts binding to 33: 13 frequency of opp mutations in 36: 64 fumarate reductase 31: 252, 253 functional properties of oxidases 43: 176 Fur protein see Fur protein GDHs in 36: 260, 287 gene expression, osmotic pressure changes affecting 32: 177 genes in inorganic ion physiology 38: 210 GLDH activity 36: 262 glgC gene sequencing 30: 193– 195
glucose 6-phosphate 26: 134 glucose dehydrogenase in 40: 48 glutamine synthetase 26: 7 glutamine transport 28: 174 glutamine-binding protein, sphaeroplasts 28: 174 glutathione-related processes 34: 242, 249, 251, 254– 256, 258, 264– 269, 274– 276, 284–287, 289 glycerol transport and permeability to 33: 182 glycogen accumulation 30: 184 glycogen accumulation mutants 30: 192, 209 activator affinity and accumulation relationship 30: 192, 209, 210 allosteric 30: 209– 217 cloning of glgC 30: 212– 214 inhibitor affinity 30: 210 mutation sites 30: 211 properties 30: 209, 210 glycogen deficient mutants 30: 185, 187, 192, 210 glycogen excess mutants 30: 216, 217, 221 glycogen gene transcription 30: 221– 223 levels in mutants 30: 221, 222 model for regulation 30: 229 groEL protein, see groEL protein growth on/uptake of butyrate 32: 93 guanylyltransferase in 36: 91 haem o and haem a synthesis 46: 276 HB11, conjugative pili 29: 56 hcr correlation with uvr 28: 26 heat-labile enterotoxin 28: 235, 237 heat-shock stress 28: 21 – 23 nalidixic acid 28: 51 ultraviolet irradiation 28: 51 hemD gene 46: 296, 297 hemG gene 46: 272 hemH and hemK genes 46: 273 homodimeric periplasmic domain of Tar 41: 242 homoeostasis 26: 146– 148 host cell reactivation, inhibition by caffeine 28: 20 htp R gene regulation 28: 5 heat-shock proteins 28: 21 – 23 heat-shock protein synthesis 31: 202, 205 kinetics 31: 205 hsp70 in 31: 185, 193 HtrP gene 34: 29 hydrogen peroxide and oxygen 28: 5 – 10
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 effect on macromolecular synthesis 28: 10– 12 hydrogenase 26: 176 hydrophobicity of surfaces affecting growth 32: 67 H10407, adhesive pili 29: 56 ice nucleation phenotype transferred to 34: 211, 222, 224 ilv biosynthetic operon, feedback inhibition 28: 147– 150 incompatibility groups of plasmids 29: 60 induction of proteins, DNA damaging agents 28: 19 – 21 in vivo mutagenesis of citrate synthase 29: 211 iron in 38: 216 Mo¨ssbauer spectroscopy 38: 209 iron transport and regulation mutants, bioluminescence studies in 34: 45 iron-limited growth 38: 189 iron-sulphur clusters 46: 121, 122 repair 46: 121, 133 J96 clinical isolate 28: 109 similarity to K12 28: 111 Klebsiella pneumoniae 34 genome comparison 46: 34 K12 genome comparison 46: 19 K-12 genome comparison with E. coli O157:H7 46: 19 K12 strains, chemical analysis 28: 96 – 98 K12 strain G6MD3 30: 206, 214, 219, 221 and clinical isolate J96 28: 111 complement susceptibility, in presence of antibiotics 28: 240 liquid holding recovery 28: 14 – 16 N-terminal amino-acid sequences 28: 100 tyrosine residues 28: 107 uvr and polA genes 28: 26 lactate 26: 134 lactose 26: 134, 147 lactose proton symport system 26: 145 lateral wall and septum formation 36: 18, 222, 223, 229– 231, 235 lexA gene regulation 28: 5 error-prone repair systems 28: 24 superoxide dismutase responses 28: 20 liquid-holding recovery 28: 14 and yeast extract 28: 15 long-/medium-chain fatty acids uptake/metabolism 32: 93
89
low molecular-weight nutrient utilization 32: 71 lrp gene 46: 286, 287 LspA gene, lipoprotein signal peptide 28: 227, 228 lysyl-tRNA synthetase 36: 86, 89, 90 macromolecular synthesis, effect of oxygen and hydrogen peroxide 28: 10 – 12 UV radiation 28: 16 – 18 mannose-specific binding 28: 219 mar efflux pumps 46: 230, 231, 233, 235 metabolic database 46: 14 M. tuberculosis comparison 46: 14 metal-tolerant/-sensitive, isolation 38: 214 methylglyoxal 37: 178, 181, 182, 185, 188– 190, 194, 196, 198, 201– 206, 205, 213 microarray-based comparative genomics 46: 30 ML308 45: 313, 318, 322, 324, 328, 332– 334, 337 growth on acetate 45: 295– 298 growth on glucose 45: 277– 295 growth on other carbon sources 45: 298– 313 molecular chaperones in 44: 99 – 101 morphology mutants 36: 213 motA mutants 33: 292, 293 multidrug resistance operons 46: 230 mutant AC70R1, binding site for factor 30: 229 factor 30: 223, 229 glgC transcripts, levels 30: 221– 223 regulation of glgC expression 30: 223 mutant CL1136 30: 210, 216 mutant, lacking cytochrome c 27: 163 mutants lacking superoxide dismutase 46: 115 mutation to drug-resistance 28: 245 mutant SG3 30: 221, 222 mutant SG5 30: 210, 216 mutant 618 30: 210– 213 kinetic constants 30: 214, 215 mutation sites, allosteric properties 30: 211– 216 nickel in hydrogenase 29: 20 nif gene transfer 30: 13 nitrate reduction 31: 256, 257 nitrite reduction 31: 257– 259 nitrogen regulation 26: 3 NMePhe pilin gene expression in 29: 82 non-pathogenic, microarray expression studies 46: 15 O:H4 (444-3) 28: 96, 97 O21:H-(469-3) 28: 96, 97 O157:H7 46: 17
90
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
acid-resistance genes 46: 19 acid-resistance mechanism 46: 18 – 20 adaptation to acidic environment 46: 17, 18– 20 growth conditions preceding 46: 19 oligopeptide binding protein in 36: 17, 18, 20, 23 operon organisation 41: 248, 249 opp operon, regulation of 36: 27, 28 organic acids effect, on ATP levels 32: 96 on cell membranes 32: 95 on DNA-repair mutants 32: 97 on macromolecule synthesis 32: 97 recovery from 32: 98 ornithine transport 28: 174 osmoadaptation 37: 275, 279– 286, 285, 292, 300– 302, 305– 309, 308, 313, 314, 316, 317 oxidative stress 46: 115, 143, 324, 332 response/repair 46: 335, 336 oxidative stress proteins 46: 324 2-oxo acid dehydrogenase and 2-oxo acid oxidoreductase in 29: 204 oxygen and hydrogen peroxide 28:5– 10 effect on macromolecular synthesis 28: 10 – 12 oxygen-sensitive mutants 31: 200 pathogenic strains 28: 66, 67, see also Fimbriae pattern formation 41: 262 PBPs in 36: 198, 209, 224– 226 pellicle formation 28: 128 peptides 37: 155, 155, 156, 161, 162, 166 peptide permeases 36: 14 peptide transport 36: 5 energetics of 36: 49 exodus in 36: 12 rates of 36: 13 periplasm in 36: 9, 10 periplasmic protein in 36: 17 phenotypes with high Ap1N concentration 36: 100, 101 phenylalanyl-tRNA synthetase 36: 89 pH stress 37: 230, 231– 233, 234, 235, 238, 241, 242, 248– 250, 252, 255, 257– 259 phagocytosis, subinhibitory ampicillin 28: 242, 243 phosphonopeptide cleavage in 36: 57 phosphatase 26: 35 phosphorylation potential 26: 142 pili, X-ray diffraction studies 29: 65 plasmids 29: 41 polA gene, liquid-holding recovery 28: 26 porins in 36: 7 – 9
potassium ion TrkA transport system 26: 136 potassium translocation system 26: 141, 142 potassium transport system 26: 144 pqq genes 40: 57 – 59 pRK290 infecting 29: 41 production of apoenzyme, quinoproteins 27: 155 proline proton symport system 26: 145 proline transport, energetics 28: 170, 171 PP I (high affinity) 28: 168, 169 PP II (low affinity) 28: 169, 170 proline chemotaxis 28: 170 putA – gene 28: 168– 170 putP – gene 28: 168– 170 proline uptake 26: 147 promotors, consensus sequences 30: 221, 222, 230 propionic acid utilization 32: 93 protein synthesis, post-irradiation, DNA synthesis 28: 17 protein translocation 33: 79 co- and post-translational 33: 79 proton motive force-generating mechanism 26: 137 proton/amino acid symport system 26: 140 proton/sugar symport system 26: 140 protoporphyrinogen oxidase mutants 46: 299 pyruvate deydrogenase complex 29: 203 quinones 43: 178, 179 recA controlled error-prone superoxide dismutase system 28: 24, 51 recA mutants, effect, sodium arsenite 28: 20 error-free repair 28: 24 hydrogen peroxidase toxicity 28: 12 liquid-holding recovery 28: 14 recBC DNAase 28: 17 SOS responses 28: 20, 21, 24 regulon identification by microarray expression profiling 46: 25 rel genes, stringent response 28: 11 relationships between phenotypes of cydDC and cydAB mutants 43: 193 repellent sensing 41: 254, 255 respiratory chains 43: 173–179, 175, 200 respiratory chain/system 31: 231, 232, 233 R-plasmid transfer 28: 246, 247 rpoH mutant 31: 205 RpoN protein 31: 33
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 RuBisCO expression in 29: 149, 156 secA, secB and secC genes, protein export 28: 228 “shigella-like” strains 28: 66 sigma factors 46: 57 – 64 s 70 family 46: 49, 52 s E 46: 57, 60 – 62, 98 activation by periplasmic stress 46: 57 discovery 46: 57 functions 46: 61 overexpression 46: 60 promoter regions 46: 60, 61 regulators 46: 57 regulon 46: 60 – 62 target genes 46: 57 Fecl s 46: 62 – 64 activation 46: 63 Bacillus subtilis s x relationship 46: 65 FecR regulatory role 46: 63 functions 46: 62, 63 regulon 46: 64 s S (rpoS-encoded) 46: 50, 51, 229, 326, 327 sigma factors see Escherichia coli sigma factors; Sigma factors signal hypothesis for protein transport analogy 33: 79 signal-peptidase 33: 79, 85 silver rsistance 38: 230 smugglin transport in 36: 61 soluble oxidases 43: 178 sphaeroplasts, periplasmic glutaminebinding protein 28: 174 sphaeroplasts, pili assembly 29: 92 strain AW551, mutant galactose-glucose-binding protein (GBP) 33: 298 streptomycin, effect of 28: 133 stress in 44: 215– 257 stress proteins in 31: 190, 202, 205 superoxide levels 46: 121 response to 46: 335, 336 superoxide dismutase activity 46: 328 genes 46: 328 mutants lacking 46: 115 superoxide dismutase mutants 31: 198 superoxide dismutase system, UV reactivation system and phage mutation 28: 19 – 21 swimming, rate 33: 288 Tar protein 33: 301 terminal oxidase exchange in 36: 271 tetracycline resistance and mutations 28: 246
91
thermotaxis 41: 254 TOLþ transconjugants 31: 9 toxicity of hydroxyethylclavam towards 36: 55 tripeptide permease in 36: 33, 34 tsr mutants 33: 300 Type I pili genes (fimA-D, pilA-E) 29: 74 umuC genes, error-prone repair 28: 24 unidentified repair system, aerobes 28: 26 urinary tract infections, “excess” antibiotic dosage 28: 250 uropathogens, inhibitory antibiotics, list 28: 218 uropathogenic 29: 55, 61, 75, 94 UV irradiation 28: 12 – 16 macromolecular synthesis 28: 3, 16 – 18 phage-induced reactivation 28: 3, 18, 19 UV-induced phage reactivation 28: 3 excision repair enzymes 28: 26 uvr, correlation with hcr 28: 26 liquid holding recovery 28: 26 UvrABC endonuclease 28: 12, 13 liquid-holding recovery 28: 15 vector pTG4O2 (xylE gene) in 31: 62 vir plasmids 28: 78 Wigglesworthia genome comparison 46: 33, 34 xthA mutants, hydrogen peroxide toxicity 28: 12 7714, chemical analysis 28: 96 – 98 N-terminal amino acids 28: 100 9353, N-terminal amino acids 28: 100 5’-nucleotidase 36: 97 987P 29: 57, 62, 63 Escherichia hirae 42: 246, 251 Escherichia succinogenes 39: 226 Esculentin 37: 142 Esculin 37: 56 Estuarine environment, oxygen levels, effect on nitrifiers 30: 152, 156 ETF 45: 75 Ethambutol (EMB) 39: 157, 168 Ethane, non-Mo-nitrogenase formation 30: 9 Ethanol 37: 64, 261; 39: 33, 81, 82, 95; 40: 44; 41: 11, 23, 24, 39 fermentation 39: 104–106 Ethanol concentration and hopanoids 35: 257, 258 Ethanol dehydrogenases see alcohol dehydrogenases, type I Ethanol production, by immobilized yeast 32: 64 Ethanol stress 31: 208
92
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Ethanolamine 37: 296, 297 choline in teichoic acid replaced by, autolysin inhibition and 29: 284 Ether, bacteriohopanetetrol 35: 249, 254, 259 Ethidium bromide 30: 24 Ethionamide (ETH) 39: 169 a-Ethoxypropionyl 37: 186 Ethyl methane sulphonate (EMS) 28: 23; 29: 39 4-Ethylbenzoate (4EB) catabolism 31: 60, 61 Ethylene glycol, as repellent 33: 305 Ethylene production by microorganisms 35: 275– 306 see also P. syringae under pseudomonas biosynthetic pathways 35: 281– 288 see also aminocyclopropane; methylthiobutyric acid; oxyglutarate reports of 35: 277– 281 Ethylenediamine tetracetic acid (EDTA) 37: 86, 119, 191, 192 Ethyleneglycol-bis-(b-aminoethylether)N,N,N0 ,N0 ,- tetraacetic acid (EGTA) 37: 85, 87, 117, 119 Ethylglyoxal 37: 188 Ethylmethane-sulfonate (EMS) 39: 38 Etridiazol 30: 169 Eubacteria 29: 167, 168; 40: 285 aerobic, pyruvate metabolism 29: 175 2-oxo acid dehydrogenase in 29: 200 6-phosphofructokinase absence 29: 172 anaerobic, see Anaerobes central metabolism in 29: 172– 176 enzymes in glucose catabolism 29: 174, 175 metabolic fate of pyruvate 29: 175, 176 sugar catabolism 29: 172 –174 citrate synthase 29: 210– 212 ferredoxin in 29: 205 isocitrate dehydrogenase 29: 195 malate dehydrogenase (NAD+-specific) in 29: 197 rRNA features in archaebacteria 29: 170 succinate thiokinase in 29: 212, 213 2-oxo acid dehydrogenase in 29: 200– 202, 203 Eubacterium acidaminophilum 35: 73 – 76 Eucalyptus globulus, Pisolithus tinctorus association 38: 33 Euglena 39: 324
Euglena gracilis 29: 140; 39: 305 –307, 315, 316, 315, 320; 46: 261 Ap1A hydrolase in 36: 92 glutathione-related processes 34: 271 Eukarya 39: 236 Eukarya 40: 353, 361– 363, 365, 367 classification of transport proteins 40: 81 – 136 Eukaryote-like CYPs 47: 153 Eukaryotes 29: 166– 168; 40: 124, 129, 285 aerobic, puruvate metabolism 29: 175 central metabolism in 29: 172– 176 enzymes in glucose catabolism 29: 174, 175 metabolic fate of pyruvate 29: 175, 176 sugar catabolism 29: 172– 174 citrate synthase in 29: 210, 211 ferredoxin in 29: 205 isocitrate dehydrogenase 29: 194, 195 RuBisCO L and S subunit genes 29: 145 selenoproteins from 35: 73, 89 sterols in 35: 250, 258, 266, 267 stress protein induction 31: 196, 201, 203 succinate thiokinase in 29: 212, 213 2-oxo acid dehydrogenase in 29: 200– 203 Eukaryotic diazotrophy 30: 13 Eukaryotic efflux systems 40: 109 Eukaryotic ferritins 40: 288– 291 Eukaryotic microorganisms, metal ion transport in 43: 1 – 38 Eukaryotic organisms, origin from prokaryotic cells 26: 273 Eukaryotic zinc metallothionein 44: 185– 187 Eukaryotic-specific carrier families 40: 130 Euprymna scolopes 42: 37; 45: 237 –239 light organs of 34: 38, 39, 50 Eurotium amstelodami 33: 158 Euryarchaeota 39: 236 Eutrophication 30: 127 Evolution archaebacteria, see Archaebacteria benzyl-alcohol dehydrogenase 31: 14 dehydrogenase/benzaldehyde catabolic pathways 31: 44, 45, 53 central metabolic pathways, archaebacterial considerations 29: 191– 193 ferredoxins 29: 205 nif genes 30: 12, 13, 18
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 novel DNA combinations, plasmid role 31: 59 of bioluminescence in bacteria 34: 48 – 57 of Domains 40: 356– 367 of glutathione metabolism 34: 242 of ice-nucleation genes in bacteria 34: 228– 230 of mammalian hormone-like molecules and receptor – effector systems in fungi 34: 131, 132 2-oxo acid: ferredoxin oxidoreductase, considerations 29: 204, 205 RpoN use in transcription 31: 34 significance of dual specificity of isocitrate dehydrogenase 29: 196 TOL plasmids 31: 44 – 52 relations with other catabolic plasmids 31: 52 – 55 Evolutionary creative breakthroughs 40: 393, 394 Evolutionary tree 40: 357, 358 EXAFS 45: 68, 69, 70 ExbB 45: 123 ExbD 45: 123 Exfoliative toxin, Staph. aureus, effect of clindamycin 28: 233 Exiguabacterium auranticum 40: 410 Exo-b-(1,4)-glucanase 37: 23 Exocellobiohydrolase 37: 26, 27 Exochelin 31: 105, 106 Exocytosis 37: 113 Exoglucanase 37: 9, 41 – 46, 50, 51 Exoskeleton 40: 362, 363, 365, 368, 373 Exosporium production 28: 51 Exp mutation 34: 174 Export of polysaccharides and cell-surface assembly 35: 171– 188 see also transport of polysaccharides biosynthetic complexes located at cytoplasmic membrane 35: 171– 174 translocation from cytoplasmic membrane to surface 35: 182– 188 Expressed sequence tags (ESTs) 43: 15 Expression profiles applications 46: 5, 6 as transcriptional reference for organisms 46: 5 co-regulated gene identification 46: 5, 6 direct/indirect regulation mechanisms 46: 6 new drug target identification 46: 28, 29 regulatory network dissection 46: 6
93
as sum of responses to physicochemical parameters 46: 16 bacterial pathogens 46: 15 – 29 competence induction in S. pneumoniae 46: 17, 21, 22 E. coli O157:H7 and adaptation to acid 46: 18 – 20 goal 46: 16 H. pylori adaptation to acid 46: 19, 20, 21 in vitro growth conditions 46: 16 M. tuberculosis and s regulon identification 46: 24 – 27 M. tuberculosis and biosynthetic pathway inhibition 46: 27 – 29 M. tuberculosis and dormancy induction 46: 17, 23, 24 Pasteurella multocida response to iron limitations 46: 16 – 18 S. pneumoniae and density-dependent regulation 46: 22 summary 46: 17 cluster analysis 46: 5, 6 comparisons in functional genomics 46: 5 definition 46: 5 of host cells 46: 34 – 42 summary 46: 35 of non-pathogenic bacteria 46: 15 regulon identification 46: 25 transcription factor identification 46: 6, 7 Extended X-ray Absorption Fine Structure (EXAFS) 29: 21 Extracellular alarmones 45: 217 Extracellular components in heat response 44: 236, 237 in response induction 44: 225, 226 Extracellular induction components (EICs) 44: 215– 257 Extracellular induction components (EICs) 45: 217 cross-feeding 44: 240, 241 in acid tolerance response induction 44: 226 receptor for attachment 44: 251 stress responses 44: 235– 245 Extracellular matrix, glycocalyx of biofilms see Glycocalyx Extracellular polymeric substances (EPS) 30: 147, 148, 176 possible function 30: 148, 164, 175 Extracellular polysaccharide (EPS) in biofilms in glycocalyx 46: 218 up-regulation of synthesis 46: 219
94
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Extracellular polysaccharides (EPS) biosynthesis 35: 137, 212 export 35: 168, 170, 171, 184 genetics 35: 190, 196, 198– 206 process 35: 154, 156, 158 structure and attachment 35: 138, 139, 142, 144– 146 Extracellular protectants 44: 238, 250 Extracellular protein 44: 239 Extracellular reductants 43: 60 – 62 Extracellular regulation of cell-surface polysaccharides 35: 216– 229 see also two-component systems allosteric activation of cellulose synthetase 35: 228 CAD-like proteins 35: 224, 225 enzyme activity in precursor formation 35: 227, 228 histone-like proteins in synthesis of alginate in Pseudomonas aeruginosa 35: 224 IS elements and DNA rearrangements ininstability of 35: 225– 227 protein-protein interactions and translational regulation 35: 228, 229 Extracellular sensing 45: 181, 182 Extracellular sensing components (ESCs) 44: 215–257 conversion to EICs 44: 250, 251 stress responses 44: 235– 245 synthessis 44: 250, 251 Extracellular sensors, synthesis/secretion 44: 244, 245 Extracellular stress 44: 223, 224 Extracellular stress sensors 44: 224, 225 Extracytoplasmic function (ECF) sigma factors 46: 24, 47 – 110, 52 – 54 see also individual bacteria Bacillus cereus 46: 65 Bacillus halodurans 65 Bacillus subtilis 46: 64-80 see also Bacillus subtilis Caulobacter crescentus 46: 98 classification 46: 50, 53 cotranscribed with negative regulators 46: 47, 98 definition/characteristics 46: 47 E. coli 46: 57, 60, 61 see also Escherichia coli sigma factors ECF-type promoters 46: 67 features 46: 53 functions 46: 56 – 98 strategies for assigning 46: 56, 58, 59, 100 numbers 46: 56
phylogenetic cluster 46: 54, 98 phylogenetic relationships 46: 97, 98 positive autoregulation 46: 99 recurring themes in study 46: 98 –100 regulon overlap 46: 99 regulon, properties 46: 53 sequence divergence 46: 99 summary by bacteria 46: 92 – 95 survey in various bacteria 46: 55 Extracytoplasmic receptors, phylogenetic families of 40: 120 Extracytoplasmic sigma factors (ECF) 45: 121 Extremophiles 43: 189–193 haem pathway 46: 295, 296, 301 Extrusion, biophysics 40: 370– 372 F pili, see Pili, F F pilin, see Pilin and metal biogeochemistry 41: 68 – 76 domain organization 41: 245 homodimeric periplasmic domain of Tar 41: 242 in natural environment 41: 269– 276 pattern formation 41: 262 photosensory transduction 41: 265 Response regulators, classification 41: 202, 203, 207– 209 solubility modification 41: 30– 32 F1 antigen 37: 97 F1 mutant in Physarum polycephalum 35: 35 F420 31: 236, 239, 240, 243 F430 31: 238 FabI 45: 205 F-actin 30: 117, 118 Factor III 26: 140– 142 a-factor, precursor, see also Prepro-a-factor accumulation in sec7ts mutant 33: 115 secreted in chc1 mutants 33: 128 a-factor, Sacch. cerevisiae 34: 87 – 96 passim 34: 102, 132 amino-acid sequence of 34: 87 gonadotrophin-releasing hormone (GnRH/LHRH) and the homology between 34: 127 oestradiol-binding protein in pancreas and effects of 34: 120 receptor 34: 89 signal transduction and 34: 132 Facultative anaerobic bacteria, crystalline surface layers 33: 216 Facultative apomixis, see Apomixis FAD 45: 284 dihydrolipoamide dehydrogenase containing 29: 200, 203
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 FADH2, formation in citric acid cycle 29: 175 fadL and fadD genes 32: 93 Faecal pellets, luminous 26: 270, 271 Faeces b-glucuronidase activity 42: 30, 31 microflora 42: 27, 27 Fairy ring disease, see Marasmius Farming, bacterial ice nucleation as a problem in 34: 230, 231 Farnesylated fungal sex hormones 34: 89, 102 Farnesyl-pyrophosphate synthase and hopanoids 35: 264, 265, 268, 269 F-ATPase operon 42: 250– 252 Fatty acid synthase 31: 90, 91; 38: 88 activation domain organization 38: 94 type II (FAS-II) 46: 27 Fatty acid, biosynthesis de novo in M. leprae 31: 90 – 92 b-oxidation 31: 88 carbon dioxide release from, M. leprae 31: 87, 88 homologous series in mycolate biosynthesis 31: 83, 85 release from phosphatidylcholine in M. leprae 31: 88, 93, 107 scavenging in M. leprae 31: 90, 92, 93, 112 Fatty acids 37: 88, 252 accumulation by mycobacteria 46: 28 b-oxidation 46: 28 short chain, role in E. coli O157:H7 adaptation to acid 46: 19 Fatty aldehyde dehydrogenase 26: 262 Fatty-acid elongase 31: 83, 91, 110 Fatty-acid reductase complex 34: 18 – 22 components/subunits 34: 18 – 22 see also individual components amino-acid sequence comparisons between various 34: 53, 54 identification 34: 22 in bioluminescence 34: 18 –22 luciferase and, direct interaction 34: 22 Fatty-acid reductase subunit (r; LuxC) 34: 21, 22 amino-acid sequence comparisons with other lux proteins 34: 53 gene, see LuxC Fatty-acyl residue synthesis inhibition, cerulenin 28: 236, 238 residues in lipoteichoic acids 29: 237, 238 cyclopropanization 29: 240 in diacylglycerol recycling 29: 260 percentage composition of 29: 239 pneumococcal 29: 246
95
Fatty-acyl-CoA esters, long-chain, in vesicle budding 33: 89 Fb+ alleles, haploid fruiting and the 34: 171 fbcFH genes 40: 199– 201 FBF gene and fbf mutation 34: 172, 173, 175 in fruit body formation 38: 24 Fbp operon, Pasteurella multocida 46: 18 fbpC gene, induction in M. tuberculosis 46: 28 FCCP 43: 93 metabolic and cellular effects 43: 95 FCR network 46: 180 FDH (formate dehydrogenase H) and selenium metabolism 35: 72, 73, 76 – 84, 89, 90, 93, 96, 97 Fec operon, Pasteurella multocida 18 FecA 44: 248 fecA operon 46: 62, 63 FecR, role 46: 63 fegA gene 45: 124– 126 FEHDEL sequence 33: 106 Feltham First 29: 11 amino-acid sequences 29: 205, 220, 221 “bacterial-type” [4Fe-4S] 29: 205 “chloroplast-type” [2Fe-2S] 29: 205 electron acceptors of 2-oxo acid oxidoreductases 29: 202, 205 evolutionary considerations 29: 205 Ferredoxin 29: 202, 204, see also 2-Oxo acid: ferredoxin oxidoreductase in eubacteria and eukaryotes 29: 205 Thermoplasma acidophilum 29: 221 FeMoco 30: 6, 7 Fe-nitrogenase 30: 6, 8, 9, 12 Fenpropimorph, effects on germ tubes, Penicillium 27: 55 Fenton reaction 46: 124 Fermentation acetone-butanol 39: 33, 77 – 101, 78 apomictic strain significance 30: 42, 47 changes, polyol production 33: 169 continuous 33: 7 ethanol 39: 104– 106 hung/stuck 33: 58 low water potentials affecting 33: 198 process for L-PAC 41: 11– 34 prolonged 33: 19 pH stress 37: 240–242, 259–261 ruminal 39: 224– 226 Fermentation acids anions as osmolytes 39: 217, 218 applications 39: 219– 228 effects on bacterial growth 39: 205–234 flux into bacteria 39: 208 DpH-mediated anion accumulation 39: 218, 219
96
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
properties 39: 207, 208 toxicity 39: 201, 208 translocation across membranes 39: 211 Fermentative bacteria 45: 91 Fermented foods 39: 220–222 Fermenter, design 33: 6, 7 tower 33: 7, 56 Ferredoxin 31: 237, 246; 37: 91; 39: 75, 89; 46: 138 fusion protein, CYPs 47: 159–161 Ferredoxin/thioredoxin system 29: 145 Ferredoxin-dependent enzymes 46: 139 Ferredoxin-dependent nitrite reductase 39: 18 structure and function 39: 18 – 20 Ferredoxins (flavodoxins) 26: 194, 195 Ferredoxins, of dioxygenases 38: 58 – 60 Ferric citrate uptake pathway 44: 248 uptake system, E. coli s Fec1 role 46: 62, 63 Ferric iron, availability for bacteria 46: 136 Ferric oxide, hydrous (ferrihydrite) 31: 159, 160, 162, 163 Ferric quinate 31: 140 Ferrichrome A as function of pH, redox potential of 43: 67 Ferrichrome 43: 45, 46, 48, 52, 53 structures 43: 44, 45, 44 Ferricrocin (FC) 43: 4 Ferricyanide 29: 19; 39: 254 reduction 29: 16, 17 Ferrihydrite 31: 159, 160, 162, 163 Ferrioxamine B (FOB) 43: 4 Ferritin(s) 38: 216; 40: 155, 285, 286, 287; 43: 53 see also ferritinbacterioferritinrubr-erythrin (F-B-R) superfamily bacterial see bacterial ferritins eukaryotic 40: 288– 291 H-subunits 40: 290 iron core formation 40: 289, 325, 326 polycationic, labelling of S-layer 33: 256 prokaryotic 40: 302 subunits 40: 291 ubiquity 40: 314 Ferritin-bacterioferritin-rubrerythrin (F-B-R) superfamily 40: 305– 311, 310 and Dps family 40: 315, 316 dinuclear iron sites 40: 321 evolution from two-helix protein 40: 313
Ferrochelatase 46: 273–275 conserved in pro-/eukaryotes 46: 275 mutant 46: 274 structural heterogeneity 46: 275 X-ray crystal structure 46: 275 Ferrous salts, and hemin 28: 9 Ferroxidase centres 40: 321– 323 ferrozine, for iron determination 38: 190, 191 Fertility inhibition (fin+) 29: 70 – 72 Fertilizers 30: 4, 127 Fe-SOD 45: 224 FET5 43: 9 feuPQ 45: 134 FeVaco 30: 6, 7 Fi+ alleles, haploid fruiting and the 34: 171 Fibre 37: 52, 53 Fibrillar architecture of hyphal walls 34: 187 Fibrinolysin 28: 234 Fibrobacter sp. 37: 52 Fibrobacter succinogenes 37: 11, 13, 14, 16, 51 – 52, 62; 39: 226 Fibronectin 37: 19, 35, 36, 37 Gram-positive bacteria 28: 225 Fibrosarcomas 37: 190 fihE gene 32: 151 FIiN protein 33: 294 Filament, flagellar 32: 110, 122 –131 see also Flagellum, bacterial assembly 32: 140– 144 elongation and cell cycle 32: 151 elongation rate 32: 141, 142 in vivo 32: 141– 144 composition 32: 122 see also Flagellin ‘curly’ and ‘semi-coiled’ 32: 123 depolymerization 32: 141 helical 32: 114, 122, 123 counterclockwise rotation and propulsion 32: 115, 123 left-handed 32: 115, 122, 123 polarity 32: 129 polymorphism 32: 123, 130, 141 in vitro 32: 123 model 32: 125– 127 purification 32: 122 R and L forms 32: 125, 127 structure, central channel 32: 127, 142 L form model 32: 127, 128 models for 32: 127– 129 R form model 32: 127, 129 subunits 32: 125, 129 surface lattices/packing arrangements 32: 124, 125, 130
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Filamentous fungi 42: 55 polyol concentration 33: 172– 174 regulation 33: 190 polyol metabolism 33: 178 Filamentous haemagglutinin (FHA) 44: 145 Filaments, in macrofibres in cell walls 32: 187 bending 32: 187 Filipin action on plasma membrane 27: 20, 21 effect of added sterols 27: 23 Films, conditioning 32: 57, 58 Filobasidium floriforme 37: 15 Filtration, particle-associated cells 32: 77 fim 45: 1 – 3 co-ordinate control 45: 36, 37 effect of H-NS on inversion 45: 33 feedback control of expression 45: 30 inversion regulation 45: 27 inverted repeats 45: 18 invertible element 45: 25 invertible element in clinical isolates, nucleotide sequence of 45: 35 phase variation among clinical isolates of E. coli 45: 34 – 36 phase variation at post-transcriptional step in E. coli K-12 45: 37, 38 phase variation in vivo 45: 37 recombinase proteins and their substrate 45: 20 – 23 regulation of switch 45: 24 – 28 switch and mRNA stability 45: 40 switch thermoregulation 45: 33, 34 fimA transcriptase, effect of H-NS 45: 39, 40 fimA transcription 45: 23 IHF effect on 45: 38, 39 RpoS effect on 45: 40 fimA, C, D genes 29: 74 fimABE regulatory region 45: 17 fimB 45: 18 amino acid sequences 45: 22 control by H-NS 45: 32 control in clinical isolates 45: 35, 36 control of expression 45: 23, 24 gene, in phase variation 29: 75 recombination 45: 24 specificity and activity in E. coli K-12 45: 19, 20 transcription 45: 24 control by TopA 45: 34 directional bias 45: 31 effect of RpoS and growth phase 45: 34 fimB-promoted recombinations 45: 26
97
Fimbriae 29: 54; 33: 53; 37: 35; 44: 147; see also Pili antigen serology in nomenclature 29: 55 P 29: 55 regulation of type 1 45: 17 – 41 Fimbriae, fimbrial adhesins A12, genetics 28: 110 adhesin production, growth conditions 28: 127–133 adhesin receptors interaction with phagocytic cells 28: 91 – 93 K88, 99 and 987p (q.v.) 28: 84 – 87 mannose-insensitive adhesins, uropathogens 28: 87 – 90 other strains 90, 91 physicochemical aspects 28: 93 – 95 Type I (q.v.) fimbriae 28: 81 – 84 adhesive properties enteroinvasive 28: 77, 78 enteropathogenic 28: 77 enterotoxigenic, domestic animals and man 28: 75 – 77 epithelial cells strains 28: 73– 81 haemagglutination 28: 71 – 73 uropathogenic 28: 78 – 81 alteration of shape, antibiotic effects 28: 226 antigenic classification F (fimbrial antigens) 28: 68 – 71 H (flagella) 28: 68 K (capsular polysaccharide) 28: 68 O (lipopolysaccharide) 28: 68 biogenesis, F72 polypeptides 28: 126, 127 K88ab polypeptides 28: 119– 123 K99 polypeptides 28: 123– 125 pap polypeptides 28: 125, 126 C- and N-terminal sequences, comparison 28: 103 C- and N-terminal, conservation of homology 28: 107, 108 CFA fimbriae 28: 87 N-terminal amino acids 28: 100, 102– 104 positives, adherence to monocytes 28: 92 CFA I and II, adhesins 28: 69 – 73 genetics 28: 111, 112 CFA I, lack of cysteine, possible evolution 28: 104 CFA III 28: 71 CFA I – III, failure, adhesin prevention 28: 223
98
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
inhibitory antibiotics: benzylpenicillin, doxycycline, minocycline, olandeomycin 28: 218 chemical analysis 28: 95 – 99 classification and terminology 28: 67 – 71 colony morphology, phase variation 28: 127, 128 commensal and pathogenic strains 28: 66, 67 “common” type (Type I), classification 28: 68 conformational energy, utilization 28: 122 enterotoxigenic strains, adhesive properties 28: 73 – 77 characteristics 28: 69, 70 F41, alone or with K99 28: 75 N-terminal amino acids 28: 100 post-translational hydroxylysines 28: 98 F71 and F72, N-terminal sequences 28: 100 F72 and PapA, homology 28: 104, 105 biogenesis 28: 126, 127 genetics 28: 110, 117 K99 and papA sequences 28: 105 G fimbriae 28: 68 genetics diarrhoeal disease 28: 111– 115 summary 28: 134 Type I fimbriae 28: 109– 111 urinary-tract infection 28: 115– 119 human enterotoxigenic strains, adhesion test 28: 76 adhesive properties 28: 75 –77 characteristics 28: 69, 70 IA2 genetics 28: 117 inhibition of antibiotic mediated 28: 230, 231 K88 ab, ac, ad strain (porcine enterotoxigenic) adhesin receptors 28: 84 – 87 biogenesis 28: 119– 125 biosynthesis, model 28: 229 characteristics and classification 28: 69, 70 fimbrial subunits, analysis 28: 98 genetics 28: 108– 110, 113 –115 “helper” proteins p27.5, p27, p17 28: 228– 230 human epithelial cells 28: 76 inhibitory antibiotic, colistin 28: 218, 223 mutations, table 28: 120 N-terminal amino acids 28: 100– 104
pig, small intestine 28: 73 – 75 polypeptides 28: 119–123 -positive cells, interaction, human leucocytes 28: 92 K99 strain, adhesin receptors 28: 84 – 87 biogenesis 28: 123– 125 bovine enterotoxigenic 28: 75 characteristics and classification 28: 69, 70 chloramphenicol, inhibition by 28: 218 classification, as S fimbriae 28: 91 colistin, inhibition by 28: 218, 223 ELISA test, glucose dependence 28: 130 genetics 28: 110, 112– 114 gentamycin, inhibition by 28: 218 glucose dependent vs. glucoseconstitutive strains 28: 130 “helper” proteins, p76, p21, p26.5, p33.5, p19 28: 23 medium, importance, and variation 28: 128– 131 N-terminal amino acids 28: 100– 105 pH regulation 28: 130, 131 polypeptides 28: 123–125 -positive cells, interaction, human leucocytes 28: 92 tetracycline, inhibition by 28: 218 variation, and suitability of medium 28: 128– 131 M fimbriae 28: 68 mannose derivatives, adhesin receptors 28: 81 – 84 mannose insensitivity 28: 91 –93 temperature repression 18 – 208C 28: 127 mannose sensitivity 28: 91 – 93 non-fimbrial adhesins 28: 96, 97, 107 N-terminal amino acids 28: 100 oxygen concentration, fimbriation 28: 128, 130 P strains classification 28: 68, 71 diarrhoeal disease 28: 99 mannose-insensitive, mice 28: 80, 81 N-terminal sequences 28: 100, 101 P blood group system 28: 86 – 89 phase variation 28: 128 poor binding and activation 28: 92, 93 primary structure 28: 99 – 101 PapA-H structural genes biogenesis 28: 125, 126 C- and N-terminal sequences 28: 103 genetic analyses 28: 108– 110, 116, 117
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 homology F72 28: 104, 105 mutations and P-specific haemagglutination 28: 125, 126 subunits, disulphide bridges 28: 98 temperature sensitivity 28: 127 phagocytosis 28: 91 – 93 phase variation 28: 118, 119, 121– 128 physicochemical aspects 28: 93 – 95 precursor proteins 28: 221 P-specific haemagglutination 28: 125, 126 pyelonephritogenic 28: 221 receptor binding domain 28: 108, 109 S fimbriae 28: 68, 71 equivalence to K99 28: 91 recognition of sialylgalactosides 28: 91 streptomycin effects 28: 133 structure, chemical analysis 28: 95 – 99 primary structure 28: 99 – 104 structure-function relationships 28: 107– 109 ultrastructure 28: 104– 107 subunit assembly 28: 129–134 sugar bound chemical analysis 28: 96 – 98 summary 28: 133, 134 surface interactions, interaction energy 28: 93 – 95 Type I antibiotic-mediated decrease 28: 220 in vitro 28: 82, 83 D -mannose, inhibition 28: 82 surface, adhesins, length 28: 220 adhesin receptors 28: 81 –84 adhesin release, antibiotic promoted 28: 226 adhesions, absence, effect of penicillin on mannose-specific binding 28: 219 agglutination, guinea-pig erythrocytes 28: 82 binding sites, “mannose-specific” adhesins 28: 83 characterization and classification 28: 68 cloning of genes 28: 109– 111 “common type” adhesins 28: 67 competitive binding, uromucoid 28: 81 differences, amino acids, primary structure 28: 98, 99 D -mannose, inhibition of agglutination 28: 82 Enterobacteriaceae other than E. coli 28: 84 epithelial cells, adherence 28: 73 erythrocytes, agglutination 28: 82
99
functionally deficient adhesins, antibiotic-induced 28: 226 genetics 28: 109– 111 Gram-negative bacteria, inhibitory antibiotics 28: 217– 219 Gram-positive bacteria, inhibitory antibiotics 28: 219 haemagglutination 28: 71 – 73 homology, S. typhimurium and K. pneumoniae, N-termini 28: 99 inhibition, D-mannose 28: 72 K12 strain, tyrosine residues 28: 107 leucocyte agglutination 28: 91, 92 lysosomal enzymes, release on phagocytosis 28: 91 mannan-sepharose binding 28: 109 “mannose-specificity” 28: 83, 84 mannosides (methyl-, nitro-, phenyl-) strong inhibitors 28: 83 MN blood group, glycophorin-A recognition 28: 89, 90 mRNA, translation, streptomycinpromoted misreading 28: 220 N-terminal sequence 28: 99 – 104 opsonization, antifimbrial antibodies 28: 92 pairing, experiments, homogeneic strains, human pyelonephritis 28: 80, 81 penicillin, prevention of production 28: 231 phagocytic cells, interaction 28: 91, 92 phase variation 28: 118, 119, 127, 128 proteins, inability, G-inversion 28: 119 receptors 28: 81 – 84 secA gene product 28: 227, 228 streptomycin, mannose-sensitive 28: 220 streptomycin-suppressed expression 28: 219 suppression, isolation from patient 28: 133 Tamm-Horsfall glycoprotein, receptor for 28: 80 temperature effect, filaments and 28: 219 temperature sensitivity 28: 127 transcriptional regulation 28: 231 urinary tract infections 28: 78 – 81 uropathogenic strains 28: 78 – 81 yeast-cell agglutination 28: 83 uropathogens, O4:K12 and O:K2:H1 28: 115 adhesive properties 28: 78 – 81
100
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
antibiotics, effect of 28: 221 asymptomatic bacteriuria, adhesions 28: 78 characteristics 28: 69 – 71 F72 fimbriae 28: 117 faecal origins 28: 78, 79 “galactose-specificity” vs. “mannosespecificity” 28: 89 globoseries glycolipid-binding 28: 81, 87 – 89 host predisposition 28: 79 IA2, mannose-insensitive agglutination 28: 117 mannose-insensitive agglutination 28: 79 –81, 87 –90 mannose-sensitive agglutination 28: 79 model, mouse urinary tract 28: 80, 81 O:K:H serotypes, human pathogenicity 28: 78 P blood group antigens, receptorbinding 28: 88, 89 pairing experiments, P and Type I, bacterial survival 28: 80, 81 Pap fimbriae 28: 116, 117 phase variation 28: 118, 119 pyelonephritis 28: 89 pyelonephritis, acute 28: 78– 81 receptor recognition 28: 115 x-specific strain, meningitis 28: 90, 91 987P, adhesion receptors 28: 84 – 87 amino-sugar 28: 98 apparent molecular weight, gel electrophoresis 28: 98 characteristics 28: 69 phase variation 28: 118, 119, 128 porcine enterotoxic 28: 74 Fimbrial operons 45: 3 Fimbriation and host mucosa 45: 40, 41 effect of H-NS 45: 39, 40 steady-state control 45: 38 – 41 type 1 45: 1 –49 Fimbrillin 29: 77 fimE 45: 18, 24, 30 amino acid sequences 45: 22 control by H-NS 45: 32 control of expression 45: 23, 24 gene 29: 75 -promoted phase variation 45: 31 – 33 -promoted recombinations 45: 26 specificity and activity in E. coli K-12 45: 19, 20 specificity mechanism and significance 45: 28 – 30 transcription 45: 35, 36
finO gene product 29: 71 finOP genes 29: 69 – 71 FinOP repressor system, molecular basis 29: 70 – 72 finP gene product 29: 71 Firmacutes 26: 159 (table) Firmicutes 37: 287, 294 Fis c allele 34: 174 Fish luminescent bacteria-harbouring 26: 270, 271, 271– 273 monocentrid, light organs of 34: 38 Fission of cells, S-layer 33: 236 Fistulina hepatica 35: 278 Fiuphenazine 37: 117 fixGHIS operon 40: 216– 218 FixJ 45: 135 FixK 44: 3, 5 FixL 45: 135 FixL/FixJ system 46: 290, 291 fixNOQP operon 40: 217, 218 fla genes 32: 117 see also Flagellum, bacterial, genetics; specific genes operons 32: 119, 121 products and functions of 32: 118, 119 regions (I, II, III) 32: 118, 119 transcriptional control 32: 121 Fla2 mutants 32: 147 Flagella 33: 280– 287 see also individual bacterial species antigenic types 33: 279 assembly, flagellin folding 33: 286 genes in 33: 284, 285 incomplete ring structures 33: 285 rate of elongation 33: 286 regulation 33: 285– 287 sigma factors 33: 286, 287 basal body, in rotation 33: 291 rings 33: 284, 291 bipolar 33: 281 cell-surface distribution 33: 280, 281 complex 33: 283 energetics 33: 288, 292, 293 filaments 33: 280, 281 as propellor 33: 290 helical shape 33: 281, 283 left-handed helix 33: 280, 281 length 33: 283 right-handed helix 33: 290 rotation 33: 284 genes 33: 284 catabolite control 33: 287 chromosomal regions (Fla I, Fla H, Fla III) 33: 286 mutations 33: 291, 294, 295
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 number of 33: 285, 286 regulation 33: 286, 287 sequences 33: 294 transcriptional units 33: 286 hook, in flagellar assembly 33: 285, 286 hook-associated proteins (HAPs) 33: 284 in assembly 33: 285, 286 lateral 33: 281 motor 33: 290, 291, 293 as three-state device 33: 323 protein interactions within 33: 293– 296 reversal 33: 322, 323 motor-switch complex, see also Flagella, switch; Flagellar rotation FliG, FliM and FliN proteins 33: 294 MotA and MotB roles 33: 294, 295 mutations affecting 33: 291, 294, 295, 314 protein interactions in 33: 291, 293– 296 movement restriction, surfaces effect 46: 216 M-ring 33: 284, 291 insertion, ‘studs’ at 33: 291, 292 number/cell 33: 281 polar 33: 281 polyhooks 33: 284 structure 33: 281– 295 see also Flagella, filament basal body 33: 284, 285 cytoplasmic components 33: 285 hook 33: 284 switch, see also Flagella, motor-switch complex; Flagellar rotation events at 33: 322– 324 Flagellar (fla) genes, see fla genes Flagellar bundle 32: 132; 33: 281 counter-clockwise (CCW), response times 33: 315 Flagellar rotation 33: 290, 291 see also Flagella, motor-switch complex biasing of CW/CCW by gradients 33: 297, 298 proportional to gradient 33: 316 cessation (pause) state 33: 289, 323 CheY role in determining direction 33: 317– 319, 332, 333 see also CheY protein clockwise (CW) 33: 290, 333 cheC mutants 33: 314 CheY protein role 33: 318, 319, 332 mutations affecting 33: 313, 323 response to repellents 33: 297, 313, 315
101
reverse chemotaxis and 33: 323 suppression of transition to 33: 297 tumbling 33: 290, 297 co-ordination, signal in 33: 316 counter-clockwise (CCW) 33: 290 cheC and cheD mutants 33: 314 CheY-P levels reduced and 33: 333 CheZ promoting 33: 320, 333 in model 33: 332, 333 mutations affecting 33: 313, 319, 323 response to attractant 33: 290, 313, 315 running 33: 290, 297 wild-type motor in absence of signal 33: 323 detection 33: 290 force generators 33: 292 genes involved 33: 291, 294 in chemotactic signalling model 33: 333 intervals between 33: 290 mechanics 33: 291, 292 MOT proteins 33: 291, 292, 294, 295 motor for, see Flagella, motor overshoot 33: 331 passive 33: 295 peptidoglycan attachment in 33: 291 proton-motive force proportionality 33: 293 restoration by MOT proteins 33: 292 rotor and stator 33: 291, 295 tethered cells 33: 290, 315, 316 velocity, proton flux and 33: 293 Flagellar sheath 33: 283, 284 Flagellates and Physarum polycephalum 35: 4, 14, 34, 35 transition to 35: 23 – 26 Flagellation, bipolar 33: 281 monopolar 33: 281, 289 flagellar rotation 33: 291 patterns 33: 280, 281 peritrichous 33: 281, 289 subpolar 33: 281 Flagellatropic bacteriophage 33: 280 Flagellin 32: 110, 122; 33: 281 antigenicity and exposure on surface 32: 130, 131 arrangement in lattices on filament 32: 124, 125, 130 C- and N-terminal regions 33: 281, 283 central region, changes in 32: 130, 131 copy number 32: 117 genes 32: 120, 143 genes 33: 283 DNA sequence 32: 130
102
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
in filament assembly 32: 141– 144 in vitro 32: 141 in vivo 32: 141– 144 in flagellar assembly 33: 286 monomer, domains 32: 129, 130 mutations 32: 127, 130, 143, 145 N-methyllysine conversion 32: 131 polymerization 32: 125, 130 conformational changes during 32: 143, 144 in vitro 32: 141 in vivo 32: 141, 143, 144 of different flagellins 32: 141 terminal regions in 32: 130, 143 proteolysis 32: 129 R and L forms 32: 125, 126, 141 structural changes, polymorphism and 32: 123 structure 32: 129– 131 terminal regions 32: 130, 143 as innermost domain 32: 130, 144 conserved sequences 32: 130, 143 a-helical 32: 144 mobile in solution 32: 144 transport 32: 142, 143 signal sequences 32: 143 types in Salmonella typhimurium 33: 283 Flagellum see Bacterial flagellum Flagellum, bacterial 32: 109– 172 see also Chemotaxis; Swimming motility advantages of 32: 115– 117 arrangement, position 32: 113– 115 assembly 32: 140– 152 see also specific components cell cycle and 32: 150, 151 cell surface and 32: 151 factors and mutations affecting 32: 151– 152 pathways and proteins in 32: 146 systems affecting 32: 150– 152 temperatures affecting 32: 152 basal body, see Basal body of flagellum changes with viscosity 32: 177 ‘complex’ 32: 125 cost of maintenance 32: 117 diameter 32: 110 electron-microscopy 32: 114 filament, see Filament, flagellar; Flagellin genetics 32: 117– 122 gene number 32: 117– 119 negative transcriptional control 32: 121 operons 32: 117, 119
positive control by cAMP 32: 121, 122 post-transcriptional control 32: 122 hook 32: 114, 131, 132 see also HAP (hook-associated) proteins assembly 32: 144, 145 length 32: 131, 144, 145 overproduction in E. coli mutants 32: 149 polymers/polyhooks 32: 132, 145 protein, transport 32: 145 structure 32: 131– 133 lateral 32: 68, 177 MOT complex, see MOT complex motility 32: 115 motor 32: 110, 137 see also MotA protein; MotB protein; Mot complex M ring as rotor 32: 135 rotor and stator elements 32: 137 motor function 32: 152– 161 see also Flagellum, bacterial, rotation analysis 32: 152, 157, 160 current (direct) flow 32: 155 duration of clockwise/counterclockwise states 32: 156 mechanism 32: 115, 153, 154 models 32: 159 parameters of 32: 152, 153 pausing 32: 158, 159 periodicities in 32: 155, 156 power source 32: 115, 153, 154, 156 rotational states 32: 156–159 speed and torque 32: 154, 155 technical advances 32: 159– 161 technique to study 32: 152 peritrichous 32: 113, 114 polar 32: 176, 177 basal bodies of 32: 136 rotation 32: 115 analysis 32: 152, 157, 160 clockwise/counterclockwise 32: 115, 156 rates of 32: 156 reversal and filament polymorphism 32: 115, 123 speed 32: 154, 161 torque required to stop 32: 155 rotational direction, switching, CheY, CheZ proteins 32: 156, 158 pausing role 32: 158, 159 proton-motive force changes 32: 158 sheathed 32: 114 structure and function 32: 122– 140 switch complex 32: 139, 140
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 assembly 32: 148, 150 role in assembly 32: 140 transcriptional control 32: 120– 122 Flammulina spp. velutipes, fruiting 34: 154, 185, 190 vetupilis, glutathione-related processes 34: 246 Flammulina veltipes 35: 278 Flanunulina velutipes 42: 2, 4 intracellular proteins 42: 7 Flat embedding technique 36: 126 Flavin 4a-hydroxide 26: 241 Flavin 26: 244 b- 26: 268, 269 protein-bound 26: 269 Flavin adenine dinucleotide (FAD) 36: 248; 40: 99 Flavin analogues as antimalarial drugs 34: 280 Flavin hydroxide 26: 239 Flavin mononucleotide (FMN) 26: 236, 240; 29: 16, 17 reductases 26: 244– 247 and reduced form (FMNH2), see FMN Flavin peroxyhemiacetal 26: 245 (fig) Flavin(s) 31: 232 bioluminescent reaction in bacteria and its specificity for 34: 7, 8 fruiting in fungi and the role of 34: 183 fumarate reductase 31: 252, 253 Flavin-dependent enzymes,oxygensensitive 46: 139 reactivity with oxygen 46: 111, 115 Flavobacterium (Cytophaga) johnsoniae 41: 236 Flavobacterium odoratum 37: 101 Flavocytochrome c 39: 250, 256– 258, 257, 269 Flavodoxin 37: 91 Flavodoxins (ferredoxins) 26: 194, 195 Flavodoxins, electron donor to nitrogenases 30: 8 Flavoenzymes, autoxidizing 46: 117 Flavohaemoglobin 46: 330, 331; 47: 275– 297 see also Hmp cf. single-domain globins 47: 277 clustalW alignment 47: 277 composition 47: 279, 280 crystal structures 47: 281, 282 discovery 47: 275– 279 fungi 47: 296, 297 NO-detoxifying activities 47: 291– 296 redox activities 47: 282– 284 structure 47: 280– 282 yeasts 47: 296, 297
103
Flavolus arcularius, anthranilic acid as fruiting-inducing substance in 34: 181 Flavoproteins 46: 115, 116 autoxidizing 46: 117 dehydrogenases 40: 4 hydrogen uptake and 29: 28, 33, 34 in dioxygenase system 38: 50, 51 iron –sulphur, of dioxygenase reductases 38: 55– 57 non-fluorescent, of Photobacterium 34: 23, 24 number in E. coli 118 oxidases 46: 117 Flavosemiquinone 46: 115 flg, genes 32: 118, 119 flgA gene 33: 287 FlgA protein 32: 121 flgB gene 33: 284 flgD gene 33: 284 FlgD protein, function 32: 149 flgE (flaK) gene 33: 284 flgF gene 33: 284 flgG gene 33: 284 flgH gene 33: 284 mutants 32: 134, 148, 149 FlgH protein 32: 135 signal sequences 32: 148 flgI gene 33: 284 mutants 32: 134, 148, 149 FlgI protein, signal sequence 32: 147, 148 flgK gene 33: 284 flgL gene 33: 284 FlgM 41: 309 flh, genes 32: 118, 119; 33: 286 flhA mutations, suppressing galU mutations 32: 151 FlhB 41: 308 flhC and flhD genes 32: 121 flhC gene 33: 286 flhD gene 33: 286 fli, genes 32: 118, 119; 286 FliA 41: 309 fliA gene 33: 314 protein 33: 287, 314 fliB gene 32: 131 FliB protein, lysine conversion to N- methyllysine 32: 131 FliC flagellin 32: 120 fliC gene 32: 120; 33: 283, 287 fliD gene 33: 284 fliF gene 33: 284 FliG 41: 235, 306, 307 fliG mutations 33: 323 suppression 33: 324
104
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
FliG protein 32: 139, 150 sequence/structure 33: 294 FliK (flaE) gene 33: 284 FliK 41: 308 fliK gene, mutations 32: 132, 145 FliK protein, hook length control and function 32: 145 F-like plasmids, see Pili; Plasmid FliM 41: 235, 246, 247, 306, 307, 309, 316 fliM mutations 33: 295, 314, 323 suppression 33: 324 FliM protein 32: 139, 150; 33: 294 FliN 41: 235, 306, 307 fliN mutations 33: 323 FliN protein 32: 139, 150 fliS and fliT genes 32: 121 fliS gene 33: 287 fliT gene 33: 287 flj, genes 32: 119 FljA repressor 32: 120 FljB flagellin 32: 120 FLO (genes) 33: 60, 61 regulatory nature 33: 61, 62 FLO1 and NewFLO phenotypes 33: 49 for tower fermenters 33: 7 ideal characteristics 33: 54 sedimentation without agitation 33: 36 selection 33: 5 superflocculent 33: 41 surface charge, pH affecting 33: 17, 18 top-/bottom-fermenting 33: 6, 7 types 33: 22, 23 variability 33: 48, 49 ‘weak’, strong flocculation bonds 33: 37 FLO1 gene 33: 60, 62 FLO1 phenotype 33: 49 killer L virus and 33: 63 mannose inhibition of flocculation 33: 17, 49, 56 sugar specificity of lectins 33: 4, 9 ‘Floc points’ 33: 12 Floc(s), compaction 33: 36, 42 compression 33: 36 – 38 energy from agitation/gravity 33: 37, 38 cubical 33: 33, 34 dispersal, dissociation temperature 33: 12, 18, 45, 46 EDTA 33: 3, 12, 15, 47 thermal 33: 18 washing effects 33: 15 formation, gravity effect 33: 33, 36 fractal structure 33: 41, 42 gravity effect, compression by 33: 37, 38
on floc formation 33: 33, 36 on floc morphology 33: 33 liquid exudation from 33: 36 loose fluffy 33: 36 ‘melting’ temperature 33: 12, 18, 45 – 46 morphology 33: 12 agitation and gravity affecting 33: 33 – 35 size 33: 33 – 35 agitation effect 33: 12, 32, 33 bimodal 33: 11, 39, 41 single-cell fraction relationship 33: 12 size – density relationship 33: 39 spherical 33: 33, 34 Flocculation, activation, aeration effects 33: 20 by calcium ions, direct effects 33: 15, 15, 16 by inorganic ions 33: 15, 16 energy 33: 29 – 31, 39 glucose in 33: 17 indirect effect of calcium ions 33: 16 low salt concentrations 33: 16 temperature-sensitive 33: 18 adhesins 33: 23, 47 as surface proteins 33: 47 lectins role 33: 47, 48 agitation absent 33: 25, 36 agitation effects 33: 9, 10, 25, 26, 42 collision frequency curves 33: 28, 29 collision frequency increase, evidence against 33: 28, 29 energy for floc compression 33: 37, 38, 42 energy of collision 33: 29, 30, 42 on dynamic equilibrium 33: 32 on morphology and size 33: 12, 32, 33 – 35 rapid flocculation by 33: 25, 26, 32 summary of 33: 42 agitation, minimum threshold 33: 11, 28 pH effect 33: 29, 30 as ongoing process 33: 11, 31, 32 as unstable property 33: 5, 61 bimodal distribution of cells 33: 11, 39, 41 explanation by, cascade theory 33: 41 bond strength 33: 11, 12 high and diffusive flocs 33: 37 low and compaction 33: 37 weak, agitation effect on 33: 32 bond structure 33: 44, 45 calcium-ion role 33: 44 – 47 carboxyl groups in 33: 45, 46, 48 hydrogen bonding 33: 46, 47 lectin role 33: 45, 47, 48
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 phosphate groups, evidence against 33: 45, 46 protein-carbohydrate 33: 47 by chain-formers 33: 8, 41 by clustering of clusters 33: 40, 41 calcium ions role 33: 14, 44 in calcium-bridging hypothesis 33: 44 – 46 in lectin hypothesis 33: 47 in promotion of flocculation 33: 14 – 16 calcium-bridging hypothesis 33: 44 – 47 criticisms 33: 46, 47 evidence supporting 33: 44 – 46 carboxyl groups in 33: 45, 46, 48 cascade theory 33: 38 – 41 cell suspension, evidence against 33: 25 chain-forming aggregates comparison 33: 3 characteristics, classification 33: 7 – 9 chemical reactions analogy 33: 29 –32 second-order 33: 39 coflocculation, see Coflocculation colloidal theory 33: 14, 18, 27 evidence against 33: 14, 25 surface protein effects combined with 33: 14 suspensions and Brownian motion 33: 23 – 25 definition 33: 3, 4 derepression 33: 57 dynamic equilibrium (steady state as), 11, 31, 32, 42 early, in nitrogen-deficient worts 33: 58 electric double layer 33: 27 energy of collision 33: 26, 28 – 30, 39, 42 extent 33: 11, 30 – 33 fimbriae association 33: 53 foaming and 33: 8, 9 genes 33: 60, 62 genetics 33: 14, 60 – 63 FLO gene discovery 33: 60, 61 FLO gene regulatory nature 33: 61, 62 mitochondria role 33: 19 suppression and instability 33: 61 gravity effect, see Floc(s) heterologous 33: 20 – 23 historical use of term 33: 13 homologous 33: 20 industrial 33: 4 – 9 inhibition 33: 16, 55 – 57 by sugars 33: 3, 16, 17, 55, 56, 58 direct/indirect effects of sugars 33: 17 high salt concentrations 33: 16 low pH and ethanol 33: 56, 57 mannose 33: 49, 51
105
non-specific chaotropic effects of salts 33: 16 overcoming in premature flocculation 33: 58, 59 1,2– epoxypropane 33: 46 instability 33: 5, 61 lectin hypothesis 33: 45, 47, 48 binding to mannan side branches 33: 51 evidence for 33: 47, 48 mechanisms and sugar specificity 33: 44 – 49 sugar-binding sites 33: 48, 49 lectins, see also Lectins in control of onset 33: 53 – 55 processing/secretion/activation stages 33: 55 – 65 loss 33: 61 by proteases 33: 46 carcinogens causing 33: 19 petite strains 33: 19, 20 measurement 33: 9 – 12 equation 33: 11 methods 33: 11, 12 temperature for floc dissociation 33: 18 mechanism 33: 43 –53 calcium-bridging, see Flocculation, calcium-bridging hypothesis (above) lectin hypothesis, see Flocculation, lectin hypothesis (above) phosphate groups in 33: 45, 46 receptors 33: 49 – 51 yeast cell-wall composition 33: 43, 44 minimum collision energy 33: 29, 30 morphology of flocs 33: 12, 33 – 35 mutual 33: 21, 47 mannan side-branch arrangement and receptors 33: 51 mechanism and compact floc formation 33: 38 onset control 33: 53 – 60, 55 activation or exposure 33: 57 inhibition 33: 55 – 57 inhibition relief 33: 55, 56 inositol-deficiency 33: 58 nitrogen-source depletion 33: 57, 58 nutrient depletion 33: 57 ratio of signal nutrient to sugar 33: 58 synthesis or secretion 33: 55 – 58 tunicamycin/cycloheximide blocking 33: 54, 57 pH effect 33: 15, 17, 18 carboxyl groups involved 33: 45 inhibitory 33: 56
106
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
on minimum agitation threshold 33: 29, 30 physics of 33: 23 – 43 agitation absent, effects 33: 36 agitation and flocculation rate 33: 25, 26 cascade theory 33: 38 – 41 collision frequency 33: 26, 27, 29 energy of collision 33: 28 – 30, 39 extent and equilibrium 33: 30 – 33 floc compression by agitation/gravity 33: 36 – 38 fractal structures 33: 41, 42 morphology 33: 33 – 35 suspensions and Brownian, motion 33: 23 – 25 physiology 33: 13 – 23 historical perspective 33: 13, 14 inorganic-ion effects 33: 14 – 16 mitochondrial involvement 33: 19, 20 pH effect 33: 15, 17, 18 protein denaturation effect 33: 18, 19 temperature effect 33: 18 premature 33: 5, 58 – 60 high molecular-weight polysaccharide 33: 60 mechanisms 33: 59, 60 process, controlling steps 33: 53, 54 protein precipitation theory 33: 13, 14 rate, agitation effects 33: 25, 26 cell concentration relationship 33: 39 increase due to pH changes 33: 18 initial 33: 11 sedimentation rate versus 33: 12 rate-limiting step 33: 39 doublet formation 33: 39 receptors 33: 23, 47 – 51 formation 33: 54 a-mannan 33: 48 – 51 mutual flocculation 33: 51 repulsion of cells, activation energy to overcome 33: 29, 30 cascade theory and 33: 39 – 41 causes despite neutralization 33: 27 in determining rate 33: 11, 39 steric hindrance 33: 27, 30 water displacement resistance 33: 27 sedimentation rate, cell numbers and 33: 24, 25 sedimentation, bow-wave effect 33: 39, 40 selective advantages 33: 62 single-cell fraction 33: 11, 39 agitation effect 33: 30 as constant proportion 33: 31
doublet formation as rate-limiting step 33: 39 flocculent nature 33: 31 in bimodal distribution 33: 11, 39, 41 stationary phase 33: 8 strains associated, see Flocculent strains suppression and suppressor genes 33: 61 surface charge role 33: 14, 26 due to phosphate groups 33: 26 neutralization effect 33: 14, 17, 24, 27 repulsions due to 33: 26 surface proteins 33: 18, 19 activation 33: 54 characterization needed 33: 48 denaturation effect 33: 18, 19 exposure/unmasking 33: 57 formation and foaming 33: 8 genes and regulatory genes for 33: 53 loss from cell surface 33: 19, 48 role, as adhesins 33: 47, 48 ‘salting in and salting out’ 33: 16 symbiotic theory of 33: 13 termination 33: 5 theories of 33: 13, 14 viral gene transfer or viral transfer by 33: 63 Flocculent strains 33: 3 calcium-binding sites 33: 15 cell walls isolated, flocculent character 33: 15 structure 33: 43, 44 cells, rolling movements 33: 37 classification 33: 7– 9 Gilliland 33: 7 – 9 Floridoside 37: 289, 300 Flow cytometry (FCM) 41: 108, 109 velocity 32: 54, 70 FLP 44: 1 –34 monitoring oxidative stress 44: 15 FlpA 44: 11, 12 sensing oxidative stress 44: 11 – 14 sensor for oxidative stress 44: 12 –14 FlpB 44: 11, 12 FLU1 gene 46: 175 Fluconazole resistance chromosome alterations causing 46: 164 due toY132H mutation 46: 162 mechanism 46: 162 overexpression of ERG11 gene 46: 163 structure 46: 158 Fluorescamine label 36: 13 Fluorescein-labeled dextran 40: 381 Fluorescence in situ hybridization (FISH) 41: 107
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Fluorescence methods for viability 41: 102, 103 overview 41: 104’ Fluorescence microscopy, developments in 41: 109 Fluorescence spectrophotometry 32: 64 Fluorescence studies 37: 88 Fluorescence-activated cell sorting (FACS) 41: 109 Fluorescence-emission spectroscopy 36: 22 Fluoroacetic acid, inhibition, spore formation 28: 37, 38 5-fluorocytosine 36: 61 5-Fluorocytosine(5FC) 30: 78, 79 5-Fluorocytosine, structure 46: 158 Fluorodinitrobenzene 26: 251 5-fluorouracil 36: 61 and 5-fluorocytosine 27: 12 Flux analysis (FA) 45: 271– 340 see also specific applications growth on acetate 45: 297, 298 growth on glucose 45: 277–282 methodology 45: 276 validity 45: 335 FMN and FMNH2 in bioluminescence 34: 6, 7, see also Dihydro-4a-peroxyFMN; -4a-Peroxy-FMN assays using 34: 9 FNR (fumarate nitrate reductase) 44: 1 –34, 197, 201; 45: 59, 60, 83, 84, 91, 100 lux gene regulation and 34: 48 monitoring of environmental oxygen 44: 7 – 10 fnr gene 46: 271 Pasteurella multocida 46: 18 Fnr protein 46: 129– 131 FnrN 44: 3, 5 Foaming 33: 8 flocculation and 33: 8, 9 Foetus, E. coli, human enterotoxigenic strains 28: 75, 76 Folate synthesis, M. leprae 31: 99 Fomes annosus 41: 54 Fomitopsis pinicola 35: 278 Food(s) freeze processing of, bacterial ice nuclei in 34: 232 fungi as 34: 190, 191 poisoning, Clostridium 28: 34 Salmonella spp., assay in 34: 233 FOR2 gene, foaming property 33: 8 Formaldehyde brush borders, non-specific binding 28: 84 dehydrogenase 34: 288, 289
107
gem-diol hydrated aldehyde 27: 139 importance, lethal metabolite 27: 146, 147 inhibitor, cyanide formation 27: 89 oxidation, methanol 27: 129 rate 27: 145, 146 reaction cycle 27: 161 Formamide 27: 96 – 98 Formate 30: 135; 37: 261 dehydrogenase 31: 232 dehydrogenase H see FDH lyase 46: 130 methanogenesis utilizing 31: 239, 240 photometabolism of 39: 355, 356 Formate/sulphate, growth on 31: 251 Formate-nitrite porter (FNP) family 40: 129 Formic acid, effect on DNA 32: 98 effect on macromolecule synthesis 32: 97 in poultry feed 32: 99 in silage 32: 99 Formic hydrogenlyase 26: 171– 173 Formyl-tetrahydrofolate 37: 297 Forssman antigen, pneumococcal 29: 246, 275 autolysin inhibition 29: 283– 285 structure 29: 246 Fosfomycin-resistant E. coli 34: 284 Fosmomycin, mutation resistance 28: 245 Fourier transform IR spectroscopy 38: 206, 207 Fractal structures 33: 41 flocs as 33: 41, 42 Frankia 35: 255, 256 Frataxin 43: 11 Fre gene 34: 28 Free radical stress 46: 319– 341 see also Oxidative damage; Oxidative stress biochemical homeostasis 46: 327–333 catalases and peroxidases 46: 330 flavohaemoglobin 46: 330, 331 iron-sulphur centres reactions 46: 332, 333 models/summary 46: 329 superoxide dismutase see Superoxide dismutase (SOD) thiol-disulphide balance 46: 331 genomics studies 46: 333–336 advantages/limitations 46: 333, 334 nature 46: 320, 321 response systems 46: 324– 327 antioxidants 46: 323, 324 Fur regulon 46: 327 OxyR system 46: 325, 330
108
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
sigma S regulon (s S) 326, 327 SoxR/SoxS system 46: 325, 326, 328 sources 46: 321– 323 aerobic metabolism 46: 320, 321, 322 chemical/physical agents 46: 322 denitrification 46: 322, 323 immune/inflammatory responses 46: 323 photosynthesis 46: 322 Free radicals 46: 321– 323 Free-energy relationships governing initiation of ice crystallization 34: 205 Freeze fracture 37: 88; 39: 136, 137, 154, 155, 174– 177 Freeze processing of foods, bacterial ice nuclei in 34: 232 Freeze-etched preparations, S-layer in 33: 226, 228 Freeze-substitution technique 39: 136, 154 Freezing-point depression 33: 150, 151 intracellular osmolality 33: 152 FRO1 gene, foaming property 33: 8 Frost damage to plants, bacterial ice nucleation causing 34: 230, 231 FRT1 control element 34: 173, 174 Fructofuranosyl-amannopyranoside 37: 283 Fructo-oligosaccharides 42: 34 – 37 Fructose 1,6-biphosphatase, yeasts 28: 192 Fructose 37: 306, 307; 39: 56 ADP glucose pyrophosphorylase activation 30: 191– 193, 196, 199 affinity after chemical modification 30: 197 catabolism 42: 92 double-mutant 30: 214, 215 effect on lipoteichoic acid content of cells 29: 268, 269 flux analysis of growth on 45: 300 phenotype 45: 322– 325 site-directed mutant vs. wild-type 30: 206– 208 yeasts 28: 192 Fructose 1,6-bisphosphatase (FBPase) 29: 145, 181, 183 Fructose 1,6-bisphosphate 29: 143; 37: 186, 296 in methanogenic archaebacteria 29: 184 Fructose 1,6-bisphosphate aldolase 29: 181, 183; 37: 180, 183– 185; 39: 273 class I and II 29: 183, 184 in M. thermoautotrophicum 29: 182 Fructose 6-phosphate 37: 184 Fructose-1,6-diphosphate 39: 213
Fructose-containing media, minimum water potential values 33: 160 Fructosyltransferases (FTFs) 42: 263 Fruit bodies (fruiting bodies), 148– 155, 185– 190 emergence 34: 148–155 rapid expansion of 34: 185– 190 Fruit bodies formation 38: 22 – 27 of basidiomycetes 38: 3 Fruiting in higher fungi (brackets; mushrooms; toadstools) 34: 147– 201 biotechnology and 34: 190– 192 environmental control of 34: 180– 184 genes controlling 34: 155– 175 accessory 34: 170– 175 mating-type 34: 155– 170 molecular and biochemical indices of 34: 175– 180 RNA and protein regulation in dikaryon during 34: 165– 170 frz genes 33: 298 Frz system 41: 261 FrzA 41: 261 FrzCD 41: 261 F-transfer operon 29: 70, 71 genes in 29: 69, see also individual tra genes FtsH 44: 126 Fucoid eggs, ionic currents in 30: 93, 95, 105– 107 axis formation and fixation 30: 105, 106 calcium influx, evidence for/against roˆle in polarity 30: 106, 107 polarity and applied electrical fields 30: 107, 113 Fucose 37: 195, 206 oligosaccharide, inhibition of agglutination 28: 85 Fucosterol, sex hormones derived from 34: 76 Fucus serratus 30: 106 Fucus, ionic currents in 30: 93, 95, 105– 107 Fuels, bulk production 39: 33 Fumarase A 46: 132 Fumarase 46: 121 Fumarase C 46: 131, 132 Fumarase, M. leprae 31: 90 Fumarate 37: 296 coupling to AlP synthesis 31: 253– 255 flux analysis of growth on 45: 311 metabolism in Helicobacter pylori 40: 163– 166 nitrate reductase, lux gene regulation and 34: 48 respiration 31: 226, 252– 255
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Fumarate reductase 31: 231, 232 biophysical studies 31: 253 genes, and amplified expression 31: 253 in methanogens 29: 189 structure 31: 252, 253 Functional genomics 46: 4 – 7 definition 46: 4 Fungal cell walls 46: 157 Fungal CYPs 47: 163– 174 drug target 47: 169– 174 oil-protein conversion 47: 164 Phanerochaete chrysosporium 47: 165– 169 Fungal diseases, see also specific names classification 27: 2 efficacy of amphotericin 27: 280 Fungal infections opportunistic 46: 156 treatment 46: 157 Fungal membrane, fluidity changes and drug resistance 46: 165 Fungal oxalate in limestone biomineralization 41: 74 – 76 Fungal production of organic acids 41: 47 – 92 Fungi antibiotics from, glutathione and, structural similarities 34: 243 apomixis in 30: 30 as food 34: 190, 191 biology 38: 1– 3 comparison with bacteria 27: 88 cyanide destruction 27: 90 cyanide metabolism 27: 86 – 90 higher, fruiting in, see Fruiting hydroxamate siderophores in 43: 43 –45, 43, 44 ionic currents in 30: 93 – 102 applied electrical fields 30: 108, 113, 114 initial osmotic response, see Osmotic response iron uptake by. See Iron uptake metabolic pathways 26: 2 non-osmotolerant 33: 156, 159 osmotolerance, see Osmotolerance; Osmotolerant strains peptide synthases beauvericin 38: 105 cyclosporin 38: 105– 107 d-(L -a-aminoadipyl)-cysteinyl-D valine 38: 96 – 99 enniatins 38: 99 –104 ergot peptide alkaloids 38: 108– 111 SDZ 214– 103 38: 107, 108 plant diseases 27: 86, 87 physiology 27: 87, 89
109
pure culture methods 27: 87– 90 possible intermediates 27: 87, 88 see also individual species specific species/types sex hormones and, see Sex hormones siderophore uptake in 43: 51, 52 stress proteins in 31: 187 water-osmosis and, articles on 33: 146, 147 fur 45: 132, 133 Fur gene mutants of E. coli, bioluminescence studies in 34: 45 Fur protein 46: 96, 133 functions 46: 327 iron metabolism control 46: 293 regulation of hemA gene 46: 288, 289 Fur regulon 46: 327 Fura-2 37: 102 in calcium analysis 38: 191 Fur-like protein 34: 46 FUS1 gene 34: 92 FUS3 gene 34: 132 Fusaria 43: 54 enniatin-producing 38: 99, 102 Fusarinines 43: 54 Fusarium moniliforme cyanide detoxification 27: 98 Fusarium oxysporum 35: 284; 37: 12, 15, 28 f.sp. tulipae 35: 287 Fusarium sp. 37: 17, 41 Fusarium spp. glutathione and the transferase system in 34: 284 sex hormones in 34: 104 Fusibacteriwn nucleatum, peptide transport in 36: 40 Futile cycles 36: 152 G proteins 37: 94, 95, 96, 206, 207 G1, G2 and G3 mutants in Physarum polycephalum 35: 35 GABA 40: 244 pathway 43: 126, 127 Galactoglycerol 37: 300 Galactokinase, yeasts 28: 204 Galacto-oligosaccharides 42: 34 – 37 Galactose 37: 112 binding to galactose-glucose-binding protein (GBP) 33: 303 catabolism 42: 90, 91 inhibition of sporulation 28: 41 permease 36: 26 Galactose-glucose-binding protein (GBP) 33: 296, 298, 299 conformational changes after substrate binding 33: 303
110
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
galactose/glucose binding affinity 33: 303 interactions with other proteins 33: 303 mutation and effects of 33: 298, 299 structure 33: 302, 303 transport and chemoreceptor functions 33: 298 “Galactose-specificity”, P and G fimbriae 28: 89 Galactosidase, endo-b-galactosidase, modification of surface, erythrocytes 28: 90 Galactosyl effect on lipoteichoic acid carrier activity 29: 280, 282 residues, binding activity 28: 84, 85, 87 substitution of lipoteichoic acids 29: 243 Galactosylglycerol-phosphate 37: 300 Gal-Gal globoseries glycolipids, surface binding 28: 88, 89 P antigens, structure 28: 86 Gal-gal pili 29: 55, 61, 94 Galleria mellonella 45: 230 Gallus domesticus 35: 17 galU mutants 32: 151 Galvanotropism 30: 114 Gametophyte, diploid 30: 27 Gametophytic apomixis 30: 27 Gangliosides, GM1 – GM3, inhibition, haemagglutination 28: 86, 87 Gap- mutant 34: 252, 259 GAP uptake system 26: 52, 53 Gas chromatography 38: 198 Gas vesicles, in turgor pressure measurement 33: 155 Gastric cancer 40: 143, 144 Gastric inhibitory peptide (GIP) 37: 142 Gastric metaplasia 40: 143 Gastric ulceration 40: 143 Gastritis 40: 140, 142, 147 Gastrointestinal tract 42: 33, 38 bacteria 28: 2 Gastrointestinal ulceration 40: 139, 140 Gas-vesicle protein, gene for 33: 155 Gating (threshold phenomenon) 26: 145, 146 Gause principle 40: 361– 363 Gauteria monticola 41: 71 GC pili, see Neisseria gonococcus; Pili GdhA gene, Sacch. cerevisiae34: 252 GDHCR 26: 56, 57 activated repressor 26: 57
GdhCR gene, Sacch. cerevisiae 34: 252, 253 GDP-a-D -mannose 29: 258 GDP-mannose, in protein transport 33: 93 Gel electrophoresis, brush border components 28: 85 Gelsolin 33: 131 Gene(s) see also individual genes; Plasmid pWWO; Toluene catabolism amplification, drug resistance mechanism 46: 163 amplification, TOL plasmid 31: 51 apomictic phenotype, see spo12– 11 and spo13– 11 mutants Candida albicans, cloning of 30: 57, 58 co-regulated clusters, identification by microarrays 46: 5, 6 disruption 32: 34, 35 duplication, glycolytic enzymes 29: 174 duplications, catabolic plasmids 31: 45, 49, 50 evolution catabolic enzymes (dehydrogenases) 31: 14 expression 45: 159 calcium 37: 93, 100, 101, 120– 123 cellulose hydrolysis 37: 53 – 63 isoniazid-induced changes 46: 27 – 29 methylglyoxal 37: 200– 206, 201, 203, 205 osmoadaptation 37: 283, 284, 310, 311, 313, 314 pH stress 37: 234– 250 sigma factor role 46: 49 flagella, see Flagella glycogen biosynthetic enzymes, see Glycogen gene; specific glg genes in protein translocation to endoplasmic reticulum 33: 80 – 82 in protein transport to Golgi complex 33: 94 – 103 in response to stress 44: 124– 130 involved in sporulation 43: 80, 81 nif, see nif gene probing 38: 212, 213 rearrangements, gonococcal pilin genes 29: 80, 100– 102 regulation, cell-surface role in 32: 176, 177 osmotic pressure changes and 32: 177 regulation, direct/indirect regulation mechanisms 46: 6 sequence libraries 38: 211 super-operonic organization in M. tuberculosis 46: 23 transfer agent 26: 204, 205 transfer, horizontal, CYPs 47: 138, 139
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 GENECLUSTER SOM 46: 13 Gene-disruption experiments 33: 83 techniques 30: 58, 82 General amino-acid permease 26: 40 – 48, 54 ammonia effect 26: 41 – 45 L -arginine transport 26: 37 – 40 positive control of activity 26: 45 – 48 regulation by feedback inhibition 26: 41 regulation in S. cerevisiae 26: 47 (table) specificity 26: 40, 41 substrates 26: 40 transinhibition by amino acids 26: 41 General stress response (GSR) 46: 228 General structure 36: 82 Genetic control, TNC 47: 94 –96 Genetic exchange, in biofilms 32: 62 Genetic factors, influencing spore number/ascus 30: 24 Genetic fingerprinting methods 42: 36 Genetic transformation, C. albicans 30: 58, 82 Genetics see also chromosomes; DNA; genome; mitosis; mutants; RNA C. albicans 30: 54 –58 fungal water relations 33: 147 gene expression and molecular cloning 35: 292, 293 gene for UGA-detecting tRNA, 90 –92 of hopanoids see biosynthesis and genetics of hopanoids of Physarum polycephalum gene targeting and DNA transformation 35: 61, 62 see also genome organization of polysaccharide biosynthesis 35: 188– 211 chromosomal genes for 35: 190– 196 extracellular 35: 198– 206 housekeeping 35: 188– 290 molecular basis for antigenic variation 35: 207– 211 multiple clusters, relationships between 35: 206, 207 of 35: 190– 198 plasmid-encoded genes for 35: 196, 197 rfe-independent, transport of 35: 175–177 structure modification genes 35: 197, 198 of flocculation, see Flocculation of intracellular signalling 33: 313, 314
111
protein transport, see Protein transport; specific mutants sigma factor function analysis 46: 58 Genome see also Bacterial genomes analyses 40: 131 bacterial, CYPs 47: 141, 142 comparisons see Comparative genomics mitochondrial 35: 10 –13 organization of Physarum polycephalum 35: 6 – 13 nuclear chromosomal 35: 6 – 8 nucleolar DNA 35: 8 – 10 sequence of Helicobacter pyloi strain 26695 40: 175 sequences, bacterial 46: 292, 293 sequencing data 45: 86 – 88 transcriptome vs 46: 4 Genomics studies 46: 333, 334 oxidative stress 46: 333, 334 Genotoxic agents 26: 279 (fig) Gentamicin 28: 218 mannose-sensitive adhesins 28: 220 mutation resistance 28: 245 proteases, Ps. aeruginosa 28: 236, 237 urinary tract, excess dosage 28: 250 Gentiobiosyldiacylglyercol 29: 281 Geochemistry of selenium 35: 100, 102, 103 Geohopanoids 35: 250 Geomagnetic field 31: 166, 170, 172 Geothite, surface adsorption 32: 60 Geotrichum candidum, arabinitol osmoregulatory role 33: 173 Geranyl pyrophosphate and hopanoids 35: 265 Germanium 38: 182 microbial accumulation 38: 227 Germ-tube formation, see Candida albicans GFOR see glucose-fructose oxidoreductase Gibberella zea, sex hormones 34: 104 Gilliland classification 33: 7 – 9 GL7 yeast strain, Sacch. cerevisiae 32: 17 Glass slides, nitrifying bacteria growth on 30: 147, 148, 161 Glass-bead columns, nitrifying bacteria growth 30: 147 Glass-spotted DNA microarrays 46: 8 – 10 Glass-transition temperature 32: 201 Glaucocystis nostochinearum 29: 123 Glaucocystis, RuBisCO in, gold immunoelectronmicroscopy 29: 132 Glaucosphaera vacuolata, RuBisCO in, but no polyhedral bodies 29: 123 GlcNAc-IP transferase 32: 14
112
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
glg, see Glycogen gene; individual glg genes glgA gene 30: 218, 232 characterization 30: 219– 221 restriction map 30: 205, 206 transcription 30: 230, 231 glgB gene 30: 232 characterization 30: 218– 221 overlap with glgX gene 30: 229 transcription 30: 229, 230 glgC ’- ’lacZ gene fusion 30: 223– 225, 227, 228 glgC gene 30: 232 see also ADPglucose pyrophosphorylase characterization 30: 219– 221 cis regulatory sites 30: 223 cloning and sequencing 30: 193– 195 from E. coli allosteric mutants 30: 210– 212 expression increased by ppGpp 30: 226, 227 promotor sites 30: 222, 230 restriction map 30: 205, 206 transcription 30: 230 initiation sites 30: 221, 222 transcripts in E. coli mutants 30: 221, 222 glgP gene 30: 220, 231 glgQ gene 30: 221, 232 glgR gene 30: 232 glgX gene 30: 220, 221, 232 overlap with glgB gene 30: 229 transcription 30: 229, 230 glgY gene 30: 220, 232 location and product 30: 231 transcription 30: 230, 231 Gliding bacteria 32: 110 chemotaxis 33: 298 Gliding motility 33: 287, 288, 298 Globins see also microbial globins classical view 47: 257– 260 definition 47: 257–260 enzymes? 47: 258 evolution 47: 298, 299 haemoglobin 47: 257, 258 myoglobin 47: 257, 258 single-domain globins 47: 258– 268, 277 Globoseries glycolipids 29: 61, 94 see Glycolipids Globotriaosyl and globotetraosyl ceramide, recognition by uropathogens 28: 89 Globulin, corticosteroid-binding, C. albicans 34: 113
Gloeobacter violaceus, no extrachromosomal DNA in 29: 129 Gloeocercospora sorghi, leaf spot disease 27: 96 – 98 Gloeochaete wittrockiana 29: 123 Gloeophyllum trabeum 43: 61, 62 Gloephyllum saepiarium and G. trabeum 35: 278 Glucagon effects on C. albicans 34: 111 on N. crassa 34: 126 Glucanase 37: 8, 19 – 21, 23, 46, 47, 52 Glucanases 42: 76 Glucoamylase 39: 52, 53, 55 Glucocorticoid C. albicans susceptibility associated with use of 34: 130 receptors (mammalian) C. albicans corticosteroid-binding protein and 34: 113 Sacch. cerevisiae expression of 34: 124 Glucomannans 37: 3 Gluconate 45: 304 dehydrogenase (GADH) 36: 258, 260 derepression of hydrogenase activity, effect on 29: 6 flux analysis of growth on 45: 303 glucose oxidation to 29: 177 metabolism in Pseudomonas spp. 34: 286 Gluconeogenesis 37: 124; 43: 132 and sporulation 43: 82, 83 in archaebacteria 29: 183– 185, 191 halophilic 29: 192 methanogenic 29: 192 thermophilic 29: 192 Gluconeogenic cycle flux 43: 87 Gluconeogenic enzymes, see under Saccharomyces Gluconobacter 39: 222; 40: 9, 13, 17, 39, 41, 42, 50 Gluconobacter dioxyacetonicus 36: 260 Gluconobacter industrius 36: 262 Gluconobacter liquefaciens 36: 262 Gluconobacter melanogenus 36: 261, 262 2-keto-D -gluconate dehydrogenase in 36: 260 Gluconobacter oxydans 36: 260 Gluconobacter sp. 36: 248 cytochromes o in 36: 265– 267 NAD(P)+-dependent and -independent enzymes in 36: 252 Gluconobacter suboxydans 40: 9, 14, 15, 17, 21 alcohol- and sugar-oxidizing systems 36: 253
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 ALDH in 36: 258 cyanide-insensitive respiratory chain 36: 292– 294 cytochrome o in 36: 265, 266 GDH in 36: 259, 260 gluconic acid production 36: 258 glucose oxidase respiratory chain 36: 287– 289, 289 NAD(P)+-dependent and -independent enzymes in 36: 252 oxidation reactions and energetics 36: 296 polypeptide structures in 36: 257 quinoprotein ADHs in 36: 255 respiratory chain of 36: 272– 280, 274 cyanide-sensitive and cyanide insensitive terminal oxidases 36: 272– 277 energetic aspects 36: 277– 279 variations in cyanide-insensitive respiratory chains 36: 279, 280 terminal oxidase in 36: 263 Glucosamine in fimbriae 28: 95 (GlcN), metabolism by C. albicans 30: 77 synthetase 36: 53 Glucosamine-6-phosphate synthase 36: 61 Glucose 39: 56, 68, 69, 72, 162; 42: 144 see also cellulose analogues, C. albicans binding to galactose-glucose-binding protein (GBP) 33: 303 calcium 37: 87, 122 catabolism in streptomycetes 42: 62 – 68 catabolism, see also Embden – Meyerhof; Entner – Doudoroff pathways in archaebacteria 29: 176–182 catabolite repression of sporulation 30: 37, 38, 41, 47 cost of maintenance and 33: 199 C. albicans incorporation into glucans 27: 303– 305 stationary phase of growth 27: 296 development, amphotericin resistance 27: 305– 308 electron transport chains involved in oxidation 40: 41 energetics of growth on 45: 282, 283 energy production 45: 316, 317 energy recycling during homolactic fermentation 26: 137 enzymes, see individual enzymes and pathways flux analysis of growth on 45: 301
113
flux analysis of recombinant E. coli JOE/4 45: 291 flux of nitrogen to monomers during growth on 45: 283 growth of Escherichia coli ML308 45: 277– 295 incorporation 27: 1 ! 3-bglucan 27: 308 action on 27: 310– 314 interpretation 27: 314– 316 ionic currents and hyphal extension in Neurospora 30: 102 in eubacteria and eukaryotes 29: 172– 174 in flocculation 33: 17 in F pili 29: 83, 85, 87 in bacteriophage attachment 29: 91 in halophilic archaebacteria 29: 176– 179 summary 29: 192 in lipoteichic acid, see Glycosyl residues in methanogenic archaebacteria 29: 182 summary 29: 192 in sporulation medium, apomictic phenotype modification 30: 37, 38 in thermoacidophilic archaebacteria 29: 177– 181 summary 29: 192 limitation, lipoteichoic acid alanine content, effect on 29: 271 lipoteichoic acid content of cells, effect on 29: 268, 269 metabolism 27: 309, 310 metabolism, in immobilized and suspended yeast 32: 64 methylglyoxal 37: 189, 199 non-phosphorylated pathway 29: 177 osmoadaptation 37: 285, 296, 305, 306, 308 osmotic hypersensitivity and 33: 192 phenotype 45: 322– 325, 329 phenotype interventions 45: 292– 295 pilus production (cyclic AMP suppressed) 29: 73 recycling during growth on 45: 283, 284 repression of GlcNAc metabolism in C. albicans, absence of 30: 75, 80 routes to monomers from 45: 278 starvation, phosphoinositide metabolism 32: 16, 17 suppression of yeast-to-hypha conversion in C. albicans 30: 60 Type I and K99 pili expression reduced 29: 77 transport 33: 198, 199
114
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
low water potential effect 33: 198 utilization, attached and free cells 32: 71 Glucose 6-phosphate 32: 6; 37: 184; 39: 62; 40: 153; 42: 63, 92, 93, 100 dehydrogenase 40: 156; 46: 131, 132, 324 glutathione reductase and, interactions 34: 276, 277 oxidation, absent from H. saccharovorum 29: 177 Glucose dehydrogenase (GDH) 36: 252, 255; 40: 15, 16 – 19, 23 dual specificity 29: 177, 196, 197 divalent metal ions in 40: 22, 25 electron transport chains in 40: 41, 42 in acetic acid bacteria 40: 50, 51 in Acinetobacter calcoaceticus 40: 47 in Escherichia coli 40: 48 in Sulfolobus solfataricus 29: 177, 196, 197 in thermoacidophilic archaebacteria 29: 177, 196, 197 in Thermoplasma acidophylum 29: 197 in Klebsiella pneumoniae 40: 47, 48 in pseudomonads 40: 45, 46 NAD+-dependent 29: 177, 196, 197 secondary structure 40: 32 stacking interactions 40: 33 structure and mechanism 40: 30 – 35 synthesis 40: 60 –62 Glucose kinase 42: 107 Glucose metabolism 40: 45 and hopanoids 35: 262– 264 Helicobacter pylori 40: 156–159 Glucose oxidase 31: 177 Glucose repression in enteric bacteria 42: 99 – 101 in low GC ratio Gram-positive bacteria 42: 101 in streptomycetes 42: 97, 107, 109, 110, 119 yeasts 28: 194, 203– 205 Glucose-fructose oxidoreductase (GFOR) 37: 306, 307 Tat protein translocation pathway 201, 202 Glucose-mediated repression and cyclic AMP 28: 128, 131, 132 Glucose-regulated protein (grp78) 31: 212, 213, 215 Glucosidase 37: 24, 41, 43, 44, 46, 55 Glucosides 37: 4, 8, 23 Glucosyl 37: 2 Glucosylglycerol 37: 287, 288, 289, 290, 292, 295, 297, 300
Glucosylglycerol-3-phosphate phosphohydrolase 37: 300 Glucosylglycerolphosphate 37: 296 Glucosyltransferases (GTFs) 42: 263 Glucuronate 45: 304 flux analysis of growth on 45: 305 Glucuronic acid 42: 30 Glucuronides 42: 30 Glucuronoarabinoxylans 37: 3, 4, 5 Glutacillin 34: 243 Glutamate 33: 186, 187; 37: 280– 282, 281, 284, 287, 288, 289, 298, 309, 312 ALA formation 46: 263 amino acids 42: 130–132 betaine 37: 287, 288, 289 codons 29: 218 covalent modification in chemotaxis 33: 327, 328 halobacteria 37: 277 in halophilic enzymes 29: 218 in cyanide metabolism 27: 76, 77 methylated, in chemotaxis 33: 325, 326 molecular principles 37: 317 Glutamate 1-semialdehyde (GSA) aminotransferase 46: 265 Glutamate dehydrogenase (GDH) 26: 7, 9, 34, 35; 42: 147, 148 enteric bacterial 26: 10 + NADP -specific 26: 19, 20, 56 in A. nidulans 26: 70, 71 Glutamate dehydrogenase genes, see GdhA; GdhC NADH-dependent, fruiting and 34: 186 NADPH-dependent, fruit body expansion and 34: 186 Glutamate synthase (GOGAT) 42: 147, 148, 150; 26: 9 –12, 71 in Gram-positive bacteria 26: 10 Glutamate synthesis 43: 120, 125, 126 glutamate(s), C. albicans dehydrogenases, activity 27: 296 loss during stationary phase 27: 296, 297 supplementation, effect 27: 306 Glutamate:oxaloacetate transaminase (GOAT) 42: 136, 148 Glutamic acid 37: 19, 24 permease 26: 53, 54 utilization, by attached and free cells 32: 71 Glutamic semialdehyde 37: 296 Glutamine 26: 3, 196, 197; 37: 288, 290, 292, 293; 42: 130 amide nitrogen 26: 12 analogues, glutathione degradation inhibited by 34: 251 cycle 43: 137, 138
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 functions 26: 35 reversible inactivation by 26: 36 synthetase (GS) 26: 7, 20, 35 – 37; 42: 147– 153 ammonium and 26: 71 inactivation 26: 43 L -glutamate and 26: 71 modulation by adenylylation – deadenylylation 26: 141 mutations in structural genes 26: 56 nitrogenase activity regulation 26: 196, 197 transport, E. coli 28: 174 Glutamine:fructose-6 – phosphate aminotransferase, Sacch. cerevisiae 34: 92 Glutamine-1-amide 37: 293 Glutamine-binding protein, sphaeroplasts, E. coli 28: 174 g-Glutamyl cycle 34: 247– 249, 252– 255, 259 regulation 34: 252– 255 g-Glutamyl transpeptidase 31: 82, 99 g-Glutamylcyclotransferase 34: 248 g-glutamylcysteine 37: 205 g-Glutamylcysteine synthetase 34: 249, 250, 261 gene and deficient mutant, see GshA Glutamylglutamine 37: 280 g-glutamyltransferase 36: 45 g-Glutamyltranspeptidase 34: 248, 250– 255, 258– 262 physiological roles 34: 258– 262 Glutamyl-tRNA reductase 46: 264, 289, 292 structures 46: 264 Glutamyl-tRNA synthetase 46: 263 Glutaraldehyde cross-linkage of fimbriae 28: 92 inhibition, K88 attachment 28: 84 Glutaredoxins 46: 331 pathway 46: 323, 331 system 34: 266– 269 Glutathione (GSH) 31: 198; 34: 239– 301; 46: 126, 320, 323, 331 methylglyoxal 37: 178, 179, 212, 214– 216 genes 37: 200, 205 metabolism 37: 190, 191, 192, 193, 200, 205 osmoadaptation 37: 280 as sulphur source, mobilization of 34: 260–262 conjugation 34: 281– 284 glutathione disulphide and, interconversion 34: 262– 280
115
metabolism 34: 247– 290 general outlines 34: 247– 260 mutants defective in 34: 255–258 occurrence and distribution of, and related compounds 34: 241–247 distribution 46: 323 mechanism of action 46: 323 disulphide and glutathione, interconversion 34: 262– 280 peroxidase 34: 262, 269–274; 46: 323 redox cycle 34: 274– 280 reductase 46: 323, 324 reductase cycle 34: 274–277 S-transferases 34: 281– 284 synthetase 34: 249, 250, 261 mutant deficient in (gshB-) 34: 244 thiol transferase 34: 264 transhydrogenases 34: 262– 266 in dichloromethane dechlorination 38: 165 Glutathionylspermidine 34: 244, 245 Gluthathione peroxidase isoenzymes and selenium metabolism 35: 73, 89 Glycans 32: 178, 179 cross-linking 32: 179 synthesis inhibition 32: 13 in S-layer glycoproteins 33: 240– 243 Glycation, protein 37: 187, 188 Glyceraldehyde 37: 184, 194, 196 phosphate dehydrogenase 26: 139 fate in S. solfataricus 29: 179, 186 fate in T. acidophilum 29: 180, 186 formation from 2-keto-3deoxygluconate in S. solfataricus 29: 179, 191 reduction to glycerol by glycerol: NADP+ oxidoreductase 29: 186 dehydrogenase (GPD) gene, A. bisporus genetic manipulation and use of the 34: 192 Glyceraldehyde 3-phosphate 37: 179, 183, 183– 185, 296 amino-acid sequences from thermophilic organisms 29: 221 dehydrogenase (GAPDH) 42: 61, 63; 46: 127 not detected in halophiles 29: 179, 183 not detected in T. acidophilum 29: 181 see also Entner –Doudoroff pathway enzymes metabolizing, in H. saccharovorum 29: 177 metabolism to pyruvate in eubacteria/eukaryotes 29: 172– 174 Glycerol 37: 122, 185, 287; 42: 144 as compatible solute 33: 168 catabolism 42: 87 – 90
116
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
control of growth on 45: 327 evidence for osmoregulatory role 33: 169 exclusion from vicinity of proteins 33: 168 flux analysis of growth on 45: 302 increase with increasing salinity 33: 169, 171 Chrysosporium fastidium 33: 172 Debaryomyces hansenii 33: 169– 171, 173, 186 Debaryomyces hansenii mutants 33: 203 dynamics in growth cycle 33: 170, 173 external stress solute effect 33: 174 glucose-limited chemostat cultures 33: 171 major role evidence 33: 169, 171, 172 NMR evidence 33: 169, 172 Penicillium chrysogenum 33: 171, 172 Saccharomyces cerevisiae 33: 169, 188– 190 Zygosaccharomyces rouxii 33: 169, 171, 188 phenotype 45: 326 reasons for glycerol as preferred osmolyte 33: 173 regulation of accumulation 33: 186 Debaryomyces hansenii 33: 186, 187 Saccharomyces cerevisiae 33: 188– 190, 193 time-course of accumulation 33: 173 dehydrogenase (GLDH) 36: 252, 255, 262 in H. cutirubrum 29: 195 kinase 33: 178, 186; 37: 180, 185 oxidase 33: 178 phosphate dehydrogenase 29: 185 phosphate, in teichoic acids 29: 234 production, by immobilized yeast 32: 64 accumulation, see Glycerol as compatible solute as repellent (chemotactic) 33: 305 catabolism by oxidation 33: 171– 179 growth on 33: 178 hydrogen inhibition of heterotrophic growth of Ose2 mutants 29: 8 membrane permeability 33: 181 in bacteria 33: 182 production, constitutive, in Zygosaccharomyces rouxii 33: 187, 23, 204 cost of maintenance and 33: 199, 200 in Saccharomyces cerevisiae 33: 188, 189, 193, 204
minimum water potentials and 33: 203, 204 NADH oxidation 33: 175 pathways and species 33: 177, 178, 189 Phycomyces blakesleeanus spores 33: 190 potassium-ion independence 33: 190 regulation 33: 186– 189, 193 protective effect against heat 33: 197 release from Saccharomyces cerevisiae, in absence of osmotic stress 33: 189 retention, regulation in Zygosaccharomyces rouxii 33: 187, 188 synthesis, in archaebacteria 29: 185, 186 transport 33: 180 in bacteria 33: 182 in regulation of accumulation 33: 187, 189 membrane-stretching channels 33: 189 Saccharomyces cerevisiae 33: 189, 203 uptake 33: 180, 187, 188 Debaryomyces hansenii 33: 187 Saccharomyces cerevisiae 33: 189 utilization, oxidative pathway 33: 178, 179 pathway and genes 33: 178 phosphorylative pathway 33: 178 growth on 31: 254 Glycerol: NADP+ oxidoreductase 29: 186 Glycerol-3-phosphate 33: 177, 190; 37: 296, 300 dehydrogenase 33: 178, 186, 188; 37: 180 DNA clones 33: 189 synthesis in Saccharomyces cerevisiae 33: 188, 189, 193 Glycerol-containing media, optimum water potentials 33: 159 Glycerolipids, archaebacterial 29: 185 Glycerol-sodium symporter 33: 180 Glycerophosphate 37: 185; 45: 336 polymerase 29: 277 Glycerophosphate-containing lipoglycan, see Lipoglycan Glycerophosphatidylinositol, extracellular 32: 6 Glycerophosphodiesterase, lipoteichoic acid degradation 29: 272 Glycerophosphoglycolipid, glycolipids and lipoteichoic acid relationship 29: 235, 236 in Lactococcus garvieae 29: 254, 257
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 in Staph. aureus, lipoteichoic acid synthesis 29: 252–254 structural studies 29: 240 Glycine 37: 38, 182, 297, 298; 42: 124 in cyanide formation, in bacteria 27: 75, 76 cyanide synthase enzymes 27: 78 glycine cleavage enzyme 27: 82 in fungi 27: 89 primary metabolic pathway 27: 85 radiolabelling 27: 77, 87, 89 Glycine betaine see betaine Glycine reductase and selenium metabolism 35: 72 – 76, 89 transmethylase, 298 ALA formation 46: 261 Glycine max 37: 14 Glycocalyx, biofilms 46: 206 composition 46: 218 definition 46: 217, 218 extracellular matrix polymers 46: 219, 220 implications for resistance 46: 220– 224 heterogeneity 46: 220 immobilized enzymes 46: 220 physico-chemical properties 46: 218, 220 resistance to chemicals (by) adsorptive losses 46: 222 diffusion limitation 46: 220–222 enzyme-mediated reaction – diffusion limitation 46: 223, 224 reaction – diffusion limitation 46: 222, 223, 227 Glycocalyx, epithelial cells 28: 73, 78 Glycoconjugates, mannose-containing 28: 91, see also Mannose Glycogen 30: 184; 42: 94, 95 see also Glycogen synthesis (below) as energy source 30: 185, 188 “excess” mutants 30: 216, 217, 221 metabolism 37: 93, 96 mutants deficient in 30: 185, 187, 192, 210 occurrence in bacteria 30: 184– 188 physiological conditions 30: 184, 185 possible functions 30: 185, 187, 188 species accumulating 30: 185– 187 roˆle in survival prolongation 30: 185, 187, 188 synthesis and degradation, dental caries 30: 188 Glycogen gene, see also individual glg genes characterization 30: 219–221
117
cluster 30: 219, 220 fine structure and regulation sites 30: 229– 231 factors regulating expression 30: 221– 228 cAMP and cAMP receptor protein 30: 224– 226 failure of NtrA and NtrC to 30: 227 mutations affecting levels 30: 221– 223 ppGpp 30: 226–228, 231 regulation 30: 218–232 sigma factors in 30: 230 regulatory, products and map location 30: 232 structural, products and functions 30: 232 trans-acting regulator binding sites 30: 229, 230 transcription 30: 221– 223 regulation, model 30: 229 Glycogen phosphorylase 30: 190, 220 glgY gene 30: 220, 231, 232 Glycogen synthase 30: 189, 190 antibodies 30: 217, 218 characterization 30: 217, 218 chemical modification 30: 217 gene, see glgA gene stimulation by cAMP and cAMP-receptor protein 30: 224 substrate binding site 30: 217 synthesis increased by ppGpp 30: 226 N. crassa, insulin effects on 34: 126, 127 Glycogen synthesis, bacterial 30: 183–238 see also Glycogen ADPglucose pathway, see ADPglucose pathway conditions allowing 30: 184, 185 enzymes 30: 189– 218 see also Glycogen gene see also individual enzymes genes 30: 193– 195 levels in stationary phase 30: 184, 219, 231 regulation 30: 219– 232 from sucrose or maltose 30: 189– 191 genetic regulation 30: 218–232 nutrient depletion effect 30: 184, 185, 231 physiological interpretations 30: 231– 233 rate, inverse correlation with growth rate 30: 184, 219, 231 Glycolaldehyde 37: 198 Glycolipid(s) 39: 133, 153 as acceptor substrate, in lipoteichoic acid synthesis 29: 250
118
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
diacylglycerol conversion into 29: 250, 259, 276 fimbriae,affinity,hostcellsurface 28:134 globoseries, agglutination, P coating PMNL activation 28: 93 fimbriae 28: 89 P blood group system 28: 87 – 90 pyelonephritis, E. coli P fimbriae 28: 81 receptor, mannose-insensitive adhesins 28: 80, 81, 87 glycerophosphoglycolipid and lipoteichoic acid relationship 29: 235, 236, 251 in Gram-positive bacteria 29: 250 in lipoteichoic acids, structures and occurrence 29: 236, 237 location 28: 87 membrane, lipoteichoic acids attached to 29: 234, 235 non-acid, mouse kidneys 28: 80, 81 phenolic (PGL-I) 31: 78, 80, 81 prevention of adhesions 28: 87 receptor structure 28: 84, 85 synthesis 29: 259 Glycolysis 29: 172, 173; 37: 179, 260; 40: 357; 42: 62 – 64 see also Embden – Meyerhof pathway carbon sources entering 45: 304 control of glucose flux into 45: 288 coupling mechanisms 28: 205 ethanol production, and dilution rate 28: 185 feedback control 28: 207 inhibition of respiration 28: 187, 199 regulation, in yeast 28: 203– 206 Glycolytic methylglyoxal pathway 37: 216 Glycopeptidolipids (CPL) 39: 147– 149, 153 Glycophorins MN blood groups 28: 89, 90 orosomucoids 28: 90, 91 Glycoprotein cell wall synthesis 27: 62 eukaryotic, relevance/function 33: 257 fimbriae, affinity, host cell surface 28: 134 in S-layer, see S-layer K88 receptor, probability 28: 3 multimeric forms 28: 85 neuraminic acid residues 28: 90 receptor structure 28: 84, 85 shared receptor specificities 28: 73 secretory, N-linked oligosaccharides on 33: 77, 114 Tamm-Horsfall, receptor, Type I 28: 80 Glycoprotein luciferase 26: 248
Glycosidase 37: 61 cyanogenic glycosides 27: 79 Glycoside, bacteriohopanetetrol 35: 248, 254, 259 Glycosides, mannosides (methyl-, nitroand phenyl-) inhibition, Type I fimbriae 28: 83 Glycosphingolipids, receptors, enterotoxigenic E. coli 28: 87 Glycosyl hydrolase 37: 20 Glycosyl residues in lipoteichoic acid 29: 240, 241, 261, 262, 276 anti-autolytic activity, effect 29: 287 effect on anti-autolytic activity 29: 282, 283 effect on carrier activity 29: 282, 283 incorporation of 29: 240, 261, 262, 276 model of structure 29: 293 Glycosylation 33: 43 compartmentalization of Golgi complex, evidence 33: 114, 115 in assays, in vitro transport from endoplasmic reticulum 33: 77, 92 in flocculation 33: 54 of lipoteichoic acids, see Glycosyl residues; Lipoteichoic acid protein secretion in yeasts 33: 43 SEC12p 33: 97 S-layer proteins 33: 239– 243 mechanisms 33: 250 sites 33: 245 Glycosylceramides 28: 87, see also Glycolipids Glycosylglycerol 37: 314 2-Glycosyltransferase 37: 300 Gly-Gly-N-d-(phosphonoacetyl)-L ornithine 36: 56 Glyoxal 37: 186 –188, 194, 195, 197, 199 Glyoxalase 37: 179– 181, 180, 185, 188– 193, 191, 196, 206– 212, 207, 208, 210, 211 I activation conferring (GAC) gene 37: 200– 203, 201, 203 Glyoxalate 37: 295, 296, 297 cycle enzymes, yeasts 28: 189, 197, 204 pathway 34: 284– 288 aminotransferase 37: 298 cycle 43: 87, 92, 93 enzymes, in Candida albicans 46: 157, 159 oxidation, oxalate biosynthesis by 41: 54 Glyoxylic acid cyanohydrin, high glucose, fungal metabolism 27: 88 Glyoxylic oxime system, cyanide production, Chlorella 27: 93, 94
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 GMP (guanosine monophosphate) 37: 96, 108, 109 GNCP, peptide 37: 142 GNP1 26: 52 GNP2 26: 52 Goblet cells, epithelia 28: 73 Gold immunoelectronmicroscopy 29: 130, 131 Golgi complex, actin-cytoskeletal functions coupled to 33: 129– 132 model 33: 131, 132 as secretory organelle 33: 74, 111– 132 cis-face 33: 111 transport vesicle fusion and uncoating 33: 89 –91 cisternae 33: 111 yeast 33: 116, 117 clathrin role 33: 127, 128 compartmental organization 33: 111, 112, 112– 117 mammalian 33: 111, 112 compartmental organization in yeast 33: 113– 117 evidence 33: 114– 116 mnn mutants 33: 114 model 33: 116, 117 oligosaccharide modifications 33: 113– 117 organelle identification methods 33: 111– 113 sec14 ts mutant 33: 117 ts sec7 mutants 33: 115– 117 defect in erd1 mutants 33: 108 detection methods 33: 112, 113 evidence for, in yeast 33: 112, 113 functions 33: 111 see also SAC1 gene; sac1ts mutants actin-cytoskeletol functions coupling 33: 129– 132 in SEC12p biogenesis, role 33: 97 marker (KEX2p) 33: 113 medial aspect 33: 111 membranes, SEC14p in 33: 119, 120 morphology 33: 111 phospholipid-transfer protein involvement 33: 117– 127 see also SEC14p conservation of SEC14p function/structure 33: 125– 127 SEC14p as transport factor, evidence 33: 118 protein transport through 33: 76, 112, 115– 117 genes involved, see SEC7 gene; SEC14 gene in vitro analysis method 33: 89, 112 model 33: 116, 117
119
protein transport to, see Protein transport regulatory role in protein transport 33: 111, 120–125 resident proteins 33: 127 retention problem 33: 127, 128 SEC14p-positive structures 33: 119 trans-face 33: 111 Golgi complex-derived secretory vesicles 33: 74, 76 ‘docking’ with plasma membrane 33: 135 fusion with plasma membrane 33: 76, 132– 139 see also GTP-binding proteins; SEC4p GTP-binding proteins in 33: 132–136 SEC gene products 33: 76, 132 fusion, SEC2p and SEC4p upstream of SEC15p action point 33: 138 patching, SEC15p function and 33: 138 SEC4p.GTP binding of 33: 135 Gonadotrophin, human chorionic, C. albicans binding sites for 34: 121, 122, 125, 126 Gonadotrophin-releasing hormone and Sacch. cerevisiae a-factor, homology between 34: 127 Gonimochaete pyriforme 36: 124, 125 Gonium 26: 90 Gonococcal fimbriae interchain disulphide bridges, antigenicity 28: 98 receptor-binding site 28: 109 Gonyaulax polyedra 39: 295– 301, 320, 323, 324 Gor genes 34: 275 GPD gene, A. bisporus genetic manipulation and use of the 34: 192 G-proteins C. albicans 34: 125 Sacch. cerevisiae 34: 133 and mammalian G-protein, comparisons 34: 132 Gracilicutes 26: 159 (table) Gramicidin S, synthesis 38: 86, 87 Gramicidin synthetases 38: 87 molecular masses 38: 89 Gram-negative bacteria 40: 3, 35, 121, 123, 137, 175, 193, 388, 392, 393; 43: 170; 44: 143, 222, 248, 249; 45: 96, 97, 201, 203 outer-membrane proteins (porins) 36: 7 – 9 peptide transport 36: 6 – 10 periplasm 36: 9, 10
120
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
nitrate reduction in periplasm of 45: 51 – 112 non-AHL signalling 45: 215–221 see cell-surface polysaccharides Gram-negative bacteria, anaerobic, crystalline surface layers 33: 216, 217 bioluminescent 34: 2 cell membrane in 32: 181 citrate synthase (large), NADPH inhibition of 29: 210, 211 conjugative pili 29: 60 crystalline surface layers 33: 212–216 exposure to acidic conditions, tolerance development 32: 91 peptidoglycan in cell wall 32: 178 resistance to organic acids 32: 94 succinate thiokinase in 29: 213 short-chain fatty acids (SCFA) metabolism 32: 91 S-layer, membrane interactions and assembly 33: 230, 233 structure 33: 231 turgor pressure in 32: 184 Gram-negative organisms, insertion into stress-bearing wall 40: 384– 386 Gram-negative sacculus 40: 383 Gram-negative wall 40: 355 Gram-negative, see also Escherichia coli, Salmonella typhimurium aerobes 28: 3, 4 anaerobes, catalase test 28: 9 Gram-positive bacteria 40: 105, 121, 123, 304, 388; 41: 121; 44: 73, 80; 45: 219 see also Bacillus subtilis crystalline surface layers 33: 217–220 cell walls, anionic polymers in 32: 181 dynamic nature 32: 184 peptidoglycan in 32: 178, 179 cell-membrane permeability, organic acids effect 32: 95 citrate synthase 29: 210, 211 conjugative pili not identified in 29: 57, 60 glycerophosphoglycolipids in 29: 235 in meat, sensitivity to organic acids 32: 102 lipoteichoic acid 29: 234 structure 29: 235 lipoteichoic acid, lipid and protein secretion 29: 274 membrane lipid turnover 29: 258 peptide transport in 36: 10, 11, 38– 40 spore formation, Bacillus 28: 3, 4, see also Clostridium
succinate thiokinase in 29: 213 S-layer, assembly 33: 230, 233 peptidoglycan layer associated 33: 228, 234 teichoic acid in 29: 234 turgor pressure in 32: 183 uptake of long-/medium-chain fatty acids 32: 93 Gram-positive organisms 40: 379 inside-to-outside growth 40: 384 Gram-positive wall 40: 355 Granulose, see Polyglucans Gravitational term, in water potential 33: 148, 149 Gravity, effect on floes, see Floc(s) Grazing, Synechococcus 47: 44 – 46 Green sulfur bacteria gene transfer systems 39: 249– 251 sulfur oxidation 39: 248– 251 Greigites 31: 177, 178 Griffithsia pacifa, ionic currents in 30: 93, 111, 115 Griseofulvin cell wall synthesis 27: 8, 9 effect on fungal nuclear metabolism 27: 5 –11 microtubules, primary target 27: 9 selectivity of action 27: 9, 10 structural form 27: 5, 9 Griseolutein 27: 217 formation by S. griseoluteus 27: 235– 237 structural formulae 27: 237 GroE 44: 93, 94, 100– 112, 119, 124, 129, 130 in normal and stressed growth 44: 102– 107 in vivo role 44: 111, 112 reaction cycle 44: 109 GroEL 44: 100, 101, 102, 117, 129 cellular location 44: 111 groEL protein 31: 79, 103 hsp58 homology with 31: 193, 194 hsp60 comparison 31: 214, 215 kinetics of synthesis 31: 205 M. leprae antigen homology 31: 79, 103, 211 molecular chaperone 31: 213 role in protein folding/assembly 31: 214, 215 Rubisco-binding protein homology 31: 194, 214 GroEL– GroES complex, mechanism of 44: 107– 110 GroES 44: 100, 101, 102, 117, 129 groES stress protein 31: 214 role in cell viability 31: 194
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 GroESL 44: 60 Group-II and group-II-like polysaccharides 35: 152, 153 gene clusters 35: 199– 201 polymerized in E. coli 35: 164– 166 transport of 35: 177– 182 Group-I-like polysaccharides 35: 157, 216– 221, gene cluster 35: 202– 204 Growth, cardinal temperature 33: 157, 159 cardinal water potentials 33: 156–161 inhibition, solute-specific 33: 160 Growth cycle, osmotic hypersensitivity and 33: 192 polyol level changes 33: 170, 171 arabinitol 33: 170, 173 glycerol 33: 170, 173 sodium and potassium ion changes 33: 183 Growth irradiance Prochlorococcus 47: 12 – 14 Synechococcus 47: 12 –14 growth of, fatty-acid biosynthesis limiting 31: 91 ‘helper’ organisms/symbionts in 31: 74, 75, 105 mean generation time 31: 73, 91 nucleic acid syntheses as limiting factor 31: 74 rate 31: 73, 74 interaction with host cells 31: 99 –111, 211 amino-acid acquisition 31: 96 – 99, 109 elevated metabolic activities 31: 109– 111 exochelins and mycobactin 31: 105, 106 host attempts to withhold nutrients 31: 104, 106, 109 host enzyme acquisition 31: 108 intracellular survival mechanisms 31: 100– 103 iron-regulated envelope proteins 31: 104, 105 killing mechanisms 31: 100 nutrient acquisition from host 31: 106– 111 slow-down of physiology 31: 114, 118 stress response 31: 103, 104, 211 intracellular, activities enhanced 31: 108, 109 iron uptake 31: 76, 104– 106, 113
121
iron-regulated envelope proteins (IREPs) 31: 80, 104, 105 metabolism 31: 86 – 99 acetate not metabolized 31: 88, 89, 112 carbon sources catabolized 31: 87 – 89, 107, 108, 110, 112 deficiencies in 31: 86, 112 electron transport 31: 89 elevated activities 31: 109– 111 EMP and TCA cycle enzymes 31: 87, 89, 110 energy 31: 89, 90 oxidative 31: 89 monoclonal antibodies to antigen 31: 79, 103 oxygen tensions 31: 110, 112 peroxide susceptibility 31: 100, 112 phosphatase in nucleotide scavenging 31: 96, 108 plasma membrane 31: 75, 76 lipids and proteins 31: 76 PAS staining 31: 75, 76 possible applications 31: 111– 115 scavenging, fatty acids 31: 90, 92, 93, 112 iron 31: 104– 106 peroxide by PGL-I 31: 101, 102 purines 31: 95 – 97, 108, 110, 111 pyrimidines 31: 93 – 95, 108, 111 structure 31: 86, 87 wall-protein complex 31: 79 Growth rate, maximal, in nonosmotolerant strains 33: 159 osmoadaptation 37: 275 Growth stage and rate, effect on lipoteichoic acid synthesis 29: 267 extracellular lipoteichoic acid 29: 272 lipid amphiphile composition 29: 258, 259 Growth yield studies 29: 25, 26 Growth, bacterial, see also Bacteria, attached to solid surfaces attached cells, environmental conditions affecting 32: 67 – 68 cell walls mechanical behaviour, see Cell walls dwarfing response to attachment 32: 69, 70 laminar flow velocity relationship 32: 70 on proteins, immobilization on clay 32: 73 rate, sensitivity to organic acids 32: 92 surface composition affecting 32: 70 surface hydrophobicity affecting 32: 69
122
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
GROWTREE program 41: 197 grp78 31: 212, 213, 215 grp94 31: 213 GrpE in vivo roles 44: 113– 117 interactions with other chaperones 44: 113– 117 GS-15 bacterium 31: 173, 174 GSA aminotransferase 46: 265 GshA gene 34: 249, 250, 252 mutant (gsh-) 34: 244, 253, 255– 257 product, see g-Glutamylcysteine synthetase GshB gene mutant (gshB-) 34: 244, 255, 256 product, see g-Glutathione synthetase GTP (guanosine triphosphate) 37: 94, 95; 40: 337; 43: 79 analogue (GTPGS) 33: 91, 93 hydrolysis 44: 120 binding to SEC4p 33: 135 affinities 33: 137 SEC4p function requiring 33: 133 GTP-binding domains in protein translocation into endoplasmic reticulum 33: 84 of signal recognition protein SRP54 33: 84 GTP-binding proteins 33: 132 in regulation of vesicular transport 33: 103, 132 in transport from endoplasmic reticulum to Golgi complex 33: 93, 101– 103 see also ARF1p; SAR1p; YPT1p in uncoating of transport vesicles 33: 89, 90 mammalian 33: 136 SEC gene products potentiating 33: 137–139 SEC4p as 33: 133 see also SEC4p defects, ras mutations 32: 12 gtr gene 46: 264, 292 GTR-LacZ fusion 46: 292 Guanine nucleotide-binding proteins, see G-proteins Guanosine 30 ,50 -bis(diphosphate) (ppGpp) 40: 238 Guanosine nucleotides inhibition of sporulation 28: 48 nucleic acid synthesis 28: 11 regulation, proteins, E. coli 28: 131 Guanosine pentaphosphate (pppGpp) 26: 140, 141
Guanosine tetraphosphate (ppGpp) 26: 140, 141 alarmosome 26: 142 amino acid limitation 28: 157 operon regulation 28: 157 regulatory role in bacteria 26: 142 Guanosine triphosphate (GTP) 28: 168 Guinea pigs erythrocytes, agglutination, with K99 fimbriae 28: 87 with Type I fimbriae 28: 82 tetracycline-resistance, E. coli 28: 247 GUP1 transport system 26: 52 GUP2 transport system 26: 52 Gut flora, disturbance and infections after 46: 236– 237 GUT1 and GUT2 genes 33: 178 h– (M-cell) mating type of Schiz. pombe, sex hormones and the 34: 96 h+ (P-cell) mating type of Schiz. pombe, sex hormones and the 34: 96 H2O2 stress 43: 202 Haber process, dinitrogen fixation 30: 3, 4 Habituation 37: 251, 255, 257, 258 Haem a 46: 276 Haem 46: 257, 258 see also Cytochrome c; Protohaem accumulation 46: 287 biosynthesis see Haem biosynthesis covalently-bound in cytochrome c 46: 276 cytochrome oxidase 46: 275, 276 delivery, for cytochrome c maturation 46: 283– 285, 286 assays 46: 284, 285 functions 46: 258, 259 requirement by Haemophilus influenzae 46: 292 structures 46: 259 thermal instability 46: 295 translocation 46: 283 Haem biosynthesis 46: 260 genomic perspective 46: 292– 299 protoporphyrinogen oxidase genes absent 46: 297– 299 thermophilic Archaebacteria 46: 295, 296 uroporphyrinogen III synthase genes absent 46: 296, 297 ALA dehydratase 46: 265– 267 ALA synthase 46: 261– 263 alternative 46: 299– 301 bacteria lacking enzymes for 46: 294 C5 pathway for ALA synthesis 46: 261– 263– 265
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 coproporphyrinogen III oxidase 46: 270, 271 ferrochelatase 46: 273– 275 optimal growth temperature and 46: 295, 296 genes in bacteria with reduced genomes 46: 293– 295 oxygen as substrate 46: 289 pathway 46: 261– 275 porphobilinogen deaminase 46: 267 protoporphyrinogen IX oxidase 46: 272, 273, 297– 299 uroporphyrinogen decarboxylase 46: 269, 270 uroporphyrinogen III synthase 46: 268, 269 regulation 46: 260, 287– 292 by haem 46: 292 by iron 46: 288, 289 by oxygen 46: 289– 292 Haem c 46: 261, 275 Haem coordination, truncated globins 47: 270, 271 Haem d 276 Haem d1 261 Haem group of bacterioferritins 40: 298– 302, 300 Haem lyase, mitochondrial 46: 277, 279 see also Cytochrome c haem lyase Haem o 46: 276 synthase 46: 276 Haem proteins analysis in vivo 38: 218, 219 in Sulfolobus spp. 46: 300, 301 Mo¨ssbauer spectroscopy 38: 209 Haem regulatory motif (HRM) 46: 288 Haem synthesis in leghaemoglobin 45: 128, 129 Haem uptake in rhizobia 45: 127– 129 Haemagglutination, E. coli characterization 28: 71 –81 deficiency mutants 28: 78 dysentery-like disease, specific reaction, D -mannose 28: 77, 78 inhibition, D -mannose 28: 72 mannose-insensitive, non-fimbrial 28: 72, 78 strain IA2, DNA code 28: 117 pili capable of 29: 74 – 76 Haem-copper oxidases 46: 276 respiratory oxidases 40: 195– 198 Haem-CuB bimetallic centre 40: 197, 198 Haemoglobin 47: 257, 258 Haemoglobin, amino-acid sequences from thermophilic organisms 29: 221 Haemolysin(s) 37: 92, 121 extraintestinal, E. coli 28: 116
123
Haemophilus actinomycetemcomitans 45: 87 Haemophilus ducreyi 44: 111 Haemophilus influenzae 28: 24; 40: 286, 304, 309; 41: 182; 45: 57, 87, 97, 99, 219, 226; 46: 292 X-ray exposure, DNA degradation 28: 17 and cell-surface polysaccharide biosynthesis export 35: 178– 180 genetics 35: 190, 202, 207, 208 regulation 35: 214, 215, 225, 229 structure and attachment 35: 139, 140, 148, 153 Haemoquinoprotein lupanine hydroxylase 40: 10 hag gene (fliC gene) 33: 283, 287 Halo blight disease 37: 246 Haloaromatics, catabolism 31: 58 Halobacteria 26: 130; 37: 275, 277– 279 Halobacterium cutirubrum 35: 261, 262, 264 glycerol synthesis 29: 185 Halobacterium halobium 36: 83; 37: 100, 109– 111; 41: 294; 35: 261 chemotaxis 33: 279 ferredoxin, amino-acid sequences 29: 220 flagellin genes and transport 32: 143 glycolytic enzymes in 29: 183 malate dehydrogenase from 29: 198 oxidative citric acid cycle in 29: 186, 187 S-layer glycoprotein, biosynthesis 33: 249 gene sequence 33: 245 structure 33: 240, 242, 243, 245 2-oxo acid oxidoreductases 29: 202 6-phosphofructokinase absence 29: 179 Halobacterium marismortui 37: 277, 278 ferredoxins, sequences of 29: 220 malate dehydrogenase, structure and characteristics 29: 219 Halobacterium saccharovorum, acetate production, pyruvate: ferredoxin oxidoreductase in 29: 177 ATP not required in pyruvate production 29: 177 dual specificity glucose dehydrogenase 29: 197 glucose catabolism in 29: 177 glyceraldehydxe 3-phosphate metabolic enzymes in 29: 177
124
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
modified Entner –Doudoroff pathway 29: 176– 179, 191 NAD+ reduction 29: 177 Halobacterium salinarium 41: 244, 256, 263, 267; 43: 191, 193; 45: 172, 181, 183, 187 cell-envelope glycoprotein 33: 242 S-layer glycoprotein, biosynthesis 33: 249 bis-g-glutamylcysteine reductase 34: 275 Halobacterium sp. 32: 185 NRC-l 46: 301 Halobacterium volcanii, introns in tRNA genes 29: 171 Halobacterium, citrate synthase and succinate thiokinase in 29: 213 Halocatechols 31: 57 Halocompound dehalogenation see alcohol dehalogenation; alkane dehalogenation; alkanoic acid dehalogenation Haloferax volcanu¨, S-layer gene sequence 33: 245 S-layer glycoprotein 33: 240, 242, 243 Halogenated benzoic-acid catabolism 31: 57 – 60 Halohydrin epoxidases 38: 153 Halomonadaceae 37: 315 Halomonas elongata 37: 286, 299, 301, 313– 315 Halomonas sp. 37: 314 Halophiles, see Archaebacteria Halophilic malate dehydrogenase 37: 278 Halophilic organisms 37: 229, 273 see also osmoadaptation Halorhodopsin (HR) 41: 263 Halotolerant organisms 37: 273, 302 see also osmoadaptation Hansenula 26: 2 Hansenula anomala, compatible solutes in 33: 169 Hansenula mrakii metabolism 37: 190, 192, 194, 195, 198 methylglyoxal 37: 178, 184, 214–216, 214 Hansenula polymorpha 31: 201; 40: 331; 41: 10 antioxidant defense in 34: 273 methanol dissimilation 34: 288 Hansenula subpelliculosa 35: 278; 36: 91 HAP (hook-associated) proteins 32: 114, 132, 133 assembly 32: 145– 147 order 32: 145, 147 HAP1 and HAP3 32: 114, 132 HAP2 cap 32: 114, 132, 147 export 32: 147 in filament assembly 32: 141, 142
number of copies in flagellum 32: 132 overproduction 32: 134 sequences 32: 145 transcriptional control 32: 121 Hap-5 allele, haploid fruiting and the 34: 171 Hap-6 allele, haploid fruiting and the 34: 171 Haploid apomixis 30: 29 – 31 fruiting alleles (hfa), in monokaryons 38: 24 fruiting genes 34: 170– 175 Haplospora globosa 30: 33 Haptoglossa mirabilis, mechanical nematode traps in 36: 124, 125 Haptoglossa sp. 36: 129 nematode trapping devices 36: 118 Harposporium oxicoracum 36: 125 Harposporium rhossiliensis 36: 124 Harposporium sp 36: 124, 129 nematode trapping devices 36: 118 Hatch-Slack (C4-dicarboxylic acid pathway) 29: 141, 142 Hawaiian squid, light organs of 34: 38, 39 HC-toxin 38: 110 HD genes, in fruit body formation 38: 23, 24 HdeA, E. coli O157:H7 adaptation to acid 46: 19 HDEL sequence 33: 104, 106, 108 receptor 33: 107–109 retention or retrieval of proteins? 33: 106, 107, 109 retrieval 33: 107, 109 HdtS 45: 208 Heat conditioning 33: 196 osmotolerance and 33: 196, 196, 197 Heat detection 44: 252 Heat responses, extracellular components in 44: 236, 237 Heat sensitivity, sigX mutants 46: 65 Heat shock 44: 122– 128, 130, 221, 236 as distinct state from acquired thermotolerance 31: 206 genes, regulatory role in infections 31: 212 lon protease induction 31: 196 tolerance to hydrogen peroxide after 31: 199, 201 ubiquitin induction 31: 195 Heat shock protein (hsp) 37: 119, 178, 262 Heat shock protein (HSP) 40: 178 Heat shock proteins of Achyla spp., antheridiol effects 34: 79 M. tuberculosis s H 46: 90
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Heat shock response, genomics studies 46: 333 repressor-based mechanisms to regulate 44: 128– 130 Heat shock transcription factor 37: 178 Heat shock, chromosome loss in C. albicans 30: 56 induction of KAR2 expression 33: 104, 105 meiosis restoration in apomictic strains 30: 37, 39, 40, 42 Heat stress 44: 63 – 68 stimulon, Bacillus subtilis 44: 40 – 42 Heat tolerance induced at alkaline pH 44: 234, 235 Heat, protection, by induction of starvation proteins 31: 199 Heat-induced trehalose accumulation 33: 196 Heat-killed bacterial cultures 44: 242 Heat-labile enterotoxin, E. coli 28: 235 Heat-shock proteins 31: 185, 186; 33: 197; 36: 99, 100, 102 HSP70 33: 82, 88 KAR2 gene in 33: 104 SSA subgroup 33: 82, 88, 104 synthesis during osmotic conditioning 33: 197 see also individual hsps; Stress proteins acquired thermotolerance 31: 202– 210 see also Thermotolerance by arsenite 31: 208 kinetics 31: 203 lon protease 31: 196 oxidative stress relationship 31: 199, 200 stationary/log-phase cells 31: 199, 206 summary of data 31: 208, 209 thermotolerance correlation 31: 202, 204– 206 conservation of sequences/homology 31: 193, 194, 211 for cell recovery/growth after stress 31: 207 groups 31: 185 immune response and 31: 211, 212 in micro-organisms, types and references 31: 187– 192 in protein assembly and translocation 31: 213– 215 induction 31: 184, 186, 202, 203 by abnormal proteins 31: 196 promotor consensus sequence 31: 211 sporulation-specific 30: 42 Heat-shock regulatory element 31: 194
125
Heat-shock stress, rate of protein synthesis 28: 21 – 23 Heat-stable proteins 44: 226–231 Heavy metals, detoxification 34: 289, 290 Helicobacter 44: 168 Helicobacter pylori 37: 259; 41: 255, 274, 275; 43: 185, 186, 204; 44: 111, 129, 130; 45: 139, 226; 46: 32, 33 acid resistance 46: 17, 19 adaptation to acidic environment 46: 17, 19, 20, 21 cag pathogenicity island 46: 33 genetics of less proinflammatory strain 46: 33 genome 46: 20 genomic diversity 46: 33 microarray-based comparative genomics 46: 30 strain diversity 46: 32, 33 respiratory electron transport chains 43: 184 strain-specific genes 46: 33 Helix angle 32: 185, 213 Hellcobacter pylori 40: 137– 189, 172, 173, 286, 303, 304, 309, 316, 331, 403, 417, 419 amino acid requirements 40: 145 anabolic pathways in 40: 169 as gastric pathogen 40: 140– 144 associated disease 40: 142– 144 biology of 40: 140 cagA gene 40: 142 cellular features 40: 144, 145 characteristics 40: 144– 149 chemotaxis 40: 147– 149 citric acid cycle in 40: 166– 168 CO2 requirement of 40: 168, 169 composition of respiratory chain 40: 171– 174 early studies of metabolism 40: 155, 156 epidemiology 40: 140–142 evolutionary 40: 144 flaAB genes 40: 147 fumarate metabolism in 40: 163– 166 glucose metabolism 40: 156– 159 growth requirements 40: 144, 145 ion homeostasis and its relationship to acid tolerance 40: 151, 152 iron acquisition mechanisms 40: 149– 151 katA gene 40: 154 microaerophilic nature 40: 152– 155 motility 40: 147–149 nitrogen assimilation in 40: 176 nitrogen metabolism in 40: 176– 179 oxidative stress 40: 153– 155 pathogenicity 40: 142
126
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
pH homeostasis in 40: 152 POR and OOR 40: 161, 162 pyruvate metabolism 40: 159–161, 163 respiratory chain 40: 169– 175, 173 seroprevalance 40: 141 serum antibody tests 40: 141 spiral to coccoid cell transition 40: 145– 147 substrate oxidation 40: 169– 171 succinate respiration in 40: 171, 172 taxonomy 40: 144 terminal oxidase(s) in 40: 174, 175 transmission 40: 140– 142 transport systems 40: 149 two-component families 40: 149 urease of 40: 176– 179 virulence factors 40: 142 “Helper” proteins, exoprotein secretion 28: 236, 237 hemA gene 46: 262, 263, 288, 289 iron effect on gene expression 46: 288 nomenclature problem 46: 264 regulation by oxygen 46: 289, 290 HemAT 45: 187 hemB gene 46: 288, 289, 296 iron effect on gene expression 46: 288 regulation by oxygen 46: 291 hemC gene 46: 268, 296 Buchnera 46: 294 hemD gene 46: 268, 296 E. coli and B. subtilis 46: 296, 297 Heme biosynthesis 29: 40 SR143 mutant deficient in 29: 40 hemF gene 46: 270, 271, 292, 299 hemG gene 46: 272, 297, 299 hemH gene 46: 273 mutants 46: 274 Hemicellulose 39: 49 – 52 see cellulose hydrolysis Hemimercaptal 37: 190– 193, 191, 200, 215 Hemin and heme proteins, catalase production 28: 9 Hemipyocyanine 27: 217 structural formula 27: 220 hemK gene 46: 273 hemN gene 46: 270, 271, 290, 291 Buchnera 46: 294 genes clustered with 46: 271 hemN1 and hemN2 genes 46: 291 hemT gene 46: 262, 263 hemY gene 46: 273, 297 Hemolysin 37: 245 hemZ genes 46: 290 Hepatic encephalopathy 39: 224 Herbicide degradation 31: 2
Herbicides Dalapon 38: 135 phosphinothricin as 38: 120 toxic mechanism 46: 272 Heterobasidium annosum 41: 55 Heterocyclic aromatic compounds 39: 347, 348 Heterocysts 29: 122 absence of RuBisCO and carboxysomes from 29: 122, 131 Heterogeneity, population, TNC 47: 95, 96 Heterogenic incompatibility 34: 158 Heterokaryon, formation 34: 155– 159 Heterokaryons 30: 56 Heterophasic and heteroploidic fusions in mitotic regulation of Physarum polycephalum 35: 53, 54 Heterorhabditis bacteriophora 26: 238 Heterosigma akashiwo, phosphorus metabolism 38: 197 Heterothallic strains in Physarum polycephalum 35: 3, 5, 6, 28, 29, 34 Heterothallism primary 34: 148 secondary 34: 148 Heterotrophic bacteria, acetate assimilation 32: 78 Heterotrophic growth, of ammonia oxidizers 30: 135 of nitrite oxidizers 30: 135, 136, 154, 166, 175 Heterotrophic nitrification, see Nitrification Heterotrophic organisms, ammonia oxidizers with 30: 135, 165 nitrification rates 30: 167, 168 hex2 elevated hexokinase PII 28: 204 Hexafluoropropanol 37: 160 Hexamethylenediamine 37: 215, 216 1,6-Hexanediol bisphosphate 30: 207 2,3-Hexanedione 37: 189 2,5-Hexanedione 37: 189 3,4-Hexanedione 37: 189 Hexobarbital, light emission inhibited by 26: 247 Hexose catabolism, see also Glucose in Archaebacteria 29: 176– 182 Hexose-monophosphate pathway 29: 175 in eubacteria 29: 172– 174 Hexosyl-1-phosphorylundecaprenol 29: 261, 262 Hfr strains, F. coli 29: 72, 73 Hiastadin, peptide 37: 142 Hierarchical clustering, microarray data 46: 13 ‘Higgins model’ 37: 312 High Frequency of Transfer (HFT), 70
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 High-density oligonucleotide arrays 46: 7 – 11, 31 comparisons 46: 31 Higher fatty acids 39: 356– 359 Highly conserved domain (HCD) 45: 164, 165, 169 High-resolution transmission electron magnetite 31: 149– 153 microscopy (HRTEM), Hind III restriction endonuclease 29: 81 HindIII restriction enzyme 31: 19, 46 HIP1 44: 203 Hirshioporus abietinus 35: 278 Hirsutella rhossiliensis 36: 118 Hirsutella sp. 36: 124 His motif, in peptide synthetases 38: 92 His-Asp phosphorelay systems 41: 211– 214; 41: 139 Histadin, peptide 37: 142 Histamine 37: 213 Histidine 26: 32, 41; 33: 80; 42: 129, 130 production of cyanide 27: 91 promoter of cyanogenesis, Chlorella27: 91 stoicheiometry 27: 91 – 93 synthesis 27: 82, 85 Histidine imidazole ligands 44: 190– 192 Histidine kinase 33: 322; 46: 24 Histidine permease 26: 41; 36: 23, 24, 26 Histidine protein 26: 135 histidine protein kinase (HPK) 37: 106, 107; 41: 140– 182, 199 see also specific HPK subfamilies classification 41: 192, 193 domain subfamilies 41: 210 sequence alignments 41: 184– 191 with substituted histidines 41: 196 homodimer 41: 245 homologues 41: 143 sensing domains 41: 183 sequence analysis 41: 143, 145– 180 sequencing 41: 140, 141 subfamilies 41: 197– 206 superfamily 41: 139– 227 system design 41: 182– 194 Histidine residue (site unknown) of luciferase a subunit 34: 16 Histidine transport binding (J) protein 28: 164– 167 nitrogen regulation 28: 167 S. typhimurium 28: 163– 168 ATP hydrolysis 28: 168 Histidine-binding protein 33: 303
127
Histidinol 33: 80 Histone-like proteins 37: 249, 250, 312 in archaebacteria 29: 171 Histones and Physarum polycephalum 35: 40, 41, 58 periodic variation 35: 44 –47 histone-like proteins in synthesis of alginate in Pseudomonas aeruginosa 35: 224 Histoplasma capsulatum 31: 210 action of 5-fluorocytosine 27: 11 incidence, USA 27: 3 Hmp composition 47: 279, 280 discovery 47: 275–279 enzymic properties 47: 282– 285 functions 47: 285– 287 mutation 47: 291 NO-detoxifying activities 47: 291– 296 transcription regulation 47: 287– 291 HNP, peptides 37: 136, 142, 143, 154, 156 H-NS 45: 5 –7, 15, 19, 24, 38 and thermoregulation of pap 45: 15, 16 as repressor of fim, phase variation 45: 31 – 33 control of fimB and fimE transcription 45: 32, 33 effect on fim inversion 45: 33 effect on fimA transcription and type 1 fimbriation 45: 39, 40 1 H-nuclear magnetic resonance (NMR) spectroscopy 41: 5 Hodobacter 45: 81 Hok/soc programmed cell death system 41: 119 hol2, phenotype 33: 80 HOL+ mutants 33: 80 selection method 33: 80, 82 hol1 mutants 33: 184 Holobacterioferritin 40: 338 Homeostasis calcium 37: 105 pH stress 37: 234–237, 252–254, 258, 260, 261 Homeostatic mechanisms, in immobilized cells 32: 80 Homo sapiens 37: 142; 40: 100, 309 Homoarginine 26: 21 Homocitrate, nif V product 30: 7 Homocysteine methyltransferase 34: 261 Homocysteine synthase (OAH sulphhydrylase) 34: 260– 262 Homocystine reaction with cyanide 27: 89 Homoeostasis in magnitude of free energy intermediates 26: 146–148 Homogenic incompatibility 34: 156, 158
128
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Homokaryotic (haploid) fruiting, genes involved in 34: 170– 175 Homology boxes 41: 141, 195– 197, 198, 199 Homoserine acetyltransferase 34: 261 Homoserine dehydrogenase 31: 98 Homoserine lactones (HSLs) 41: 271, 272 synthesis 41: 275; 45: 205 Homothallism 30: 36 primary 34: 148 Hook, of bacterial flagellum, see Flagellum, bacterial Hook, see Flagella Hook-associated proteins (HAPs) 41: 299– 301, 309 see Flagella see HAP (hook-associated) proteins Hook-basal body (HBB) complexes 32: 113, 134, 136 Hoop strain 32: 215 Hoop stress 32: 194, 206, 207, 216 Hopanoids in bacteria, biochemistry and physiology of 35: 247– 273 detection and analysis 35: 253, 254 distribution and physiological role, 254– 259 structural diversity 35: 248– 252 see also under biosynthesis Hordeum vulgare 35: 294, 295; 37: 146 Hormone(s), sex 34: 69 – 145 fungal 34: 70 – 145 mammalian 34: 105– 132 binding sites in fungi for 34: 112– 123 biochemical responses of fungi to 34: 123– 128 in vitro growth and morphogenesis of fungi affected by 34: 105– 112 pathogenesis of fungi and 34: 128– 132 Hormone-binding proteins in fungi 34: 112– 123 Hormones, C. albicans infections and 30: 70, 71 Horse erythrocytes, characteristics, K99 adhesin 28: 86 Horseradish peroxidase, photosynthetic microbes, cyanide 27: 91, 92 Horse-spleen apoferritin 40: 288 ferritin 40: 294, 328 Host cell, M. leprae interaction, see Mycobacterium leprae Host control, of hydrogenase 29: 10– 13 of piliation 29: 72 Host defense mechanisms, C. albicans infections 30: 68
Host mucosa and type 1 fimbriation 45: 40, 41 Host response, microarray expression profiling 46: 34 – 42 see also Expression profiles Host-microbe relationship 42: 42 HPK1 41: 199– 201 HPK10 41: 197, 206 HPK11 41: 197, 206, 210 HPK1b 41: 197 HPK1-HPK11 41: 197 HPK2 41: 201 HPK3 41: 201– 204 HPK4 41: 204 HPK5 41: 204 HPK6 41: 204, 205, 210, 211 HPK7 41: 205 HPK8 41: 205, 211 HPK9 41: 197, 205, 206 Hpr gene and transition-state regulators and sporulation in Bacillus subtilis 35: 128 Hpr, in signalling pathways 33: 322 HPT gene, L. laccata transformation and the 34: 191 HQNO 29: 31, 32 HRBP (human retinaldehyde binding protein) 33: 119, 127 HrcA 44: 94, 129, 130 Hrd proteins 46: 51 HrdD protein 46: 81 HslVU 44: 126 hsp 31: 185 induction 31: 202, 203 hsp100 protein 31: 204 Hsp33 44: 123, 124 hsp58 31: 193, 194, 213 Hsp60 gene 31: 214, 215 hsp60 product, groEL product comparison 31: 214, 215 Hsp70 44: 112 Hsp70 genes 31: 185 SSA3, SSA4 genes 31: 185 hsp70 proteins 31: 103, 185 conserved sequences/homologies 31: 193 in Neurospora crassa, Sacch. cerevisiae 31: 185 in protein assembly and translocation 31: 212, 215 induced by hydrogen peroxide 31: 201 M. leprae antigens as 31: 211 Plasmodium falciparum antigens 31: 211 protein unfolding for 31: 215 HSP70, see Heat-shock proteins, HSP70 Hsp90 homologue 44: 122, 123
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 hsp90 protein 31: 186, 194 hsp26 protein 31: 186 lon protein homology 31: 193 HspR 44: 129, 130 HTa protein, Thermoplasma acidophilum 29: 171 HtpG 44: 122, 123 HtpR, lux gene regulation and 34: 48 htrA gene, target of E. coil s E 46: 57 HtrP gene (of E. coli) 34: 29 Human Genome Project 36: 68 Human neutrophil peptide (HNP) 37: 136, 142, 143, 154, 156 Human retinaldehyde binding protein (HRBP) 33: 119, 127 Humicola grisea 37: 13, 28 Humicola insolens 37: 12, 13, 16, 17, 22, 27, 28 Humicola sp. 37: 41, 64 Humidity, relaxed modulus of cell walls 32: 200, 201 stress/strain curves of cell walls 32: 192, 193, 197 tensile strength of cell walls 32: 192, 194 Hup gene, see Hydrogenase; Rhizobium species Hup mutants 30: 16 2 Hup mutants, carbon dioxide fixation (Cfx2) mutants 29: 10 component 559-H2 reduction in, invalidity of 29: 36, 37 efficiency 29: 16, 17 Hup probes 29: 47 hydrogen in derepression of 29: 6, 7 hydrogen oxidation 29: 2, see also Hydrogen in Rhizobium spp. 29: 4 iron, content 29: 21 kinetic mechanism 29: 22 – 24 Km value 29: 15 – 17 lipid requirement 29: 21, 22 membrane-bound, absorption spectrum 29: 14 electron transport 29: 2, 27 Ose trait action 29: 8 midpoint potential 29: 16, 17 mixing of, reconstitution of activity 29: 39 as mutants of Hup+ 29: 43 selection method 29: 38, 39 molecular genetics 29: 40 – 47 mutants 29: 38 –40 nickel in 29: 21 as structural component 29: 21
129
oxygen consumption, protective mechanism 29: 4, 25, 34, 35 oxygen lability 29: 18, 19 oxygen-hypersensitive mutants 29: 6, 7, 40 carbon repression hypersensitivity 29: 7 oxygen-insensitive mutants 29: 7, 40 carbon repression insensitivity 29: 7 proteolysis 29: 14 purification and properties 29: 13 – 15 reducing agents in air, effect 29: 19 regulation 29: 6– 13 by oxygen and carbon 29: 6 – 9 carbon dioxide fixation 29: 9, 10 host control 29: 10 – 13 relative efficiency of nitrogen fixation, effect on 29: 5 RuBP carboxylase correlation 29: 9, 10, 25 soluble, carbon dioxide fixation 29: 2 subunit stoicheiometry 29: 13, 14 symbiotic advantage 29: 4, 5, 9 HV sequences in gonococcal pilin genes 29: 79, 80 Hyaline cap formation in amoebae 30: 103 Hyalophora cecropia 37: 140, 147 Hyalophora sp. 37: 148 Hyaluronic acid 31: 106, 107 Hyaluronidase 28: 234 Hybridization 29: 44, 47 homologies of archaebacteria 29: 169 RuBisCO subunit probe 29: 147 Hybridization techniques 38: 212, 213 Hydrazine 30: 5 Hydrocarbons, TOL+ Ps. putida growth 31: 5, 8 Hydrodynamic conditions of solid – liquid interface 32: 54, 55, 65 Hydrodynamic forces, shearing, effect on adhesins 28: 95 Hydrofluoric acid 33: 46 Hydrogen bonds, cellulose 37: 4, 5, 6, 7, 8, 42 calcium channels 37: 100– 102 pH homeostasis 37: 234, 235 Hydrogen bonding, in flocculation 33: 46, 47 Hydrogen ions, adsorbed on surfaces, effect of 32: 60 Hydrogen metabolism in photosynthetic bacteria 26: 162– 174 aerobic growth in dark 26: 164 anaerobic growth in light 26: 162– 164 electron donor 26: 162– 164 genetics 26: 204, 205
130
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
hydrogen consumption linked to photoreduction of carbon dioxide 26: 162 hydrogen photoevolution 26: 165– 170 maximal rate 26: 166, 167 (table) hydrogen production 26: 164– 174 literature reviews 26: 157 (table) molecular hydrogen photoproduction 26: 165– 170 molecular hydrogen production in dark 26: 170– 174 anaerobic oxidation of carbon monoxide 26: 173, 174 dark, fermentative metabolism 26: 170– 172 nitrate reduction 26: 163, 164 sulphate reduction 26: 163 thiosulphate reduction 26: 163 Hydrogen metabolism, literature reviews 26: 157 (table) Hydrogen peroxide 31: 197; 37: 178, 189, 190; 46: 111 acquired thermotolerance induced by 31: 205 and DNA synthesis 28: 12 bacterial response 46: 133 catalase action 46: 330 damage to membranes 46: 127– 129 disposal 34: 269– 274 formation in aerobic cells 46: 115– 118, 134, 321 amount 46: 118, 119 rate 46: 119 in obligate anaerobes 28: 9 increased, in overproduction of superoxide dismutase 31: 198 killing kinetics 46: 125 killing modes 31: 198 levels affecting bacterial cells 46: 125, 126, 134, 135 M. tuberculosis killing 31: 100, 112 mechanism of DNA damage 46: 123, 124, 136 mechanism of protein damage 46: 125– 129 non-thiolate oxidations 46: 127 oxidation of thiols 46: 125– 127, 136 peroxidase enzymes 28: 10 protection, by catalase 31: 200, 201 by cytochrome-c peroxidase 31: 201 by iron, in magnetotactic bacteria 31: 143, 172 by sulphide, in magnetococci 31: 142 by superoxide dismutase 31: 200, 201 starvation proteins induction 31: 199 S. typhimuvium protection against 31: 199
scavengers 46: 125, 126 scavenging by PGL-I 31: 101, 102 -scavenging enzymes 28: 9 sensitivity of E. coli SOD and hydroperoxidase mutants 31:198 stress protein induction 31: 197, 199– 201 sublethal, protection from lethal levels 31: 199, 201 tolerance, by heat shock 31: 199, 201 Hydrogen production, biotechnical aspects, literature reviews 26: 157 (table) Hydrogen sulfide:quinone reductase (SQR) 39: 244, 245 Hydrogen sulphide 31: 243 bisulphite reduction to 31: 245– 247 Hydrogen, absence, derepression of hydrogenase in oxygen-insensitive, mutants 29: 7 cycling in lactate/sulphate growth 31: 249, 250 cytochrome o reduced 29: 30, 37 cytochromes b and c reduced 29: 28, 32, 33, 36 free-living R. japonicum 29: 28, 29 in bacteroid membranes 29: 32, 33, 37, 38 P. denitrificans 29: 28, 31, 37 succinate comparison 29: 36– 38 effect 29: 8, 9 evolution 29: 2 rate dependence on electron flux 29: 3 relative efficiency of 29: 5 host control of 29: 11 – 13 in leguminous and non-leguminous nodules 29: 4 in nitrogen fixation reaction 29: 2, 3 low by R. japonicum strains 29: 4 increase in derepression of hydrogenase activity 29: 6 inhibition of, A. eutrophus heterotrophic growth 29: 8 hydrogen evolution 29: 4, 23 nitrogenase 29: 4 metabolism in Rhizobium 29: 1 –52 regulation 29: 6 – 13 nitrogenase inhibition 29: 4, 25 oxidation 29: 2 ATP production, comparison with oxygen 29: 25 ATP synthesis coupling 29: 24, 25, 47 by Alcaligenes eutrophus in mixotrophic context 29: 8 by legume root nodules 29: 4, 5
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 cytochrome b-type reduction, succinate and NADH comparison 29: 37 cytochrome c- and b- reduction rate 29: 36 efficiency 29: 16, 17 electron transport 29: 27 – 38, see also Electron transport: individual cytochromes energy conservation 29: 24 genes on plasmids 29: 129 mutants (Hox2), Alcaligenes eutrophus 29: 42 mutants failing to 29: 39 nitrogen fixation not increased in R. leguminosarum 29: 5, 46 oxygen-dependent, rate 29: 36 oxidation, hydrogen/sulphate respiration 31: 247, 248 reductant, carbon dioxide reduction to methane 31: 236 scavenger 29: 16 Hydrogen/sulphate respiration 31: 247– 249 Hydrogenase 29: 2 aerobic purification 29: 18 amino acid composition 29: 14 antibody cross-reactivities 29: 14 beneficial effects (nitrogen fixation increase) 29: 4, 5, 9 derepression by low oxygen 29: 6, 7, 9 electron acceptor reactivity 29: 16 – 18 energetics 29: 24 – 38 electron transport 29: 27 – 38 physiological considerations 29: 24 –27 enzymology 29: 13 – 24 genes, Rhizobium leguminosarum 29: 45 –47 genetics 29: 38 – 47 Hup genes in R. japonicum 29: 43 – 45 in R. leguminosarum 29: 45 – 47 on indigenous plasmids 29: 42, 43 site-directed mutagenesis method 29: 41, 42 Hup+ strains 29: 2, 6 carbon dioxide fixation (Cfx2) mutants 29: 10 Hydrogenase, in Desulfovibibrio sp. 31: 247, 248 periplasmic 31: 248, 251 uptake 30: 15, 16 Hydrogenase-constitutive mutants (Hupc) 29: 7, 8 bacteroids, hydrogenase and RuBP activity 29: 10 cytochrome b-type in 29: 35, 37
131
cytochrome o in 29: 7, 30, 35, 37 cytochrome o not component 559-H2 29: 37 gene mutated in 29: 10 nature of mutations 29: 7, 8 regulation by oxygen 29: 30, 31 RuBP carboxylase expression 29: 10 Hydrogenases 26: 174– 190 see also dehydrogenases amino acid composition 26: 180 and prokaryotic selenoproteins 35: 84 – 86 biotechnological potential 26: 211 catalytic properties 26: 182– 185 electron acceptor/donor 26: 183, 184 hydrogenase assays 26: 182, 183 kinetic parameters 26: 184, 185 “classical” (reversible) 26: 218, 219 cytocbrome c3 26: 184 flavoprotein component 26: 184 genetics 26: 209, 210 hydrogen recycling 26: 188– 190 carbon dioxide photoreduction 26: 189, 190 to nitrogenase 26: 188, 189 inducible enzymes 26: 185– 187 localization in cell 26: 175, 176 molecular properties 26: 179, 180 nickel enzymes 26: 180– 182 nicotinamide nucleotide utilization 26: 184 orientation of membrane-bound hydrogenases 26: 176, 177 oxy-hydrogen reaction 26: 187, 188 coupled phosphorylation 26: 187, 188 electron transfer 26: 187, 188 oxygen scavenging 26: 188 reversible (“classical”) 26: 218, 219 sources 26: 179 spectroscopic properties 26: 180 stability: against denaturing agents 26: 178 against heat inactivation 26: 178 during storage 26: 177 synthesis regulation 26: 186, 187 Tat protein translocation pathway 47: 203– 207 uptake 26: 175, 187– 190, 219, 220 Hydrogenobacter acidophilus 39: 260 Hydrogenobacter thermophilus 39: 261 Hydrogen-oxidizing bacteria, see also Hydrogen, oxidation; Hydrogenase; Rhizobium spp. aerobic, hydrogen metabolism 29: 2 carboxysomes absent from 29: 120, 121, 153 Hydrolase 37: 4 see also cellulose hydrolysis
132
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Hydrolases, M. leprae 31: 106– 108 Hydroperoxidase 31: 198 mutants deficient and hydrogen peroxide sensitivity 31: 198 4-Hydroxy-2-oxovalerate aldolase (HOA) 31: 6, 18 Hydrophilicity of surface 32: 55 Hydrophobic bonds, in halophilic enzymes 29: 218, 219 Hydrophobic cluster analysis 37: 19 Hydrophobic interactions, in enzyme adsorption 32: 60 Hydrophobicity enzyme stability and 29: 221 of surfaces, see Surfaces in adherence of C. albicans to host cells 30: 72 profiles 45: 168 Hydrophobins 34: 151, 162, 169, 175– 177; 38: 3 – 45; 42: 12 – 14 as plant defence response elicitors 38: 33 cerato-ulmin, sequence determination 38: 18 discovery 38: 3, 4 genes 34: 162, 169, 173, see also specific genes identity 38: 4 –10 agglutinin relationships 38: 8, 9 assembly 38: 9, 10 characteristics 38: 6, 8 cysteine residues 38: 9 hydropathy patterns 38: 6, 7 sequence diversity 38: 5, 6 in aerial hypha formation 38: 19 – 22 in conidiogenesis 38: 27 – 29 Aspergillus nidulans genes 38: 27, 28 Neurospora crassa genes 38: 28, 29 in fruit body formation ABH1 gene expression 38: 26, 27 functions 38: 26, 27 SC gene expression 38: 24 – 26 in pathogenesis 38: 29 – 33 Dutch elm disease 38: 31, 32 fungal host adhesion 38: 29 – 31, 32 human infections 38: 32, 33 in rodlet formation, genetic experiments 38: 11, 12 in symbiosis 38: 33, 34 in technology 38: 34 – 36 and hydrophobia properties 38: 34, 35 applications 38: 35, 36 purification, enhancement 38: 34 SC3 purification, SC3 38: 14 surface activity experiments 38: 14 – 18 surface activities 38: 13 – 19 cerato-ulmin 38: 18, 19
Hydrostatic pressure 44: 239 Hydrostatic state 32: 216 Hydroxamate siderophores in fungi 43: 43 – 45, 43, 44 Hydroxamate uptake 45: 124– 126 Hydroxamates linking 43: 48, 49 synthesis 43: 46, 47 Hydroxaminic acids 30: 166 Hydroxyacetone 37: 195 3-hydroxyacyl-CoA 39: 359 Hydroxyacylglutathione 37: 193 Hydroxyaldehydes 37: 194 Hydroxyamino acids 37: 38 3-Hydroxyanthranilic acid 43: 60 Hydroxyaspartate 37: 296 4-hydroxybenzoate 39: 344, 345 4-hydroxybenzoyl-CoA 39: 342 Hydroxyectoine 37: 288, 289, 294, 295, 299, 303 Hydroxyethylclavam 36: 55 Hydroxyl radical 31: 197; 37: 178, 185 damage, nucleic acids 28: 5, 6 killing mediated 31: 197, 198 oxidative DNA damage 46: 123 reactions 46: 123 sources 46: 321 Hydroxylamine 30: 130, 166 compartmentalization, to increase maximum specific growth rate 30: 138 glyoxylic oxime system, cyanide 27: 93 oxidation to nitrite 30: 131, 132 peroxidase-amino acid system 27: 92 Hydroxylamine oxidoreductase 30: 131, 132 Hydroxymate 31: 144 Hydroxymethyiglutaryl CoA and hopanoids 35: 260, 261 Hydroxymethyl-1-alkylpyrrole-2carboaldehyde 37: 187 Hydroxymethylbilane 46: 268 Hydroxymethylgutaryl-CoA reductase 33: 94 2-Hydroxymuconic semialdehyde (2HMS) 31: 17 2-Hydroxymuconic semialdehyde hydrolase (2HMSH) 31: 17 Hydroxypatite 32: 71 2-Hydroxypent-2,4-dienoate 31: 18 Hydroxyphenazines 27: 213– 216, see also Griseolutein, Hemipyocyanine, Pyocyanine, Saphenomycin classification 27: 217 formation 27: 221, 222 metabolism and shikimic acid 27: 243 structural formulae 27: 220, 226, 229, 230, 237
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 4-Hydroxyphenylpyruvate dioxygenase 38: 73 Hydroxyproline 37: 38 3-hydroxypropionaldehyde 39: 91 Hydroxypyruvaldehyde 37: 197 Hydroxyquinoline 37: 191 Hygromycin phosphotransferase gene, L. laccata transformation and the 34: 191 Hymenochaete tabacina 35: 278 Hymenomycetes, fruiting 34: 148 Hymenoptaecin 37: 149 Hyoscyanus niger 35: 294, 295 Hyp gene 29: 74, 75 Hyperglycemia 37: 199 Hypermutagenesis, superoxide causing 46: 122 Hyperthermus butylicus 36: 5 Hyphae 34: 187– 190 aerial formation, SC3 hydrophobin in 38: 19 – 22 growth 38: 1, 2 growth in Achyla spp., antheridiol effects 34: 76 mass flow through 34: 151 transport processes 38: 2 wall, expansion 34: 187– 190 wall-bound hydrophobic proteins shielding 34: 151 Hyphomicrobium 40: 21, 37, 51, 62 dehalogenase 38: 165 Hyphomicrobium X 27: 132, 134 ammonia requirements 27: 140, 141 cross reactions, MOH 27: 144 cytochrome c 27: 167 inhibition by KCN 27: 142 oxidation of alcohols 27: 131, 138 Hyphopichia 43: 5 Hypoxanthine phosphoribosyl-transferase (HPRT) 42: 143 Hypoxanthine, axenic culture of M. leprae 31: 113 Hypoxia gene regulation in M. tuberculosis 46: 17, 23, 24 Saccharomyces cerevisiae 46: 270 Hysterangium crassum 41: 71 Hysterangium separabile 41: 59 Hysterangium setchellii 41: 71 I.C.I., single cell protein studies 27: 191 IbpA 44: 93 IbpB 44: 93, 122 ICDH 45: 328–330, 332, 335 Ice nucleation (by bacteria) 34: 203–237 activity, measurement 34: 208, 209 applications 34: 231, 232 environmental significance 34: 230, 231
133
genes 34: 211, 212, 233, see also specific genes as reporters for linked events 34: 233 evolution 34: 228– 230 heterogeneous 34: 204– 208 by coherent templates 34: 206– 208 homogenous 34: 204 physical basis of 34: 204– 211 proteins 34: 211– 230 biochemistry and immunology 34: 221– 225 domain structure 34: 212– 221 sequence 34: 212– 221 structural models 34: 225– 227 secondary 34: 204, 205 temperatures 34: 209– 211, 224, 225 IceC gene 34: 212 IceE gene and its protein product 34: 212, 215– 219, 220 Ice-nucleation diagnostic assay, bacterial (BIND assay) 34: 233, 234 ICL 45: 328– 330 Iepex lacteus 35: 278 IHF 45: 18, 19, 25, 26, 38, 60 effect on fimA transcription 45: 38, 39 in DNA inversion 45: 24 –28 Illite 30: 163 Imazalil, effect on germ tubes, Penicillium 27: 55 IME gene of Sacch. cerevisiae 34: 172 IME1 expression and sporulation 43: 85 – 89 Imidazole antifungals 47: 158– 160 Imidazole derivatives 27: 3, 4, 39 – 56 basic effects 27: 49 effect on cytochromes 27: 46 fungicidal action 27: 20 lipids, reversal of action by 27: 47 molecular basis 27: 41 – 52 membrane function, impairment 27: 46 – 49 membrane transport, inhibition 27: 49 – 51, 55 metabolism of nucleic acids 27: 52, 53 mitochondrial function 27: 51, 52 morphological effects 27: 53 – 55 sterol biosynthesis, inhibition 27: 41 – 46 structural formulae 27: 40 Imidazole production from histidine, cyanogenesis 27: 92 Imidazoles 30: 78 Imino acid oxidase, amino acid oxidase system 27: 92 Imipenem 36: 9
134
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Immobilization, bacteria, see Bacteria, attached to solid surfaces yeast 32: 64 Immobilized enzymes 33: 258 Immune evasion, by C. albicans 30: 70, 71, 84 Immune response 37: 93 free radical generation 46: 323 stress proteins and 31: 210– 212 Immune system, C. albicans infections 30: 69, 70 Immunity, nutritional, M. leprae infections 31: 104, 106, 109 wall-protein complex of M. leprae in 31: 79 inherent and C. albicans infections 30: 69, 70 Immunoblotting 39: 145 Immunocytochemistry 39: 145 Immunoelectron microscopy 39: 137 location of lipoteichoic acids 29: 275 of carboxysomes 29: 130– 132 Immunofluorescence microscopy, Golgi complex identification 33: 113 Immunoglobulin heavy-chain binding protein (bip) 31: 212, 213, 215 Immunomodulation 39: 134 Immunosuppression, C. albicans infections 30: 69 IMP synthesis 42: 143, 144 In vitro protein translocation systems, see also Protein transport from endoplasmic reticulum 33: 77, 91 – 94 through Golgi complex 33: 89, 112 to endoplasmic reticulum 33: 86 – 88 in vivo expression technology (IVET) 40: 262 InaA gene and its protein product 34: 212 InaC gene 34: 212 InaW gene and its protein product 34: 212, 222, 223 InaX gene and its protein product 34: 212 InaY gene 34: 212 InaZ gene and its protein product 34: 212, 215– 219, 233 IncF plasmid, see Plasmid Inclusion bodies, see also Carboxysomes E. coli expressed eukayotic polypeptides in 29: 156 man-made RuBisCO in 29: 156, 157 Incompatibility (Inc) in pili classification 29: 60, 68, see also Pili; Plasmid E. coli 29: 58, 59
Incompatibility group (IncP9) plasmids 31: 8, 52 ‘Incomplete’ cellulase systems 37: 39 Incorporation in selenium metabolism, competition during 35: 97 Indigo, synthesis/indole conversion 31: 13 –15 Indole 39: 349, 352 conversion to indigo 31: 13 – 15 Indole-3-acetic acid (IAA) 39: 352 Indole-3-butyric acid (lBA) 39: 352 Indolicidin 37: 143, 166 Indolicin 37: 137 Inducer exclusion 26: 8; 42: 69, 102, 103 Inducible enzymes 26: 185, 186 Inductively coupled plasma AES 38: 193 MS 38: 194 Industrial effluents, detoxification 27: 97, 98, 105, see also Sewage Inflammation, C. albicans infections 30: 69 Inflammatory response, free radical generation 46: 323 Inheritance of Physarum polycephalum 35: 3, 5, 6 Initiation of sporulation in Bacillus subtilis 35: 130, 131 INO1 gene 32: 8, 20, 37 see also Inositol-1-phosphate synthase constitutive expression 32: 31 DNA sequence 32: 8 INO2, INO4 regulatory genes of 32: 33, 34 transcription, INO2, INO4, Opi1 gene products effect 32: 39 –43 perturbations of general transcription apparatus 32: 42, 43 regulation 32: 21, 39 – 43, 43 ino1 mutants 32: 7 INO1 promotor 32: 20, 21 9 bp repeat 32: 46, 42 50 region 32: 39, 40 consensus sequence 32: 41 overlapping DNA templates 32: 41, 42 -deletion/lacZ fusion constructions 32: 40, 41 DNA-binding activities 32: 42 fusion to lacZ gene 32: 20, 21, 39 negative control 32: 40 INO2 gene 32: 33 – 35 cloning 32: 35 DNA-binding protein encoded 32: 43, 35, 46 positive regulator encoded 32: 33 – 35, 46 transcription of INO1 32: 39 – 43
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 ino2 mutants, epistatic relationships 32: 38, 39 phosphatidylcholine decreased 32: 33 pleiotropic mutation 32: 33, 43 INO4 gene 32: 33 – 35 DNA sequence 32: 35 DNA-binding protein encoded 32: 43, 35, 46 gene-disruption procedure 32: 34, 35 isolation and cloning 32: 34 positive regulator encoded 32: 33– 35, 46 transcription of INO1 32: 39 – 43 ino4 mutant, epistatic relationship 32: 38, 39 phosphatidylcholine decreased 32: 33 pleiotropic mutation 32: 33, 43 Ino4p, amino-acid sequence 32: 35 amphipathic helix – loop– helix motif 32: 35 Inorganic ions, see also Potassium ions; Sodium ions accumulation in vacuoles 33: 185 flocculation affected by 33: 14 – 16 intracellular levels, changes with media 33: 183, 184 role in osmoregulation 33: 182– 185 transport 33: 184, 185 minimum water potentials and 33: 202 Inositol 1-phosphate, biosynthesis 32: 6 see also Inositol-1-phosphate synthase regulation 32: 20, 21 regulatory cascade controlling 32: 20, 32 –46 negative regulator (OPI1) 32: 36 – 38 positive regulators (INO2, INO4) 32: 33 – 35 Inositol 37: 287 see also Phosphatidylinositol addition, PI biosynthesis increase 32: 9 biosynthesis 32: 6 –8 see also Inositol-1-phosphate synthase enzymes in 32: 7, 8 choline combined with, effect on phospholipid biosynthetic enzymes 32: 18, 20 phosphatidylserine decarboxylase repression 32: 27 phosphatidylserine synthase repression 32: 25 deprivation, cell-division cessation 32: 14
135
cell-wall biosynthesis inhibition 32: 14 plasma-membrane changes 32: 14 free, formation 32: 6 I1PS regulation, phosphatidylcholine biosynthesis and 32: 30 – 32, 45 in phosphatidylinositol synthesis 32: 8, 9, 20, 45 induction of phosphatidic acid phosphatase 32: 22 internal pool, control 32: 10 metabolism 32: 3 – 51 non-competitive inhibition of phosphatidylserine synthase 32: 9, 24 overproduction mutants (Opi2) 32: 23, 30 – 33, 36 regulation of phospholipid biosynthesis 32: 18 – 30 CDP-diacylglycerol synthase 32: 22, 23 inositol-1-phosphate synthesis 32: 20, 21 model for 32: 43 –46 phosphatidic-acid phosphatase 32: 21, 22 phosphatidylcholine synthesis relationship 32: 30 – 32 phosphatidylglycerophosphate synthase 32: 23, 24 phosphatidylserine decarboxylase 32: 27 phosphatidylserine synthase 32: 24 – 27 phospholipid methyltransferases 32: 27 – 30 repression, of CDP-diacylglyerol synthase 32: 22, 23 of inositol-1-phosphate synthase 32: 18, 20 of phosphatidylglycerophosphate synthase 32: 23, 24 of phosphatidylserine decarboxylase 32: 27 of phospholipid biosynthetic enzymes 32: 18, 20 Sacch. cerevisiae auxotrophs (Ino2) 32: 7, 13, 33, 42 complementation groups 32: 7 Inositol deficiency, flocculation onset 33: 58 Inositol triphosphate (IP3) 37: 94, 95, 96, 107 Inositol-1-phosphate phosphatase 32: 7 Inositol-1-phosphate synthase 32: 6, 7
136
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
constitutive overexpression 32: 31, 36, 37 see also Opi2 phenotype derepression, inability in inositol auxotrophs 32: 33 INO1 gene encoding 32: 8 see also INO1 gene purification and molecular weight 32: 7 regulation 32: 20, 21 INO2, INO4 mutants 32: 33, 38 level of 32: 20, 21, 33 OPI1 gene 32: 36 – 38 Phosphatidylcholine biosynthesis and 32: 30 – 32 repressed by inositol 32: 18, 20 choline combined with 32: 20, 21 Inositol-containing phospholipids 32: 3, 5 see also Phosphoinositides; Phosphatidylinositol cycling in yeast 32: 5 Inositol-containing sphingolipids 32: 3, 13 Inositol-less death 32: 13 mechanisms 32: 14, 15 Insect defence proteins 37: 137, 148 Insulin C. albicans and effects of 34: 111 N. crassa and effects of 34: 112, 126, 127 N. crassa binding sites for 34: 112 Integral membrane transport protein families 40: 95– 107 Integration host factor (IHF) 37: 240 Interferon gamma (IFNg ), release induced in macrophage by S. typhimurium 46: 36 Interferon regulatory factor 1 (IRF-1), gene regulation by Pseudomonas aeruginosa PAK 46: 40 Intergenic regions, high-density oligonucleotide arrays 46: 10 Interleukin-1 44: 145 Interleukin 6 37: 148 Interleukin-8 (IL-8) 40: 142 Intestinal ecosystem, dietary regulators 42: 34 – 37 Intestinal epithelium, K99 positive E. coli 29: 63 pili specific for 29: 61, 62, 95 987P positive E. coli 29: 63 Intestinal microflora 42: 25 – 46 beneficial effects 42: 30 medical significance 42: 28 metabolic activities 42: 28 –32 overview 42: 26 – 28 toxicological implications associated with 42: 30
Intestinal pathogens 39: 223, 224 Intestinal tract, biochemical properties of germfree and conventional animals 42: 28, 29 Intracellular ferric reductases 40: 339 Intracellular iron metabolism 40: 333– 339 Intracellular iron transport in Saccharomyces cerevisiae 43: 10 – 12 Intracellular pH regulation 39: 216, 217 Intracellular salts medium (ISM) 40: 234 Intracellular sensing 45: 181, 182 Intracellular sensors 44: 220, 223, 224 Intracellular signalling 33: 313– 322, 334 bias proportional to gradient 33: 316 biochemical nature of signal 33: 316– 322 see also CheA protein; CheW protein; CheY protein acetyl-adenylate 33: 317 CheY, see CheY protein membrane potential 33: 316, 317 other pathways 33: 322 transducer systems 33: 317– 322 genetics of 33: 313, 314 genes 33: 313 impulse response 33: 316 pathways 33: 313, 332, 333 physical properties of signal 33: 315, 316 response latency 33: 315 response times 33: 315, 327 Intramembrane helices 40: 426 Intrasporangium 42: 51 Introduced molecules and Physarum polycephalum 35: 58 – 62 diffusion uptake 35: 58 DNA transformation 35: 59 – 62 macroinjection 35: 58, 59 Invasin 37: 244 Invertase, secretory, accumulation, class A sec mutants 33: 75 cotranslational translocation 33: 87 HDEL conferring endoplasmic reticulum retention of 33: 106, 107 intracellular pools, in act1ts mutants 33: 129 oligosaccharide modifications, in sec mutants 33: 114 precursor accumulation, in sec7ts mutant 33: 115 secretory pathway 33: 54 Iodine-125, E. coli binding assay 28: 84, "85
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Iodinin 27: 211 biosynthesis 27: 241 chemical name 27: 217 degradation products 27: 244– 247 formation 27: 234– 236 occurrence 27: 212 repression, various substrates 27: 262 structural formula 27: 233 Iodoacetamide 37: 204 Iodoacetate 29: 25 action, amphotericin resistance 27: 294 Ion channels, in vacuolar membrane 33: 85 mechano-sensitive 33: 154, 185 Ion chromatography 38: 197, 198 Ion-exchange fast protein liquid chromatography (FPLC) 29: 133 resins, for metal removal from medium 38: 189 Ionic ‘cloud’ 32: 56 Ionic currents, circulating 30: 89 –123 see also Calcium; Cell polarity antheridial branches in Achlya 30: 100 applied voltage and gradients 30: 107– 109, 113, 114 as indicator of movement of ions 30: 116 carbon dioxide uptake in algae 30: 95, 107, 110, 119 cell polarity control, see Cell polarity cellular physiology and 30: 114– 119 directional flow, determination 30: 91, 92 electrical and chemical components 30: 115 electrophoretic redistribution of proteins 30: 114, 116 extracellular component, measurement 30: 90, 91 hyphal growth, Achlya 30: 96 – 99, 115 Allomyces, outward current 30: 100, 101, 115 calcium-ion gradients 30: 117 evidence against role 30: 99, 102, 115 Neurospora 30: 102, 115 in algae 30: 105– 112 Acetabularia 30: 93, 110, 111, 115 Chara and Nitella 30: 11, 93, 107 fucoid eggs 30: 93, 95, 105– 107 Micrasterias and Closterium 30: 93, 112 Noctiluca 30: 93, 112 tip-growing species 30: 93, 111 in amoebic movement 30: 103 in bacteria 30: 92, 93 in fungi 30: 93 –102
137
Achlya 30: 93, 96 – 100 Allomyces 30: 100, 101 Blastocladiella 30: 93 –96 Neurospora 30: 101, 102 in photosynthesis and tip growth, Acetabularia 30: 111, 115 in protozoa 30: 93, 102– 105 amoebae 30: 93, 102, 103 ciliates 30: 93, 103, 104 slime moulds 30: 93, 104, 105 ionic composition, determination 30: 91 measurement 30: 90 – 92 migration and differentiation in slime moulds 30: 105 nutrient entry correlation 30: 95, 96, 101, 118, 119 polarity development in fucoid eggs 30: 106, 107, 113 rhizoid growth and orientation, see Rhizoids roˆle 30: 90, 114– 119 Ionic environment, mechanical properties of cell walls 32: 196, 197 Ionizing radiation free radical generation 46: 322 glutathione protecting against effects of 34: 242, 256, 257, 277– 280 Ion-selective electrodes 38: 195, 196 cadmium 38: 226, 227 copper 38: 222 Ion-selective micro-electrode 30: 92 Ion-substitution experiments 30: 91, 92 Blastocladiella 30: 94 in fucoid eggs 30: 106 Neurospora 30: 101, 102 IPP see isopentenyl pyrophosphate IRL 45: 18, 21, 25, 26, 29, 37, 38 Iron 37: 241, 248; 38: 216– 221; 45: 116– 135 aluminium interference 38: 215 amorphous, in magnetite crystal formation 31: 159, 160 analysis 38: 190, 191 and gene regulation, in rhizobia 45: 132–136 assays 38: 216 availability for bacteria 46: 136 bacterial requirement 46: 293 eliminated by B. burgdorferi 46: 294 beneficial properties 40: 283 biologically relevant features 40: 283– 285 chelation of ferrous iron 46: 273, 274 chelation, siderophore binding 28: 236 content of magnetotactic bacteria 31: 144
138
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
core animal ferritins 40: 326– 329 bacterial ferritin 40: 326– 329 bacterioferritin 40: 326– 329 formation in ferritin 40: 325, 326 countering problems of dependence 40: 284, 285 deficiency, Synechococcus 47: 38 deprivation 31: 104 in mycobacteria 31: 105, 106 detrimental properties 40: 283, 284 effect on luciferase synthesis 26: 266 ferric form 46: 136, 273, 274 forms of 38: 216 growth limitation 38: 189, 190 haem biosynthesis regulation 46: 288, 289 in cyanide metabolism 27: 76, 85 in oxygenase catalysis 38: 49 in Rhizobium 45: 116, 117 in Saccharomyces cerevisiae 43: 3– 13 in Schizosaccharomyces pombe 43: 9, 10 in R. japonicum bacteroid hydrogenase 29: 14, 15, 21 lux gene regulation and the role of 34: 45, 46 mechanism of oxidative DNA damage 46: 124, 125 metabolism 43: 201 metabolism controlled by Fur protein 46: 293 nitrogenases based on 30: 6, 8, 9,12 oxidation/reduction 38: 220, 221 oxide, in magnetotactic bacteria, see Magnetite Pasteurella multocida response to limitations 46: 16– 18 protection from hydrogen peroxide damage 31: 143, 172 protein analysis in vivo 38: 218– 220 reductive liberation 43: 54 response regulatory (Irr) protein 46: 288, 292 scavenging, by Aquaspirillum magnetotacticurn 31: 144, 145 by mycobacteria 31: 104– 106 see also Magnetite; Magnetotactic bacteria siderophores 38: 181, 217, 218 siderophore-mediated 43: 45 storage, mycobactin role 31: 105, 106 storage, siderophores in 43: 53, 54 storage in bacteria 40: 281– 350 sulphide, magnetic 31: 177, 178 transport 38: 181, 217
transport systems 46: 293, 294 transport in Saccharomyces cerevisiae 43: 4 by fungi 43: 39 – 68 of high-affinity uptake 43: 64, 65 comparison of mechanisms 43: 68, 69 Fe(II) as source of danger 43: 67, 68 Fe(II) reoxidation to Fe(III) 43: 62, 63 low-affinity uptake of Fe(II) 43: 65, 66 reduction before uptake 43: 54 – 66, 55, 56 transcriptional regulation 43: 50 transport as Fe(III) 43: 63, 64 uptake before reduction 43: 43 – 54 uptake, by M. leprae 31: 76 exochelin-mediated 31: 105 uptake in bacterioferritins 40: 323– 326 uptake in nodule 45: 131, 132 Iron(III) reduction 31: 226, 263– 265 Iron-binding protein 47: 37, 38 Iron-free siderophores 43: 51 Iron-regulated envelope proteins (IREPs) 31: 105; 39: 144, 182 in M. leprae 31: 80, 105 Iron-regulatory protein (IRP) 46: 288 Iron-repressible outer membrane protein (IROMP), in A. magnetotacticum 31: 145 Iron-storage proteins 40: 305– 316, 333 within bacteria 40: 314, 315 in strict aerobe 44: 10, 11 Iron-sulphur centres 31: 232 fumarate reductase 31: 252, 253 of NapA 45: 65 TMAO-reductase 31: 262 Iron– sulphur clusters of dioxygenases 38: 61 – 72 amino acid sequence comparisons 38: 67, 68, 71 classes 38: 61 – 63 ligand analysis 38: 63 site-directed mutagenesis 38: 68 – 72 spectroscopy 38: 63, 65 – 67, 66 Iron– sulphur clusters, in hydrogenase 29: 21 assembly-disassembly 44: 7– 10 Tat protein translocation pathway 47: 202, 203 Iron-sulphur clusters/centres 46: 121 bacterial defences 46: 133 damage by superoxide 46: 119– 122 E. coli 46: 121, 122 in oxygen-sensitive enzymes 46: 139, 141, 332 nitric oxide reaction 46: 332
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 oxidation in B. thetaiotaomicron 46: 138, 139 oxidative damage 46: 123, 124, 332 regeneration 46: 332, 333 repair in E. coli 46: 121, 133, 332 SoxR protein 46: 332 Iron– sulphur proteins 29: 15, 18 analysis in vivo 38: 219, 220 Irpex lacteus 37: 41 irr 45: 132, 133 IRR 45: 18, 21, 25, 29 irr gene 46: 288 Irr protein 46: 288, 292 Irradiation stresses 44: 252 Irradiation, glutathione protecting against effects of 34: 242, 256, 257, 277– 280 IS elements in instability of polysaccharides 35: 225– 227 IS3 element 29: 70 isc genes 46: 133 Isoagglutinins 26: 103, 104 Isocitrate 37: 296 Isocitrate dehydrogenase 26: 139 Isocitrate dehydrogenase 31: 110; 37: 256 dual specificity 29: 195, 196 in S. acidocaldarius 29: 189, 195, 196, 198 Km values 29: 195, 196, 198 in thermophilic archaebacteria 29: 187 NAD+-linked 29: 194 NADP+-linked 29: 194, 195 pig heart 29: 196 evolutionary significance 29: 196 Isocitrate dehydrogenase kinase 37: 108 Isocitrate dehydrogenase phosphatase 37: 108 Isoconazole, structural formula 27: 40 Isoelectric focusing 36: 22 Isofloridosides 37: 289 Isoleucine 42: 125, 132, 185, 186 Isoniazid (INH) 39: 168, 169 gene expression in M. tuberculosis after exposure 46: 27 – 29 mycolic acid biosynthesis inhibition 46: 26 – 28 Isonicotinic acid hydrazide 36: 62 Isopenicillin 37: 237 Isopenicillin N and glutathione, structural similarities 34: 243 synthase 38: 49, 73 Isopentenyl pyrophosphate hopane pentacyclic skeleton from 35: 264 synthesised 35: 259– 264
139
Isoprenoids as fungal sex hormones 34: 71 – 86 Isopropyl malate synthase (IPMS) 42: 186, 187 Isopropyl-b-D -thiogalatopyranoside (IPTG) 31: 205; 37: 201 Isothiazolone 46: 223 Isotope transport assays 38: 199, 200 Issatchenka orientalis, glutathione transferase activity in 34: 282 Johne’ s disease 39: 133 K1 mutant in Physarum polycephalum 35: 36 Kanamycin nucleotidyl transferase 29: 221 Kanamycin resistance, in vectors with TOL genes 31: 63 Kaolinite 32: 73 – 74 Kappa B 37: 148 KAR2 gene 31: 185, 213; 33: 104 as essential gene 33: 104 yeast BiP encoded 33: 104 see also KAR2p kar2 – 159 mutant, translocation defect 33: 105 KAR2p, BiP homology 33: 104 expression, heat shock inducing 33: 104, 105 role 33: 104, 105 models to explain 33: 105, 106 secretion, slow in erd1 mutants 33: 107 signal peptide and HDEL sequence 33: 104 transcriptional regulation 33: 104 Kasugamycin 36: 100 KDEL sequence 33: 106 KDO see octulosonic acid Keratin degradation, inhibition by griseofulvin 27: 11 Kethoxal 37: 186 2-keto-1-Methylthiobutyric acid pathway in ethylene production 35: 277, 279, 281– 284, 302 2-keto-3-deoxy-6-phosphogluconate aldolase 40: 159 2-Keto-3-deoxygluconate 29: 177 cleavage to pyruvate in S. solfataricus 29: 179, 191 2-Keto-3-deoxyglucose 37: 179 Ketoconazole 30: 78 action, artificial lipid bilayers 27: 48 – 50 corticosteroid replacement 27: 46 hyphal development, effect 27: 54
140
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
respiration, mitochondrial, inhibition 27: 52 sterol demethylase inhibition 27: 45 structural formula 27: 40 treatment, systemic mycoses 27: 4 Ketoconazole, C. albicans corticosterone binding and effects of 34: 113, 130 structure 46: 158 2-keto-D -gluconate dehydrogenase (2KGDH) 36: 253, 258 2-keto-D -gluconate reductase (2KGR) 36: 258 2-ketogluconic acid 40: 50 2-Ketoglutarate dehydrogenase 43: 136 Ketomycolates 31: 85 Ketomycolates 39: 168 Ketones 37: 199 KEX1 gene 34: 88 KEX2 gene 34: 88 KEX2p 33: 113 antiserum 33: 117 as Golgi-complex resident protein 33: 127 failure to retain in chc1 mutants 33: 128 function in late Golgi complex-"compartment 33: 113 SEC14p colocalization 33: 119 SEC7p localization relationship 33: 117 Killed cultures, stress-response-inducing effects 44: 252 Killer phenotypes, bacterial, quiescence and 46: 228 Kinase dendrographs 41: 200 Kinase, protein, cAMP-dependent, fruiting and 34: 178 Kinases control of phosphate flow 35: 120– 123 see also phosphorelay initiating sporulation in Bacillus subtilis 35: 113– 115 isolation of genes for 35: 116– 118 kinase activity in Physarum polycephalum 35: 40, 41, 45 – 47, 55 – 58 Kineosporia 42: 51 Kitasatosporia 35: 262 Klebsiella 35: 157, 190; 39: 1, 2, 13, 21; 40: 42; 41: 118 Klebsiella aerogenes 35: 156, 160, 170, 215; 39: 4; 40: 245; 41: 117 cadmium resistance 38: 227 lead resistance 38: 228 glucose dehydrogenase 27: 155 sodium extrusion 26: 130 Klebsiella bulgaricus 33: 46, 51 Klebsiella marxianus 33: 51
Klebsiella oxytoca 39: 4– 6, 8, 9, 12 – 14, 20 – 22 – 24; 43: 180; 45: 55, 57 Klebsiella pneumoniae 35: 278; 39: 4; 40: 18, 22, 51, 52, 53 – 55, 57, 59 – 61, 154, 329, 331; 43: 180, 196; 45: 57, 58 as nif gene donor 30: 13, 18 and cell-surface polysaccharide biosynthesis genetics 35: 192, 193, 202, 204, 210, 211 process 35: 157, 161 regulation 35: 214, 220, 221 structure and attachment 35: 146– 148, 149 antibiotic treated, effects of serum 28: 240, 241 biofilm, antimicrobial susceptibility 46: 225 cell septation in 36: 220 cell shape 36: 193, 199 E. coli K-l2 genome comparison 46: 34 effect of mecillinam 36: 193, 238, 239 glucose dehydrogenase in 40: 47, 48 homology, E. coli Type I 28: 99 lateral wall and septum formation 36: 222, 229, 230, 230, 231, 235 LED control 36: 201– 204 morphology mutants 36: 206, 207, 213 nif gene regulon 30: 9 – 12 nitrogenase 30: 7, 8 nitrogen/oxygen repression 26: 76 NtrC and NifA proteins 31: 32 N-terminal amino acids 28: 100 peptidoglycan in 36: 208, 208, 209, 228, 229 siderophore production 28: 236 susceptibility to chloramine 46: 214 transducers 33: 300 Kloeckera spp., S-formylglutathione hydrolase 34: 289 Kluyveromyces 43: 5; 26: 2 Kluveromyces lactis 36: 99; 40: 100 D -lactic acid 40: 369 endoplasmic reticulum retention signals 33: 108 SEC14 gene 33: 126 SEC14p homologues 33: 126 Km values, hydrogenases 29: 15, 16 bacteroid 29: 17 KMBA see methylthiobutyric acid Kogure tentative direct microscopic method of counting live bacteria 41: 103–106
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Krebs cycle 45: 290, 292, 297, 299, 304, 319, 324, 332 carbon sources entering 45: 313 Kryptophanaron alfredi symbiont, lux genes 34: 25 Kynurenine formamidase 42: 61 al hormone of P. sylvaticum 34: 81 L -(N
1
-phosphono)methionineS-sulphoximinyl-Ala-Ala 36: 54 L1 mutant in Physarum polycephalum 35: 35, 36 L -2-Monochloropropionic acid, commercial production 38: 143, 158 Labelling studies 43: 120, 121, 131 Laccaria laccata, transformation 34: 191 Laccase 34: 162, 179, 180 lac-nif gene fusions 30: 11, 13 Lactaldehyde 37: 195, 196, 198, 199, 206 dehydrogenase 37: 180, 194– 196, 205, 206, 216 Lactamase 37: 163 Lactate 37: 197, 261 dehydrogenase (LDH) 36: 163, 252; 37: 180, 197, 240; 45: 304, 325 flux analysis of growth on 45: 307 hydrophobicity causing stability 29: 221 phenotype 45: 325 racemase 37: 180 fermentation pathway 46: 139, 140 Lactate/sulphate, growth on 31: 249– 251 Lactic acid methylglyoxal 37: 179, 188, 191, 192, 193, 195– 197, 205, 206 pH stress 37: 260 Lactic acid bacteria 39: 222 yeast flocculation 33: 13 as antimicrobial agent 32: 94 dehydrogenase (LDH) 39: 213 effect on DNA 32: 97, 98 meat treatment with 32: 102 prolonged bacteriostatic effect on meat 32: 102 Lactobaciilus casei lipoteichoic acid, alanylation of 29: 262 salt effect on 29: 270 chain elongation 29: 249 content growth stage effect on 29: 267 pH effect 29: 267 extracellular, negligible 29: 273 glycolipid and fatty acids in 29: 238 low alanine, autolysin activity 29: 290 metabolism 29: 247 mutant, lacking D -alanyl ester 29: 262
141
short-chain homologue, synthesis 29: 252 structure 29: 255 synthesis 29: 248 membrane lipid metabolism 29: 259, 260 phosphate limitation effect 29: 269 vesicles containing 29: 248, 274 methotrexate resistant strain, inhibition of thymidylate synthase 27: 15 Lactobacillus 42: 31 – 34, 39 Lactobacillus acidophilus 42: 25 assembly 33: 234 S-layer 33: 226 Lactobacillus brevis 39: 220 Lactobacillus casei 37: 260; 42: 241, 243, 244; 44: 6, 15, 16, 20, 22, 28 class I aldolase in 29: 184 glycolipids and glycerophosphoglycolipids, structure 29: 253, 255 Lactobacillus curvatus 37: 197 Lactobacillus fermentum lipoteichoic acid, content, growth stage effect on 29: 267 pH effect 29: 267 extracellular 29: 273 acylated 29: 273 poly(glycerophosphate), alanyl residues 29: 243 Lactobacillus helveticus, S-layer role 33: 253 Lactobacillus johnsonii 42: 34, 40, 41 Lactobacillus lactic 37: 312 Lactobacillus lactis 42: 38 Lactobacillus pentosus 42: 107 Lactobacillus plantarum 35: 262, 264; 37: 139, 259, 260; 39: 220, 222 iron requirement 38: 190 Lactobacillus reuteri 42: 39 Lactobacillus sake 37: 197 Lactobacillus sp. 37: 251, 259, 260 Lactococcus garvieae, glycerophosphoglycolipids, structure 29: 256, 257 lipoteichoic acid biosynthesis, digalactosyl residues in 29: 243 fatty-acyl composition 29: 239 glycerophosphoglycolipids in 29: 254, 256, 257 structure 29: 244 synthesis 29: 254 Lactococcus lactis 36: 37; 37: 143, 151; 39: 210, 214, 215; 44: 6, 11 – 15, 21, 22, 28 galactosylated
142
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
diglycerophosphoglycolipid in 29: 261 lipoteichoic acid, chain composition 29: 242 estimates of content 29: 247 fatty-acyl composition 29: 239 structure 29: 242 Lactoferricin 37: 143 Lactoferrin 36: 21; 37: 136; 39: 145 Lactose 39: 67 Lactoyl-histidine 37: 193 lacZ gene fusion glgC gene 30: 223– 225, 227, 228 to CHO1 gene 32: 27 to INO1 promotor 32: 20, 21, 39 – 41 Laetiporus sulphureus 35: 278 laf (lateral flagella) gene 32: 68 Lagenidium giganteum, sex hormones 34: 80 L -alanyl-L -b-(2,3-epoxycyclohexyl-4)alanine 36: 53 Lambda (l) bacteriophage 29: 41 Lambda phage vector histidine transport operon 28: 164 Lambs, K99 E. coli, adhesin, intestine 28: 75 Laminaria 37: 6 Laminarinase activity, C. albicans 27: 300– 302 Lamprobacter modestohalophilus 26: 161 Lampropedia hyalina, S-layer structure 33: 239 Lancfield classification 28: 233 Langmuir-Blodgett films, supports 33: 259 Lanosterol and hopanoids 35: 258, 267 Lanosterol, azole interaction 46: 162, 163 Lanthanum 37: 113 Lanthionine 37: 151 LAO, see Lysine-arginine-ornithine binding protein L -Arginine 26: 37, 38 (table) Laser dark-field microscopy, flagellar motor-function analysis 32: 160, 161 L -Asparagine 26: 12, 51 LasR, luxR and, homology 34: 40 LasRI 45: 227 Last Universal Ancestor (LUA) 40: 353, 356, 357, 358, 359, 361, 363 Latency, non-culturable cells 47: 89, 90 Lauric acid 26: 239 L-Chlorohexane dehalogenase 38: 164 LDH 39: 215 Lead, microbial resistance 38: 213, 228 Lecanora atra 41: 73 Lectin-like activity of cryparin 38: 9
Lectins 33: 48, 62, 63 barley, in wort 33: 59 calcium and manganese in 33: 47 carboxyl-rich 33: 48 cysteine residues 38: 9 definition 33: 48 hypothesis, of flocculation 33: 45, 47, 48 in Campylobacter fetus lipopolysaccharide detection 33: 252 in flocculation, see Flocculation mannose-specific 33: 53 M. smegmatis wall-associated 31: 79, 80 of yeast virus 33: 63 of yeasts and bacteria 33: 51 – 53 polysaccharide affinity, premature flocculation due to 33: 60 sugar-binding sites 33: 48, 49 sugar-specificity 33: 49, 53 use by infecting organisms 33: 52, 53, 63 viral 33: 53 LED control (lateral wall elongation control over division) 36: 191, 193, 193, 199, 234, 238 Leghaemoglobin 29: 26, 27, 39 heme synthesis for 29: 40 haem synthesis in 45: 128, 129 Legionella micdadei 37: 108 Legionella pneumophila 40: 154, 336; 44: 111 Legume root nodules, hydrogen oxidation 29: 4, 5 Legumes 45: 239– 243 Leishmania donovani 37: 246, 247; 43: 20 Leishmania spp., glutathione-related processes 34: 245, 275 Leishmania, heat-shock response 31: 210, 212 Leiurus quinquestriatus 37: 141 Leiurus quin-questriatus hebraeus 37: 141 Lentinula edodes 42: 2 – 4, 10 fruiting in 34: 151, 178– 180, 190 intracellular proteins 42: 7 Lentinus lepideus 35: 278 Lenzites betulina 35: 278 Lepidopteran 37: 143 Leprosy 31: 72; 39: 133 see also Alycobacterium leprae chemotherapy 31: 72 vaccine 31: 72 Leptospirillum ferrooxidans 45: 176 Lethal stress 44: 242 Leucaena leucocephala 43: 132 Leucine 26: 21; 42: 125, 128, 132, 186, 187 regulation, branched-chain transport 28: 150
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 starvation, regulation, transport derepression 28: 157 zipper 32: 37 Leucine-isoleucine-valine system (LIV-1) 28: 150–163 see also Escherichia coli, amino acid transport, branched chain; Pseudomonas LIV-BP (LIV-binding protein) gene 28: 159 livJ gene, nucleotide sequence 28: 159 transcription, model 28: 160 Leucine-isoleucine-valine-alaninethreonine (LIVAT)-binding protein 28: 161– 163 Leucine-responsive regulatory protein See Lrp Leucine-specific transport (LS) 28: 150– 156 deletion mutants 28: 153 double regulatory mutants 28: 157, 158 gene organization 28: 151, 152 leucyl-tRNA role 28: 156 location, genetic 28: 150 periplasmic component 28: 151 regulation 28: 154– 156 secretion 28: 152– 154 Leuconostoc 37: 259, 260 Leuconostoc gelidum 37: 143 Leuconostoc mesenteroides 37: 252, 259, 260; 39: 220 Leukemia 37: 188 Leukocin 37: 143 Leu-Leu-4-azido-2-nitrophenylalanine 36: 44 Leu-p-nitroanilide 36: 44 LeuX 45: 27, 28 Levansucrase 37: 93 LexA protein, lux gene expression and 34: 47, 48 L -Fucose 42: 43 L-glutamate 44: 232 repression by 26: 71 L -Glutamic acid 26: 39 (table), 53 and ethylene production 35: 281 L -Glutamine 26: 39 (table); 44: 232 nitrogen metabolite co-repressor 26: 70, 71 uptake 26: 52, 53 L -Histidine 26: 38 (table) LiaR gene 34: 27, 29, 30, 40, 41 as member of superfamily of transcriptional regulators 34: 40 function/properties/location 34: 27, 29, 30 probes containing and/or probing for 34: 50 Libraries, gene sequence 38: 211
143
Lichens 38: 3 algal symbiosis, hydrophobins in 38: 33, 34 Life cycle of Physarum polycephalum 35: 3 – 6 amoebal phase 35: 3, 4 plasmodial phase 35: 4, 5 sexual cycle and inheritance 35: 3, 5, 6 Ligand binding, truncated globins 47: 271– 273 Light effects, on fruiting 34: 181– 184 emission, in bioluminescent bacteria 34: 6, 7 responses to 41: 263– 266 RuBisCO activation 29: 144, 145 Light-driven active transporters 40: 87, 91 Light-harvesting apparatus, Synechococcus 47: 8 – 11 Lignin 37: 3, 4, 5, 41 degradation 42: 9 degradation by fungi, industrial application 34: 190 peroxidase (LiP) 41: 63 Lignocellulose degradation 41: 61 – 64 Limestone biomineralization, fungal oxalate in 41: 74– 76 Limulus polyphemus 37: 144, 151 Limulus sp. 37: 31 Linamaria, Lotus corniculatus 27: 96 Lincomycin 28: 218 decrease, fibronectin-binding 28: 225 fimbriation, Neisseria meningitidis 28: 224 haemolysin, inhibition 28: 232 inhibition, streptolysin-S 28: 234 lipase production 28: 233 toxin production, enhancement 28: 234, 235 Lindenbein 36: 53 Linoleic acid 37: 186 Lip A gene 37: 121, 122 Lipase production, acne vulgaris 28: 235 Lipase, amphotericin resistance 27: 297, 298 Lipid(s) 39: 145– 152, 154, 174– 177, 179– 181; 42: 29 absence from carboxysomes 29: 126 alteration, polyene-resistant fungi 27: 34, 35 anchor, lipoteichoic acids 29: 236– 240, 243, 249 and resistance to amphotericin 27: 292, 293 artificial bilayers, imidazole drugs 27: 48, 50
144
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
bacterial ice nucleation activity and 34: 222 bilayer, S-layer interactions 33: 230, 231 calcium 37: 86 – 92, 115, 124 carrier, in S-layer biosynthesis 33: 249, 250 cell wall 31: 81, 85, 102 changes, Candida, effect of naftifine 27: 56, 57 electron-transparent zone 31: 102 hydroperoxide 37: 178, 185, 186 in adherence of C. albicans to host cells 30: 72 in archaebacteria 29: 170, 185 in M. leprae, membrane 29: 274; 40: 370– 372 turnover and lipoteichoic acid synthesis 29: 258– 261 membrane composition, glycerol permeability and 33: 181, 182 osmotic stability of membrane 33: 182 membrane, see also Cell membranes, molecular model peptides 37: 157–166, 160, 161 peroxidation 34: 271; 46: 127– 129, 321, 322 glutathione S-transferase protecting against effects of 34: 282 pH stress 37: 252 plasma membrane 31: 76 polyene antibiotics 27: 286– 289 requirement of hydrogenase 29: 21, 22 secretion by Gram-positive bacteria, penicillin effect 29: 274 see hopanoids synthesis, and secondary nonspecific events 28: 238 Lipoarabinomannan (LAM) 37: 78; 39: 141, 143, 145, 171, 172, 175, 180– 184, 186 Lipocarbohydrate 29: 246 Lipoglucogalactofuranan 29: 243 synthesis 29: 258 Lipoglycan, glycerophosphatecontaining 29: 234, 243– 245 fatty-acyl composition 29: 239 lipomannin relationship 29: 245 structure 29: 243– 245 model of 29: 293 surface location 29: 274 synthesis 29: 258 Lipoglycans 39: 133 Lipoglycopeptides 39: 154 Lipoic acid, in eubacteria and eukaryotes 29: 200 search for in archaebacteria 29: 209
Lipomannan (LM) 39: 181 biosynthesis 29: 258 glycerophosphate-containing lipoglycan, relationship 29: 245 magnesium ion binding 29: 291 mesosomal vesicle association 29: 275 succinylated 29: 245, 246 autolysin activity and 29: 285 Lipomyces, apomixis in 30: 26, 30 Lipooligosaccharides (LOS) 39: 151 Lipopolysaccharide (LPS) 37: 162, 163, 166, 246, 261; 39: 141, 154; 43: 204; 44: 146 association with F-like pili receptor protein 29: 87, 88 Campylobacter fetus, detection 33: 252 in Aeromonas spp., S-layer anchoring 33: 251 pseudomonal 46: 40 resistance to organic acids 32: 94 Lipoproteinase 28: 234 Liposaccharoides (LPS) and cell-surface polysaccharide biosynthesis 35: 137 export 35: 172, 174, 176, 181, 183, 185, 188 Liposomes antifungal agent delivery 30: 79 inhibition of autolysins 29: 289 Lipoteichoic acid 29: 233– 302, see also individual bacterial species acylated 29: 238, 239 autolysin control 29: 289, 290 extracellular 29: 273, 274 alanine/phosphate ratio 29: 290, 294 alanylation concomitant with poly(glycerophosphate) synthesis 29: 263 autolysin inhibition 29: 283, 284– 286 micellar organization role 29: 284, 290 biological activities, functions 29: 277– 295 biosynthesis 29: 234, see also Lipoteichoic acid, cellular content conditions affecting 29: 265– 270 energy deprivation effect 29: 269, 270 growth rate and stage, effect on 29: 267 location of enzymes 29: 275, 276 membrane lipid metabolism and, proposed relationships 29: 260 membrane lipid turnover 29: 258– 261
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 novel system for studying 29: 248 phosphate limitation effect 29: 268, 269, 295 site 29: 276 sporulation effect 29: 270 carrier (LTC), 277– 283 as in vitro analogue of linkage unit 29: 280 in ribitol phosphate polymerization 29: 280 inhibitor 29: 277, 281, 283 structural requirements 29: 277, 278 cellular content 29: 247 effect of growth stage and rate 29: 267 osmotic shock effect 29: 295 pH and carbohydrate source effects on 29: 267, 268 cellular location 29: 274– 276, 291 cell-wall lytic enzymes interaction 29: 283– 290 chain substitution 29: 240, 241 addition of residues 29: 261– 263, 276 conditions affecting 29: 270, 271 protein synthesis effect on 29: 271 choline residues, effect on autolysin inhibition 29: 284, 285 critical micellar concentration 29: 274 D -alanyl residues, see Alanyl residues in lipoteichoic acids deacylated 29: 239 autolysin control 29: 289, 290 extracellular 29: 273 inactive as carrier (LTC) but inhibitor 29: 277, 281, 283 loss of anti-autolytic activity 29: 289 definition 29: 234 degradation and excretion 29: 272– 274 divalent cation interactions 29: 291– 294 extracellular 29: 272, 273 acylated or deacylated forms 29: 273 acylated, secretion of 29: 274 deacylated, formation 29: 273 glycerophosphate-containing lipoglycan, see Lipoglycan glycerophosphoglycolipids and glycolipid relationship 29: 235, 236, 257 glycolipids in 29: 236, 237 glycosyl residues, see Glycosyl residues in lipoteichoic acid glycosylation 29: 240, 261, 262 in vesicles, due to penicillin 29: 248, 274 lipid anchor 29: 236– 240, 243 chain synthesis 29: 249
145
magnesium ion binding 29: 291, 294 metabolic fate 29: 272– 274 metabolism 29: 247– 274 conditions affecting 29: 265– 270 related macroamphiphile biosynthesis 29: 256– 258 negative charge and autolysin inhibition 29: 289 occurrence 29: 235– 247 phenol – water extraction 29: 239, 274 pneumococcal, see Forssman antigen poly(digalactosyl, galactosylglycerophosphate), structure 29: 243 poly(glycerophosphate) 29: 234 acceptor substrates 29: 250, 276 alanyl residue distribution 29: 242, 243 anti-autolytic, structural requirements 29: 286, 287, 290 antibodies to 29: 274 autolysin inhibition 29: 285 chain elongation, mode 29: 248, 249 chain structure 29: 240– 243 chain structure model 29: 292, 293 diacylglycerol, see Diacylglycerol fatty acids in 29: 237– 239 groups based on chain substitution 29: 240, 241 length and substitution of chain 29: 240, 241 lipid anchors 29: 236– 240, 243, 249 location of 29: 274, 275 metabolism 29: 247– 254, 276 non-galactosylated species 29: 242 occurrence and structure 29: 235– 243, 292, 295 synthesis of short-chain homologues 29: 252 synthesis, alanylation concomitant with 29: 263 synthesis, linkages in 29: 253, 254 unsubstituted 29: 242 poly(glycosylglycerophosphate), synthesis 29: 254 poly(hexosylglycerophosphate) 29: 234 quantitative aspects 29: 247 release, penicillin effect 29: 273, 274, 295 reviews on 29: 235 short-chain homologues 29: 252 alanylated 29: 263 space-filling models 29: 238, 292, 293, 295 Streptococcus pneumoniae 29: 246, 247 structure 29: 235– 247, 292, 293, 295 succinylated lipomannan in lieu of 29: 245, 246
146
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
surface, proteins associated with 29: 275 teichoic acids relationship 29: 234 unsubstituted 29: 234, 241, 242, 282 action as carrier 29: 281, 282 model 29: 292 Lipoteichoic acid-deacylating lipases 29: 273 Lipoxygenase activity in Achyla spp., antheridiol effects 34: 78 Listeria 37: 251, 312 Listeria innocua 40: 316, 338 Listeria ivanovii 40: 153 Listeria monocytogenes 37: 262, 304; 40: 58, 153, 154; 44: 73, 75 – 77 macrophage genes induced by 46: 38, 39 microarray expression profiling of host cell response 46: 35, 38, 39 iron transport assay 38: 217 Lithium 37: 235 chloride, growth inhibition 33: 160 ions, regulation, proline transport 28: 171 Lithoautotrophic metabolisms 39: 237 Litho-autotrophs, megaplasmid role 29: 148 LIVAT binding protein deficiency 28: 161– 163 Liver function 42: 30 L -lactate dehydrogenase (L -LDH) 39: 225 L -Leucine 26: 39 (table) L -Lysine 26: 38 (table) L-Methionine catabolism in ethylene production 35: 277, 281, 287 L -Methionine-DL -sulphoximine 26: 71, 196, 214 L -Methionine 26: 38 (table) L -Methionine (S )-sulphoxime, glutathione biosynthesis inhibited by 34: 250 Lomofungin 27: 217 biosynthesis 27: 247 inhibition of RNA synthesis, yeast 27: 267 isolation 27: 240 Lon 44: 121, 126 lon gene 31: 193, 195, 196 function of protease 31: 195, 196 transcription increased by temperature 31: 196 Long-chain fatty acids (LCFA) 32: 88, 89, 93 see also Organic acids Longevity, bacterial 47: 69, 70 see also cell death Longitudinal strain 32: 215, 217 Longitudinal stress 32: 194, 206, 207, 208, 216
Lophotrichous cells 33: 281 L -Ornithine transaminase 26: 23, 24 absence of nitrogen repression 26: 23 nitrogen-rich medium effect 26: 23, 24 Lotus corniculatus copper spot disease, Stemphylium 27: 87, 96 cyanogenesis 27: 96 – 98 Lotus tenuis, b – cyanoalanine synthase activity 27: 83, 84 Lotustralin, Lotus corniculatus 27: 96 Low-molecular mass molecules (LMMM) 40: 335 Low-molecular weight (LMW) iron pool 40: 337– 339 L-PAC acidification of fermentation medium 41: 37 biochemical production 41: 4 – 11 bioconversion phase 41: 34 choice of production strain 41: 12 comparison of kinetic evaluations 41: 28 effect of benzaldebyde solubility 41: 30 – 32 effect of dissolved oxygen concentration on metabolism 41: 14, 15 effect of pH on cellular metabolism 41: 15 effect of temperature on metabolism 41: 15 fermentation process 41: 11 – 34 immobilization of enzymes or biomass 41: 26 – 30 industrial production process 41: 34 – 39 methods for influencing production 41: 33, 34 nutrient effects in production 41: 18 – 20 physical variables of fermentation 41: 34 physiochemical production conditions 41: 13 – 16 physiological condition of cells for optimum production 41: 16 – 18 production by batch, fed-batch or continuous fermentation 41: 20, 21 production by yeast 41: 1 – 45 production mechanism 41: 4, 5 reduction of toxic effects of substrate, product and byproduct 41: 23 – 33 role of nutrients/buffering agents 41: 24 substrate dosing 41: 24 – 26 two-phase fermentation medium 41: 32, 33 use of additives to modify metabolic activity 41: 21 – 23 L-Phenylacetylcarbinol. See L-PAC L -Proline 26: 39 (table) 78
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 L -propargylglycine
(2– amino-4 – pentynoate: LPP) 36: 58, 59 L-ring, flagella 33: 284, 291 Lrp 45: 9, 10, 17 binding sites 45: 10 –12 in DNA inversion 45: 24 – 28 lrp gene 46: 286, 287 L -sorbose dehydrogenase (SDH), 261, 262, 261 LTC, see Lipoteichoic acid, carrier L -Threonine 26: 39 (table) L -Tryptophan 26: 39 (table) Luciferase(s) 34: 9 – 18 active-site residues 34: 16 – 18 aldehyde specificity 34: 8, 9 assays 34: 9 – 14 coupled 34: 11 dithionite 34: 10, 11 standard 34: 9, 10 electron-carrier function 34: 46 expression quotient 26: 261 fatty-acid reductase complex and, direct interaction 34: 22 firefly 26: 274 flavin radical 26: 241, 242 flavin substrate specificity 34: 7, 8 genes, duplication 34: 15, 54 – 57, see also specific genes light emission and 34: 7 mutations 34: 16 – 48 peroxy flavin 26: 240 4a-peroxy FMN 26: 241, 242 reaction involving 34: 11 – 14 structure 34: 14 – 18, see also specific subunits (below) primary (=amino acid sequence) 34: 14 – 18, 52 –54 quaternary 34: 14 Luciferase, a subunit (LuxA protein) active sites 34: 16, 17 amino-acid sequence 34: 14 – 16 high conservation 34: 16 amino-acid sequence compared with other lux proteins 34: 52, 54 –57 gene, see LuxA Luciferase, b subunit (LuxB protein) active sites 34: 17 amino-acid sequence 34: 14 – 16 amino-acid sequence compared with other lux proteins 34: 52, 54 – 57 gene, see LuxB Luciferase, bacterial 26: 236, 238– 280 see also Bioluminescent bacteria active centre 26: 251– 253
147
aldehyde-binding 26: 240 applications, analytical/clinical 26: 274– 280 aldehyde-coupled assay 26: 275 bioluminescence test, mutagen detection 26: 279, 280 (table) enzyme ligand binding 26: 276 immobilized/co-immobilized coupled luminescent systems 26: 275, 276 in vitro 26: 274, 275 in vivo 26: 276– 279 nicotinamide –nucleotide coupled assays 26: 275 protease activity 26: 276 wild-type luminous bacteria 26: 276– 278 b-flavin 26: 268, 269 catalytic cycle 26: 239– 241 FMN-sensitized photoinactivation 26: 252 inactivation: by heat, urea, proteases 26: 248, 249 in vivo 26: 267, 268 intermediates 26: 239– 241 iron effect on synthesis 26: 266, 267 Lux phenomenon 26: 256 membrane-bound fraction 26: 248 multiprotein complex system 26: 247, 248 mutant 26: 249 oxygen effect on synthesis 26: 267 photo-affinity labelling with 1-diazo-2oxoundecane 26: 252 primary amino acid sequence 26: 249, 250 (fig) protein-bound flavin 26: 269 purification 26: 248, 249 Sepharose-linked 26: 252 stabilization of luciferase-peroxyflavin intermediate 26: 253 substrate binding 26: 251 subunit function 26: 251– 253 subunit structure 26: 249– 251 suicide reactions 26: 268, 269 synthesis 26: 263, 264 phenobarbital effect 26: 264 wild-type 26: 249 Luciferase-binding protein (LBP) 39: 298– 300 Lumazine protein (of Photobacterium spp.) 34: 7, 22, 23 gene (lumP), function/properties/ location 34: 27, 30, 31 in bioluminescent reaction 34: 13 Lumazine protein 26: 243
148
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Luminescence immune assays 26: 274 methods, overview 41: 104 see BioluminescenceLumP gene (lumazine protein), function/properties/ location 34: 27, 30, 31 Lumiredoxin 26: 247 Lupines, b – cyanoalanine synthase activity 27: 83, 84 Lupus LA protein, Ino4p homology 32: 35 Luteinizing hormone C. albicans and effects of 34: 111, 124, 125 C. albicans binding sites for 34: 121, 122 Luteinizing hormone-releasing hormone and Sacch. cerevisiae a- factor, homology between 34: 127 Lux (genes) 34: 5, 24 – 48 DNA downstream from 34: 26 – 29 DNA upstream from 34: 29 – 31 duplication 34: 15, 54 – 57, see also specific genes expression 34: 31 – 48 auto-induced 34: 35 – 43 cAMP-regulated 34: 43 – 45 differential 34: 31 – 34 in non-derivative organisms 34: 34, 35 iron-regulated 34: 45, 46 osmolarity-regulated 34: 47 oxygen-regulated 34: 46 physiological and genetic control 34: 35 – 48 organization 34: 24 – 31 Lux (proteins), proteins related to/accessory 34: 22 –24, see also specific proteins lux gene fusions 32: 68 LuxA gene 34: 15, 24 – 26 expression 34: 31 in non-derivative species 34: 34, 35 probes containing and/or probing for 34: 50, 51 LuxA protein (LuxA protein), see Luciferase, a subunit LuxB gene 34: 15, 24 – 26 expression 34: 31 in non-derivative species 34: 34, 35 LuxB protein, see Luciferase, b subunit LuxC gene (for fatty-acid reductase subunit (r)) 34: 24 – 26 DNA upstream from 34: 30 expression 34: 31 LuxC protein, see Fatty-acid reductase subunit
LuxD gene (for acyltransferase subunit (t) of fatty acid reductase complex) gene 34: 24 – 26 expression 34: 31 LuxD protein, see Acyltransferase subunit LuxE gene (of synthetase subunit of fatty-acid reductase complex) 34: 24 – 26 expression 34: 31, 33 stem –loop structures 34: 32 LuxE protein, see SynthetaseLuxF gene 34: 24 – 27 function/properties/location 34: 27, 43 LuxF protein, amino-acid sequence, lux proteins with sequences related to 34: 53, 54 – 57 LuxG gene 34: 26 – 29 function/properties/location 34: 26 – 29 LuxG, amino-acid sequence comparisons with other lux proteins 34: 54 LuxH gene 34: 29 function/properties/location 34: 27, 29 LuxI 45: 203– 207 LuxI gene (auto-inducer synthase), 27, 29, 30, 39 function/properties/location 34: 27, 29, 30 LuxM 45: 207, 211 LuxN gene 34: 43 LuxR 45: 208–211, 218, 219, 227, 232 LuxR protein 34: 39, 40, 45 LuxR protein-binding site (lux regulon operator) 34: 40, 48 LuxR* gene 34: 27, 30 function/properties/location 34: 27, 30 LuxS 45: 203 LuxY gene (yellow fluorescence protein), function/properties/ location 34: 27, 31 Lycopersicon esculentum 35: 294, 295, 301 Lycopersicon esculentum 37: 14 Lymphokines 30: 70 Lysine 26: 32; 37: 293; 42: 117, 137–139, 188– 190 decarboxylase 37: 238– 240 e-aminotransferase (LAT) 42: 138 synthetic pathway 36: 60 residue in halophilic proteins 29: 218 Lysine-arginine-ornithine binding protein 28: 164– 167 high affinity system 28: 174 Lysis 37: 157 Lysogenic bacteriophages 41: 119, 120 Lysophospholipids 29: 274 Lysosomal enzymes, phagocyte binding, fimbriae, E. coli 28: 91
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Lysozyme 37: 136, 147 treatment, bacteria, release of periplasm 27: 145 cell-wall twist changes, in models 32: 212 effect on bacterial threads 32: 198, 199 hydrolysis of proteins, adsorption to clay 32: 73 Lysp- mutation 34: 252, 259 Lysyl-2– aminopropionic acid (lysyl-aminoxyalanine) 36: 30 Lyt mutants 32: 184, 185 m- and p-Xylene, growth on 31: 5, 41 see also Toluene catabolism; xyl genes B3 mutants 31: 40, 41 catabolism pathways 31: 5, 6 M. leprae, see Mycobacterium leprae M1 mutant in Physarum polycephalum 35: 35 M6 halophilic arcbaebacterium, see Halobacterium saccharovorum Macaca fascicularis 37: 142 Macroarrays, membrane 46: 9, 10 Macrofibres in cell walls 32: 186– 188 filament bending 32: 187 formation/development 32: 187 range of twist 32: 188 species with 32: 188 Macroinjection and Physarum polycephalum 35: 58, 59 Macrolides, antibiotics, see Polyene antibiotics Macromolecule, see also Proteins see also Surfaces adsorption to surfaces 32: 56 – 57, 57 –61, 73 –75 attached/free cell action on 32: 73 – 75 synthesis, organic acids effect on 32: 97 Macrophage activation by M. tuberculosis and effects 46: 26 activation by S. typhimurium and effects 46: 36 cationaic peptide (MCP) 37: 143 cell lines 46: 36, 37 colony-stimulating factor 30: 70, 84 genes induced by Listeria monocytogenes 46: 38, 39 genes induced during S. typhimurium infection 46: 36 – 38 intracellular M. leprae 31: 101 activities enhanced 31: 108, 109 drugs active and screening systems 31: 116 iron in 31: 104
149
M. leprae killing mechanisms 31: 100 M. tuberculosis survival in 46: 26 in C. albicans infections 30: 69, 70 Macropitlium atropurpureum 43: 132 Magainin 37: 143, 149, 150 interaction with lipids and membranes 37: 157, 158, 161– 165 structure-function relationships 37: 152, 153, 153, 154, 156 Maghemite 31: 148, 176 Magnaporthe grisea 37: 15, 16 ABC drug transporters 46: 170 hydrophobic host adhesion 38: 29, 30 Magnesium 37: 84, 91, 101 binding characteristics of teichoic and lipoteichoic acids 29: 291 binding site in ADPglucose pyrophosphorylase 30: 193 binding to lipoteichoic acids, alanyl substitution effect 29: 294 inositol-1-phosphate phosphatase dependence on 32: 7 ions, in flocculation 33: 15, 16 limitation, phosphatidylglycerol content of cells 29: 269 RuBisCO activation 29: 135, 136 S subunit role 29: 138 teichoic and lipoteichic acid, role in enzyme activation 29: 293 role in scavenging 29: 291 yeast-to-hypha conversion in C. albicans 30: 59 Magnesium-dependent enzymes 29: 293 ALA dehydratase 46: 266, 267 Magnetic circular dichroism (MCD) 45: 62, 64 Magnetic moment 31: 166 Magnetite crystals 31: 126, 148 see also Magnetosomes aggregates 31: 166, 167, 172 as magnetotactic or homeostatic mechanism? 31: 172 composition, evidence 31: 148 crystallochemical properties 31: 149– 154 formation 31: 143, 160– 165, 171 chemical control 31: 162– 164 control/site 31: 161 ferrihydrite phase transformation 31: 159, 160, 162, 163 mechanisms 31: 160– 165 nucleation 31: 160– 162 rate of/two-step reaction 31: 162, 163 requirements 31: 145, 146, 162 scheme 31: 160, 161
150
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
growth 31: 157– 160, 159, 163– 165 amorphous iron in 31: 157, 159, 160 anisotropic, mechanism 31: 164, 165, 173 information transfer on 31: 171, 172 spatial constraints controlling 31: 164, 165 in chains 31: 151, 157, 166, 171 in Quaternary/Tertiary sediments 31: 174, 175 lattice images 31: 149, 150 membranes enveloping 31: 146, 147, 162 morphology 31: 148, 154– 156, 163– 165 bullet-shaped 31: 153, 155, 156, 164 control and constraints 31: 164, 165 cubo-octahedral/elongated cubooctahedral 31: 154– 156, 164 hexagonal 31: 154– 165 single-domain 31: 151, 155, 173 types 31: 156 orientation, control 31: 151, 165 palaeomagnetic aspects 31: 141, 172– 176 lack in sediments, reasons 31: 176 size 31: 147, 164 super-paramagnetic and multidomain 31: 173, 174 twinned crystals 31: 151 Magnetococci 31: 130, 131 detection 31: 132, 133 enrichment cultures 31: 136 Magnetosomes 31: 146 magnetite crystals, see Magnetite crystals membranes 31: 146, 147, 162 palaeomagnetic aspects 31: 141, 173– 176 polarity 31: 171, 172 Magnetospirilla 31: 131 see also Aquaspirillum magnetotacticum detection 31: 132, 133 enrichment cultures 31: 133, 136 hydrogen peroxide damage of 31: 143 Magnetospirillum magnetotacticum 40: 286, 309, 311– 313 Magnetotactic bacteria 31: 125– 181 see also Aquaspirillum magnetotacticurn; Magnetite crystals; Magnetotaxis aerotaxis 31: 136, 143, 169 applications 31: 126, 176, 177 axenic culture 31: 138– 141
biomineralization 31: 148– 165 see also Magnetite crystals biotechnological implications 31: 126, 176, 177 cell motility 31: 166– 168 banding patterns 31: 168, 169 creeping/gliding 31: 136, 138, 166 helical ‘flight path’ 31: 166, 168, 169, 171 discovery 31: 125, 126 ecological significance 31: 169– 172 geomagnetic field effect 31: 170 enrichment culture 31: 130, 134– 138 bacterial counts 31: 136 ‘capillary racetrack’ method 31: 136–138 harvesting method 31: 136, 137, 176 magnets used in 31: 134, 136, 137, 176 methods summary 31: 135 ‘purification’ method 31: 137, 138, 176 stratification in 31: 42 success assessment 31: 136 succession in 31: 130– 132 sulphide effect 31: 137, 138 Winogradsky column method, modification 31: 135, 137 fine structure 31: 146– 148 greigite in 31: 177, 178 hydrogen peroxide toxicity, protection from 31: 142, 143, 172 intracellular vesicles 31: 147, 148, 161 magnetic moment 31: 166 magnetism measurement 31: 145 methods of study 31: 130, 134– 141 micro-aerophilic 31: 144, 169 morphology 31: 130, 131 niche exploitation 31: 141– 145 niches at sediment-water interface 31: 133, 137, 141 observation/sampling methods 31: 130 occurrence 31: 126– 134 conditions for 31: 130 habitats 31: 126, 127, 133 in stored sediments/samples 31: 130– 132 succession of types 31: 131, 132 UK surveys 31: 128 optical birefringence 31: 145 oxygen tensions, for growth 31: 143– 145, 173 toxic to 31: 143, 169 palaeomagnetism and 31: 141, 173– 176 phenotypic properties 31: 139 physiology 31: 141– 146 population density/heterogeneity 31: 133
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 size 31: 147 survival, of drying-out 31: 171 of violent perturbations/environments 31: 143, 144, 170 Magnetotaxis 31: 165– 173; 41: 269 see also Magnetotactic bacteria, cell motility ecological significance 31: 169– 172 nutrient exploitation and 31: 141, 142 selective advantage 31: 141– 144, 171, 172 transfer of information on 31: 172 Magnets, in magnetotactic bacteria enrichment cultures 31: 134, 136, 137, 176 magnetotactic bacteria as 31: 126, 176 Mailard reaction 37: 187, 198 Maintenance energy 45: 318, 319 Maintenance, costs of, at low water potentials 33: 199– 201 Maize 37: 4, 5 Major basic protein (MBP) 37: 136, 143 Major facilitator superfamily (MFS) 40: 97, 100– 105, 107– 109, 107, 108, 110, 123, 128 Major intrinsic protein (MIP) family 40: 97, 98, 99, 99, 105, 127 mal genes 30: 226 Malaria, glutathione metabolism-affecting drugs in 34: 280 Malate 37: 296; 43: 130 Malate dehydrogenase 29: 197, 198; 31: 232, 251; 43: 134 dual specificity 29: 197, 198 H. marismortui, characteristics 29: 219 in methanogenic archaebacteria 29: 189 citrate synthase control 29: 214 in S. acidocaldarius 29: 189 in thermophilic archaebacteria 29: 187, 189, 221 Thermoplasma acidophilum 29: 221 Malate dehydrogenase, yeast 28: 191, 192 Malate-grown cells 40: 418 Malic acid 37: 260 Malic enzyme 43: 140– 142 “Malloch” strain [Actinomadura = Nocardiopsis] 27: 236, 237 Malonamidases 43: 130 Malonate 43: 130 Malonate/malonamate shuttle 43: 130, 131 Malondialdehyde 37: 186 Malonic dialdehyde accumulation 34: 271 Malonyl-CoA 31: 91; 45: 206 Maltase 42: 78
151
Maltodextrin phosphorylase 30: 190 Maltose 39: 55 flocculation inhibition 33: 17, 55 glycogen synthesis from 30: 189– 191 permease 36: 24, 26 Maltose-binding protein (MBP) 33: 298, 303 affinity for Tar protein 33: 303 mutations 33: 303, 305, 306 amino-acid substitutions 33: 306 suppression by Tar protein changes 33: 306 Tar protein interaction, see Tar protein Maltotriose 33: 19, 20 Malus sylvestris 35: 294, 295, 301 Mammalian cells, pili promoting adherence to 29: 54, 61, 83, 95 NMePhe pili 29: 96, 102 Mammalian peptides 37: 136, 137 Mammalian sex hormones, fungal interactions with, see Sex hormones Mammalian systems, BiP (binding protein) 33: 103 Golgi complex 33: 111, 113 KDEL sequence 33: 106 protein transport from endoplasmic reticulum to Golgi complex 33: 89 – 91 protein transport into endoplasmic reticulum 33: 78, 79, 79 signal recognition protein (SRP54) 33: 84 Manduca sexta 37: 138, 139 Manganese 37: 121 intracellular transport 43: 21 in rhizobia 45: 142 oxidation, microbial 38: 207 regulation of uptake 43: 22 stimulation, enzyme-produced cyanide 27: 91, 93 superoxide dismutase 28: 21 transport in Saccharomyces cerevisiae 43: 19 uptake in Saccharomyces cerevisiae43: 19 – 22 Manganese-dependent peroxidase (MnP) 41: 63 Mannans 37: 3 as flocculation receptor 33: 48 – 51 in fungal cell wall 46: 157 in mucocutaneous candidiasis 30: 70 in yeast cell wall 33: 43 side branches 33: 50, 51 unmasking and flocculation 33: 47 Mannanase 37: 4, 20, 23, 57; 42: 77, 78
152
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Mannan-sepharose column, Type I fimbrial binding E. coli 28: 109 Mannitol 39: 93 as carbon reserve 33: 175 as compatible solute 33: 174 medium influence on 33: 174 minor role 33: 172, 173 formation/utilization, pathways 33: 179 fruit-body expansion and 34: 186 fungi producing 33: 168 increase with non-growing phase 33: 173 uptake mechanism 33: 180 Mannoproteins, alterations in mnn mutants 33: 114 cell wall synthesis 27: 62 in yeast cell wall 33: 43 Mannose 37: 242 catabolism 42: 92 characterization 28: 81 – 84 compartmentalization of Golgi complex and 33: 114– 117 derivatives, adhesin receptors flocculation inhibition 33: 17 inhibition of mannose-specific E. coli 28: 107 in yeast glycoproteins 33: 114 Mannose, in adherence of C. albicans to host cells 30: 72 Mannose, pellicle formation, E. coli 28: 128 Mannose-containing glycoconjugates, E. coli colonization 28: 91, 96, 97, l00 Mannose-insensitive adhesins, E. coli 28: 87 – 90 haemagglutination 28: 117 differing from adhesins in epithelia 28: 76 uropathogenic strains 28: 79 – 81 use, typing E. coli 28: 72, 73 infantile enteropathogenic strains 28: 77 urinary tract infection, galactoserecognition 28: 89 Mannose-resistant (MR) pili 29: 61 animal-specific 29: 62 Mannose-resistant flmbriae 45: 23 Mannose-resistant haemagglutination (MRHA) activity 29: 75, 94 gene clusters 29: 76 Mannose-sensitive (MS) pili 29: 61, 75, 94 Mannosides, interaction with phagocytes 28: 83, 91 –93 Mannosucrose 37: 283 MAP (microtubule-associated proteins) and Physarum polycephalum 35: 22, 23
mar efflux pump 46: 230, 231, 233 induction 46: 235 Marasmius oreades cyanide production 27: 86, 87 cyanide resistance 27: 95 Marine environment, nitrifiers 30: 146 luminous bacteria in 34: 49, 50 Marine heterotrophic pseudomonad strain 16B 39: 263 Marinococcus sp. 37: 291, 294 MarR 45: 245 Mass spectrometry, inductively coupled plasma 38: 194 Mass transfer of nutrients, at solid –liquid interface 32: 54, 55 Mass-transfer resistance, biofilm role 32: 61, 62 fluid phase 32: 55 significance 32: 62 Mastoparan 37: 143, 150, 164, 165 MAT genes in fruit body formation 38: 22– 25 in SC3 regulation 38: 19, 20 MatA mutations linked to 35: 33, 34 mutations unlinked to 35: 34 MATE pumps 46: 229 Mathematical modelling 43: 101– 106 Mating type conjugative pili and 29: 58, 60, 87 control during sporulation 43: 84 sex hormones and the 34: 86 – 97 yeast 34: 86 – 97, 172 Mating-type genes 34: 155– 170 as master regulators 34: 155– 159 fruiting controlled by 34: 155– 170 molecular structure 34: 159– 161 Mating-type loci (MATa/Mata) 30: 23, 25, 33, 36 Maturation promoting factor see MPF Maximum specific growth rate(umax), nitrifying bacteria 30: 137–139 adaptations to increase 30: 138, 139 benefits in nature 30: 139 Mayer’s model 37: 47 M-cells of Schiz. pombe, sex hormones and the 34: 96, 97 MCP peptide 37: 136, 143 McpA 45: 174 McpG 45: 174 MCPs 41: 182, 240 classical 41: 259 clusters 41: 257 cytoplasmic domains 41: 243, 244, 249 cytoplasmic signalling 41: 244– 246 localization 41: 251, 252 receptors 41: 256 structural differences 41: 255
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 targeting to poles 41: 252, 253 transmembrane signalling 41: 243 Meat, colour, organic acids affecting 32: 102 organic-acidtreatment 32:100– 103,104 Mechanically driven active transporters 40: 87, 91 Mechanosensitive channels with large conductance (MscL) 40: 129 Meche operon 33: 314 Mecillanum 28: 218; 36: 193, 238, 239, 240, 242 binding to penicillin-binding protein-2 28: 240 subminimum concentrations, complement mediation of serum 28: 240, 241 effect on cell shape 36: 199, 202– 205, 207, 215– 218, 233, 234 effect on division mutants 36: 215 peptidoglycan synthesis and 36: 209, 210 septum formation inhibition 36: 214, 215 Media composition, effect on bacterial sensitivity to organic acids 32: 92 Media, axenic culture of magnetotactic bacteria 31: 140 casamino acids 28: 128, 129 Minca 28: 128, 129 minimal media 28: 128, 129 see also, Sporulation media slow-growing mycobacteria 31: 93, 112, 113 Trypticase soy broth 28: 129 Medicago sativa 37: 300 snow mould disease, cyanide produced 27: 86 Medium filtrates and recovery from stationary phase and dormancy 44: 243, 244 Medium-chain fatty acids (MCFA) 32: 88, 89, 93 Megabombus pennsylvanicus 37: 140, 149 Megaplasmid 29: 148 Meiosis 30: 29, 33 I, without meiosis II, yeast mutants 30: 35 II, characteristics, in diploid-spore formation 30: 34, 35 and failure of meiosis I in ovarian tumours 30: 47 mating type and nutritional control 43: 83, 84 prevention, until after meiosis I in
153
wild-type SPO12:SPO13 cells 30: 38, 39 suppression, in ovarian tumours 30: 47 without meiosis I completion in apomixis 30: 34, 35, 39 mitochondrial protein synthesis roˆle 30: 41, 42 non-permissive conditions for 30: 39 restoration in apomictic strains, conditions favouring 30: 37, 38 heat shock 30: 37, 39, 40, 42 prevention, mitochondrial protein synthesis inhibition 30: 41 protein synthesis inhibition 30: 38 – 40 semipermissive conditions for 30: 39 timing of events controlling 30: 39 – 41 Meiospores, fungal 38: 3 Melanin 43: 60, 61 Melibiose, sporulation media 28: 29 Melittin 37: 143, 149, 150, 152, 153, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165 Membrane associated Fe(III) reduction in fungi 43: 59 Membrane cell, see Cell membrane Membrane components, attenuation of gene expression 28: 167 PQM proteins, model 28: 165 Membrane depolarization 37: 84 Membrane macroarrays 46: 9 comparisons 46: 9 – 11, 31 Membrane potential 32: 153; 39: 208 Blastocladiella 30: 94 in chemotaxis 33: 316 Neurospora crassa 30: 98, 101 Membrane protein biosynthesis, Tat protein translocation pathway 47: 236– 239 Membrane proteins, in metal transport 38: 181 Membrane role in acid sensitivity 42: 261, 262 ‘Membrane tectonics model’ 37: 90 Membrane transport, carbon and nitrogen sources 43: 142– 150 Membrane, see also Plasma membrane; specific membranes, cell membrane; cytoplasmic membrane lipid composition 33: 181, 182 lipid peroxidation 46: 127– 129, 321, 322 osmoadaptation 37: 286 permeability, polyols 33: 181, 182 Membrane-associated enzymes, inhibition by polyene antibiotics 27: 33, 34
154
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Membrane-associated respiratory nitrate reductases (NAR) 45: 53 Membrane-bound transducer 45: 182 Membrane-derived oligosaccharides (MDOs) 37: 283, 284 Membrane-elution technique 36: 186 Menaquinone (MK) 31: 262, 263; 39: 180; 43: 178 Mendocutes 26: 159 (table) Meningitis, neonatal 28: 67, 71 X-specific E. coli 28: 90 Mercaptoethanol action, amphotericin resistances 27: 294– 296, 299– 303, 306 activation, b – glucanases 27: 304, 305 reduction of MDH 27: 157 Mercury biosensor 38: 212 microbial resistance 38: 228, 229 Bacillus 213, 229 resistance 32: 62 Meromycolate chain 39: 162, 163 Meromycolate, in mycolate biosynthesis 31: 83 Mesohaem 46: 275 Mesophilia 40: 364 Mesophilic organisms 29: 220 Mesorhizobium 43: 119 Mesosomal vesicles, lipoteichoic acid associated 29: 275 Mesosomes 31: 86 Messenger RNA, see RNA Messenger, calcium 37: 84, 93, 94 Metabolic activity, lowering, TNC 68 Metabolic control analysis 45: 322 Metabolic energy, early sources 40: 359 Metabolic engineering 36: 146 Metabolic fluxes, analysis 43: 101– 106 Metabolic overflow reaction 36: 151– 157, 179 Metabolic pathway databases, microarray data analysis 46: 13– 15 Metabolically injured non-culturable cells 47: 97, 98 Metabolism effect of low intracellular pH39: 213– 216 of aromatic compounds 39: 341– 354 phototrophic 39: 237 MetaCyc database 46: 14 Metal binding 44: 199 ligands 44: 197– 199 biogeochemistry and fungal organic acid production 41: 68 – 76 biotechnology and organic acids 41: 76 – 78
chemistry, organic acids 41: 50– 53 heavy, detoxification 34: 289, 290 in rhizobial symbiosis 45: 113– 155 ion tolerance 44: 239, 240 ion transport in eukaryotic microorganisms 43: 1 – 35 oxalates 41: 60 recovery 41: 76 – 78 sensors 44: 197, 198 shadowing 39: 154, 155 solubility products 41: 52 solubilization 41: 68 – 72 for recovery and bioremediation 41: 76 – 78 Metallothioneins 44: 183– 213 copper 38: 221 eukaryotic 44: 185– 188 evolution 44: 207–209 prokaryotic 44: 184, 185 yeast copper 44: 188 Metallothioneins I and II 44: 185, 187, 188 Metal-responsive elements (MREs)44: 187 Metals/metalloids 38: 177– 241 aluminium 38: 182, 214– 216 analysis 38: 190– 205 cell treatment for 38: 191, 192 chromatography 38: 198 colorimetry 38: 190, 191 contamination avoidance 38: 192 dye displacement 38: 198, 199 inductively coupled plasma – mass ion chromatography 38: 197, 198 ion-selective electrodes 38: 195, 196 isotope transport assays 38: 199, 200 neutron activation 38: 196, 197 proton displacement 38: 199 sample treatment 38: 192 spectrometry 38: 194 spectroscopy 38: 193, 194 transmission electron microscopy 38: 201– 205 voltammetry 38: 194, 195 antimony 38: 182 arsenic 38: 182, 225, 226 biosensors 38: 211, 212 cadmium see cadmium copper see copper detoxification processes 38: 183 essential 38: 180– 182 gene probing 38: 212, 213 germanium 38: 182, 227 “indifferent” 38: 183 ion complexation in media 38: 185– 190 and bioavailability 38: 185– 187 and growth limitation 38: 188– 190 and speciation 38: 185– 187 calcium concentration control 38: 187, 188
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 iron see iron lead 38: 213, 228 mercury see mercury molecular genetics 38: 210, 211, 232 molybdenum 38: 181 nickel 38: 224, 225 potassium see potassium properties 38: 183– 185 d block 38: 184 p block 38: 184, 185 s block 38: 183, 184 resistant/tolerant bacteria isolation 38: 213, 214 selenium 38: 182, 229 silver 38: 229, 230 sodium 38: 181 spectroscopy 38: 205– 209 analytical techniques 38: 193, 194 electron spin resonance 38: 208 electronic 38: 205, 206 metal binding sites 38: 205 Mo¨ssbauer 38: 209 nuclear magnetic resonance 38: 208, 209 tellurium 38: 230, 231 terminology 38: 179, 180 tin 38: 231 toxicity and resistance 38: 182, 183, 225 vibrational 38: 206– 208 zinc 38: 223, 224 Meta-pathway, see under Toluene catabolism Metarrhizum anisopliae 36: 131 hydrophobic host adhesion 38: 30 Meteorological significance of bacterial ice nucleation 34: 231 Methane metabolism, bacterial, see also Methanol dehydrogenase, Methane mono-oxygenase, and specific names classification 27: 182– 184 formation 29: 182; 46: 286 oxidation to methanol 27: 116–129 special features 27: 180, 181 studies 27: 117 Methane mono-oxygenase 30: 130 and haloalkane metabolism 38: 164, 165 as industrial catalyst 27: 128 electron donor 27: 126 mechanism 27: 128, 129 see also names of organisms substrate specificity 27: 124, 127, 128 Methane oxidation 30: 130, 171 studies, summary 27: 117
155
Methane production 31: 228, 229, 235; 39: 226 carbon dioxide reduction to 31: 235–239 Methanobacillus omelianski 40: 366 Methanobacterium bryantii 39: 226; 40: 366 nickel in hydrogenase 29: 20 Methanobacterium formicicum 35: 77, 83; 45: 57 Methanobacterium jannaschii 39: 244 Methanobacterium ruminantium 31: 238 Methanobacterium thermoautotrophicum 29: 181; 31: 243; 40: 286, 304, 309; 46: 137 class I aldolase in 29: 184 glucose catabolism in 29: 182 haem biosynthesis genes 46: 295, 296 incomplete reductive citric acid cycle 29: 189, 191 malate dehydrogenase 29: 198 nickel and iron– sulphur clusters 29: 21 nickel in hydrogenase 29: 20 succinate thiokinase 29: 215 2-oxo acid oxidoreductases 29: 202 Methanobacterium wolfei, AP1A hydrolases in 36: 93 Methanochondrions 31: 239 Methanococcus Methanochondrions formicicum 35: 78, 96 Methanococcus jannaschii 39: 17; 40: 122, 123, 286, 309, 314; 41: 182, 263 Methanococcus janneschi, haem biosynthesis genes 46: 295, 296 Methanococcus thermiphilus 45: 57 Methanococcus thermolithotrophicus39: 17 Methanochondrions vannielii 35: 76, 78, 84 AP1A hydrolases in 36: 93 Methanococcus voltae 29: 190; 35: 84, 95 Methanocorpusculum sinense, S-layer structural organization 33: 254 Methanofuran (MFR) 31: 236 Methanogenesis 31: 235– 243; 39: 227; 40: 358, 359, 364, 366, 366 carbon dioxide reduction 31: 235–239 Dp generation 31: 236, 238, 239 formate as reductant/oxidant 31: 239, 240 Dp generation 31: 239, 240 methanol reduction 31: 240– 242 Dp generation 31: 241, 242 other carbon compounds 31: 240– 243 acetate 31: 242 carbon monoxide 31: 241, 243 methylamine 31: 241, 242
156
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
proton electrochemical potential (Dp)generation models 31: 238, 239 substrates 31: 235 Methanogenic bacteria 37: 287, 291, 293, 295, 298 Methanogens 31: 141, 142, 228, 235 see Archaebacteria Methanohalophilus, sp. 37: 290, 291, 295 Methanol classification, ability to use 27: 182– "184 dissimilation 34: 288, 289 energy transduction, see Methane, Energy transduction metabolism, bacterial, special features 27: 180, 181 methylotrophs 27: 113, 114 reduction 31: 240– 242 Methanol dehydrogenase (MDH) 27: 129, 130, 132, 133; 36: 257, 286; 40: 10, 11, 23, 43 a2 dimer 40: 34 a2b2 tetrameric structure 40: 30 absorption spectra 27: 147 activators 27: 140, 141 alcohols oxidised 27: 135– 137 ab unit 40: 28 calcium in 40: 20 – 24 chemical identity 27: 143, 144, 147, 148 cytochrome c involvement, see Cytochromes disulphide ring 40: 31 electron transport systems 40: 37, 38 “functional coupling”, 166 general reaction, hydroxylation 27: 114 inhibitors 27: 141, 142 localization 27: 144, 145 mechanism 27: 157, 160– 162 model for expression 40: 65 molecular mechanism of synthesis regulation 40: 63 – 66 primary electron acceptor 27: 130, 131 properties 27: 134 prosthetic group [PQQ], 114, 147–152, 148– 157 chemical reactions 27: 152– 154 detection and determination 27: 154, 155 other quinoproteins 27: 155– 159 reaction cycle 27: 160 –162 regulation of activity 27: 145– 147 stacking interactions 40: 33 structure and mechanism 40: 26 – 30 substrate specificity 27: 131, 135– 140 synthesis 40: 62, 63 Methanopterin 31: 237
Methanosarcina barkeri 31: 242 citrate synthase in 29: 214 dihydrolipoamide dehydrogenase in 29: 207 ferredoxin sequences 29: 205 incomplete oxidative citric acid cycle 29: 190 Methanosphaera stadtmaniae 31: 242 Methanospirillum hungatei 29: 190 dual specificity malate dehydrogenase 29: 198 Methanospirillum spp. 33: 228 Methanospirilum hungateii 39: 226 Methanothermus fervidus, S-layer glycoprotein, gene 33: 247 glycan structure 33: 250 structure 33: 237, 242 Methanothermus sociabilis, S-layer glycoprotein, gene 33: 247 Methanotrix spp. 33: 228 Methanotrophs 30: 130, 131, 150 definition 27: 114 location of MDH 27: 145 Methicillin 28: 216; 36: 221 a-haemolysin, enhancement 28: 232 Methional 46: 123 Methionine 26: 41; 33: 325; 37: 295, 300; 42: 117, 118, 128, 191, 193, 195, 196 and ethylene production 35: 281, 282, 287 auxotrophs 41: 238 bacteria, as activator of glycine, cyanogenesis 27: 75, 76, 78 non-competitive inhibitor, b-cyanoalanine 27: 82 primary metabolic pathway 27: 85 entry by proton symport in Achlya 30: 97, 98 fungi, little effect 27: 89 in adaptation of chemotactic response 33: 326, permease 26: 41 sulphone 26: 197 sulphoxide adducts 46: 127 Metholobus sp. 36: 93 4-Methoxybenzoate monooxygenase 38: 49 iron site, spectroscopy 38: 75 Methoxymycolates 39: 168 Methoxyphenazines 27: 213– 216 proposed pathway, S. luteoreticuli 27: 261 structural formulae 27: 237 Methyl glucose 27: 311, 313, 314, 317, see also Glucose analogues
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Methyl methane sulphate treatment, phage 28: 19, 25 Methyl transfer-driven transporters 40: 131 Methyl viologen (MV) 29: 16, 17, 23; 39: 89, 90, 97 light activation of RuBisCO 29: 145 3-Methyl-1,2-cyclopentanedione 37: 189 4-Methyl-3-hydroxyanthranilic (4-MHA) lactone 38: 111, 112 pentapeptide Methyl-accepting chemotaxis proteins (MCP) 33: 325, 326; 40: 147, 148; 45: 160 See MCPs Methylamine 26: 32; 30: 145; 31: 241, 242 uptake 26: 8, 51 Methylamine growth, methylotrophs 27: 163 Methyl-amino-carboxyphenazines, see Aeruginosins Methylammonium 26: 58, 72 Methylase 37: 96 Methylation 37: 110 domains 45: 167, 168, 183 Methylation sites 45: 183 Methylation, of transducers, see Chemotactic signal transducers Methyldiplopterol and hopanoids 35: 248, 259 Methyl-D -mannoside inhibition, surface receptors, E. coli 28: 83, 91 Methylene blue, binding site 29: 23, 24 -dependent hydrogen oxidation, oxygen as inhibitor 29: 18, 24 electron acceptor, cyanogenesis 27: 77 oxidized, inhibition of hydrogen oxidation 29: 23 reduction 29: 16 – 18 Methylesterase 33: 326, 330 see also cheB gene activation 33: 330, 331 Methylglucosides, sporulation media 28: 40 Methylglyoxal metabolism 34: 289 Methylglyoxal pathway 29: 174 Methylglyoxal reductase 37: 180, 195 Methylglyoxal synthase 34: 285, 286; 37: 180, 181, 182 Methylglyoxal, regulation of its metabolism 37: 177– 181, 180 genes for metabolic enzymes 37: 200– 206, 201, 203, 205 metabolism 37: 190 –200, 191
157
properties of methylglyoxal 37: 181– 190, 183 reductase 37: 193– 195, 198, 204, 205, 216 regulation of glyoxalase I activity in yeast 37: 206– 212, 207, 208, 210, 211 S-D-lactoylglutathione 37: 212– 216, 214 3-Methyllanthionine 37: 151 Methylmalonic acid semialdehyde dehydrogenase 42: 136 Methylmalonyl CoA 42: 141; 43: 140 Methylmercaptan release from S. commune 34: 184 Methylobacillus 40: 21 Methylobacillus flagellatum 40: 53, 54, 57; 45: 100 Methylobacillus glycogenes 40: 20 Methylobactenum organophilum 36: 257 Methylobacterium 35: 255; 40: 21, 62, 63, 64, 66 Methylobacterium fujisawaense 35: 264 Methylobacterium extorquens 36: 257; 40: 10, 20, 26, 38, 51, 52, 54, 54, 55, 56, 57, 59, 60, 64, 65 Methylobacterium organophilum 40: 53, 54, 54, 57, 60, 64, 66; 35: 251, 262, 264, 268 glutathione S-transferase in 34: 281 Methylobacterium sp., 117, 133, 134 methanol dehydrogenase, properties 27: 144 methyl mono-oxygenase 27: 122 components, A, C 27: 119 Methylococcus M. capsulatus 35: 251 M. luteus 35: 251 Methylococcus capsulatus 27: 116, 117, 133, 134 CYP/ferredoxin fusion protein 47: 159– 161 cytochromes 27: 182 electron flow 27: 181 methane mono-oxygenases, chemical identity, components A, B, C27: 118– 121 mechanism 27: 128, 129 particulate 27: 121, 122 soluble 27: 118–121, 127, 128 substrate specificity 27: 124 methanol dehydrogenase, site 27: 144 Methylocystis parvus 35: 251 Methylomonas [Pseudomonas] methanica 27: 133, 134 amino acid composition 27: 143 methanol dehydrogenase 27: 143
158
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
methyl mono-oxygenase 27: 123 oxidation, primary alcohols 27: 128 Methylomonas J 27: 133, 134 Methylomonas methanica 35: 251 Methylomonas P11 activation, methanol dehydrogenase 27: 140 cytochromes 27: 182 Methylophaga marina 40: 20, 21 Methylophilus 40: 21 Methylophilus methylotrophus 27: 132, 134; 40: 38, 62; 45: 100 amino acid composition 27: 143 autoreduction, cytochrome, c 27: 172 competitive inhibition, KCN 27: 142 cytochromc c 27: 167, 174 specificity 27: 175 electron flow 27: 181, 191– 194 oxygen limitation 27: 197 ICI, single cell protein 27: 191 o –type cytochrome oxidase 27: 194–197 proton translocation 27: 197– 199 reduction of cytochrome c 27: 165 site of MDH and cytochrome c 27: 145 unusual endogenous reduction 27: 140 Methylosinus [tricho] sporium 27: 116, 117, 133, 134 amino acid composition 27: 143 antimycin inhibition 27: 164 electron transport and proton translocation 27: 181, 184– 186 methane mono-oxygenases, particulate 27: 123 soluble 27: 122, 124 particulate enzyme 27: 121 Methylosinus trichosporium 35: 251 Methylotrophs 30: 168; 40: 9 autoreduction, cytocbrome 127: 170– 173 classification 27: 182– 184 definition 27: 113, 114 electron transport chains 40: 38 see also specific names studies of methane metabolism 27: 117 Methylsalicylate catabolism 31: 57 Methylselenides/methylselenoxides and selenium metabolism 35: 102, 103 0 5 Methylthioadenosine (MTA) 45: 206 Methyltransferase 33: 326, 327 see also cheR gene Methyltransferase-driven active transporters 40: 88, 92 Methyltrienolone, C. immitis binding sites for 34: 118
Methyltrophic bacteria 32: 93 Methylxanthines, caffeine, phosphodiesterase inhibition 28: 48 inhibition of protein synthesis 28: 48 theobromine phosphodiesterase inhibition 28: 48 theophylline 28: 29 Mevalonate and hopanoids 35: 260– 262, 264 Mezlocillin 36: 210 MFa1 genes 34: 88 MFa2 genes 34: 88 M-factor, Schiz. pombe 34: 96, 97 MFS (major facilitator superfamily) drug drug extrusion pumps 46: 187, 188 gene overexpression 46: 166, 167 genes and antifungal resistance 46: 175 groups 46: 174 MFS proteins in S. cerevisiae 46: 175 structure-function relationship 46: 174, 175 transporters 46: 155, 166, 174– 177, 229 transporters in specific fungi 46: 176 MGD see molybdopterin guanine dinucleotide Mg-SOD 45: 224 Mice abscess model, staphylococcal extracellular proteins 28: 232 amoxicillin, effect of, E. coli 28: 249 cephalosporins, effect of, E. coli 28: 248, 249 E. coli enterotoxigenic strains 28: 75 model, human urinary infections 28: 80, 81 phagocytosis, diffusion chambers 28: 249, 250 resistance to E. coli K99 28: 75 rifampicin-resistant, tetracycline habituation and challenge 28: 246, 247 spleen lymphocytes, agglutination and inhibition 28: 107 Micelle, lipoteichoic acid, autolysin inhibition 29: 284, 289 Miconazole action, artificial lipid bilayers 27: 48, 49 changes sterols, Candida 27: 42 effect on mitochondrial enzymes 27: 29 erythrocyte membrane 27: 47 inhibition site, sterol synthesis 27: 42, 45 structural formula 27: 40 Micrasterias 37: 3 ionic currents in 30: 93, 112 Microaerophiles 46: 134, 135
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Microarray analysis, bacterial pathogenicity 46: 1– 45 see also Expression profiles comparative genomic studies 46: 29 – 34 data analysis 46: 11– 15 see also Statistical analysis clustering algorithms see Cluster algorithms fold-differences 46: 11, 12 metabolic pathway databases 46: 13– 15 statistical 46: 11, 12 definitions 46: 1, 3 experimental paradigms 46: 3, 4 expression profiling of host cells see Expression profiles of non-pathogenic bacteria 46: 15 of pathogenic bacteria see Expression profiles method formats 46: 7 – 11 comparisons 46: 9 – 11, 31 glass-spotted DNA microarrays 46: 8 – 10 high-density oligonucleotide arrays 46: 7, 8 membrane macroarrays 46: 9, 10 two-colour hybridization system 46: 8– 10 RNA use 46: 4 trends 46: 5, 6 Microarray(s) applications 46: 333 characteristics 46: 3, 4 definitions 46: 1, 3 Microbial biofilm see Biofilms Microbial globins 47: 255– 310 classification 47: 258– 260 distribution 47: 258– 260 flavohaemoglobins see flavohaemoglobins single-domain globins 47: 258– 268, 277 truncated globins see truncated globinsVgb 47: 258– 268 Microbial molecular chaperones, concept 44: 95 – 101 Microbispora aerata 27: 216, 235 Microbispora amethystogenes 27: 216, 235 iodinin formation 27: 247 metabolism 27: 248 Microbispora bispora 37: 12, 29, 41 Microbispora parva 27: 216, 235 iodinin formation 27: 247 metabolism 27: 248 Microccus agilis, lipomannan in 29: 245 Microccus flavus, succinylated lipomannan 29: 245
159
Micrococcus 44: 249 Micrococcus dentrificans, Cu/Zn superoxide dismutase enzymes 28: 7 Micrococcus holobius 37: 291 Micrococcus luteus 35: 262, 278; 37: 88, 155; 41: 116, 117 biosynthesis 29: 258 effect on autolysins 29: 285 lead resistance 38: 228 lipomannan 29: 245, 246 location in mesosomal vesicles 29: 275 Micrococcus lysodeikticus 35: 162 cell lysis by organic acids 32: 95 Micrococcus paraffinolyticus 27: 216, 234 Microsporum sp., resistance, griseofulvin and fluorocytosines 27: 10 Micrococcus phlei 37: 90 Micrococcus radiodurans 28: 24 mitomycin C sensitivity 28: 25 mtcA genes 28: 25 uvs CDE genes 28: 25 Micrococcus smegmatis 37: 90 Micrococcus sodonensis, succinylated lipomannan 29: 245 Micrococcus tuberculosa 37: 98 Micrococcus varians ssp halophilus 37: 291 Micrococcus varians, fatty-acyl composition of lipoteichoic acids 29: 239 transfer of preformed teichoic acid 29: 280 unsubstituted lipoteichoic acid, action as carrier 29: 282 Microcolony formation 32: 68 Microcystis aeruginosa 35: 251 Microcystis, cryptic plasmids, RuBisCO genes absent 29: 147 DNA, Anacystis nidulans L subunit probe hybridization 29: 147 Microdiffractometry 37: 6, 7 Micro-electrodes 30: 91, 92 Microellobospora 42: 196 Micro-environment, nitrification in acid conditions 30: 164–166 Microfibrils, hyphal walls 34: 187 Microfilaments in hyphal growth 30: 117, 118 calcium currents and polarity relationship 30: 118 in Achlya 30: 96 Microflora-associated characteristics 42: 28 Micromonospora 42: 194, 196 Micromonospora olivastereospora 39: 156
160
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Micro-nutrient acquisition iron-binding protein 47: 37, 38 macro-nutrients 47: 36 Prochlorococcus 47: 36 – 38 Synechococcus 47: 36 – 38 Micro-organisms, aggregation, see Aggregation of micro-organisms infecting, lectin use 33: 52, 53, 63 Micropolyspora 42: 194, 196 Microsomal membrane proteins, in protein transport reaction 33: 87 Microsomal washing, translocation after 33: 87 Microspora bispora 37: 31 Microsporum canis disease caused by 34: 130 mammalian hormones affecting 34: 111, 115, 130 MicrotoxT system 26: 277 Microtubule and Physarum polycephalum see also MTOCs -associated proteins 35: 2 organization 35: 13, 14 Microtubule assembly 37: 93 Microtubules carboxysome association with 29: 121, 122 cytoplasmic effect of griseofulvin on cell wall 27: 8, 9 in hyphal growth 30: 96, 117, 118 nuclear effect of griseofulvin 27: 6 – 10 Microvesicles, translocation to hyphal apex in Achlya 30: 96 Middle finding strategies 40: 387– 392 Middle-wall protein (MWP), in Bacillus brevis S-layer 33: 244 Milk replacers, acidified 32: 100 Mineral cycling, particle-associated bacteria in 32: 77 Minicells 37: 88 Minimal inhibitory concentration (MIC) 37: 155, 156 Minnikin model 39: 174– 177 Minocycline 28: 218; 31: 78 b-lactamase production 28: 233, 237 lipase inhibition 28: 233, 237 total cell protein synthesis 28: 233 Mirabils jalapa 37: 143, 151 Mitchell’s chemiosmotic hypothesis 37: 165 Mitochondria, adenine nucleotide translocation 26: 140 cytochrome c maturation 46: 277, 278 eubacterial origin 29: 167 function, effect of imidazoles 27: 51, 52
in flocculation 33: 19, 20 secretion process affected 33: 20 NAD+-linked isocitrate dehydrogenase in 29: 194 protein assembly, stress protein role 31: 215 respiratory chain 31: 230–232 yeast cytochromes 28: 192, 195, 196, 202, 204 Mitochondrial carrier family (MCF) 40: 93, 94, 95, 97, 105, 130 Mitochondrial control of meiosis, spo12 and spo13 mutants altering 30: 42 Mitochondrial genome of A. bisporus, structural studies 34: 192 Mitochondrial genome of Physarum polycephalum 35: 10 – 13 mitotic cycle 35: 39 – 58 see also Regulation, mitotic chromosome replication 35: 48– 52 periodic variations 35: 42 – 48 plasmodial 35: 39 – 42 ribosomal DNA replication 35: 52, 53 Mitochondrial mutants, yeasts 33: 19, 20 Mitochondrial protein synthesis, inhibition 30: 41 Mitogen-activated protein (MAP) kinase pathway 41: 194 Mitomycin 36: 213, 220, 222 Mitomycin C 36: 222; 39: 38 sensitivity and UV sensitivity 28: 25 Mitosis assembly of microtubules 27: 6, 7 effect of griseofulvin 27: 6 – 10 disruption of spindles 27: 6 in yeast, environmental conditions 30: 43 Mixotrophic growth 30: 135, 136, 155 of A. eutrophus 29: 8 Mj-AMP, peptide 37: 143, 151 MNePhe, see Pili, NMePhe mnn mutants 33: 114 mnn1 mutants 33: 114 mnn9 mutant 33: 115 Mn-SOD 45: 224 Mob site 29: 41, 45 Mo-bis-MGD 45: 70 binding subunits 45: 65 cofactor 45: 57 cofactor of NapA 45: 65 – 68 primary structure analysis 45: 71, 72 mocha operon 33: 314 ModE 45: 60 Modifier mutations 34: 161 Molasses 39: 366
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Molecular basis for antigenic variation in genetics of polysaccharide biosynthesis 35: 207– 211 cloning and expression of gene 35: 292, 293 Molecular chaperones 44: 93 – 140 and protein folding 44: 123 and proteolysis 44: 121, 122 and secretory pathway 44: 119, 120 approaches to viability 41: 106– 108 definition 44: 95 – 97 gene expression in response to stress 44: 124–130 in E. coli 44: 99 – 101 incomplete catalogue 44: 123, 124 postgenomic era 44: 130, 131 role of 44: 97 –99 Molecular chapterones 31: 213 Molecular communication 42: 42, 43 Molecular genetics, techniques to study Rhizobium 29: 40 – 42 Molecular phylogeny 40: 81 –136 Mollicutes 26: 159 (table) Molybdenum 45: 136– 138 dinitrogen binding site 30: 7 in active site of nitrogenase 29: 3 nitrogen reaction within fixation reaction 29: 3, 4 uptake in other bacteria 45: 137, 138 uptake in rhizobia 45: 136–138 transport 38: 181 Molybdopterin (MPT) cofactors, Tat protein translocation pathway 47: 197– 201 Molybdopterin guanine dinucleotide (MGD), Tat protein translocation pathway 47: 198– 201 Mo-molybdopterin (Mo-MPT) 39: 11 guanine dinucleotide (Mo-MOD) 39: 11, 12 Monacrosporium cionopagum nematode trap forming on agar 36: 116, 118 nematode trapping devices 36: 118 Monacrosporium sp. 36: 128 induction of trap formation 36: 121 Monacrosporiumn ellipsosporum 36: 128 nematode trap forming on agar 36: 116 Monensin 37: 244 Mo-nitrogenase 30: 7, 8 genes 30: 11, 12 temperature/activity relationship 30: 18 Monoamine oxidase 37: 180, 182 Monocarboxylic acids, see Organic acids
161
Monocentris japonicus, light organs of 34: 38 Monochloramine 46: 223 Monoclonal antibodies, C. albicans blastospores 30: 74 cell-surface antigens of C. albicans 30: 74, 75, 77 diagnosis of C. albicans 30: 74, 75, 77 M. leprae 31: 79, 103 sigma factor 30: 230 Monoclonal antibody, F pili 29: 86 gonococcal pili 29: 102 JEL92 29: 90 phosphatidylinositol 32: 16, 17 triphosphorylated Monocrotophos 39: 363 Monokaryotic (haploid) fruiting, genes involved in 34: 170– 175 Monomycoloyl trehalose 39: 151 Monooxygenases 38: 49 methane, and haloalkane metabolism 38: 164, 165 4-methoxybenzoate 38: 49 iron site, spectroscopy 38: 75 Monophenol oxidase, fruiting and 34: 179 Monophosphoglycerate mutase 29: 174 Monophyletic period 40: 356 –358, 357, 360 Monopolar cells/flagellation 33: 281, 289, 291 Monoraphidium braunii 41: 73 Montmorillonite, amino-acid affinities 32: 71 nucleic acid adsorption 32: 60 Moraxella 45: 88 plasmids 38: 149 species B, dehalogenases 38: 138, 141, 142, 162 Moraxella nonliquefaciens 35: 152 Moraxella, non-conjugative pili 29: 57, 63 Morpholino-1-propanesulfonic acid (MOPS) 37: 280, 281, 303, 304 Morphology mutants 36: 205, 206, 212– 220 alterations in mre genes in 36: 219, 220 double 36: 215– 219 peptidoglycan content and synthesis in 36: 207–209 septum or lateral-wall formation 36: 212– 215 Mosaic non-equilibrium thermodynamics (MNET) 26: 149 Mosquito larvacide [saphenomycin], 217, 241
162
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Mo¨ssbauer spectroscopy 38: 209 of iron– sulphur clusters in dioxygenases 38: 64, 65 magnetite in magnetotactic bacteria 31: 149 Mot complex 32: 137– 139 assembly 32: 149, 150 freeze – fracture analyses 32: 139 intramembrane rings of particles 32: 137, 139 Mot2 mutations 32: 117, 137, 149 Mot, proteins 33: 292; 41: 302– 306 MotA 41: 236 motA gene 32: 117, 138; 33: 291, 314 motA mutants 32: 156, 159 motA mutations, suppression 33: 295 MotA protein, as proton-conducting channel 33: 294 copy number and overproduction 32: 138 in flagellum assembly 32: 149 location and role 32: 137, 138 overproduction 33: 294 role 33: 294 role in proton transport 32: 138 MotB 41: 236 motB gene 32: 117; 33: 291, 314 mutations, suppression by fliM mutations 33: 295 motB mutants 32: 156 MotB protein, anchoring of motor to cell wall 32: 138 cell-membrane association 33: 295 in flagellum assembly 32: 149 location and role 32: 137, 138 overproduction 33: 295 role 33: 294, 295 Motility 37: 105, 108– 112, 123 bacterial 33: 277– 346, 287– 96 energetics 33: 288, 292, 293 see also Proton-motive force gliding 33: 287, 288, 298 importance 33: 278, 279 patterns 33: 289 run-tumble 33: 289 see also Bacterial swimming; Flagellar rotation chemotactic gradients and 33: 297 flagellar rotational direction 33: 290 in chemotactic signalling model 33: 333 see also Chemotaxis; Flagella; Flagellar rotation; Bacterial; Swimming Motility surface 33: 287, 288 swimming, see Bacterial swimming swimming-swarming 33: 288 Motility, Synechococcus 47: 39
MPF (maturation promoting factor) and mitotic regulation in Physarum polycephalum 35: 55 – 58 M-protein inhibition, pretreatment with clindamycin 28: 243 MPT see molybdopterin M-ring 33: 284, 291 mRNA (messenger RNA) synthesisin Achyla spp., antheridiol effects 34: 78 in lux genes of luminescent bacteria 34: 31 in S. commune during fruiting 34: 166–170, 175, 176 MRNA 39: 96 starvation survival 47: 71, 72 mRNA 44: 51 44: 127, 128, 154, 157, 172 bacterial see Bacteria stability and fim switch 45: 40 translation 44: 127, 128 mrp gene 40: 413– 416, 415 MrpI 45: 23 amino acid sequences 45: 22 MTB CYP51 47: 154– 156 MTOCs (microtubule organizing centres) 35: 13, 14, 18, 20, 29 – 33, 38 m-Toluate, metabolism by Ps. Putida mt-2 31: 3 Mtt pathway see Tat protein translocation pathway MUC2 (mucin) 46: 41 MucA and MucB proteins 46: 91 Mucins, respiratory tract, gene expression 46: 41 Mucor 37: 198 Mucor hiemalis 35: 278 osmotic potential 33: 153 turgor relationship to water potential 33: 154 Mucor spp. flavus 34: 86 glutathione peroxidase and antioxidant defense in 34: 272 japonicus, glutathione transferase activity in 34: 282 mucedo 34: 81, 82 sex hormones in 34: 81, 82, 86 Mucosal barrier, to C. albicans 30: 68 mucR. See ros (mucR) Multi-antimicrobial extrusion (MATE) pumps 46: 229 Multicomponent phospho-relays 41: 194 Multidrug resistance (MDR) 46: 155, 157 Candida albicans 46: 175 E. coli operons involved 46: 230 efflux pumps see also Drug efflux pumps
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 mutations and selection of resistance 46: 233, 234 gene regulation 46: 177–181 C. albicans 46: 180, 181 S. cerevisiae 46: 177–180 genes involved 46: 157 mechanisms, drug import changes 46: 165, 166 protein 36: 66 Multifunctional proteins 37: 56, 57 Multiple cell-surface polysaccharides, expression of 35: 149 Multiple clusters, relationships between in genetics of polysaccharide biosynthesis 35: 206, 207 Multiple stress resistance 44: 63 –68 Multiple terminal respiratory oxidases 43: 208 Multiple tubulins and Physarum polycephalum 35: 20 – 22 Multiplicity of infection (MOI) 46: 34, 36 Multi-sequence alignment 41: 199 Muramidases, S-layer permeability to 33: 255 Muramyl dipeptide (MDP) 39: 171 Murein 29: 170 see Peptidoglycan Mus musculus 35: 16, 17; 37: 141 Mushroom cultivation 42: 1 – 23; 42: 1 gene sequences 42: 5 genes from cultivated fungi 42: 4 – 14, 5 –7 genes involved in fruiting body development 42: 8 genomic characteristics 42: 16, 17 intracellular enzymes 42: 4 – 9 methods of cultivation 42: 3 molecular genetics 42: 4 nitrogen metabolism in 42: 9 principal species 42: 2, 3 production biotechnology 42: 4 secreted proteins 42: 9 – 14 strain improvement of cultivated fungi 42: 14 – 16 substrate utilization proteins 42: 9 – 12 world production 42: 2, 3 Mushrooms, fruiting in, see Fruiting MUT2 26: 54 MUT4 26: 54 Mutagenicity, metbylglyoxal 37: 188, 189 Mutagens 26: 278– 280 (table) Mutants see also genetics and sporulation in Bacillus subtilis see spoO genes developmental in Physarum polycephalum 35: 33 – 37
163
Mutation rate increase, therapeutic agents 27: 19 in C. albicans 27: 19 in S. cerevisiae 27: 18 MV-I strain, vibrioid magnetotactic bacteria, axenic culture 31: 140, 141 magnetite crystal growth 31: 159 phenotypic properties 31: 139 sulphide tolerance 31: 142 MxaA 40: 23, 24 MxaD 40: 23 Myc family, Ino4p homology 32: 35 Mycelium, secondary (heterokaryon), formation 34: 155– 159 Mycobacteria 41: 118 Mycobacteria cell-membrane permeability, organic acids effect 32: 95 CYPs 47: 150– 158 CYPs, anti-mycobacterial activity 47: 158, 159 envelope layers of 39: 131– 203 molecular biology 39: 133 Mycobacteria spp. 44: 111 Mycobacterial diseases characteristics 39: 133, 134 chemotherapy 39: 135 immunology 39: 133 pathology 39: 133– 135 prevalence 39: 132 Mycobacterial envelope 39: 131 –203 and pathology 39: 185, 186 chemistry 39: 133 components 39: 134 construction 39: 137–184 electron micrograph 39: 138 permeability 39: 133 ultrastructure 39: 133, 135– 137 Mycobacterial periplasmic space 39: 179 Mycobacterim fortuitum 39: 133, 134, 145, 163 Mycobacterium 35: 280; 42: 64, 194, 196 Mycobacterium abscessus 39: 147 Mycobacterium aurum 39: 150, 161, 163, 165, Mycobacterium avium 39: 141, 144, 145, 148, 152, 153, 159, 182; 40: 286, 309; 43: 204 electron-transparent zone 31: 102 fatty-acid biosynthesis 31: 91 genome, insertion sequences 31: 114, 118 iron-regulated envelope proteins 31: 105 metabolism 31: 86 mutant lacking peptidoglycan 31: 102
164
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
peptoglycolipid excretion, axenic culture 31: 102, 103 purine biosynthesis 31: 95 Mycobacterium avium – M. intracellulare complex 39: 133, 147, 152, 153, 168, 178 Mycobacterium bovis 39: 133, 141, 144– 147, 153, 167, 171, 175, 184; 43: 20 comparative genomics 46: 31, 32 Mycobacterium chelonae 39: 147, 176, 176, 177, 178 Mycobacterium gastri 39: 145, 152, 172 Mycobacterium genovense 41: 101 Mycobacterium gordonae 39: 172 Mycobacterium haemophilum 39: 145; 41: 101 Mycobacterium intracellulare 39: 144 Mycobacterium kansasii 39: 137, 138, 140, 145– 147, 152, 153 Mycobacterium leprae 39: 133, 143– 147, 152, 153, 156, 157, 161, 171, 172, 182; 40: 286, 309, 329, 331; 41: 101, 102, 121; 43: 204 actinomycetes in isolates 31: 74, 75 antigens 31: 79, 103, 210, 211 immune response to 31: 210, 211 stress proteins homology 31: 79, 103, 210, 211 as auxotroph 31: 113, 114 axenic culture, conditions assessed 31: 111– 114 difficulties 31: 72, 86, 111 medium constituents 31: 112, 113 temperature 31: 113 biosynthetic activities 31: 90 – 99 amino acids 31: 96 – 99, 108 fatty acids 31: 90 – 93, 112 folate 31: 99 nucleotide incorporation rates 31: 111 pyrimidines 31: 93 –95, 108, 110 cell envelope 31: 75 – 85 biosynthesis 31: 82 – 85 electron-transparent zone 31: 81, 82, 101, 102 outer laters 31: 81, 82 structure 31: 78 cell wall 31: 77, 78 assembly 31: 79, 82 – 85 -associated proteins 31: 78 – 81 peptidoglycan 31: 7, 79, 82, 102 permeability 31: 77 contaminant detection 31: 75 death rate 31: 73 drug screening 31: 114– 117 bacteria number needed 31: 115 potential systems 31: 115– 117
electron-transparent zone, lipid in 31: 102 pathogenicity correlation 31: 101, 102 protective effect 31: 101, 102 genome 31: 86, 113, 114, 118 insertion sequences 31: 114, 118 Mycobacterium lepraemurium 39: 148, 149, 152, 153, 156 Mycobacterium marinum 39: 145, 161 Mycobacterium microti 39: 145, 146, 167 fatty-acid biosynthesis 31: 91 metabolism 31: 86 purine biosynthesis 31: 95, 96 Mycobacterium neoaurum, exochelin 31: 105 Mycobacterium paratuberculosis 40: 286, 309; 41: 101; 39: 133 insertion sequence 31: 114, 118 mycobactin 31: 106, 114 Mycobacterium peregrinum 39: 147 Mycobacterium phlei 37: 87, 98, 100; 39: 163, 168 Mycobacterium porcinum 39: 147 Mycobacterium senegalense 39: 147 Mycobacterium sinsiae 39: 147 Mycobacterium smegmatis 39: 141, 143, 145, 147, 148, 152, 159, 162, 163, 167, 168, 170, 171, 177, 178, 181, 182, 184; 42: 194 cell-envelope biosynthesis, enzymes 31: 82 exochelin 31: 105 genome replication time 31: 74 glutathione degradation in 34: 250 iron-regulated envelope proteins (IREPs) 31: 80, 105 trehalose mycolyltransferase and lectin in 31: 79, 80 Mycobacterium tuberculosis 39: 133, 135, 140, 141, 143, 145, 146, 149, 150, 152, 153, 157, 158, 161– 163, 167– 173, 178, 182– 184; 40: 286, 304; 41: 121; 44: 68, 77; 45: 97, 219; 46: 24, 26 antibiotics 27: 236 s 2.5pt>H 46: 86, 89 –91 heat shock proteins 46: 90 promoters 46: 90, 91 S. coelicolor s R relationship 46: 90 biosynthetic pathway inhibition 46: 17, 27 – 29 comparative genomics different clinical isolates 46: 32 M. bovis and BCG vaccine strains 46: 31, 32 dormancy induction 46: 17, 23, 24 dormancy vs latency 46: 23
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 electron-transparent zone 31: 101 s E 46: 88, 89 growth rates and 46: 26, 27 promoters 46: 89 gene deletions 46: 32 genome replication time 31: 74 in vitro dormancy model 46: 23 killing by peroxide 31: 100 lipid part of PGL-1, biosynthesis 31: 85 low-oxygen gene regulation 46: 17, 23, 24 macrophage activation 46: 26 metabolic pathways database 46: 14 microarray-based comparative genomics 46: 30 mycolate biosynthesis 31: 83, 84 new drug target identification 46: 17, 27 –29 P45014DM enzyme 46: 163 reactivation 46: 23 sigma factors 46: 88 – 91 regulatory cascades 46: 17, 24, 26, 27 survival in macrophage 46: 26 virulence, variations 46: 32 Mycobacterium ulcerans 39: 145, 161 Mycobacterium vaccae 39: 182 Mycobactin 31: 105, 106, 114 Mycocerosates 31: 85 Mycocerosic acids 39: 146 Mycolates 39: 161– 169 biosynthesis 31: 82 – 84 possible scheme 31: 83, 84 a-type 31: 82, 85 intermediate ‘carriers’ of newly synthesized 39: 168 structure and taxonomic interest 39: 160, 161 Mycolic acid, biosynthesis, isoniazid-dependent inhibition 46: 26 – 28 Mycolic acids 31: 77, 79, 80; 39: 156, 159– 171 biosynthetic pathway 39: 166 structure 39: 164 Mycoloyl acetyl trehalose (MAT) 39: 168 Mycomethoxin 27: 217, see also Methoxyphenazines Mycoplasma 40: 314 Mycoplasma genitalium 40: 122, 123, 286; 41: 182; 44: 130 Mycoplasma hyorhinus 36: 38, 39 Mycoplasma mycoides 35: 258 Mycoplasma pneumonia, haem pathway enzymes absent 46: 294 Mycoplasma pneumoniae 40: 287 Mycoplasma sp., plasma membrane modifications 27: 35
165
Mycorrhiza see ectomycorrhiza Mycoside C 39: 153 Mycosides 31: 102 Mycotoxin, oestrogenic, zearelenone as an 34: 104 Myoglobin 47: 257, 258 Myosin 37: 120 Myosin and Physarum polycephalum 35: 13, 38 Myosin light chain kinase 37: 114 Myosine-ATPase 37: 187 Myristic (tetradecanoic) acid 26: 253–255 Myristyl aldehyde 26: 255 Myrothecium roridum 35: 278 Myxin 27: 217, 242, see also Hydroxyphenazines structure 27: 242 veterinary applications 27: 267 Myxobacteria 37: 109; 42: 37 crystalline surface layers 33: 222 Myxococcus bovis 37: 115 Myxococcus fulvus 35: 262, 264 Myxococcus smegmatis 37: 115 Myxococcus xanthus 37: 109, 110, 115; 41: 236, 260, 261; 45: 171, 173, 174, 178, 181 gliding motility 33: 287, 288 Myxomycetes, see Slime moulds Myxothiazol 40: 172 N -Acyl homoserine lactone (HSL), regulation of extracellular polysaccharide synthesis 46: 219 N-(b-b-Oxohexanoyl) homoserine lactone as a luminescence auto-inducer 34: 37 N-(b-Hydroxbutyryl) homoserine lactone as a luminescence auto-inducer 34: 37, 42 1 N,N -dicyclohexylcarbodiimide (DCCD) 36: 45, 48 N,N-Dimethylformamide (DMF) 41: 31 N. crassa 43: 47, 50, 52 – 54 N1-Glutathionylspermidine, in trypanosomes and Leishmania spp. 34: 245 1 8 N N -Bis(glutathionyl)spermidine in trypanosomatids 34: 245 N 2-acetyl-20 -deoxyguanosine 37: 189, 190 N 5-transacylase 43: 47 Na+ re-entry 40: 417, 418 Na+-dependent active cycle 40: 418 Na+-extrusion, respiration-dependent 40: 423 Ng-acetylated diaminobutyrate 37: 299 N-Acetyl-b-glucosaminidase, M. leprae 31: 107 N-acetyl-b-lysine 37: 288, 293
166
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Ng-acetyldiaminobutyrate dehydratase 37: 299, 299 N-Acetyl-D -mannosamine in Staph. aureus linkage unit, teichoic acid synthesis 29: 278 N-acetylglucosamine 40: 368, 375, 377, 379 E. coli K 88 fimbriae 28: 85 recognition, non fimbrial-specific 28: 90 in adherence of C. albicans to host cells 30: 72 metabolic enzymes 30: 75, 77, 80 transport and metabolism by C. albicans 30: 75, 76 N-acetylglucosaminidase 37: 187 N-Acetylglucosaminidase (chitobiase) 30: 73 N-Acetylglucosaminylpyrophosphoryldolichol 32: 14 N-Acetylglutamate kinase 26: 16 N-Acetylglutamylphosphate reductase 26: 16 N-Acetylhexosamine, attachment of E. coli K 88 fimbriae 28: 85 N-Acetylmannosamine(ManNAc) 30: 75, 77 N-Acetylmuramic acid 32: 178; 40: 368, 375, 376, 377, 379 N-Acetylmuramyl-L -alanine amidase 29: 285 distribution in pneumococci 29: 284, 295 role in autolysin activity control 29: 285 teichoic acid requirement 29: 283, 284 N-acetyl-S-oxobutanoylcysteamine 45: 206 N-Acyl-homoserine lactones 42: 38 See AHL (AHLs) 44: 222, 249 NAD 40: 162, 167, 175 NAD kinase 37: 113, 114 NAD(P) 39: 86, 94; 45: 277, 284 NAD(P)H 39: 15, 76, 81, 86, 88, 90 cyanide degradation, bacterial 27: 104, 105 dehydrogenase (FMN) 26: 245– 247 electron donor for methyl monooxygenase 27: 127 – linked dehydrogenases, C. albicans 27: 296 NAD(P)H:FMN oxidoreductase 26: 245; 34: 24 NAD(P)H-dependent nitrite reductase 39: 17 structure and function 39: 18 – 20 + NAD 41: 23, 25 dehydrogenase specific for 29: 194
dihydrolipoamide dehydrogenase specific, in halophiles 29: 206 glucose dehydrogenase utilizing 29: 196, 197 in 2-oxo acid dehydrogenase reactions 29: 200, 201 isocitrate dehydrogenase utilizing 29: 194– 197 malate dehydrogenase utilizing 29: 197, 198 reduced, by H. saccharovorum 29: 177 + NAD -GDHase 26: 21 NADH 37: 194– 200; 39: 15, 75, 76, 79, 81, 88 – 95, 101, 105, 150, 169; 40: 43, 56, 126, 167, 171, 414, 423; 45: 84, 90, 91 b-type cytochrome reduction 29: 37 citrate synthase sensitivity, in archaebacteria 29: 214 cytochrome o reduction 29: 37 dehydrogenase 29: 28; 31: 232, 254, 255; 36: 252, 253; 45: 79, 85; 46: 118 formation in citric acid cycle 29: 175 hydrogen oxidation linked 29: 28 in hexose-monophosphate pathway 29: 172 inhibition of citrate synthase in eubacteria 29: 210 in glycerol formation 33: 189 intracellular, effect of immobilization 32: 64 oxidation 45: 85 see Nicotinamide adenine dinucleotide NADH-dependent glutamate dehydrogenase, fruiting and 34: 186 NADH-dependent glutathione reductase 34: 274, 275 NADH-specific fluorescence probe 28: 198 NADP 40: 162 NADP+ 40: 156 dehydrogenases specific for 29: 194 glucose dehydrogenase utilizing 29: 196, 197 isocitrate dehydrogenase utilizing 29: 194– 197 NADP+-GDHase, regulatory function in nitrogen metabolism 26: 18, 20 NADPH 37: 194– 200; 40: 44, 56, 156, 162, 167, 171 acylreductase intermediate reduced by 34: 22 in respiratory chains 31: 232 pool, maintenance 46: 335 RuBisCO, effect on 29: 143
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 NADPH-CYP reductase, phylogram 47: 167 NADPH-cytochrome-c reductase 33: 93 NADPH-dependent glutamate dehydrogenase, fruit-body expansion and 34: 186 NADPH-dependent glutathione reductase 34: 274– 277 NADPH-linked transmembrane reductase 43: 56 – 58 Naeglaeria gruberi 35: 25 Nafcillin penicillin resistance, phagocytosis 28: 241 synergistic effect with complement 28: 240 Nafoxidine effects on C. immitis 34: 108 Naftifine, synthetic antifungal compound 27: 56, 57 structural formula 27: 56 NAH plasmid(s) 31: 9, 44 benzoate curing 31: 42 evolution 31: 53, 55 genes 31: 53, 54 expression regulation 31: 55 NAH7 plasmid 31: 52, 53 catabolic genes on transposable element 31: 55 gene expression regulation 31: 55 meta-pathway genes/operons 31: 53 pWWO evolutionary relationship 31: 52, 53, 55 Naladixic acid adhesions, enhancement 28: 231 E. coli, response 28: 24 induction, SOS response 28: 5, 22 Nalidixic acid 36: 62, 213, 220, 222 N-Alkylmaleimedes 26: 253 NAP 45: 82 – 86, 88, 93, 94, 97 – 100 components, correlations 45: 94 –102 crystal structure 45: 69 – 71 distribution in bacteria from natural environments 45: 88 distribution, regulation and roles in different bacterial species 45: 72 –82 in anaerobic denitrification 45: 86 preferential occurrence 45: 96 – 99 spectroscopic analysis of subunits 45: 62 – 72 nap genes, distribution and organization 45: 86 – 88, 95 NapA 45: 51, 60, 61, 82, 93, 96, 100 iron– sulfur centre of 45: 65 Mo-bis-MGD cofactor of 45: 65 –68 NapAB 45: 64 catalytic proterties 45: 68, 69
167
NapB 45: 51, 60, 82, 94 haems 45: 64 NapC 45: 51, 60, 82, 93, 96 haems 45: 62 – 64 nap-ccm locus 45: 82 – 96 NapD 45: 51, 61, 82 NapE 45: 61, 96 NapF 45: 96, 99, 100 NapG 45: 61, 82, 96, 99, 100 NapH 45: 61, 82, 83, 96, 99 Naphthalene dioxygenase 31: 13 – 15; 38: 49 ferredoxin 38: 58 – 60 reductases 38: 58 Naphthalene plasmids, see NAH plasmids Naphthalene sulphonamide 37: 114 Naphthalene, catabolic pathway 31: 53, 54 a-Naphthoxy acetic acid (NAA) 41: 23 NapK 45: 61, 96 NAR 45: 58, 59, 83, 85, 86, 88, 99, 100 regulation of expression 45: 59, 60 NarBDC 45: 97 narG 45: 59 NarGH 45: 59 NarGHI 45: 55, 97 narGHJI 45: 59 narH 45: 59 narI 45: 59 NarI 45: 59 Naringenin 37: 248 NarJ 45: 59 NarK 45: 85 NarL 45: 60, 83, 85, 97, 100 NarL-P 45: 60, 83, 84 NarP 45: 84, 97, 100 NarP-P 45: 84 NarQ 45: 60, 97, 100 NarX 45: 60, 83, 97, 100 narX and narK2 genes 46: 24 nas genes 45: 58 Natronobacterium pharaonis 43: 191, 193 Natural ecosystems 44: 36 – 39 Nav-Ala(P) 36: 57 Navicular spores, Clostridium spp. 28: 31 n-decanoyl-CoA 45: 206 NDH-I 45: 86 NDH-II 45: 86 Negative feedback control 45: 12, 13 Negative staining 39: 136, 154, 155 Neisseria 44: 168 export 35: 172, 178– 180, 184 genetics 35: 202, 208 glycogen formation from sucrose 30: 189 non-conjugative pili 29: 57, 63 process 35: 159, 164, 165, 170
168
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
regulation 35: 229 structure and attachment 35: 140, 146, 148, 152 Neisseria catarrhalis lateral-wall elongation and septum formation 36: 222, 223 Neisseria gonorrhoeae 28: 24; 35: 202; 40: 287, 309, 311–313, 323; 45: 96 – 99, 219 as virulence factor 29: 100 fimbriae 28: 223, 224 gene rearrangements 29: 80, 101 genetic organization 29: 79 – 81, 101 inhibitory antibiotics, benzylpenicillin, tetracycline 28: 219 lateral-wall elongation and septum formation 36: 222, 223 MS11 strain 29: 79, 80, 101 phase switching 29: 79, 102 pili 29: 63, 64, 79, see also Pili, NMePhe pilin, see Pilin protein structure – function relationship 29: 100– 102 recA GC strain 29: 80 receptor binding domain 29: 95, 102 resistance, to cephalosporins and penicillin G 28: 245 R10 strain 29: 101 silent (pilS) and expressed (pilE) regions 29: 79, 102 to rifampicin, increase 28: 245 X-ray diffraction studies 29: 67 Neisseria meningitidis 43: 42; 40: 287; 45: 96 – 99, 219, 226 and cell-surface polysaccharide biosynthesis fimbriae and virulence 28: 223– 225 inhibitory antibiotics, list 28: 218 Neisseria spp. 36: 201 PBPs in 36: 225 NEM 44: 237 Nematoctonus pachysporus 36: 124 Nematoctonus sp. 36: 136 Nematophagous fungi 36: 111– 139 carbon:nitrogen balance 36: 112, 114 ecology of 36: 112 growth strategies 36: 114– 118 growth on laboratory media 36: 115, 116 mode of nutrition 36: 114, 115 nematodes as nutrients 36: 116– 118 morphological adaptations 36: 118– 125 adhesive trapping structures 36: 121– 123 dense bodies 36: 123, 124 endoparasites 36: 124, 125 mechanical traps 36: 124
induction of trap formation 36: 118– 121 morphology of trapping devices 36: 121–125 nematode-fungal interactions 36: 125– 138 colonization and digestion of the nematode 36: 133– 136 constricting-ring mechanism 36: 129, 130 cuticle penetration 36: 130– 133 infection strategies 36: 137, 138 recognition, host specificity and adhesions 36: 126– 129 pioneering work 36: 113, 114 taxonomic classification 36: 117 trapping strategies 36: 111, 112 Nemin 36: 119 Neoaplectana glaseri 36: 119 Neocallimastix frontalis 37: 16, 53 Neocallimastix patriciarum 37: 11, 15, 16, 23, 28, 53, 57 Neocallimastix sp. 37: 19, 52 Neocardiopsis dassonvillei 37: 16 Neomycin 28: 218 effects, mannose-sensitive adhesins 28: 220 Neonatal sepsis 28: 67, 71 Neopolyoxins, structural formula 27: 60 Nephropathies, haematogenous E. coli, virulence 28: 80 N-ethylmaleimide (NEM) 36: 84; 37: 197; 44: 236 action, amphotericin resistance 27: 294– 296, 299 –303, 306 hormone binding in C. albicans and effects of 34: 116 ice nucleation in bacteria and effects of 34: 222 microsome treatment and translocation failure 33: 87, 88 N-Ethylmaleimide-resistant factor, SSA1p and SSA2p 33: 88 N-Ethylmaleimide-sensitive factor (NSF) 33: 88, 89 attachment proteins, see SNAP functions, fusion of Golgi complex-derived vesicles 33: 89 fusion of transport vesicles to Golgi complex 33: 89, 91 SEC18p homology/ relationship 33: 99, 100 Neuraminic acid and glycoproteins 28: 90 Neuraminidase, and haemagglutination 28: 82 Neurospora 35: 8; 39: 319, 323 N. crassa 35: 278
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Neurospora crassa 26: 57; 34: 112, 126, 127; 35: 278; 37: 13, 28; 39: 17, 24, 293, 303, 307, 321; 40: 100, 331 see also Nitrogen metabolite repression acid phosphatase 26: 75 applied voltages and ion gradients 30: 113, 116 conidiogenesis genetics 38: 28 cytochrome c baem lyase 46: 276, 277 cytochrome c import into mitochondria 46: 277 DNA-cellulose binding 26: 63 gene nit-2 26: 62, 63 glutathione-related processes 34: 260 glycerol formation/utilization 33: 178 L -glutamine as nitrogen metabolite corepressor 26: 70, 71 inorganic ion transport 33: 184 inositol-less death 32: 13 inward, at tip and growth 30: 101, 115 ionic currents in 30: 93, 101, 102 light effects on gene expression in 34: 184 mammalian sex hormones affecting 34: 106, 112, 126, 127 mammalian sex hormones with binding sites in 34: 121 mating-type genes 34: 160 membrane potential 30: 98, 101 mutation en(am)-2 26: 71 opi2 mutant 32: 36 osmotic potential 33: 152 phosphorus regulation 26: 75 sex hormones in 34: 100, 101 spore rodlet-deficient mutant 34: 176 spores, rodlet layer 38: 11 stress proteins 31: 187 hsp70 31: 185 induction by heat shock 31: 203 induction by oxidative damage 31: 201 sulphur regulation 26: 75 Neurospora sp., glycerophosphatidylinositol formation 32: 6 Neutral amino acid permeases 42: 121– 125 Neutron activation analysis 38: 196, 197 Neutron scattering studies, halophilic enzymes 29: 219, 220 Neutrophilic thiobacteria gene transfer systems 39: 269– 271 sulfur oxidation 39: 261– 269 Neutrophils, phagocytosis of C. albicans 30: 69, 70 NewFLO phenotype 33: 17, 49 sugar specificity of lectins 33: 49
169
NFsB transcription factor, B. pertussis genes requiring 46: 41 N-Glycollylmuramic acid (NGMA) 31: 77 nhaC gene 40: 412, 413, 413 Niacinamide 41: 23 Niche adaptation, Synechococcus 47: 1 – 64 Niche partitioning, Prochlorococcus 47: 2 Nickel, content of hydrogenase from bacteroids 29: 21 enzymes 26: 180– 182 hybride 29: 20 in EDTA inhibition of hydrogenase derepression 29: 20 in hydrogen metabolism 29: 19 – 21 role 29: 21 in rhizobia 45: 138– 141 microbial interactions 38: 224, 225 S subunit (RuBisCO) requirement 29: 138 Nicotinamide adenine dinucleotidase 28: 234 Nicotinamide adenine dinucleotide (NADH) shift, redox balance, cellular regulation 28: 198 superoxide dismutase induction 28: 7, 8 Nicotinamide nucleotides, redox state changes 26: 170 Nicotinic acid and selenium-dependent enzymes 35: 73, 87 Nictosocystis oceanus, effect of oxygen on growth 30: 148 nif gene 29: 41, 42, 45; 30: 8 – 12; 31: 27, 28, 31 evolution and genetic manipulation 30: 12, 13, 18 expression in eukaryotes 30: 13 insertion sequences 29: 43 lac-nif gene fusions 30: 11, 13 lateral transfer 30: 12, 13, 18 nif LA genes 30: 10, 11 nif N, nifM, nifB 30: 8, 12 nif V2 mutants 30: 7 post-transcriptional regulation 30: 11, 14 promotors 31: 27, 28, 31 regulation of 30: 10 – 12 by fixed nitrogen 30: 11, 14 by ntr gene products 30: 11, 12 by oxygen 30: 11, 14 regulon 30: 8, 10 transcription 30: 9, 10 transfer, plasmid-borne 30: 17, 18 nif plasmids 30: 18 NifA protein 31: 31, 32 NifS, in Azotobacter 46: 332 NifU proteins 40: 329– 333, 331
170
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Nigericin 36: 38 Nikkomycin 36: 55, 62, 65, 68; 42: 138 inhibitors, chitin synthesis 27: 59 – 62 structural formula 27: 60 NIR 45: 97, 99 Nir pathway 45: 90, 91 NirB 45: 90, 91 NIRBDC 45: 97 NirD 45: 90, 91, 91 NirK 45: 97 NirS 45: 97 Nisin 37: 143, 151, 164, 165; 42: 38 Nitella flexilus, ionic currents in 30: 93, 107, 110, 119 Nitr-5 38: 188 Nitrapyrin 30: 165, 168, 169 bacteriostatic and bactericidal effects 30: 172 mechanism of action 30: 171 strain variability in sensitivity to 30: 171, 172 Nitrate, as nitrogenous nutrient 26: 2 bacterial metabolism 39: 3, 4 losses, leaching and denitrification 30: 127, 169 metabolism, Aquaspirillum magnetotacticum 31: 145 nitrogen acquisition 47: 20 – 31 reduction (to nitrite) 31: 226– 228, 256– 258 reduction by nitrite oxidizers 30: 153– 155 nitrite oxidoreductase 30: 133, 153 TMAO reductase repression 31: 262 transport 31: 259, 260 Nitrate assimilation 39: 1 – 30 bacteria 39: 4, 5 by bacteria 45: 55 – 58 gene-product relationships 39: 5 genes 39: 6 genetic nomenclature 39: 5, 6 transcriptional regulation 39: 20 – 24 Nitrate induction in Azotobacter vinelandii 39: 22 – 24 in Kiebsiella oxytoca 39: 21, 22 Nitrate-nitrite transport 39: 8, 11 Nitrate production, cell immobilization on clays 32: 72, 67 Nitrate reductase 31: 231, 256– 258; 39: 11 – 15 catalytic subunits 39: 12, 13 electron flow pathways 39: 14 electron transfer 39: 13 – 15 mutant detection 31: 258 structural organization 45: 55 subunits, characteristics 31: 258 types 45: 52 – 55
Nitrate reductase, inhibition by cyanide 27: 94 Nitrate reduction 42: 145– 147 in periplasm of gram-negative bacteria 45: 51– 112 in periplasm of photosynthetic bacteria 45: 77– 82 Nitrate uptake 39: 6 – 10 Nitrendipine 37: 97, 98 Nitric oxide 30: 127; 43: 203; 44: 145 activation of SoxR 46: 326 formation 46: 322, 323 reaction with FeS centres 46: 332 synthase, inducible (iNOS), gene regulation by Pseudomonas aeruginosa PAK 46: 40 Nitric-oxide reductase 31: 260, 261 Nitrification 30: 156, 166 autotrophic 30: 125– 181 biochemistry 30: 129– 136 ecological and economic importance 30: 126– 128 reactions 30: 126 taxonomy and species diversity 30: 128, 129 effect of oxygen on, high concentrations 30: 148, 149 low concentrations 30: 150–152 heterotrophic 30: 135, 136, 166– 169 biochemical pathways 30: 166, 167 by denitrifiers 30: 169 locations and significance of 30: 168 rates of 30: 167, 168 in acid soils, explanations 30: 159– 169 acidophilic strains 30: 160, 161 micro-environments and urease activity 30: 164– 166 protection by surface growth 30: 161–164 in aquatic environments, light inhibition 30: 149, 150 inhibition 30: 169– 175 mechanism 30: 170, 171 of attached cells 30: 173, 174 purposes 30: 169, 170 strain variability 30: 171– 173 mineralization coupled to 30: 165 pH effect 30: 157– 169, 176 ammonia availability 30: 158 on maximum specific growth rate 30: 157, 158 photo-inhibition 30: 149, 150 recovery from 30: 150 Nitrification, cell immobilization effect 32: 72, 67
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Nitrifying bacteria, see also Ammonia oxidizers; Nitrite oxidizers; specific species acidophilic strains existence, 160 ammonia oxidation 30: 131– 133 batch culture 30: 137, 138, 142 clay mineral effects 30: 146, 147 biochemistry 30: 129– 136 biomass yields 30: 142, 143 carbon metabolism by 30: 126, 128, 133– 135, 175 carbon yield 30: 141, 142 cell activity increases with specific growth rate 30: 143 growth in liquid culture 30: 136– 146 biomass production problem 30: 146 cell activity 30: 142, 143 changes to increase maximum specific growth rate 30: 138, 139 comparison with surface growth 30: 161 growth yield 30: 139– 142 maximum specific growth rate 30: 137–139 saturation constants 30: 143– 146 heterotrophic 30: 135, 136, 154, 166, 175 interactions with denitrifiers 30: 155– 157 marine environments, substrate affinities 30: 146 maximum specific growth rate 30: 137–139 increased with decreased size 30: 139 pH effect on 30: 157, 158 nitrite and nitrate reduction by 30: 152– 157 see also Denitrification ecological implications 30: 155, 156 nitrite oxidation 30: 133, 134 saturation constants, for growth 30: 143– 146 for oxygen 30: 150, 151 selective pressures 30: 139 species diversity 30: 128, 129 surface growth 30: 146– 148 glass-bead columns 30: 147, 161 protection from pH effects 30: 161– 164 sensitivity to inhibitors 30: 174, 175 Nitrilotriacetic acid 38: 189 Nitrite, nitrogen acquisition 47: 20 – 31 oxidation 30: 133 energy generation 30: 133, 134 inhibition in acidic conditions 30: 139, 140
171
inhibitors 30: 170 reduction 31: 258– 260 denitrifying bacteria 31: 259, 260 E. coli 31: 258, 259 reduction by ammonia oxidizers 30: 152, 153, 176 transport 30: 143, 145 transport 31: 259, 260 uptake 39: 10 Nitrite induction in Azotobacter vinelandii 39: 22 – 24 in Klebsiella oxytoca 39: 21, 22 Nitrite oxidation, in attached Nitrobacter sp. 32: 67, 72 Nitrite oxidizers 30: 126, 129 see also Nitrification; Nitrifying bacteria; Nitrobacter accumulation beneath ammonia oxidizers in biofilms 30: 152, 155 acidophilic strains existence? 30: 160, 161 cell activity 30: 142, 143 heterotrophic growth 30: 135, 136, 154, 166, 167, 175 saturation constant for oxygen 30: 150 inhibition in acidic conditions 30: 139, 140 low oxygen concentration effects 30: 150– 152 maximum specific growth rate 30: 137, 138 methanotrophs with 30: 150 mixotrophic growth 30: 136, 155 nitrate reduction by 30: 153– 155 photo-inhibition and recovery from 30: 149, 150 saturation constant for oxygen 30: 151, 152 saturation constants for activity and growth 30: 143– 146 substrate inhibition 30: 140, 176 thermodynamic efficiency 30: 134 yield and maintenance coefficients 30: 140, 141 Nitrite-oxidizing bacteria, carboxysomes in, distribution and structure 29: 117, 118, 153 numbers per cell 29: 118, 154 organisms having 29: 118 size and shape 29: 118 Nitrite oxidoreductase 30: 133, 153 Nitrite reductase 26: 77, 78; 30: 152; 31: 259; 39: 1, 15 – 20 ferredoxin-dependent 39: 18 NAD(P)H-dependent 39: 17 structure and function 39: 18 – 20
172
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Nitrite reduction 45: 89 – 94 to ammonia 45: 91, 96 – 99 Nitroaromatic compounds 39: 364 Nitrobacter 30: 126, 129 acidophilic 30: 160, 161 ammonia production by nitrate reduction 30: 155 anion-exchange column colonization 30: 147, 148, 161, 162 effect of pH on maximum specific growth rate 30: 157 high oxygen level inhibition of growth 30: 148 inhibitors of nitrification 30: 172, 173 nitrate reduction 30: 153, 154 nitrite oxidation rate in soil vs. liquid culture 30: 161 photo-inhibition of 30: 149 surface growth 30: 147, 148, 161, 162 Nitrobacter agilis 30: 135 carboxysomes in, appearance in 29: 118 lipid absence from 29: 125, 126 polypeptide composition 29: 126 stability in vitro 29: 124 DNAase-sensitive filament in 29: 128, 129 RuBisCO structure in 29: 134 Nitrobacter hamburgensis, electron transport system 30: 133, 134 heterotrophic growth 30: 136 RuBisCO 30: 133 RuBisCO structure 29: 134 X14 29: 129 Nitrobacter spp., nitrification, effect of cell attachment 32: 72 response to dilution rates 32: 72 surface growth and nitrite oxidation, attached versus free 32: 67 Nitrobacter winogradsky 32: 72 carboxysome numbers in stationary phase cultures 29: 154 carboxysomes appearance in 29: 118 DNAase-sensitive filament in 29: 128, 129 Nitrobacter winogradskyi 30: 135, 136, 140; 40: 292, 300, 309 Nitrobacteraceae 30: 128, 129 70 -Nitrobenz-2-oxa-l,3-diazole (NBD), in iron analysis 38: 217 Nitrobenzene 39: 349 Nitrocefin 37: 163 Nitrococcus 30: 129 Nitrococcus mobilis, carboxysomes in 29: 117
Nitrofurans, glutathione reductase inhibited by 34: 280 Nitrogen 37: 105, 106, 113, 240, 246 control 39: 20, 21 cycle 31: 227, 256 fixation 29: 2 – 4 efficiency increase by hydrogenase 29: 4, 5, 9 Hup2 mutants lacking ability (Hup2 Nif2) 29: 39, 40 Hup phenotype effect in R. leguminosarum 29: 46 in aerobic nitrogen-fixing filamentous bacteria 29: 122 in Oscillatoria (Trichodesmium) erythraea 29: 156 oxygen as limiting factor 29: 26, 27 ratio of nitrogen to hydrogen produced 29: 3 reaction with molybdenum 29: 3, 4 relative efficiency 29: 4, 5 fixation gene, see nif gene limitation 26: 8 limitation, carboxysome numbers 29: 151, 155 “neutral” source 26: 56, 57 oxides, as respiratory oxidants 31: 256– 261 nitrate reduction 31: 256– 258 nitric-oxide reduction 31: 260, 261 nitrite reduction 31: 258– 260 nitrous oxide reduction 31: 261 regulation 39: 20, 21 repressor 26: 42 reduction, host control 29: 11 starvation 26: 7, 20, 21 Nitrogen acquisition 47: 19 Prochlorococcus 47: 27, 28, 30 Synechococcus 47: 18 – 31 Nitrogen assimilation pathways 43: 151 Nitrogen catabolite repression 26: 3n allantoin– urea degradation 26: 27, 28 amino acid as co-repressor 26: 32 arginase 26: 18, 19 synthesis 26: 22 more than one regulatory circuit? 26: 28 non-inducible mutants 26: 21 OTAase synthesis 26: 22 urea amidolyase 26: 27 Nitrogen cycle 30: 1, 2 biological, evolution 30: 2, 3 global 30: 2 mankind’s intervention 30: 2, 3 turnover time 30: 2 Nitrogen fixation 30: 1 – 22; 40: 210–212; 42: 145; 43: 123, 147, 149 see also Diazotrophy biochemistry 30: 7– 9
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 biological 30: 2, 3 carbon source used for 43: 128– 132 chemistry 30: 5, 6 criteria for systems 30: 17 dinitrogen binding site 30: 7 ecological aspects 30: 17– 19 evolution and genetic manipulation 30: 12, 13 exploitable systems in 30: 6 genetics 30: 9 – 13 importance 30: 3, 4, 19 man-made systems 30: 6 need to increase 30: 3, 4 physiology 30: 13 –16, 19 symbioses 30: 15, 16 processes, need for research on 30: 4, 5, 19 research trends 30: 3– 5, 19 Nitrogen metabolism in Helicobacter pylori 40: 176– 179 in mushroom cultivation 42: 9 in Rhizobium43: 117– 163 Nitrogen metabolite biosynthesis 42: 199– 206 Nitrogen metabolite catabolism 42: 115– 171 Nitrogen metabolite repression 3n 26: 57 –78 mRNA formation prevention 26: 58 peripheral role genes 26: 64 – 67 allele en(am)-1 26: 67 allele glnr 26: 67 gene amrA 26: 64 gene aniaA 26: 66 gene tamA 26: 64, 65 genes meaA/meaB 26: 64 mutation MS5 26: 66, 67 mutation nmR-1 26: 66, 67 positive-acting regulatory gene 26: 59 –63 pseudogene 26: 68 – 70 Nitrogen regulation, consensus sequence, minor symmetry 28: 167 Nitrogen repression in streptomycetes 42: 115 Nitrogen secretion products of bacteroids 43: 122, 123 Nitrogen sources, membrane transport 43: 142– 150 Nitrogen starvation, glycogen synthesis rate 30: 227 Nitrogenase 26: 190– 204; 29: 2 – 4, 37: 113 see also Nitrogen fixation activating enzyme 26: 200 activity regulation 26: 195– 201 glutamine role 26: l96, l97
173
glutamine synthetase role 26: 196, 197 methionine sulphone role 26: 197 oxygen sensitivity 26: 200, 201 reversible inactivation of Fe protein 26: 197– 200 “switch-off” effect 26: 195– 197, 199 alternative 30: 9 bacteria with high content/activity as source of energy 26: 212, 213 biochemistry 26: 190– 195 “biological” ligands 30: 6 catalytic mechanism : energetics 26: 192– 194 construction of de-repressed cells 26: 213 dinitrogen binding site 30: 7 dinitrogen reduction to ammonia 29: 2 electron allocation by, host control of 29: 11 electron transport to 26: 194, 195 enzymology 30: 7– 9 Fe protein (Component II, dinitrogenase reductase) 26: 190, 191, 199, 200 reversible inactivation 26: 197, 198 function, models 30: 5, 6 genetics 26: 205– 209 endogenous plasmids 26: 208, 209 regulatory genes 26: 207, 208 structural genes 26: 205– 207 growth condition adjustment 26: 213 host control 29: 11 hydrogen evolution in nitrogen energy cost 29: 24 fixation reaction 29: 2 –4 hydrogen inhibition of 29: 4, 25 hydrogen recycling to 26: 188, 189 hydrogen re-uptake 26: 188 hydrogen sole source in R. japonicum 29: 16 hyperinduction 30: 14, 15 light intensity increase effect 26: 213 MoFe protein (Component I, dinitrogenase) 26: 190, 190, 191 molecular properties 26: 190– 192 molybdenum in active site 29: 3 oxygen-induced inhibition 30: 11, 14 oxygen-sensitivity 46: 143 protection from oxygen, by hydrogen oxidation 29: 4, 25, 34, 35 protection from oxygen damage 30: 13, 14 reducing equivalents donated 29: 24 site-directed mutagenesis 29: 41 SR139 mutant lacking 29: 40 structure 26: 190– 192 synthesis 26: 186, 187, 201– 204
174
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
glutamine synthetase role 26: 202 light dependence 26: 202– 204 repression 26: 186 Nitrogen-containing compounds, uptake systems for 26: 37 – 40 Nitrogen-fixing bacteria 46: 143; 41: 272, 273 Nitrogenous nutrient assimilation enzymes/genes 26: 8 – 12 ammonia and its uptake 26: 8, 9 from ammonia to glutamate 26: 9 – 12 uptake regulation 26: 54, 55 Nitrogen-regulated gene, see ntr gene Nitrogen-source, depletion, in flocculation onset 33: 57, 58 2-Nitroimidazole 42: 132 Nitrophenyl-D -mannoside potent inhibition, E. coli binding 28: 83 Nitrosative stress 43: 203 Nitrosococcus mobilis 30: 135 Nitrosococcus oceanus 26: 132; 30: 130 effect of low oxygen concentrations on 30: 150, 151 pH effects on enzyme activity 30: 145 Nitrosolobus 30: 128 Nitrosomonas 30: 126 electron transport in 30: 132 Nitrosomonas europaea 30: 128; 39: 349 amino acid uptake 30: 135 carbon yield from nitrification 30: 141 carbonic anhydrase in 29: 127 cation-exchange column colonization 30: 147 co-immobilization with Paracoccus denitrificans 30: 156, 157 denitrification of nitrite 30: 153 effect of pH on maximum specific growth rate 30: 157, 158 inhibition by potassium ethyl xanthate 30: 173, 174 methane and ammonia oxidation 30: 130 nitrification in acid soils/conditions 30: 163, 164 recovery from photo-inhibition 30: 150 sensitivity to nitrapyrin 30: 171– 173 stimulation by low concentrations of nitrapyrin 30: 173 surface growth, maximum specific growth rate reduction 30: 147 Nitrosomonas sp. 32: 72 Nitrosomonas, carboxysomes in 29: 117, 118 Nitrosospira 30: 128 Nitrosoureas, glutathione reductase inhibited by 34: 280 Nitrospina gracilis, carboxysomes absent 29: 117 Nitrospira 30: 129
Nitrospira gracilis 30: 140 Nitrospira marina, carboxysomes absent 29: 117 Nitrous acid 30: 137, 139 ammonia oxidation inhibition 30: 140, 159 Nitrous oxide 30: 127 nitric oxide reduction to 31: 260, 261 production by ammonia oxidizers 30: 152, 153, 155 conditions and possible reasons for 30: 153 production, ecological implications 30: 155 proportion of nitrite to, during ammonia oxidizer growth 30: 153 reductase, Tat Protein translocation pathway 47:: 209, 210 reduction to dinitrogen 31: 261 yield, by ammonia oxidizers 30: 152, 153 Nitrous-oxide reductase 31: 261 Nitzschia alba, germanium uptake 38: 227 N-Methyllysine 32: 131 N-methyl-N0-nitro-N-nitrosoguanidine (NTGO) 39: 38; 42: 56 N-Methylphenylalanine (NMePhe) pili, see Pili Nocardia (Streptomyces) lactamdurans 39: 157; 42: 55, 64, 194, 196; 42: 138 CYPs 47: 150 Nocardia erythropolis 42: 194 Nocardia hydrocarbonoxydans 27: 216, 235 Nocardia lactamdurans35: 294– 298 Nocardia lurida 42: 187 Nocardia restricta 42: 106 Nocardin A 36: 57 Nocardiopsis 37: 291, 294 Nocardiopsis dassonvillei, phenazine production 27: 216 Nocardomycolic acids 39: 162 n-octanoyl-CoA 45: 206, 207 Noctiluca, ionic currents in 30: 93, 112 Nod factors 45: 114 Nod gene 29: 42, 45 NO-detoxifying activities, flavohaemoglobins 47: 291– 296 Nodulation factors 37: 39, 40 gene regulation 30: 15 genes 29: 42, 45 Nodule systems, uptake hydrogenases, function 30: 15, 16 Non complexed systems 37: 40, 41 – 46, 43 Non-culturable cells 41: 108, 111, 117
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 non-culturable cells see also transient non-culturability acid crash 47: 88 anabolism/catabolism 47: 86– 89 cultivation regime 47: 98, 99 disease states 47: 89 – 92 division initiation 47: 98 environments 47: 99 environments, fluctuating 47: 66, 67 environments, natural 47: 76 – 79 in vivo 47: 89 – 92 laboratory microcosms 47: 79, 80 latency 47: 89, 90 metabolically injured 47: 97, 98 oligotrophs 47: 77 oxygen 47: 83 resuscitation 47: 96 – 103 stability 47: 84, 85 stationary phase culture 47: 80 – 89 TNC 47: 73– 92 transition 47: 84 tuberculosis 47: 89, 91 Non-flocculent strains 33: 5, 23 chain forming induced in 33: 8 coflocculation of 33: 51, 52 in classification system 33: 8 mutual flocculation 33: 22, 23 Non-haem iron– sulfur proteins 45: 99, 100 Non-invasive concepts 36: 145– 179 classical compared with integrated cultivation and production systems 36: 177, 178 containers for cell growth 36: 164– 166 continuous signal generation 36: 167– 169 medium design 36: 169– 177 off-line and on-line analyses 36: 166, 167 research strategies 36: 163 studies with microbes and animal cells 36: 149– 163 Non-osmotic volume of cells (Vno) 33: 163, 164 Non-osmotolerant fungi 33: 156, 159 Non-phototrophic bacteria, sulfur oxidation 39: 259– 274 Non-PTS transport systems 39: 63, 64 non-reducing terminus, growth of O-polysaccharide at 35: 161– 164 Non-ribosomal peptide synthesis 43: 48, 49 Non-steroidal anti-inflammatory drugs (NSAIDs) 40: 143 Non-sulfur bacteria, commercial applications 39: 365
175
Northern analysis, mRNA abundance 46: 12 Nosocomial infections 28: 67 Nostoc 37: 85, 86, 98, 99, 118, 123; 43: 211 Nostoc commune 40: 331 Nostoc cyanobionts, carboxysomes in 29: 122 Nostoc muschorum, hydroperoxide scavenging in 34: 271 Nostoc muscorum, cyanide synthesis from histidine 27: 93 Nostoc, chemoheterotrophic, RuBisCO levels 29: 154 Nostoe 35: 251 Not immediately culturable (NIC) CELLS 41: 98, 99, 116, 117, 122, 124 NP, peptide 37: 144, 154 Npf mutants in Physarum polycephalum 35: 34 – 37 1-N-phenylnapthylamine 37: 163 NPL1 gene, protein transport into nucleus 33: 81 NPRI protein 26: 55 Nrf 45: 64, 93, 94, 97 NrfA 45: 93 NrfABC 45: 97 NrfC 45: 92 NrfE 45: 93, 94 NrfF 45: 93, 94 NrfG 45: 93, 94 NSF, see N-Ethylmaleimide-sensitive factor (NSF) a-N-t-butyloxycarbonylaminoxy peptides 36: 16 NtcA 44: 3 N-tosyl-L -lysyl-chloromethyl ketone 39: 360 ntr gene 31: 27, 28, 31 promotors 31: 27, 28, 31 ntr genes 30: 11, 12 NtrA and NtrC proteins 30: 227 NtrB 45: 100 NtrC 45: 100 NtrC protein 31: 31, 32 NUC1 gene 33: 98 Nuclear chromosomal genome of Physarum polycephalum 35: 6 – 8 Nuclear magnetic resonance (NMR) intracellular components of immobilized bacteria 32: 64 spectroscopy 38: 208, 209 spectroscopy, glycerol as compatible solute 33: 169, 172 Nuclear magnetic resonance 37: 6, 88 Nuclear migration, fruiting and 34: 158 Nuclear spindle formation 37: 113
176
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Nuclei, epiplasmic 30: 24, 25 Nucleic acids, see also DNA adsorption to surfaces 32: 60 methylglyoxal 37: 186 organic acids effect on 32: 97 rate of syntheses, obligate anaerobes 28: 10 – 12, see also DNA, Purine synthesis, Pyrimidine dimers, RNA synthesis metabolism, effect of imidazole drugs 27: 52, 53 5-fluorocytosine, inhibition 27: 5, 12 – 17 5-fluorouracil, effect on RNA, DNA27: 14 Nucleolar DNA genome of Physarum polycephalum 35: 8 –10 Nucleolus, in apomixis 30: 34, 35 Nucleomitochondrial interactions, during sporulation 30: 38, 41, 42 Nucleoside triphosphate 37: 107 Nucleosides, nucleotide uptake by M. leprae 31: 96, 108 Nucleotide biosynthesis 42: 198, 199 Nucleotide catabolism 42: 141– 145 Nucleotide diphosphate kinase 26: 141 Nucleotide phosphates 26: 129 Nucleotide precursors, in chain substitution of lipoteichoic acids 29: 276 Nucleotide sequence of fim invertible element in clinical isolates 45: 35 Nucleotide synthesis and scavenging by M. leprae 31: 93 – 96, 108 purines 31: 95, 96, 108, 110, 111 pyrimidines 31: 93 – 95, 108, 111 Nucleus microtubules, effect of griseofulvin 27: 6 – 10 molecular basis, antifungal action 27: 6 – 19 Nucleus, protein transport 33: 81, 82 Null mutations, see also individual null mutations genes involved in chemotaxis 33: 313 Nutrient, see also Macromolecule accessibility on surfaces, in poor environments 32: 63, 70 mass transfer at solid – liquid interface, 54, 55 utilization by attached bacteria 32: 69 – 75 low molecular weight 32: 70 – 72 macromolecules 32: 73 – 75
Nutrient acquisition micro-nutrient acquisition 47: 36 – 38 nitrogen acquisition 47: 18 – 31 phosphorus acquisition 47: 31 – 35 Synechococcus 47: 18 – 38 Nutrient broth, E. coli protected from organic acids 32: 92 Nutrient limitation effect 39: 87 – 89 Nutrient uptake, ionic currents and 30: 95, 96, 101, 118, 119 Nutrition in production of L-PAC41: 18 – 20 Nutritional control during sporulation 43: 85 Nutritional immunity 31: 104, 106, 109 Nystatin 28: 218 effect on plasma membrane 27: 22 structural formula 27: 21 OAA 45: 332 O-Acetyl transferase (OAS) sulphydrylase 34: 260– 262 O-Acetylhomoserine (OAH) sulphydrylase 34: 260– 262 and selenium metabolism 35: 98 Obligate anaerobes 46: 111, 135 –143 see also Anaerobiosis, obligate OccR 45: 251 Occurrence in micro-organisms and accumulation during stresses 36: 83 – 86 Octanoyl-ACP 45: 207 Oedema disease principle (EDP) 28: 66 Oerskovia xanthineolytica 37: 59 Oestradiol Candida albicans and effects of 34: 110, 114, 125 Candida albicans binding sites for 34: 114, 116, 117 Candida spp. other than C. albicans and effects of 34: 114 Candida spp. other than C. albicans with binding sites for 34: 116 Coccidioides immitis and effects of 34: 107, 108, 128 Coccidioides immitis binding sites for 34: 118 P. brasiliensis and effects of 34: 107, 114, 124, 129 P. brasiliensis binding sites for 34: 117 pancreatic protein binding 34: 120 Sacch. cerevisiae and effects of 34: 105, 115, 123, 124 Sacch. cerevisiae binding sites for 34: 119, 120 Oestriol C. albicans and effects of 34: 110 C. albicans infections 30: 70, 71 P. brasiliensis binding sites for 34: 117
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Oestrogen(s), see also specific oestrogens and Anti-oestrogens P. brasiliensis and effects of 34: 107 zearelenone acting as an 34: 104, 117 Oestrogen-receptor proteins of fungi, characteristics 34: 123, 124 Oestrone, P. brasiliensis binding sites for 34: 117 O-glycosylation 37: 147 Oil spillages, multiplasmid pseudomonad strains for 31: 56 Oil-protein conversion, CYPs 47: 164 Oils, water dispersion, hydrophobins in 38: 35 Oleandomycin 28: 218 growth promotion, meat animals 28: 244, 245 Olefinic mycolates 39: 165 Oleic acid 33: 181 antagonist, miconazole 27: 48 Oligomeric protein biogenesis, Tat protein translocation pathway 47: 199, 212, 213 Oligonucleotide cataloguing 29: 166– 168 Oligonucleotide directed mutagenesis, ADPglucose pyrophosphorylase 30: 205– 209, 216 Oligonucleotides, high-density arrays see High-density oligonucleotide arrays Oligopeptide binding protein 36: 17 – 23 Oligopeptidoglycans 40: 375, 386 Oligosaccharides 42: 34 – 37 core, in Saccharomyces cerevisiae 33: 114 in S-layer glycoproteins 33: 240– 242 transfer and mechanism 33: 250 modifications in sec mutants 33: 114, 115 N-linked, in S-layer 33: 242, 243 on yeast glycoproteins, structure 33: 113, 114 non-hydrolysed 42: 37 O-linked, in S-layer 33: 242, 243 Oligotrophic conditions, nutrient utilization by attached bacteria 32: 69, 70 Oligotrophic environment 42: 52 Oligotrophic waters, attached bacteria activity 32: 78 Oligotrophs, non-culturable cells 47: 77 Olil gene 33: 19 Olisthoduscus luteus 29: 146 OmpA protein 29: 87 TraTp protein contact 29: 88 Oogoniol 34: 75, 76, 102 structure 34: 75 synthesis and release 34: 77, 102
177
Oogoniol-1 34: 76 Oomycetes, sex hormones in 34: 74 – 81 Open reading frame (ORF) 37: 48, 119, 200, 201, 206; 42: 118; 45: 87 mating-type genes and 34: 160, 161 microarray analysis see Microarray analysis Operator-promotor, TOL plasmids, see also Promotor consensus sequences, see Consensus sequences evolution 31: 55 ntr and nif promotor homology 31: 27, 28, 31 OP1 (Pu) 31: 21, 26, 27 as XylR binding site? 31: 33 in xylS/xylR analysis 31: 26 localization 31: 21 polypeptide between xylC 31: 21 XylR interaction 31: 29, 30, 33 OP2 (Pm) 31: 26 – 29 deletion 31: 41 homology absent with OP1 and Ps 31: 29 in vector pNM185 31: 63 in xylS/xylR analysis 31: 26 XylS interaction 31: 29, 30 promotor structure 31: 26 – 29 upstream activator sequences 31: 33 xylR gene (Pr) 31: 26 – 28 xylS gene (Ps) 31: 26, 27, 33 XylR interaction 31: 29, 30, 33 Operons, fla, mot and che genes 32: 117, 119 Ophiostoma ulmi 42: 13 Ophthalmic acid in U. pinnatifida 34: 246 Opi2 phenotype 32: 23, 30 –33, 36 OPI1 gene, DNA-binding proteins encoded 32: 43, 37, 38, 46 mapping 32: 37 negative regulator encoded 32: 36 – 38, 46 evidence 32: 37 of INO2 and INO4 genes 32: 38, 39 transcription of INO1 32: 39 – 43 opi1 mutation 32: 36 epistatic relationships 32: 38, 39 pleiotropic effects 32: 36, 43 Opi1p, amino-acid composition 32: 37, 38 opi3 mutants 32: 28, 29 Opi2 phenotype 32: 31 O-polysaccharides see cell-surface polysaccharide biosynthesis Opsonization and complement, human serum 28: 239, 240
178
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
and mannose residues, phagocyte recognition 28: 91, 92 filamentous bacteria 28: 241 phagocytic cell stimulation, antifimbrial antibodies 28: 90 Optical tweezers 32: 161 Oral acid production 42: 241 Oral streptococcal ATPase 42: 242– 245 Oral streptococci acid-adaptive strategies 42: 241, 242 adaptation to low pH 42: 239– 274 production of basic compounds 42: 252– 257 ORF1 39: 257 ORF2 39: 257 ORF3 42: 107 ORFs 40: 414 mating-type genes and 34: 160, 161 Organelles, see also Endoplasmic reticulum (ER); Golgi complex, membrane, barrier function of 33: 77 Organic acids 32: 87 – 108 see also individual acids see also specific acids and metal biotechnology 41: 76 – 78 anion structure, affecting DNA interactions 32: 98 antibacterial activity 32: 91 – 98 accumulation and metabolism 32: 93 culture conditions affecting 32: 92 effects and possible mechanisms 32: 94, 95 enzyme activity 32: 97 experimental conditions for studying 32: 91, 92 in animal feeds 32: 99, 100 media composition affecting 32: 92 micro-organism properties affecting 32: 91, 92 of undissociated molecule 32: 94 on cell membrane 32: 95, 96 on DNA 32: 97, 98 on macromolecule synthesis 32: 97 pH relationship 32: 94 recovery from and resistance to 32: 98, 94 as uncoupling agents 32: 96 chemistry 32: 88 – 90 of carboxyl group 32: 89, 90 dissociation constants (Ka) 32: 89 – 91 dissociation, pH relationship 32: 89, 90 fungal production 41: 47 – 92 and metal biogeochemistry 41: 68 – 76 levels 43: 129, 130
long-chain fatty acids (LCFA) 32: 88, 89 uptake and metabolism 32: 93 medium-chain fatty acids (MCFA) 32: 88, 89 uptake and metabolism 32: 93 metabolism by Gram-negative bacteria 32: 91, 93 nomenclature 32: 88, 89 practical applications 32: 98 –103 as animal-feed additives 32: 99, 100 in carcass meat and egg treatment 32: 100– 104 in human foods, cosmetics, pharmaceuticals 32: 103 role in corrosion of stone and building materials 41: 72 –74 saturated straight-chain 32: 89 short-chain fatty acids (SCFA) 32: 88, 89 mode of entry into cell 32: 93 uptake and metabolism 32: 93 water solubility 32: 89 Organic material, adsorption from seawater 32: 57, 58 Organic osmolytes see osmoadaptation Organoautotrophic metabolism 39: 237 Orientational energy 31: 166 OriT sequence 29: 68 Ornithine 26: 14, 15; 37: 293 Ornithine aminotransferase (OAT) 42: 131 Ornithine carbamoyl-transferase 26: 13, 16; 36: 56 Ornithine decarboxylase 37: 238 Ornithine N 5-oxygenase 43: 46, 47 Ornithine transaminase (OTAase) 26: 13, 21 induction mechanism 26: 21, 22 synthesis 26: 23 Ornithine transport, E. coli 28: 174 Orosomucoid erythrocyte surface structure 28: 90, 91 Ortho-nitrophenylgalactoside 37: 166 Oryctolagus cuniculus 37: 143, 144 Oscillatoria (Trichodesmium) erythraea 29: 156 Oscillatoria chalybea 39: 4, 12 Oscillatoria limnetica 37: 117; 39: 244, 245, 248, 258 Ose – phenotype 29: 8 OSM1 and OSM2 genes 33: 198 Osmoacclimation 37: 274
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Osmoadaptation, bacteria 37: 273, 274, 318 molecular principles of compatible solute function 37: 215– 218, 316 organic osmolytes 37: 275, 279– 315, 281, 285, 288, 290, 291, 296, 298, 299, 303, 305, 307, 308 ow water activity 37: 275– 277, 276 salt in cytoplasm:halobacterial solution 37: 277– 279 Osmolality 33: 149; 37: 242, 249, 250 lux gene expression regulated by 34: 47 Osmolytes, fermentation acid anions 39: 217, 218 see Osmoregulation, compatible solutes ‘Osmophilic’ organisms 33: 155– 157 Osmophilic response, Zygosaccharomyces rouxii mutant 33: 158 Osmoprotectants 33: 168 see also Osmoregulation, compatible solutes Osmoregulation 33: 167– 190; 37: 106 adaptive 33: 167 cellular functions involved, summary 33: 204, 205 compatible solutes 33: 146, 167– 182 biophysical/biological properties 33: 168 definition 33: 167 minimum water potential influenced by 33: 202– 204 polyols, see Glycerol; Polyols trehalose and amino acids 33: 175, 176 definition and use of term 33: 167 inorganic ions role 33: 182– 185 intracellular levels 33: 183, 184 transport 33: 184, 185, 202 osmotic hypersensitivity and 33: 193, 194 regulation of polyol accumulation, see Polyols as compatible solutes solute compartmentation 33: 185, 186 steady-state 33: 167 Osmotaxis 41: 255 Osmotic challenges 40: 363 Osmotic forces 40: 363 Osmotic hypersensitivity 33: 190–197 determinants 33: 193–196 compatible solutes in 33: 193, 194 osmoregulation and 33: 193, 194 polyols 33: 193, 194 proteins 33: 194 trehalose 33: 194– 196 genes 33: 198 glucose in media 33: 192
179
growth cycle affecting 33: 192 heat conditioning not affecting 33: 196 sodium chloride in media 33: 192 thermotolerance and 33: 196, 197 viability decrease 33: 192, 193 Osmotic potential 33: 149, 151– 153 adjustment, see Osmoregulation calculation 33: 149, 153 determination methods 33: 151– 153 increased turgor and, water loss reduction 33: 165 Osmotic pressure 33: 149 changes, gene expression in E. coli 32: 177 Osmotic response 33: 161– 166, 167, 186 see also Osmoregulation Boyle-van’t Hoff relation and nonosmotic volumes 33: 163, 164 microscopic observations 33: 161– 163 water loss, cell-wall elasticity and 33: 164– 166 initial turgor pressure and 33: 165 Osmotic shock 29: 295; 33: 19 sensitivity, see also Osmotic hypersensitivity genes involved 33: 198 tolerance, see Osmotolerance Osmotic stress 40: 362; 44: 252 response in streptomycetes 42: 197 ‘Osmotic’, conditions for use of term 33: 161 Osmotica, fruit-body expansion dependent on 34: 186 Osmotically active volume (Vosm) 33: 163, 164 Osmotolerance 33: 155– 161, 193 see also Water potential alternative terms for 33: 155 cardinal water potentials of growth 33: 156– 161 cmax 33: 156– 158 cmin 33: 157, 159– 161 copt 33: 158, 159 solute-specific properties 33: 158, 160 cellular factors determining 33: 197–204 compatible solute accumulation 33: 193, 194 see also Osmoregulation; Polyols determination, growth-related and survival studies 33: 156 genes determining 33: 198 glycerol-3 –phosphate dehydrogenase and 33: 193 heat tolerance and 33: 196, 197 high sterol level contributing 33: 181
180
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
initial osmotic response, see Osmotic response optimum water potential independent of predominant solute 33: 158, 159 potassium-ion transport and 33: 184, 202 protein synthesis and 33: 194 temperature and pH value affecting 33: 161 terminology and choice of terms 33: 155, 156, 160 trehalose levels and 33: 176, 195, 196 Osmotolerant species 33: 156 growth at low water potentials 33: 159– 161, 165 maximal growth rate 33: 159 resistance to water loss on sudden exposure 33: 165 OSP80 protein 31: 201 O-type reactions, Salmonella spp. agglutination, normal vs. treated 28: 239 Outer membrane channel-type facilitators (porins) 40: 87 Outer membrane porins (b-type) 40: 91, 92 Outer membrane proteins (OMP) 31: 144, 145; 37: 245 crystalline (cOMP) 33: 230, 231, 237 S-layer protein differentiation 33: 237 regular (rOMP) 33: 230, 231, 237 role of 35: 183– 185 S-layer interactions 33: 230, 231 Outer-wall protein (OWP), in Bacillus brevis S-layer 33: 244 Ovarian tumours, parthenogenetic development 30: 46, 47 Ovoid-filamentous bacteria, immunogenic response 28: 239 Oxacillin 28: 218 subinhibitory concentrations, mice 28: 249 Vibrio sp., 224 Oxalate biosynthesis by A. niger 41: 53 by glyoxylate oxidation 41: 54 Oxalic acid see also Organic acids biosynthesis 41: 53 – 55 catabolism 41: 65 fungal production 41: 47 – 92 metal chemistry 41: 50 – 53 metal complex formation 41: 51 role in corrosion of stone and building materials 41: 72 Oxaloacetate 37: 121, 295, 296 conversion into succinate 29: 193 Oxaloacetate decarboxylase 26: 130
4-Oxalocrotonate decarboxylase (4OD) 31: 6, 18 4-Oxalocrotonate isomcrase (4OI) 31: 6, 18 Oxalurate 26: 26 oxi2 gene 33: 19 Oxidase synthesis and function 43: 205– 208 Oxidase, terminal 29: 34, 35 flavoprotein as 29: 34 Oxidase-peroxidase system, cyanide production, Chlorella, etc., 91 – 93 Oxidases, phenol, fruiting and 34: 179, 180 Oxidative bacteria 36: 248 Oxidative damage 44: 124 Oxidative damage 46: 319 see also Free radical stress; Oxidative stress defence mechanisms 31: 197, 198 see also Catalase; Hydrogen peroxide; Superoxide dismutase cytochrome-c-peroxidase 31: 201 DNA damage 46: 321 aerobic death due to 46: 136 mechanisms 46: 123, 124 in obligate anaerobes 46: 137 inducible defences in bacteria 46: 130–135, 321 molecular species causing 31: 197 protein/nucleic-acid synthesis inhibition 31: 200 stress protein induction 31: 197– 202 by hydrogen peroxide 31: 197, 199, 200 eukaryotes 31: 201 in obligate anaerobes 31: 200 starvation proteins 31: 199 superoxide dismutase/catalase 31: 198, 199 Oxidative fermentation 36: 248 Oxidative metabolism, Mycobacterium sp. 31: 89, 90 Oxidative phosphorylation 26: 128; 31: 226, 230, 255; 40: 430; 45: 275 energetics 40: 420– 432 Oxidative stress 37: 229; 43: 202, 203; 44: 11 – 17; 46: 143, 320 see also Free radical stress adaptation and repair pathways 46: 335, 336 bacterial response 46: 130, 335 causes 46: 321, 322 defence mechanisms 46: 130– 135, 321, 324– 327 see also under Free radical stress
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 E. coli 46: 115, 143 effect on aerobes 46: 134 effect on obligate anaerobes 46: 135 glutathione reductase cycle during 34: 280 levels of oxidants causing 46: 134, 135 lipid peroxidation 46: 127– 129 luminescence system with role in 34: 46, 47 modulation of metabolism in yeast 46: 336 NADPH pool maintenance 46: 335 non-specific resistance 44: 60 – 63 not experienced during normal aerobiosis 46: 134 sensitivity in sigX mutants 46: 65 sensitivity of bacteria 46: 118, 119 Oxidizing biocides, resistance of biofilms 46: 223 Oxidoreductases 26: 244– 247 NAD(P)H:FMN34: 24 oxidoreductive catabolism, see Saccharomyces cerevisiae, respirofermentative process 2-Oxo acid 29: 199 decarboxylase 29: 200 dehydrogenase, absent from anaerobic conditions 29: 202, 212 dihydrolipoamide dehydrogenase role 29: 200, 201, 208 evolutionary aspects 29: 204 in aerobic conditions 29: 201 in eubacteria and eukaryotes 29: 203 reaction mechanisms 29: 200, 201 similarities with 2-oxo acid oxidoreductases 29: 203, 204 ferredoxin oxidoreductase 29: 193, 199– 205, see also under 2"Oxoglutarate; Pyruvate evolutionary considerations 29: 204, 205 in anaerobic conditions, advantage 29: 202, 204 in archaebacteria 29: 202, 203 in eubacteria and eukaryotes 29: 202 proposed catalytic mechanism 29: 201, 203 reaction mechanism 29: 201 size 29: 202 unique catalytic mechanism 29: 203, 204 2-Oxoaldehyde dehydrogenase 37: 180, 196– 198 Oxoaldehyde reductase 37: 187, 199 2-Oxoaldehydes 37: 179, 181, 194 see also methylglyoxal 3-Oxo-C12-HSL 45: 205, 229
181
3-Oxo-C6-HSL 45: 230, 231, 233, 235,’245 3-Oxo-C8-HSL 45: 251 2-Oxoglutarate 29: 189, 193 acceptor oxidoreductase (OOR) 40: 161– 162 effect on citrate synthase in archaebacteria 29: 214 inhibition of citrate synthase in eubacteria 29: 211 synthesis 29: 194 Oxoglutarate 37: 295, 296 2-Oxoglutarate complex 43: 133, 134 2-Oxoglutarate dehydrogenase complex 43: 135 2-Oxoglutarate dehydrogenase, active-site coupling 29: 200 2-Oxoglutarate synthase, evolution of 29: 193 in methanogens 29: 189 Oxoglutarate, flux analysis of growth on 45: 312 2-Oxoglutarate: ferredoxin oxidoreductase, in H. halobium 29: 202 in S. acidocaldarius 29: 189 in thermophiles 29: 187 2-Oxopoentenoate hydratase 31: 6, 18 Oxychlororaphine 27: 217, 224, see also Chlororaphine isolation 27: 222– 224 pigmentation mutants,P. aeruginosa 27: 251 shikimic acid, precursor 27: 243 Oxygen and selenium metabolism 35: 102, 103 availability of reduced growth substrates for anaerobes 46: 135, 136 bacterial response to 46: 131 bacterial sensing 46: 131 calcium 37: 113 concentration, growth effects, C. albicans 27: 293– 295 damage of biomolecules 46: 129, 130 effect on luciferase synthesis 26: 267 effect on macromolecular synthesis 28: 10 – 12 excess, damage due to 46: 129, 130 exponential vs. stationary phase 28: 6 -free radical scavenging enzymes 28: 6 gradients in biofilms 46: 226 hyperbaric 46: 137 in haem biosynthesis 46: 289 limitation, tetrapyrrole synthesis 46: 289 low, gene regulation in M. tuberculosis 46: 17, 23, 24 luminescence dependent on 34: 4, 5, 46 in Photobacterium spp. 34: 4, 5, 46 methylglyoxal 37: 178
182
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
pH homeostasis 37: 236 reactions 46: 111 redox properties 46: 111, 113, 114 regulation of haem biosynthesis 289– 292 repression 26: 76 see dioxygen sensing 44: 7 – 10 stress factor, bacteria 28: 5 –10 superoxide radicals 28: 5 symbiotic differentiation regulation 46: 290 tension and ethylene production 35: 277, 279 tolerance 46: 111, 137, 144 toxicity in micro-organisms, preventive mechanisms 34: 242, 243, 269– 274 toxicity, cyanide production, bacterial 27: 77, 78 oxygen uptake, inhibition of as ideal respiratory oxidant 31: 226 as limiting factor in nitrogen fixation 29: 26, 27 attractant response 33: 299 carbon dioxide specificity of RuBisCO 29: 140– 142 consumption, by attached and free bacteria 32: 69, 70 by hydrogenase, detrimental effects (speculation) 29: 25 hydrogen oxidation as protective mechanism by 29: 4, 25, 34, 35 dependent hydrogen oxidation, rate 29: 36 diazotroph response to 30: 11, 14 diffusion resistance, in nodule 29: 27 effect on nitrification, inhibition at high levels 30: 148, 149 low concentrations 30: 150–152, 156 effect on nitrite reduction by ammonia oxidizers 30: 153 Hupc mutant regulation 29: 30, 31 hydrogenase repression, mixotrophy and 29: 8 hypersensitivity mutants (Rhizobium) 29: 6, 7, 40 in regulation of hydrogen metabolism of Rhizobium 29: 6 – 9 inhibitor of, methylene blue-dependent hydrogen oxidation 29: 18, 24 RuBisCO carboxylation reaction 29: 137, 140, 153 inhibitory effect on photosynthesis 29: 141, 142
insensitivity mutants (Rhizobium ) 29: 7, 40 lability of hydrogenases 29: 18, 19, 27 low, derepression of hydrogenase activity 29: 6, 7 electron transport coupled to ATP synthesis 29: 35 maximum dilution rate 28: 190 molar growth yield, hydrogen effect 29: 25, 26 radical formation 29: 19 regulation of nif regulon 30: 11 repression insensitivity by Alcaligenes eutrophus mutants 29: 8 respiration, Pasteur effect 28: 186– 188 saturation constant 30: 150, 151 -sensitive mutants, E. coli 31: 200 sensitivity, nitrogenase 30: 9 supply to bacteroids, regulation 30: 15 tensions, M. leprae growth 31: 110, 112 magnetotactic bacteria growth 31: 143– 145, 173 toxic to magnetotactic bacteria 31: 143, 169 tolerance in azotobacters 30: 13, 14 uncompetitive inhibitory of hydrogen in hydrogen oxidation 29: 23 Oxygen/redox-sensing switches 44: 13 Oxygenase reaction, RuBisCO, see Ribulose 1,5-bisphosphate carboxylase Oxygenases, bacterial 38: 48, 49 see also dioxygenases, ring-hydroxylating; monooxygenasesas biocatalysts 38: 48 monooxygenases/dioxygenases 38: 49 Oxygenase-type dehalogenases 38: 164, 165 Oxygenated mycolates 39: 165– 8 Oxygen-derived radicals, M. leprae susceptibility 31: 100 Oxygenic photosynthetic bacteria 33: 221 Oxygen-sensitive enzymes 46: 139, 141, 142 2-Oxyglutarate pathway in ethylene production 35: 281, 284–287, 295, 302 Oxyphotobacteriae 26: l58, 159 (table) OxyR 44: 17 protein 46: 133, 134, 330, 331 system 46: 325, 330 Oxytetracycline, dose-related selective response 28: 247
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 p -Aminobenzoic acid synthetase 42: 61 P blood group 29: 55, 61, 94 globoseries glycolipids 28: 87 – 90 system, table 28: 86 p-(hydroxymercuri)phenylsulfonate (PMPS) 44: 191 P. shermanii 44: 239 P34 and mitotic regulation in Physarum polycephalum 35: 55 – 58 P45014DM enzyme alterations, drug resistance due to 46: 162, 163 gene encoding and mutations 46: 162 R467K mutation 46: 163 Y132H mutation 46: 162 inhibition by azoles 46: 160– 162 target alteration 46: 162 models of interactions with azoles and lanosterol 46: 162, 163 of Mycobacterium tuberculosis 46: 163 overexpression 46: 163 PAB1 gene, mating-type gene locations in relation to 34: 159, 160 Padina arborescens 35: 279, 280 Palaeomagnetism 31: 141, 173– 176 Palmitoleyl residues, b-lactams, Salmonella typhimurium 28: 238 Panagrellus redivivus 36: 117, 119, 120, 127– 129, 134, 137, 138 Pancreatic oestradiol-binding protein 34: 120 Pandorina 26: 90 Pantoea stewartii 45: 210, 253 PAO1 45: 229 Pap (pyelonephritis associated pili) 29: 55, see also Pili, Pap pap 45: 1 – 49 co-ordinate control 45: 36, 37 CRP and catabolite repression 45: 13, 14 environmental regulation 45: 6 feedback control of expression 45: 30 overview 45: 4 – 7 phase variation 45: 8 – 10 phase variation in control 45: 8 thermoregulation 45: 14, 15 Pap proteins 45: 4, 6, 7, 11 – 14, 30 papA gene 29: 76, 77 PapABI regulatory region 45: 4 Papaverine phosphodiesterase inhibition 28: 48 papB gene 29: 77 PapBA 45: 7, 8, 14 PapBA mRNA 45: 7, 8 PapBA transcription 45: 15 PapBI intergenic region 45: 5
183
papCD, papEFG and papI genes 29: 77 Papulacandin, structural formula 27: 61 Paracoccidioides brasiliensis 34: 107, 117, 124, 128, 129 disease caused by (paracoccidioidomycosis) 34: 128, 129 growth phases 34: 108 mammalian hormones affecting 34: 1, 28, 29, 106, 107, 124 mammalian hormones with binding sites in 34: 114, 117 Paracoccus 39: 3; 40: 21; 45: 74, 76, 86, 89, 100, 127 Paracoccus denitrificans 27: 132, 134; 30: 156, 157; 31: 256, 257; 36: 257, 268; 39: 245, 257, 260– 262, 265– 271, 268, 269, 275, 276; 40: 37, 38, 62, 64, 65, 66, 206, 424; 43: 173, 190; 44: 6, 21, 28; 45: 53, 70, 71, 73, 74, 89, 90, 97, 100 aerobic, cytochromes in 29: 31 autotrophic, cytochrome o expression 29: 37 cytochromes in 29: 31 cross reactions, Methanol dehydrogenase 27: 144 cytochrome aa3 in 29: 28 cytochrome bc1 31: 233 cytochrome c 27: 174 specificity 27: 175 electron transport 27: 181, 189– 191 electron transport in hydrogen oxidation 29: 27 hydrogen oxidation-dependent ATP synthesis 29: 24 iron-limited growth 38: 189 Km value of hydrogenase 29: 15, 16 mutant, lacking cytochrome C 27: 163 nitric-oxide reductase 31: 260 nitrite reductase 31: 260 nitrous-oxide reductase 31: 261 proton translocation 27: 183 sensitivity to KCN 27: 142 Paracoccus pantotrophus 45: 53, 57, 58, 60, 62, 65 – 69, 71 – 77, 86, 87, 96 Paracoccus sp. 36: 263 Paracoccus versutus 39: 261, 262, 265– 268, 270, 271, 276 Paracrystalline bodies 31: 86 Paralogs 46: 7, 8 bacterial genomes 46: 10 Paramecium 30: 103, 104; 39: 293 Paramecium bursaria 39: 302 Paramecium multimicronucleatum 39: 301 Paramecium tetraurelia 39: 314, 317
184
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Paraquat (PQ, redox cycling agent) 46: 322, 335 Parasitism 37: 243 Parconazole, sterol demethylase inhibition 27: 45 Pargyline 26: 261 Parisin 34: 74 Pars oesophagea 42: 39 Parthenogenesis 30: 27, 28 ameiotic 30: 28 apomictic 30: 27, 28, 47 automictic 30: 27, 28 diploid 30: 28 facultative 30: 29 haploid 30: 27, 28 origins 30: 36 Partial commitment 43: 89 Particle-associated bacteria 32: 76 – 78 activity measurements 32: 77, 78 PAS 45: 185, 189 “Pasteur effect” 28: 186, 187, 199– 202, 205 yeast growth 28: 186, 187, 199– 202, 205 Pasteurella multocida 45: 57, 87 transcriptional response to iron limitation 46: 16 –18 Pasturella haemolytica 35: 146, 147, 152 Pat1 mutants of Schiz. pombe 34: 97 Patch damp techniques 37: 97 Pathogenesis 37: 242 –246 Pathogenicity 43: 203, 204; 46: 34 bacterial, microarray analysis see Microarray analysis genetic basis 46: 1, 2 island, cag in H. pylori 46: 33 S-layer in pathogenicity 33: 251 Tat protein translocation pathway 47: 218, 219 Pathway-specific regulatory genes 26: 72 – 74 P-ATPase 42: 242– 252 Paulinella chromatophora 29: 123 Paxillus involutus 41: 54, 55, 70, 71 PbpE transcription, controlled by B. sabtilis s W 46: 77 PBPs (penicillin binding proteins) 40: 372, 377, 389 PCB see phycocyanobilin P-cells of Schiz. pombe, sex hormones and the 34: 96, 97 p-chlorobenzoate 39: 363 p-chloromercuribenzoate 37: 197 PCR amplification 45: 35 p-Cresol methyl-hydroxylase 31: 12 PDI protein (disulphide isomerase) 34: 263, 266
PDR network, Saccharomyces cerevisiae 46: 177– 179, 183 PDR subfamily of ABC transporters 46: 171, 172 SNQ2 46: 172 PDR1 and PDR3 genes 46: 177– 179 PDR5 gene 46: 183, 184 Pdr5p, S. cerevisiae drug efflux pump 46: 183, 184 PDREs (pleiotropic drug resistance elements) 46: 177, 178 PE see phycoerythrin Pea cultivars, Alaska 29: 11, 12 Feltham First 29: 11 in host control of hydrogenase 29: 11 – 13 JI1205 29: 11 – 13 PEB see phycoerythrobilin Pectate lyase 37: 93 Pectin 37: 3, 5 Pediococcus cerevisiae 39: 220 Pelochromatium roseum 41: 270 Pelodictyon luteolum 39: 249 Peltigera canina 29: 122 Pelvetia, ionic currents in 30: 93, 95, 105– 107 applied electrical fields, cell polarity and 30: 107, 109, 113 PEM1 gene 32: 29 pem1 mutation 32: 28 pem2 mutation 32: 28, 29 Penicillanic acid 36: 210 sulphone 36: 210 Penicilliium janthinellum 37: 13, 28 Penicillin 37: 88, 237 adhesions, enhancement 28: 231 b-lactamases, resistance to 28: 232, 233 binding proteins (PBPs), affinity for b-lactams 28: 213 binding to mecillinam 28: 240 effect on lipoteichoic acid, lipid and protein release 29: 273, 274, 295 filament formation, septum inhibition 28: 231 gonococcal fimbriae 28: 224 growth promotion, meat animals 28: 244, 245 streptococcal adhesion 28: 225 subinhibitory concentrations, phagocytosis 28: 241, 249 Type I fimbriae, inhibition 28: 231 vesicle formation due to 29: 248, 274 Penicillinase lipid attachment, inhibition 28: 238
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Penicillin-binding proteins (PBPs) 36: 193, 198 effect of mecillinam on 36: 204, 206 effects of alterations on cell shape, division and number 36: 224– 226 Penicillium 41: 77; 43: 54 Penicillium cyclopium 35: 278, 284, 285 Penicillium bilaii 41: 69 Penicillium chrysogenum 35: 294– 298; 43: 51; 37: 15 intracellular sodium/potassium ion levels 33: 183 osmotic potential 33: 153 polyols content 33: 171 regulation 33: 190 Penicillium corylophilum 35: 278; 41: 73 Penicillium digitatum 35: 278– 281, 284– 290, 302 ABC drug transporters 46: 170 Penicillium janczewskii, griseofulvin 27: 5 Penicillium luteum 35: 278 Penicillium ochro-chloron, potassium ions as predominant cation 33: 183 trehalose in 33: 176 Penicillium patulum 35: 278 Penicillium pinophilum 37: 45 Penicillium simplicissimum 41: 77, 78 Penicillium spp. 37: 41; 42: 55 antibiotics from, structural similarities with glutathione 34: 243 chrysogenum, glutathione-related processes 34: 254 oxalicum, glutathione-related processes 34: 246 Pentachlorophenol (PCP) 43: 197 Pentacyclic skeleton from isopentenyl pyrophosphate 35: 264– 268 Pentacyclic triterpenoids of hopane series 35: 247, 250 Pentalysine 37: 161 2,4-Pentanedione 37: 189 Pentapeptide (5) 37: 161, 40: 385 disaccharides 40: 375 Pentose phosphate pathway 43: 131 see Hexose-monophosphate pathway Pep 5 37: 144, 158, 165 PEP 45: 277, 279, 282, 290, 294, 295, 297, 315, 321, 322, 324, 332 PEP:PTS 42: 63, 64, 85, 100, 102 PEPC 45: 276, 279, 292, 294, 295, 299, 336 PEPCK 45: 297, 299, 314 PEP-dependent phosphoryl transfer-driven group translocators 40: 87 PEP-dependent phosphotransferase system 39: 59– 62
185
Peptidases 42: 116– 120 leader, precursor proteins 28: 227, 230 signal (lipoprotein signal peptidase) 28: 227 Peptide 3910 37: 144 Peptide extracellular components 44: 248, 249 Peptide permeases 36: 14 – 34 dipeptide permease 36: 29 – 33 as a periplasmic binding protein-dependent system 36: 29, 30 dipeptide binding protein, DppA 36: 30 – 32 regulation of 36: 32, 33 substrate specificities 36: 29 exploitation of 36: 50 – 66, 52 oligopeptide permease 36: 15 – 29 as periplasmic binding protein-dependent system 36: 16, 17 mechanism of peptide transport by 36: 25 – 27 membrane proteins 36: 23 – 25 model for peptide transport 36: 25 regulation of the opp operon 36: 27 – 29 substrate specificities 36: 15, 16 regulation of 36: 50 tripeptide permease 36: 33, 34 Peptide release factor (RF1) 46: 264 Peptide synthesis systems, bacteria/fungi 38: 85 – 131 activation domain organization 38: 94 – 96, 95 fungal 38: 96 – 111 beauvericin 38: 105 cyclosporin 38: 105– 107 delta-(L -alpha-aminoadipyl) cysteinyl-D -valine 38: 96 – 99 enniatins 38: 99 – 104 ergot peptide alkaloids 38: 108– 111 SDZ 214– 103 38: 107, 108 Peptide synthetase domain 38: 88 – 94 acyltransfer/epimerization modules 38: 91, 92 amino acid activation 38: 93, 94 modules, in activation domain 38: 90, 91 motifs in carboxyl-adenylate-forming domain 38: 90 N-methylation module 38: 91 peptide synthetases 38: 88 – 90 thioesterase modules in genes 38: 92, 93 Peptide transport energetics of 36: 49, 50 in brush-border membrane 36: 3 in central nervous system 36: 4 in E. coli 36: 14 – 35
186
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
in fungi 36: 42 – 48 in Gram-negative bacteria 36: 41, 42 in Gram-positive bacteria 36: 38 – 42 in higher plants 36: 4 in lactic-acid bacteria 36: 37, 38 in non-microbial systems 36: 3 in Pseudomonas aeruginosa 36: 35, 36 in rumen micro-organisms 36: 36 in S. typhimurium 36: 14 – 35 in seeds 36: 4 in spore-forming bacteria 36: 40, 41 influence of microbial cell envelope on 36: 6 – 11 Gram-negative bacteria 36: 6 – 10 Gram-positive bacteria 36: 10, 11 yeasts 36: 10, 11 mechanisms 36: 5, 6 methods for studying and utilization 36: 11 – 14 auxotrophs 36: 11, 12 biosensor technique 36: 14 indirect methods using amino-acid spectrophotometric method 36: 14 use of fluorescence techniques 36: 13, 14 use of radioactive labelled peptides 36: 12 occurrence in nature 36: 2 – 5 Peptide-carrier prodrugs 36: 50 –66 natural smugglins 36: 52 – 55 antibacterial compounds 36: 53 – 55 antifungal compounds 36: 55 synthetic 36: 55 – 62 antibacterial compounds 36: 56 – 61 antifungal compounds 36: 61, 62 rational design of 36: 63 – 66 Peptides 37: 135, 136, 167; 42: 38, 120, 121 as sex hormones in yeast 34: 86 – 100 in peptidoglycans 32: 179– 181 interactions with lipids and membranes 37: 156–166, 160– 161 occurrence in nature 37: 136– 152, 138– 146 structure-function relationships 37: 152– 156, 153, 154, 155 Peptidoglycan 32: 174, 177– 179 Peptidoglycan 39: 156, 157, 169–171; 40: 367 P ring of basal body of flagellum interaction 32: 133, 134 amount in bacteria 32: 178 arrangement order 32: 185, 186, 202 breakdown 32: 184, 185 carboxyl groups 32: 182
chain length 32: 180 chemical composition 36: 226– 228 content and synthesis in morphological mutants 36: 207– 209 cross-linking index 32: 180, 181 effect of b-lactams on synthesis 36: 209– 211 electrostatic factors affecting 32: 182 glycan cross-linking 32: 179 in cell-wall twist 32: 186, 188 incorporation of radioactive precursors into lateral wall and septum 36: 231, 232 lysozyme treatment, effect on bacterial threads 32: 198, 199 mechanical properties, humidity relationship 32: 194, 195 organization 32: 202 in Gram-negative cells 32: 178 in Gram-positive cells 32: 178, 179 peptide moiety 32: 179– 181 requirement in flagellar assembly 32: 151 structure 32: 177– 179 turnover/shedding 32: 184 Peptidoglycan, biosynthesis, location of 29: 276 chain extension of 29: 249 disaccharide 40: 373 in flagellar rotation 33: 291 M. avium mutant lacking 31: 102 in M. leprae cell wall 31: 77, 79 biosynthesis 31: 82 S-layer associated 33: 228, 234 Peptidyl prolyl isomerases (PPI) 43: 199 Peptococcus aerogenes 29: 184 Peribacteroid membrane ATPase activity 43: 145 mechanism of dicarboxylate and ammonium movement across 43: 144 transport across 43: 143, 144 Perimycin action 27: 21 Periodate oxidation, destruction of receptor activity 28: 85 Periodic acid-Schiff base stain (PAS), M. leprae membrane 31: 75, 76 Periodic table 38: 183, 184 Periodic variations in mitotic cycle in Physarum polycephalum 35: 42 – 48 Periplasm 37: 283, 284 cydDC and cydAB-dependent redox biochemistry 43: 199– 201 Periplasmic alcohol dehydrogenases, type I and type II 40: 43, 44
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Periplasmic binding protein (PBP) 33: 298, 299; 41: 240 see also Chemoreceptors; Galactoseglucose-binding protein (GBP); other binding proteins affinity for transducers 33: 303, 304 interactions with transducers 33: 305– 310 see also Tar protein Trg protein 33: 310 Periplasmic domain of chemotaxis transducers of enteric bacteria 45: 184 Periplasmic ligand-binding domain 45: 166 Periplasmic nitrate reductase 45: 60, 61, 67, 82, 98 Periplasmic oxidase systems 36: 294, 295 Periplasmic quinoproteins that oxidize alcohols 40: 43, 44 Periplasmic redox reactions 43: 200 Periplasmic stress, E coli s E activation 46: 57 Peritonitis (Gram-negative bacteremia) 28: 67 Peritrichous cells/flagellation 33: 281, 289 Permeability coefficients, biological membranes 33: 163 see also Plasma membranes Permeability problem 39: 177, 178 Permease synthesis repression in yeast 26: 48 Permeases amino-acid affinities and 32: 71 – 72 citrate transport 32: 93 classification 40: 84 – 86 primary categories 40: 86 Peroxidase 37: 189; 46: 330 Peroxidation 37: 178 see Lipid Peroxide 37: 178 detoxification, see Hydrogen peroxide Peroxides, disposal 34: 269– 274 Peroxy hemiacetal 26: 241 Peroxyflavin hemiacetal in bioluminescent reaction 34: 12 Peroxynitrite, formation 46: 323 Persea americana 35: 294, 295; 37: 14 Pertactin (PRN) 44: 145, 154 Pertusaria corallina 41: 73 Pertussis 44: 144, 146, 147 Pesticides 39: 363 Petite mutants 33: 6, 19, 20 cost of maintenance at low water potentials 33: 199, 200 Petroleum 39: 33 Petunia hybrida 35: 294, 295
187
Pex proteins 31: 199 P-factor, Schiz. pombe 34: 96, 97 p-Fluorophenylalanine, action on griseofulvin uptake 27: 10 PGLa, peptide 37: 144, 150, 161 P-glycoprotein, overexpression 46: 166, 167 PGQ, peptide 37: 144, 150 pH adsorbed enzyme activity 32: 59 affecting growth of Nitrobacter sp. 32: 67 antimicrobial activity of organic acids 32: 94 cytoplasm of bacteria 32: 94, 96 dissociation of weak organic acids 32: 89, 90 effect on flocculation, see Flocculation effect of ions on mechanical properties of cell walls 32: 197 effect of lipoteichoic acid content and synthesis 29: 267, 268 effect on low water potential tolerance 33: 161, 200 effect of re-esterification of lipoteichoic acids 29: 265 increased maintenance costs at 33: 200 in Neurospora 30: 102 intracellular, metabolism of immobilized yeast 32: 64 ionic currents and hyphal growth in Achlya 30: 97, 98 Km value in ammonia oxidizers 30: 145 nitrification, see Nitrification -sensitive micro-electrodes 30: 97 thermoacidophilic archaebacteria 29: 167, 217 transmembrane gradient 32: 96, 153 yeast-to-hypha conversion in C. albicans 30: 59 – 61 redox potential of ferrichrome A as function of 43: 67 pH effects 39: 82 –87, 90, 96, 206– 208, 209, 211– 220, 214, 221, 226– 228; 44: 219, 223, 228– 235, 240, 242, 245, 251 pH homeostasis 40: 404– 420, 405, 408, 427 in Helicobacter pylori 40: 152 pH stress 37: 229– 234, 231– 233, 263 gene expression 37: 234– 250 stress resistance 37: 250– 263 pH value, magnetite crystal formation 31: 162, 163 pha gene 40: 413– 416, 415 Phaeolus schweinitzii 35: 278
188
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Phages DNA repair systems 28: 18 oxygen-induced reactivation system 28: 19 reactivation systems 28: 18, 19 repair processes 28: 18 tail protein assembly 28: 121 UV, peroxide and oxygen induced 28: 20, 21 UV-induced 28: 18, 19 Phagocytes (Phagocytosis) E. coli, detail 28: 242 fimbriation, E. coli 28: 91 mannose residues, surface components 28: 91 – 93 subinhibitory concentrations, antibiotics 28: 241– 243 Phagocytosis, S-layers in 33: 252, 253 Phagosome-lysosomc fusion, inhibition by M. leprae 31: 100– 102 Phagosomes 31: 100 Phanerochaete chrysosporium 35: 278, 279; 37: 12, 13, 28, 41, 42, 56, 60, 64, 65; 41: 54, 55, 61; 43: 61; 47: 165– 169 cAMP and fruiting control in 34: 178 lignin degradation by 34: 190 Phase switching, in gonococcal pili 29: 79, 80, 102 Phase variation 29: 74, 77; 32: 119; 33: 283; 45: 17 – 41 controlled by Lrp and Dam methylation 45: 4– 17 E. coli 28: 118, 119 Phaseolotoxin 36: 54, 65 Phaseolus 45: 130, 134 Phaseolus vulgaris 37: 9, 15; 43: 145 Phenazine methosulphate [PMS] 27: 131, 138 ammonium, absolute requirement 27: 140 electron acceptor 27: 141 cyanogenesis 27: 77 Hup – mutant selection 29: 38, 39 reduction 29: 16, 17 Phenazines absorption spectra 27: 212 biosynthesis pathway 27: 252 Brevibacterium 27: 256– 259 P. aeruginosa 27: 249– 253 P. aureofaciens 27: 253– 255 P. chloroaphis 27: 253 P. phenazinium 27: 256, 257 Streptomyces 27: 258– 261 chorismic acid 27: 244 ring assembly 27: 244 –246 ring nitrogen sources 27: 246, 247 shikimic acid 27: 243, 244
phenazine metabolism, proposed pathway 27: 252 phenazine origins, common precursor 27: 247– 249 chemical identity 27: 217 deuterated phenazines, transformation 27: 254, 255 naturally occurring 27: 213– 216 phenazine-1-carboxamide [oxychlororaphine], isolation 27: 222– 224 phenazine-1-carboxylic acid 27: 214, 226, 230, 233, 253– 255 see also Tubermycin biosynthesis 27: 225, 226 structural formula 27: 220 pigmentation mutants 27: 251 production by Pseudomonas spp 27: 218–232 by Actinomycetes 27: 232– 235 by Sorangium spp., 241, 242 by Streptomyceles 27: 235– 241 secondary metabolism 27: 260 antibiotic function 27: 267, 268 defective regulation hypothesis 27: 263, 264 extrachromosomal coding 27: 264, 265 growth conditions 27: 262, 263 physiological functions, possible 27: 264– 268 safety valve hypothesis 27: 265, 266 shikimic acid as precursor 27: 242– 244 structural formulae 27: 220, 226, 229, 230, 233, 237 taxonomy 27: 213– 216 Phenethyl alcohol, inhibition of sporulation 28: 38 Phenobarbital 26: 261, 264 Phenol catabolism, strains with hybrid pathway 31: 57 Phenol oxidases, fruiting and 34: 179, 180 Phenol, degradation 32: 74 Phenolic glycolipid 1 (PGL-1) 31: 78, 80, 81 biosynthesis 31: 85 effect on phospholipases 31: 107 lipid part, biosynthesis 31: 85 peroxide scavenging by 31: 101, 102 Phenolic glycolipid I (PGL-T) 39: 146, 147, 153 Phenolic glycolipids (PGL) 39: 145– 147, 153, 177 Phenothiazine 37: 87, 114 Phenotype interventions, glucose 45: 292– 295 Phenotypes 45: 202 Phenoxazines and phenazines 27: 267
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Phenyl methane sulfonyl fluoride (PMSF) 39: 360 1-Phenyl-1,2-propanedione 37: 189 Phenylalanine 37: 241; 42: 128 ammonia-lyase (PAL) 42: 128 chloramphenicol biosynthesis 27: 263 hydroxylase 38: 49 phenazine production 27: 264 pigment formation, inhibition 27: 264 regulation of common transport system, E. coli 28: 171 pheP gene location 28: 172 Phenylarsine oxide 29: 209 4-phenylbutyrate 39: 344 Phenyl-D -mannoside, potent inhibition, E. coli binding 28: 83 2-Phenylethanol, bacterial ice nucleation and effects of 34: 222 Phenylglyoxal 37: 194, 195, 197, 199, 204 7-phenylheptanoate 39: 344 6-phenylhexanoate 39: 344 8-phenyloctanoate 39: 344 3-phenylpropionate 39: 344 5-phenylvalerate 39: 344 Pheromones aldehyde, unsaturated 34: 9 bacterial, autoinducers as 34: 37 fungal 34: 70 – 104, 132 insect 34: 9 Phlebia radita 37: 65 Phleic acids 39: 151 Phloroglucinol 39: 342, 346 Pholiota adiposa 35: 278 phoP gene, for initiation of programmed cell death 46: 37, 38 Phorbal esters 37: 107 Phormia sp. 37: 147, 148 Phormia terranovae 37: 142, 144, 147 Phormicins 37: 137, 147 Phormidium laminosum 39: 4, 9 Phormidium luridum 37: 91 Phormidium uncinatum 30: 92; 37: 109, 111 Phosphaditylinositol kinase, ergosterol stimulation of 32: 18 Phosphatase 37: 237 in nucleotide scavenging by M. leprae 31: 96, 108 Phosphate 37: 117, 181– 185, 257, 295 flow and sporulation in Bacillus subtilis 35: 120– 123 see also phosphorelay in F pili 29: 83, 85, 87 in bacteriophage attachment 29: 91 in flocculation 33: 16 level and Physarum polycephalum 35: 40, 41, 45
189
phosphodiesterase synthesis during 29: 272 limitation, effect on lipoteichoic acid synthesis 29: 268, 269, yeast surface charge 33: 26, 44 Phosphate-bond energy-dependent transport systems without binding proteins 26: 136 Phosphate-buffered saline (PBS) 40: 159– 160 Phosphates concentration, and phenazine production 27: 262 in cyanide metabolism 27: 76, 85 inhibition, methanol oxidation 27: 141 ions, leakage, antibiotic induced 27: 281, 285 Phosphatidic acid 32: 16, 21; 37: 261 CDP-diacylglycerol formation 32: 22 diacylglycerol formation 32: 21 Phosphatidic acid phosphatase 29: 250 increase in stationary phase 32: 21 induced by inositol 32: 22, 46 purification 32: 21 regulation (by inositol) 32: 21, 22 synthesis 29: 260 Phosphatidyl monomethylethanolamine 32: 27 Phosphatidylcholine (PC), synthesis, CDP-choline pathway 33: 122, 123, 125, 126 in endoplasmic reticulum 33: 123, 125 methylation pathway 33: 123, 125 Phosphatidylcholine, biosynthesis, mutants with Opi2 phenotype 32: 36 regulation of inositol-1-phosphate synthase in response to inositol and 32: 30 – 32, 45 decreased, ino4 and ino2 mutants 32: 33 structure 32: 4 Phosphatidylcholine, fatty-acid release from, M. leprae 31: 88, 93, 107 Phosphatidylcholine, hydrogenase activity 29: 21, 22 Phosphatidyldimethylethanolamine 32: 27 Phosphatidylethanolamine 37: 87; 39: 138, 151, 180; 46: 70 Phosphatidylethanolamine, in F pili 29: 83 structure 32: 4 synthesis 32: 22 synthesis location in B. megaterium 29: 276 Phosphatidylethanolamine, in sphaeroplasts, lysis resistance 33: 182
190
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Phosphatidylglucosyldiacylglycerol 29: 250, 252 as acceptor substrate in lipoteichoic acid synthesis 29: 250, 252 Phosphatidylglycerol 37: 87; 39: 180 as glycerophosphate carrier 29: 250, 252, 276 biosynthesis inhibition, lipoteichoic acid synthesis block 29: 248 decrease, in phosphate limitation in B. subtilis 29: 269 formation from diacylglycerol 29: 259, 260 site of 29: 276 glycerophosphate residues in lipoteichoic acids from 29: 234, 247, 250 in lipoteichoic acid synthesis 29: 234, 247, 254 pools in B. megaterium 29: 261 structure 29: 235 synthesis of sn-glycero-l-phosphate of lipoglycan 29: 258 turnover 29: 258 for synthesis of lipoteichoic acids in bacterial doubling 29: 258 Phosphatidylglycerophosphate synthase 32: 23 regulation 32: 23, 24 Phosphatidylglycolipid, membrane, lipoteichoic acids attached to 29: 234, 235 Phosphatidylinositol 3-phosphate 32: 11 Phosphatidylinositol 4,5-bisphosphate (PIP2) 33: 131, 132 Phosphatidylinositol 4-phosphate 32: 11, 12 Phosphatidylinositol 32: 3; 37: 87 see also Phosphoinositides as anchor in membrane for glycoproteins 32: 15 biosynthesis 32: 8 – 11, 45 CDP-diacylglycerol synthase in control of 32: 22, 23 increase with inositol addition 32: 9, 45 phosphatidylserine biosynthesis regulating 32: 25 rate increase, control 32: 9, 10 cell-wall biosynthesis and cell division inhibition 32: 14 charge 32: 18 in arsenate adaptation 32: 15 metabolism 32: 3, 4 role in yeast 32: 13 – 18 structure 32: 4 turnover 32: 4, 6
Glycerophosphatidylinositol formation 32: 6 Phosphatidylinositol kinase 32: 11 – 13 cyclic AMP telationship 32: 12, 13 location and purification 32: 11, 12 regulation 32: 12 Phosphatidylinositol mannosides (PIM) 31: 76; 39: 138, 151, 180, 183, 184 Phosphatidylinositol synthase 32: 8 mutations 32: 8 Phosphatidylinositol/phosphatidylcholine transfer protein, see also Phospholipid-transfer proteins (PL-TPs); SEC14p SEC14p as 33: 119, 120 ubiquity 33: 125 Phosphatidylinositol-phosphate kinase 32: 11 regulation 32: 13 Phosphatidylmethylethanolamine 32: 32 Phosphatidylserine 28: 238; 37: 108 Phosphatidylserine decarboxylase, inositol repression of 32: 27 regulation 32: 27 Phosphatidylserine synthase 32: 24 cho1 mutant 32: 25, 26 decreased in ino4 and ino2 mutants 32: 33 inositol and choline repressing 32: 25 inositol as non-competitive inhibitor 32: 9, 24 phospholipid environment affecting 32: 24 phosphorylation and cAMP levels 32: 24, 25 purification 32: 24 regulation 32: 24 – 27 subunits 32: 24, 26 translation 32: 26 Phosphatidylserine, activity 32: 9 biosynthesis 32: 24 phosphatidylethanolamine synthesis 32: 22 phosphatidylinositol synthase structure 32: 4 Phosphenolpyruvate (PEP) carboxylase 40: 168 Phosphinothricin 36: 53; 38: 120– 122, 121 Phospho-B-galactosidase 39: 62, 67 Phosphodiester bond, in poly(glycerophosphate) lipoteichoic acids 29: 234, 235, 240 Phosphodiester groups, in flocculation 33: 46
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Phosphodiesterase (PDE) 37: 96, 114– 116, 118 lipoteichoic acid degradation 29: 242, 249, 272 Phosphoenol pyruvate (PEP) carboxykinase 29: 175 carboxylase 29: 175, 189 synthesis from pyruvate in methanogenic, archaebacteria 29: 184 Phosphoenol pyruvate-dependent phosphotransferase system (PTS) 37: 106, 107 phosphoenol/pyruvate carboxykinase 28: 192 Phosphoenolpyruvate (PEP) 26: 129; 37: 106, 124; 39: 59, 65, 72; 42: 63 carbohydrate:phosphotrans ferase system. See PEP:PTS carboxylase 39: 299 Phosphoenolpyruvate (PEP)-dependent sugar phosphotransferase system 26: 135, 140 Phosphoenolpyruvate carboxykinase (PCK) 37: 124 Phosphoenolpyruvate-dependent phosphotransferase system (PTS) 39: 3 31 –32, 59, 65 –67, 72 –75 phosphofructokinase 28: 205 6-Phosphofructokinase, not detected, in aerobic eubacteria 29: 172 in H. halobium 29: 179 in M. thermoautotrophicum 29: 182 in S. solfataricus 29: 179 in T. acidophilum 29: 181 Phosphoglucomutase, fruit body 34: 185 6-Phosphogluconate (6PGLU) 29: 142, 143; 40: 156 inhibitor of RuBisCO 29: 143, 144 oxidation, absent from H. saccharovorum 29: 177 scavenging 31: 88 utilization by M. leprae 31: 88, 108, 110 6-phosphogluconate dehydratase 40: 159 6-Phosphogluconate dehydrogenase 31: 88, 110; 40: 156 Phosphogluconolactonase 40: 156 2-Phosphoglycerate 42: 63 formation in T. acidophilum 29: 180 3-Phosphoglycerate(3PGA) 30: 198, 199; 42: 63 Phosphoglycolipids, glycolipid and lipoteichoic acid relationship 29: 251 2-Phosphoglycollate 29: 143
191
Phosphoinositides, see also Phosphatidylinositol biosynthesis 32: 11 metabolism 32: 3, 4 in glucose starvation 32: 16 role in yeast 32: 13 – 18 as second messengers 32: 3, 11 turnover, calcium efflux and 32: 17 ergosterol stimulation of 32: 17 glucose starvation effect 32: 16, 17 Phosphoinositol 4,5,-bisphosphate (PIP2), 94, 95 Phospholipase 37: 86, 87, 94 Phospholipase C 37: 95 Phospholipase c, P. aeruginosa 27: 262 Phospholipases, C. albicans secretion of 30: 73 M. leprae 31: 88, 93, 107, 110 Phospholipid bilayer, Tat protein translocation pathway 47: 233 Phospholipid biosynthesis, see also individual phospholipids; Inositol enzyme regulation 32: 19 cascade controlling 32: 32, 46 epistatic interactions of mutations 32: 38, 39 INO1 transcription, regulation 32: 39 – 43 inositol role, see Inositol model for regulation of 32: 43 – 47 negative regulator (OPI1) 32: 36 – 38 positive regulators (INO2, INO4) 32: 33 – 35 pathway (Sacch. cerevisiae) 32: 5 Phospholipid methyltransferase, inositol and choline repressing 32: 29 mutant strains 32: 28 – 30 regulation 32: 27 –30 transcription level 32: 29, 30 Phospholipids 37: 86 – 90, 115, 159, 178, 286, 305; 39: 180 and hopanoids 35: 256, 259 bulk mobilization model, rejected 33: 123, 125 inhibition of autolysins 29: 288, 289 M. leprae nutrient acquisition 31: 107 retrieval to endoplasmic reticulum 33: 123, 125 role in protein transport 33: 118 translocators, ABC drug efflux pumps 46: 185– 187 Phospholipid-transfer proteins (PL-TPs) 33: 120 defect, see sec14 – 1ts mutant experimental system for in vivo study 33: 120
192
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
in vitro properties 33: 120 phospholipid retrieval to endoplasmic reticulum 33: 123, 125 protein transport through Golgi complex 33: 117– 127 see also Golgi complex; SEC14p substrate specificity 33: 120 of SEC14p 33: 120 see also, Phosphatidylinositol/ phospha-tidylcholine transfer protein; SEC14p Phosphomannomutase 33: 75 Phosphomonoesterase 29: 242, 277, 278 Phosphonopeptides 36: 56 – 58 Phosphorelay in sporulation of Bacillus subtilis 35: 113– 120 see also kinases; spoO genes control of 35: 120– 126 Phosphorelay mechanism 41: 194 Phosphorelay systems 41: 144 Phosphoribulokinase, absent from cyanelle inclusions 29: 132 genes, Alcaligenes eutrophus H16 29: 148 in Chlorogloeopsis fritschii 29: 131 in cyanobacterial carboxysomes 29: 127 Phosphoribulokinase, fructose 1,6-bisphosphatase 26: 139 Phosphorolytic enzymes 37: 39 Phosphorus acquisition Prochlorococcus 47: 31 – 35 sphX gene 47: 35 Synechococcus 47: 31 – 35 temporal factors 47: 34 Phosphorylated effectors, RuBisCO29: 142, 143 Phosphorylated kinase 41: 183 Phosphorylation 37: 208– 212, 210, 211 cAMP-dependent 32: 13 in chemotaxis mechanism 32: 114 in histone modification 35: 45 potentials 26: 126, 140– 142 Phosphoserine 41: 140 Phosphotransacetylase (PTA) 39: 77, 80, 101; 31: 88 Phosphotransbutyrylase (PTB) 39: 78, 80, 90 Phosphotransferase sugars 41: 253, 254 Phosphotransferase system (PTS) 33: 299, 322; 39: 59; 40: 91; 42: 256, 262, 263 component FIll 26: 140– 142 Photinus pyralis 36: 91 Photoactive yellow protein (PYP) 41: 264 Photo-affinity labelling 28: 168 Photoanaerobic ring reduction 39: 346, 347 Photo-autotrophic prokaryotes, carboxysomes in 29: 121– 123
Photobacterium genus 26: 237, 238 Photobacterium leioyhathi, Cu/Zn superoxide dismutase 28: 7 Photobacterium probe 26: 278 Photobacterium spp. leiognathi 34: 2, 23 lux genes and their regulation 34: 25, 26, 30, 31, 33, 42, 43, 46, 47 lux protein sequence comparisons with other species 34: 52 – 57 passim lumazine protein, see Lumazine protein non-fluorescent flavoprotein 34: 23, 24 oxygen dependent-luminescence 34: 4, 5, 46 phosphoreum 34: 2, 4 acyltransferase subunit of fatty-acid reductase complex 34: 19 luciferase assay 34: 12 lux genes and their regulation 34: 25, 26, 30, 31, 31, 42, 46, 47 lux protein sequence comparisons with other species 34: 52 – 57 passim synthetase subunit of fatty-acid reductase complex 34: 20, 21 tetradecanal isolated from 34: 8 Photobiodegradation of polymers 39: 360, 361 Photobiotransformation anthranilic acid 39: 352 aromatic compounds 39: 348, 349, 349 Photodimerization 37: 88 Photoheterotrophic metabolism 45: 80 Photo-inhibition of nitrification 30: 149, 150 Photometabolism alcohols 39: 354, 355 aromatic acids 39: 353 formate 39: 355, 356 heterocyclic aromatic compounds 39: 347, 348 Photophosphorylation 26: 128, 129 Photoreactivation, DNA repair 28: 12, 16 Photoreceptors 33: 302 Photorespiration 29: 140, 152 Photorhabdus luminescens 44: 171 Photosynthate, as limiting factor in nitrogen fixation 29: 26 Photosynthesis 37: 91, 92; 40: 359 anaerobic 29: 193 carboxysome abundance and 29: 151, 152 free radical generation 46: 322 improved nitrogen fixation 29: 13 inhibitory effect of oxygen 29: 141, 142 photorespiration interaction 29: 140
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Photosynthetic bacteria 26: 155– 234; 45: 77 – 82 anoxygenic photosynthesis 26: 157 anti-oxidant defense systems 34: 271 biological solar energy convertors 26: 210– 218 advantages 26: 217, 218 carbon metabolic pathways for complete substrate degradation 26: 214, 215 cell stabilization by immobilization 26: 216, 217 economical substrates 26: 215– 217 high nitrogenase content/activity strains 26: 212– 214 hydrogen, production of 26: 215, 216 hydrogenase-deficient strains 26: 214 marine strains 26: 212 strain screening/ selection 26: 211– 215 thermophilic/thermostable strains 26: 212 water depollution 26: 216 classification 26: 158, 159 ecological distribution 26: 161, 162 evolution 26: 160 growth properties 26: 160, 161 hydrogen metabolism see Hydrogen metabolism literature reviews 26: 157 (table) low CO2/O2 specificity of RuBisCO 29: 141 Photosynthetic micro-organisms 27: 90 – 94, see also Rhodopseudomonas Photosynthetic physiology, carbon metabolism 47: 11 – 14 Photosynthetic purple non-sulphur bacteria, RuBisCO in 29: 133 Phototaxis 37: 106, 108– 112 Phototrophic bacteria 37: 291, 295 Phototrophic metabolism 39: 237 Phototrophic organisms, glutathione metabolism 34: 242 Phototrophic proteobacteria 39: 252– 259 PhsB peptide synthetase 38: 121, 122 Phthalate dioxygenase 38: 55 – 57 ferrous active site 38: 75 spectroscopic analysis 38: 65 – 67, 66 Phthienoic acids 39: 151 Phthiocerol dimycocerosate 31: 80, 82, 102 Phycobiliproteins Phycobilisomes 29: 155 Phycocyanobilin (PCB), Synechococcus 47: 11
193
Phycoerythrin (PE) characteristics, clade-specific physiological 47: 20 – 27 fluorescence 47: 19 Synechococcus 47: 9, 10 Phycoerythrobilin (PEB) cell cycle 47: 41 –43 Synechococcus 47: 9 – 11 Phycomyces 43: 53 Phycomyces blakesleeanus 33: 155, 190; 35: 278 Phycomyces nitens 35: 278, 284 Phycomyces spp. blakesleeanus, sex hormones in 34: 76, 81 – 83 hyphal wall expansion 34: 187 Phycoporus coccineus 35: 278 Phycourobilin (PUB) cell cycle 47: 41 –43 Synechococcus 47: 9 – 11 Phyllomedusa bicolor 37: 138 Phyllomedusa sauvagii 37: 141, 150 Phylogenetic families of extracytoplasmic receptors 40: 120 Phylogenetic relationships, see also Archaebacteria rRNA sequence comparisons 29: 166– 168 Phylogenetic tree, CYPs 47: 138 Phylogenetic trees 40: 111, 119 for cytoplasmic energy coupling 40: 121 Phylogeny, Synechococcus 47: 4 –8 Phylograms CYPs 47: 136, 137, 152 NADPH-CYP reductase 47: 167 Physarum polycephalum 36: 92 AP1A hydrolases in 36: 93, 94 AP1N concentration and growth 36: 102 dinucleoside oligophosphates in 36: 83, 85, 86 Physarum polycephalum 35: 1 – 69 see also cytoskeletal organization; mitotic cycle genome organization 35: 6 – 13 ionic currents in 30: 93, 104, 105 introduced molecules 35: 58 –62 life cycle 35: 2, 4– 6 Physiological diversity, Synechococcus 47: 1 – 64 Physiological roles of Ap1N 36: 99 – 102 DNA repair 36: 101, 102 heat-shock protein reponse induction and 36: 99, 100 in control of cell proliferation 36: 102 phenotypes from artificially high intracellular concentration of 36: 100, 101
194
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Physiology 30: 13 symbioses 30: 15, 16 Phytic acid 32: 3 Phytochelatins 34: 290 Phytochrome 37: 92 Phytophthora cinnamomi, proline accumulation 33: 176 Phytophthora spp. cactorum 34: 80 parasitica 34: 81 sex hormones 34: 80, 81 Phytoplankton 32: 77 Pichia 43: 5 Pichia pastoris 42: 11 Pichia querquum 33: 180 2-Picolinic acid, inhibition of sporulation 28: 38 Pig, acidification of diet for 32: 100 Pigments 45: 246, 247 Pigs, see also, Fimbriae, K88 (porcine enterotoxigenic) E. coli enterotoxigenic strains 28: 74, 75 E. coli K99, adhesion, intestine 28: 75 low-dose antibiotic administration 28: 244, 245 erythrocyte agglutination 28: 121 tetracycline resistance 28: 245 PilA gene 29: 74 in phase variation 29: 75 PilA 0 -lacZ fusion 29: 75 PilB, C, D genes 29: 74 PilE gene 29: 74 PilE region, pilin genes in gonococcus 29: 79, 80 PILEUP program 41: 197, 199 Pileus, stipes elongation and the 34: 186 Pili 29: 53, 54, see also Pilin; individual bacteria adhesive 29: 54 – 56, 61 – 63 antigenic determinants 29: 62, 94 mannose-resistant (MR), 61, 62, 94, 95 mannose-sensitive (MS) 29: 61, 94, 95 of Escherichia coli 29: 61 – 63, 94, 95 protein structure – function relationships 29: 62, 94, 95 receptor-binding domains 29: 94, 95 Antigenic determinants 29: 63, 94 function and biochemical properties 29: 63, 64 genetic organization 29: 79 – 82 leader sequence 29: 99 N-terminal sequence 29: 64, 67, 99 nucleotide-sequence 29: 64 organisms expressing 29: 96 protein structure – function relationship 29: 96 – 102 X-ray diffraction studies 29: 64 – 68
CFA/I 29: 56 morphology 29: 57 organization and expression of genes 29: 77, 78 CFA/II (CS1, CS2, CS3) components 29: 54, 62 genes 29: 78 host serotype effect 29: 78 CFA/II (CS3) 29: 57 CFA/II (CSl, CS2), morphology 29: 57 CFA/II, CS2 N-terminal sequence 29: 62 organization and expression of genes 29: 77, 78 classification 29: 54, 55, 55 – 64 criteria for 29: 55 electron-microscope appearance 29: 57 function and biochemical properties 29: 57 –64 incompatibility (Inc) in 29: 60 morphology 29: 55 – 57 conjugative, see also Plasmid-encoded antigenic determinants 29: 85, 86 bacteriophage sensitivity 29: 58 chemical composition 29: 83– 85 derepressed mutants 29: 70 elements; individual pili expression rate, HFT 29: 70 function and biochemical properties 29: 57 –61 gene encoding pilus retraction 29: 68 morphology 29: 55 – 58 nomenclature 29: 54, 55 organization and expression of genes 29: 68 – 73 plasmid-encoded elements 29: 68 – 71 role in identifying recipient and inducing contact 29: 60, 68, 87 summary of properties 29: 58 surface obligatory or surface preferred 29: 58, 60 tip of, functions 29: 87 – 89, 91 universal mating type 29: 58, 60 F 29: 54, 83 antigenic determinants 29: 85, 86 assembly and retraction 29: 87, 92 – 93 cleavage of R17-A protein 29: 87 cyclic AMP effect on 29: 72 functions, bacteriophage attachment 29: 89 interactions with recipient bacteria 29: 87, 88 model based on high-resolution studies 29: 65 – 67 monoclonal antibodies to 29: 86 pilin, see Pilin, F
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 receptor on recipient cells (OmpAp) 29: 87, 88 sheared, f1 bacteriophage attachment 29: 90 surface exclusion system 29: 88 F41 29: 57 animal-specific 29: 62 pilin subunit size 29: 63 Flexible, mating type 29: 60 F-like 29: 85 phage attachment 29: 91 antigenic determinants 85, 86 C-terminus 29: 85, 91 glucose and phosphate in 29: 83, 85, 87 leader sequence 29: 92 N-terminus 29: 85, 89, 90 phage interactions 29: 86, 87 phage plating efficiency and cyanide effect 29: 90 protein associated with tip 29: 91 surface exclusion systems 29: 88, 89 surface features 29: 89 – 91 unique configuration pilin subunits at tips 29: 89, 90 Functions 29: 54, 82, 87 Gal-gal 29: 55, 61, 94 Gonococcal (GC), see Neisseria gonorrheae pili High-resolution studies 29: 64 –68 in Bacteroides nodosus, see Bacteroides nodosus IncF, see Plasmid, IncF K88 29: 54 animal-specific 29: 62 antigenic variants (K88ab, K88ac, K88ad) 29: 62, 63, 95 F41 relationship 29: 63 morphology 29: 57 organization and expression of genes 29: 78, 79 pilin, see Pilin K99 29: 54 animal-specific 29: 62 diarrhoea in animals 29: 63 expression, glucose reduction of 29: 77 molecular weight, sequence of pilin 29: 63 morphology 29: 57 organization and expression of genes 29: 78, 79 Mammalian cell adhesion 29: 54, 61, 83, 95 NMePhe pili 29: 96, 102 mannose-sensitive 29: 61 MS haemagglutination 29: 94
195
organization and expression of pilin genes 29: 74, 75 phase variation 29: 74 NMePhe 29: 55, 56, see also N. gonorrhoea; Ps. aeruginosa nomenclature 29: 54, 55 non-conjugative, morphology 29: 57 nomenclature 29: 54, 55 PAK, antigenic determinants 29: 97, 99 model of 29: 66, 67 pili serotypes 29: 97 pilin amino-acid sequence 29: 98, 99 pilin gene 29: 81 X-ray diffraction studies 29: 67 PAO, molecular weight of pilin 29: 82 pili as virulence factor 29: 97 pilin amino-acid sequence 29: 98, 99 pilin gene 29: 81 X-ray diffraction studies 29: 67 Pap 29: 55, 75 adhesing 29: 55, 95 binding to P blood group 29: 55, 61, 94 gene 29: 76, 77 cluster 29: 75, 76 similarity with K88 and K99 29: 78 homology with Type I 29: 62 morphology 29: 57 organization and expression of genes 29: 75 – 77 synthesis without adhesion function 29: 76 pED208, antigenic determinants 29: 85 surface exclusion system 29: 88 pilin subunit primary sequence 29: 62 protein structure and function 29: 82 – 102 Ps. aeruginosa (NMePhe), see Pseudomonas aeruginosa R100 – 101 29: 84, 85 bacteriophage attachment 29: 90 receptor on recipient cells 29: 88 TraTp protein 29: 88 R1 – 19, 84, 85 antigenic determinants 29: 86 receptor on recipient cells 29: 88 R538 – 531 29: 84, 85 receptors 29: 87, 88, 88, 89 retraction 29: 96 evidence for 29: 93 genes encoding 29: 68 rigid, mating type 29: 60 synthesis, chromosomally, encoded control elements 29: 71, 72
196
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
gene products (plasmid-encoded) involved in 29: 69 – 71 plasmid encoded control elements 29: 72 small effector molecules 29: 72, 73 Type I, adhesin 29: 95 CS1, CS2 similarity 29: 62 genes, similarity with K88 and K99 29: 78 high-resolution studies 29: 64, 65 homology with Pap pili 29: 62 Pili 33: 53 987P, animal-specific 29: 62 morphology and molecular weight 29: 57, 63 Pilin 37: 121 ColB2, composition 29: 83 – 85 F, AP7 and Ap7*, 92 chemical composition 29: 83 – 85 molecular weight 29: 65 F-like 29: 61 central region 29: 91 K88, structure 29: 63, 94 subunit 29: 62, 63, 95 size 29: 63 K99, structure 29: 63, 94 MS and MR 29: 95 N. gonorrhoeae, antigenic determinants 29: 63, 94, 101, 102 antigenic variation 29: 64, 100 as adhesin 29: 100, 101 hypervariable region 29: 101 nucleotide sequence 29: 79, 80, 100, 101 structure – function 29: 100– 102 Pap, structure 29: 62, 94 pED208, composition 29: 83 – 85 processing from propilin 29: 69, 92 Ps. aeruginosa PAK and PAO 29: 98 transport across membranes 29: 82 Type I, molecular weight 29: 64 structure 29: 62, 94 Pilin genes 29: 92 adhesive pili, sequence 29: 62, 63, 95 conjugative pili 29: 68 – 73 F pilin, sequencing of 29: 61, 68 NMePhe pili, nucleotide sequences 29: 64 organization and expression 29: 68– 82 chromosomally encoded elements 29: 71, 72 CPA/I and CFA/II pili 29: 77, 78
in Ps. aeruginosa and B. nodosus29: 81, 82 K88 and K99 pili 29: 78, 79 NMePhe pili 29: 79 – 82, see also Pili Pap pili 29: 75 – 77 plasmid encoded control elements 29: 72 small effector molecules 29: 72, 73 Type I pili 29: 74, 75 PAK, PAO 29: 81 sequence in Ps. aeruginosa 29: 99 Type I pili 29: 74, 75 pilS region, pilin genes in gonococcus 29: 79, 80, 102 pim mutants 32: 17 Pimaricin, structural formula 27: 21 Pipecolate 37: 303, 304 Pipecolic acid 37: 292 Piperacillin 36: 210, 211, 213, 234, 235 Piromonas 37: 52 PIS gene, sequence and molecular weight of product 32: 9 pis mutant 32: 8 PIS protein, post-translational processing 32: 9 regulation 32: 9 Pisolinthus tinctorius 41: 70 Eucalyptus globulus association 38: 33 Pisum sativum 29: 10; 45: 214 PIT1 gene 33: 119 pKa value 39: 207 pKa,reactants in anaerobic respiration 31: 243, 244 Planococcus citreus 37: 290, 291, 292, 293 Plant pathogenesis 41: 64, 65 Plant wound infection 41: 273 Plants, apomixis in 30: 26, 27 applications and advantages 30: 46 inheritance of 30: 35 Plants, crop, bacterial ice nucleation as a problem with 34: 230, 231 Plasma membrane 39: 179– 184 see Cell membrane and mycobacterial disease 39: 183, 184 biogenesis/expansion, in inositol-starved cells 32: 14 depressions in, water potential changes causing 33: 162, 163 H+-ATPase in, inorganic ion transport 33: 184, 202 osmotic stability, lipid composition affecting 33: 182 permeability to polyols 33: 181, 182 lipid composition changes 33: 181, 182 proteins 39: 182 SEC4p association 33: 134
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 S-layer interactions 33: 230, 231 ultrastructure 39: 182, 183 vesicle fusion, see Golgi complex-derived secretory vesicles Plasma protein P 35: 73 Plasmid pCF32 31: 63 Plasmid pDK1 31: 38, 39, 45 co-integrates with RP4 31: 45 evolution 31: 45, 50 relationship with pWW53 31: 45 – 49 restriction-enzyme map 31: 46 transcription comparison with pWWO and PWW53 31: 47 – 49 Plasmid pDK2 31: 45 Plasmid pDKT2 31: 45 Plasmid pEHK455 31: 63 Plasmid pGB 31: 52 Plasmid pGH9 30: 213, 214 Plasmid pKF439 31: 38 Plasmid pKT240 31: 63 Plasmid pND3 31: 34 Plasmid pNM185 31: 63 Plasmid pOP12 30: 219 Plasmid pPP101 30: 213, 214 Plasmid pRA1000 31: 10 Plasmid pTDN1 31: 9 Plasmid pTG402 31: 62 Plasmid pTKO 31: 42 Plasmid pTN2 31: 5, 8, 19, 20, 35 regulation of meta-pathway by XylS 31: 24 Plasmid pTN8, promotor 31: 27 Plasmid pWW14 31: 43, 50 Plasmid pWW15 31: 43, 50, 51 Plasmid pWW17 31: 43 Plasmid pWW20 31: 43, 50 Plasmid pWW53, benzyl-alcohol dehydrogenase/ benzaldehyde dehydrogenase 31: 14 pDK1 evolutionary relationship 31: 45 – 49 pEHK455 construction from 31: 63 restriction-enzyme map 31: 46 RP4 co-integrate 31: 45, 46, 55 second meta-pathway operon 31: 45, 49 xvlS gene, comparison with pWWO 31: 51 Plasmid pWW53-4 31: 45, 46, 55 Plasmid pWW60-1 31: 37 Plasmid pWWO 31: 5 17 kbp region as transposon 31: 37 see also TOL plasmids application, in construction of new strains 31: 58 in vector creation 31: 62 benzoate curing 31: 39, 43, 44
197
benzyl-alcohol dehydrogenase 31: 14 dehydrogenase/benzaldehyde chlorobenzoic acid degradation 31: 58 conjugative transfer 31: 8, 9 enzymes encoded, see also specific enzymes; Toluene catabolism evolution 31: 49 NAH plasmid relationship 31: 52 – 55 pDK1/pWW53 plasmids relationship 31: 47 – 49 gene organization 31: 20 gene-regulation model 31: 29 – 31 host range 31: 9 incompatibility group (IncP9) 31: 8, 52 meta-pathway genes 31: 21 – 25 see also Toluene catabolism NAH7 plasmid comparison 31: 53 pWW53 and pDK1 plasmids comparison 31: 46, 47 molecular characterization 31: 18 – 20 mutants 31: 39 promotors, see Operator-promotor properties 31: 8, 9 R plasmid co-integrates 31: 20, 35 –38 recombination and transposition 31: 34 –38, 44 chromosomal DNA with 31: 35 regulatory genes 31: 23 – 25, 48 localization 31: 25, 26, 48 resistance (drug) genes 31: 9, 20 resistance to reactive singlet oxygen species 31: 9 restriction map 31: 19, 48, 51 segregational instability 31: 34, 44 size 31: 18 structural integrity of DNA, changes 31: 59 transcription comparison with pDK1 and pWW53 31: 47 – 49 transposable part as separate replicon 31: 37, 38 transposon location 31: 36 – 38 xyl genes, see also xyl genes organization 31: 20 –23 regulation 31: 23 – 25 xylS gene, restriction map 31: 51 xylXYZ gene homology with benABC genes 31: 16 Plasmid pWWO-8 31: 9 deletion from pWWO 31: 18 – 20, 39 loss of TOL-specific catabolic phenotype 31: 19, 39 Plasmid RP4, see RP4 Plasmid(s), see also DNA, extrachromosomal
198
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
see also individual plasmids; TOL plasmids C. albicans gene cloning 30: 57, 58 catabolic 31: 2, 3 evidence for 31: 2 – 5, 39 evolutionary relationships 31: 52 – 55 CFA/I pili 29: 77, 78 cloning of E. coli mutant ADPglucose pyrophosphorylase 30: 213, 214 Co1B2, insensitive to cyanide, no pilus retraction 29: 93 complementation in mutants, fertility inhibition 29: 70 control elements for organization and expression of pilin 29: 72 cryptic 29: 129, 147 curing 31: 5, 39 – 44 deletion mutant, PpCC1 31: 39 PpCM1 31: 39 PpCT1 31: 39, 41, 45 DFA/II pili 29: 78 DNA transfer to Rhizobium 29: 41 endogenous 26: 208, 209 exchange in autoaggregated communities 46: 215 extrachromosomal coding, antibiotics 27: 264, 265 F 29: 68 F-like 29: 72 genes for hydrogen oxidation 29: 129 lncF, 60, 61, 68– 71 map 29: 68 N-terminus acetylation 29: 61 surface exclusion 29: 68 transfer region, genetic analysis 29: 69 transfer regions in one segment 29: 69 TraTp protein encoded 29: 88 IncI 29: 60, 72 receptor on recipient cells 29: 88 IncN 29: 60 pKM101 29: 69, 72 R46 29: 69 transfer regions 29: 69 incompatibility 29: 58 –60, 68 incompatibility group IncP9 31: 8, 52 IncP 29: 60 IncW 29: 60 indigenous, Hup genes on in Rhizobium spp. 29: 42, 43 in autotrophic prokayotes (species with) 29: 129 in some cyanobacteria spp. 29: 129 NAH, see NAH7 plasmid; NAH Plasmids
nif gene transfer 30: 17, 18 Nod-containing, R16JI 29: 42 pACYC177 29: 41 pACYC184 29: 41 Pap gene cluster cloned 29: 76 pBR325 29: 41, 43 pED208 29: 70 pIJ1008 29: 45 pRK20134 29: 41 pRK290 29: 41 pRL6JI 29: 45, 46 promotors, see Operator-promotor pVWJ31, pVW51 29: 45 R27 29: 69 R538– 531, R124rd, R1– 19, R136 – 13129: 72 R91– 95 29: 69 resistance 31: 20, 34, 35 RK2 29: 41, 69 RP1 (IncP –1) 29: 72 RP4 29: 41, 42, 45 transfer region mapping 29: 69 SAL 31: 52 self-transmissible encoding conjugative pili 29: 57, 68 Ti 29: 69 Plasmid-encoded elements, pilin genes of conjugative pill 29: 68 – 71 surface exclusion 29: 68 transfer regions 29: 68, 69 Plasmid-encoded genes for O-polysaccharides 35: 196, 197 Plasmodia see also Physarum polycephalum plasmodial mitotic cycle in Physarum polycephalum 35: 29 – 31, 39 – 42 plasmodial phase of Physarum polycephalum 35: 3 – 5 Plasmodium falciparum 36: 67 antigens, hsp70 family 31: 211 Plasmodium spp. berghei, antioxidant defense system 34: 272 falciparum, antioxidant defense system 34: 272, 280 Plasmolysis 33: 162, 163; 37: 312 water potential at 33: 165 Plasticity, bacterial 32: 66 Plastics, hydrophobin adsorption 38: 15 – 17 Plastoquinone 26: 140; 29: 33 Plating media, osmotic hypersensitivity 33: 191, 192 Plectonema borganum cyanide production from histidine 27: 93 cyanogenesis 27: 90
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Plectonema boryanurm 39: 4, 18; 40: 331 Plectridial spores, Clostridium, spp. 28: 31 Pleiotropic mutations 42: 110 Pleurotus eryngii 42: 10 Pleurotus forida 41: 55 Pleurotus modestum 42: 248 Pleurotus ostreatus 36: 127; 42: 10, 11, 13, 16 commercial use 34: 190 Pleurotus spp. 42: 2, 4, 9, 16 intracellular proteins 42: 6 secreted proteins 42: 7 Ploidy, C. albicans 30: 54, 55, 82 PMR1 gene 33: 109 pmr1 mutants 33: 110 pmr1 null mutations 33: 110 Pneumocytes, gene regulation by Pseudomonas aeruginosa PAK 46: 39, 40 polA1 mutant 32: 97, 98 Polarography 38: 194 Pollutants, microbial degradation 32: 74 Poly(b-hydroxybutyrate) (PHB) 39: 357, 359 Poly(glycerophosphate), see Lipoteichoic acid Poly(hexosyl glycerophosphate) lipoteichoic acids 29: 234, 243 Poly(hydroxyalkanoate) (PHA) 39: 356– 360, 358, 362, 366 Polyangium, see Sorangium spp. Poly-b-hydroxybutyrate(PHB) 30: 154 Polycellulosomes 37: 46 Polyene antibiotics 27: 279– 281, see also Amphotoericin antimycotic drugs 27: 3, 4, 20 – 39 clinical usage 27: 38, 39 molecular basis 27: 20 – 38 evidence for polyene-bounded aqueous pores 27: 26 –28 inhibition, membrane enzymes 27: 33, 34 membrane function, impairment 27: 20 – 24 molecular models 27: 24 –26 resistance to polyene antibiotics 27: 34 – 38 role of membrane constituents 27: 28 – 33 structural formulae 27: 20, 21 Polyene antifungals, structures 46: 158 Polyethylene glycol (PEG) 41: 31 and cells porosity 27: 292 in media, water potentials 33: 156, 160 Polygalacturonates 37: 122 Polygalacturonic acid 37: 56
199
Polyglucans bacterial 28: 31, 32, 34 ADP-glucose pyrophosphorylase, possible function 28: 35, 36 solvent production 28: 36 possible sporulation energy reserve 28: 51 Polyglutamine 32: 38 Polyhedral bodies, see Carboxysomes Polyhooks 32: 132, 145; 33: 284 Polyhydroxy alcohols, see Polyols Polyhydroxybutyrate (PHB) 42: 96; 43: 118, 136– 140, 142, 150 biosynthesis 43: 138– 140 Polyketide synthetases 38: 93 activation domain organization 38: 94 – 96 Polylysine 37: 157 Polymerase chain reaction (PCR) 38: 212; 39: 98 glass-spotted DNA microarray method 46: 8, 9 Polymerization 37: 2 reactions in cell-surface polysaccharide biosynthesis 35: 159– 168 group-II capsular polysaccharides polymerized in E. coIi 35: 164– 166 non-reducing terminus, growth of O-polysaccharide at 35: 161– 164 reducing terminus, growth of O-polysaccharide at 35: 160, 161 undecaprenol-independent mechanisms 35: 166– 168 Polymers extracellular 32: 60 – 62, 68 antibiotic penetration restriction 32: 76 biochemical analysis 32: 61 photobiodegradation 39: 360, 361 Polymixin B nonapeptide inhibition of adhesins 28: 223 synergistic effect with complement 28: 240 Polymorphonuclear granulocytes (PMNs) 40: 153 Polymorphonuclear leucocytes (PMNL), E. coli susceptibility, and fimbriation 28: 91 – 93 Polymyxins 37: 162– 164, 166 Polyol dehydrogenases 33: 180 Polyols, see also Arabinitol; Glycerol; Mannitol accumulation strategies 33: 186 aldose/ketose reduction to 33: 175
200
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
as compatible solutes 33: 168– 174 as carbon reserves 33: 175 distribution in fungi 33: 168, 171 dynamics during growth cycle 33: 170, 173 arabinitol/mannitol during non-growing stages 33: 170, 173 glycerol during growth phases 33: 170, 173 evidence for water relations role 33: 169, 171, 172 factors influencing type of 33: 172 culture age 33: 173 fungi producing 33: 168, 171 membrane permeability 33: 181, 182 metabolism 33: 177– 180 properties 33: 168 regulation of accumulation 33: 186– 190 Debaryomyces hansenii 33: 186, 187 Phycomyces blakesleeanus 33: 190 Saccharomyces cerevisiae 33: 188– 190 Zygosaccharomyces rouxii 33: 187, 188 roles in fungi 33: 175 translocation in fungi 33: 175 transport and uptake 33: 180, 181 uptake and accumulation 33: 174 Polyoxins 36: 55, 62, 65 inhibitors, chitin synthesis 27: 59 – 62 structural formula 27: 60 Polypeptides 37: 120 see tubulins incompletely assembled, endoplasmic reticulum retention of 33: 103– 106 wall-associated 39: 154, 173 Polyphemusin 37: 144, 151 Polyploidy, fungal apomixis and 30: 45 Polyporus ciliatus, fruiting in 34: 171 Polysaccharidase production in streptomycetes 42: 70 – 73 Polysaccharide, extracellular see Extracellular polysaccharide (EPS) Polysaccharides 39: 141– 143, 153, 178 see cell-surface polysaccharides cell wall-associated 32: 181 in biofilms 32: 60, 61 Polysphondylium violaceum, ionic currents in 30: 105 Polystyrene, surface adhesion, Vibrio sp. 28: 224 Polyubiquitin genes 31: 192, 195 Polyvinyl alcohol dehydrogenase 40: 8 Polyvinylpyrrolidone 32: 68 Pool sizes 45: 331, 332
Population-density-dependent determinant of bacterial physiology 45: 199– 270 Populations and social behaviour 47: 103– 106 distribution, Synechococcus 47: 8 heterogeneity, TNC 47: 95, 96 Pore fungus carbonate oxalate system 41: 75 Poria placenta 37: 41; 41: 55 Poria vaporaria 41: 55 Porin proteins 39: 177, 178 Porins 37: 106, 111, 159, 161, 257, 283 Pormicin 37: 144 Porosity studies, C. albicans 27: 292 Porphobilinogen formation 46: 265, 266 polymerization 46: 267 Porphobilinogen deaminase 46: 267 Porphyra purpurea 37: 28 Porphyria 46: 272 Porphyria tenera 35: 280 Porphyridium cruentum 29: 146 glutathione-related processes 34: 271, 272 Porphyrin synthesis pathway 39: 362 Porphyrins, cytotoxicity 46: 288 Porphyromonas gingivalts 36: 40 Posidonia oceanica, trace element analysis 38: 197 Position-Specific-Iterative (PSI) BLAST program 45: 184 Positive feedback control 45: 12, 13 Post-transcriptional control, bacterial flagellar system 32: 122 Post-translational translocation 33: 79, 86 – 88 Potassium as essential metal 38: 180 calcium and bacteria 37: 97, 101, 118 osmoadaptation 37: 277– 281, 281, 284, 299, 300, 307– 309, 308, 311– 313, 316, 317 peptides 37: 165 pH homestasis 37: 234 transport 38: 181 rubidium as analogue 38: 200 Potassium efflux, in Blastocladiella 30: 94 in Pelvetia 30: 95, 106 Potassium ethyl xanthate 30: 170, 173, 174 Potassium ions glycerol production independent in Saccharomyces cerevisiae 33: 190 glycerol transport and 33: 180 intracellular level changes,
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 non-ionic solute in medium 33: 183, 184 with external salinity 33: 183, 202 leakage, antibiotic induced 27: 281, 282, 297, 298 maintenance of internal pool, effect of antibiotics 27: 23, 24 measurement 27: 282– 285 predominant cation in fungi, species 33: 183 transport 33: 184, 202 voltage-gated channels 33: 185, 202 Potassium sorbate, effect on macromolecule synthesis 32: 97 Potassium-ion transport, glutathione involvement in 34: 260 Poultry, eggs, acetic acid for washing 32: 103 feed, organic acids in, to reduce salmonella infections 32: 99 processing, acetic acid in washing water 32: 102 salmonella survival 32: 104 water acidification 32: 99, 100 ppGpp 30: 231; 47: 71 in piliation control 29: 72, 73 regulation of glg gene expression 30: 226– 228, 231 binding site and model 30: 229, 230 PQ see paraquat Prebiotics 42: 36 Precipitin reactions, cell walls, antibiotic treated 28: 239 Precocious sexual inducer, A. nidulans 34: 103 Prednisolone, C. albicans binding sites for 34: 113 Pregnanediol effects on C. albicans 34: 110 Prepro-carboxypeptidase Y (CPY), post-translation translocation 33: 87 Preprodefensin 37: 137 Prepro-a-factor 34: 88 see also a-factor, precursor glycosylation, Golgi complex compartmentalization and 33: 117 HIS4p chimera 33: 80 in vitro transport from endoplasmic reticulum to Golgi complex 33: 92 post-translation translocation 33: 86, 88 translocation, SSA proteins in 33: 88 Preproteins 37: 148, 149
201
Presporulation medium, apomictic phenotype modification 30: 37, 39, 43 spore number/ascus 30: 24 Prevotella ruminicola 37: 11, 34 prfA gene 46: 264 Primer extension technique 29: 80 Primordia, fruit body, light-induced 34: 181– 183 P-ring, flagellum 33: 284, 291 Pristinamycin, effect on penicillinase production 28: 233 Pro-carboxypeptidase Y (ProCPY), p1 conversion to p2 form 33: 115 Processes of cell-surface polysaccharide biosynthesis 35: 154– 158 see also polymerization reactions polysaccharide-modification reactions 35: 168– 171 undecaprenol-linked intermediates formed 35: 154– 159 Prochlorococcus division cycle 47: 41 –43 growth irradiance 47: 12 – 14 micro-nutrient acquisition 47: 36 – 38 niche partitioning 47: 2 nitrogen acquisition 47: 27, 28, 30 phosphorus acquisition 47: 31 – 35 Prochloron 29: 122 RuBisCO heterologous hybridization of subunits 29: 139 RuBisCO present but phosphoribulokinase absent from 29: 132 Prochlorophyta, carboxysomes in 29: 122 free-living planktonic in Dutch freshwater lakes 29: 123 Profilin 33: 131 and Physarum polycephalum 35: 13, 38 Progesterone A. benhamiae binding sites for 34: 115, 119 Candida albicans binding sites for 34: 112, 113 Coccioides immitis and effects of 34: 108, 128 Coccioides immitis binding sites for 34: 118 M. canis binding sites for 34: 115, 119 P. brasiliensis and effects of 34: 107 P. brasiliensis binding sites for 34: 117 T. mentagrophytes and effects of 34: 111 T. mentagrophytes binding sites for 34: 115, 118 T. rubrum binding sites for 34: 115, 119
202
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Progestins C. immitis binding sites for 34: 118 dermatophyte-binding sites for 34: 115 Programmed cell death bacteria 46: 231, 232 in biofilms 46: 204 initiation by S. typhimurium 37 phoP gene role 46: 37, 38 Prokaryotae 26: 159 (table) nitrogen metabolism 26: 3 Prokaryotes 29: 166, see also individual species calvin cycle, organisms 29: 116 chemolitho-autotrophic, see Chemolitho-autotrophic prokaryotes photo-autotrophic 29: 116, 121 –123 RuBisCO L and S subunit genes in 29: 145, 146 Prokaryotic 38: 111– 122 research prospects 38: 122– 124 acyl peptide lactone synthetases 38: 112– 117 bialaphos 38: 120– 122 surfactin 38: 117– 120 thiol template model 38: 86 – 88 Prokaryotic divisions 41: 181 Prokaryotic efflux systems 40: 109 Prokaryotic ferritins 40: 302 Prokaryotic genome sequence analyses 40: 121– 124 Prokaryotic metallothioneins 44: 184, 185 Prokaryotic selenoproteins 35: 73 – 86 see also FDH formate dehydrogenases 35: 76 – 84 glycine reductase 35: 72 –76, 89 hydrogenases 35: 84 – 86 Prokaryotic uptake systems 40: 109 Proline 26: 15; 37: 38, 288, 289, 290, 292, 295, 302– 304; 39: 367; 42: 130, 197 as compatible solute 33: 176 betaine, 303, 304 degradation 26: 24 futile-cycle 26: 13 molecular level 37: 310, 311 transport 26: 48, 49 Proline oxidase 26: 15, 75 Proline permease 26: 78; 42: 125, 126 Proline transport, E. coli 28: 168– 171 S. typhimurium 28: 174, 175 Promegestone (R5020) Candida albicans binding sites for 34: 113 Coccidioides immitis binding sites for 34: 115
T. mentagrophytes and effects of 34: 111 Promethazine 37: 123 Promoters Bacillus brevis S-layer gene 33: 244 C230 expression in B. subtilis 31: 62 flagellar operons 32: 121 INO1, see INO1 promotor ntr and nif genes 31: 27, 28, 31 on pWW53-4 31: 55 probe vectors 31: 62, 63 TOL plasmids, see Operator-promotor traJ 29: 73 traYz 29: 70, 71, 73 Pronase receptor activity, brush border adhesins 28: 85 Proofreading properties, Tat protein translocation pathway 47: 213– 215 1,3-propanediol (1,3PD) 39: 91, 92, 106 Propanediol 37: 195, 196, 199, 206 Propanediol oxidoreductase 37: 180 Prophyrin 29: 193 Propilin, gene encoding 29: 69 in pilus assembly 29: 69, 92 NMePhe pili assembly 29: 64 pED208 29: 85 Propionaldehyde 37: 194, 198 Propionibacteria 44: 239 Propionibacterium acnes erythromycin 28: 235 lipase synthesis, tetracycline-mediated delay 28: 235 Propionic acid, effect on DNA, 98 effect on macromolecule synthesis 32: 97 in silage 32: 99 metabolism 32: 93 utilization 32: 93 Propylglyoxal 37: 188 Protamine 37: 164 Protamine in histone modification 35: 46 Protaminobacter ruber 27: 132 cytochromes 27: 182 Proteases 37: 92; 42: 116– 120; 44: 121 inhibitors 42: 120 M. leprae 31: 106 Protegrin 37: 144, 152 Protein 39: 143– 145, 153, 182 see also Macromolecule see also specific proteins in higher fungi 34: 161– 163, 165– 170 abnormal/damaged, Stress-protein induction 31: 194– 196 adhesins, phosphorylation, antibioticmediated inhibition 28: 227
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 adsorption to surfaces 32: 58 – 61 hydrophobicity and 32: 59 of enzymes and factors affecting 32: 59, 60 amino-acid composition 39: 366 as osmotic hypersensitivity determinant 33: 194 assembly and stress proteins 31: 212– 214 “blue fluorescent” 26: 243 calcium 37: 87 – 92, 119, 120, 124 carboxysomes as storage bodies 29: 155 CYP/ferredoxin fusion protein 47: 159– 161 damage by hydrogen peroxide 46: 125– 129 degradation, ubiquitin role in 31: 195 dimerization 32: 35 extrusion 40: 372 folding 44: 93, 97, 99, 123 glycosylation, see Glycosylation halophilic 29: 218 “helper” proteins, fimbrial secretion 28: 227– 230 hormonal (and polypeptide hormones), mammalian, fungi affected by 34: 106, 111, 112, 121– 123, 125– 127 hormone-binding, in fungi 34: 112– 123 ice-nucleation, in bacteria, see Ice nucleation during fruiting, in dikaryon, regulation 34: 165– 170 during vegetative growth, regulation of 34: 161–163 hydrophobic 34: 151 in M. leprae plasma membrane 31: 76 interactions within flagellar motor 33: 293–296 iron-binding 47: 37, 38 lumazine 26: 243 membrane protein biosynthesis, methylglyoxal 37: 186– 188 misfolded and bip/grp78 synthesis 31: 213 oil conversion, CYPs 47: 164 osmoadaptation 37: 278, 315– 317, 316 osmotolerance and 33: 194 outer-membrane, role of 35: 183– 185 protein-protein interactions and translational regulation in cellsurface polysaccharide biosynthesis 35: 228, 229 rate of synthesis, obligate anaerobes 28: 10 – 12
203
secreted by yeast, see Secretory pathways, yeast secretion by Gram-positive bacteria, penicillin effect 29: 274 secretion, S-layer role in bacteria 33: 260 S-layer, see S-layer sorting, in Golgi complex 33: 111 structural rearrangement during adsorption 32: 59, 74 surface, in flocculation, see Flocculation synthesis, organic acids effect on 32: 97 synthesis, effect on lipoteichoic acid substitution 29: 271 initiation, in archaebacteria 29: 171 synthesis, in M. leprae amino-acid uptake 31: 99 Tat protein translocation pathway 47: 236– 239 TatA/B protein family 47: 224– 230 TatC protein family 47: 230– 232 translocation, stress proteins and 31: 214, 215 utilization, by attached and free cells 32: 73, 74 wall-associated in M. leprae 31: 78 – 81 without cofactors, Tat protein translocation pathway 47: 215– 219 “yellow fluorescent” 26: 243, 244 Protein kinase calcium metabolism 37: 95, 96, 106, 107, 108, 124 cAMP-dependent, fruiting and 34: 178 methylglyoxal 37: 206, 209 Protein phosphorylation 37: 95, 96, 98, 105– 108, 110– 112, 125; 41: 139, 140 morphogenesis control in C. albicans 30: 62 Protein precipitation theory, flocculation 33: 13 Protein S 37: 109, 115 Protein synthesis 44: 98 inhibition, meiosis restoration in apomictic strains 30: 38 – 40 Protein transport 33: 73 – 144 see also Secretory pathways, yeast blocked in class A sec mutants 33: 75, 76 GTP-binding protein role, see GTP-binding proteins intercompartmental and intracompartmental 33: 74 through Golgi complex, see Golgi complex
204
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Protein transport see also Transport vesicles cotranslational 33: 79, 87 criteria for signifying 33: 86 events/stages 33: 77, 78 from cytoplasm to endoplasmic reticulum from endoplasmic reticulum to Golgi complex 33: 88 – 111 genetic analyses 33: 79 – 86 cytosolic factors in 33: 82 – 85 HOL+ mutants 33: 80 protein translocation genes (SEC61 SEC62, SEC63) 33: 80– 82, 88 Saccharomyces cerevisiae role in studies 33: 79 signal-peptide processing 33: 85, 86 SSA gene products 33: 82, 83, 88 7SL RNA in yeast 33: 83, 84 genetic analysis, mutants 33: 80 – 82 in vitro systems 33: 86 – 88 mutants characterized 33: 87, 88 mammalian/prokaryotic models 33: 77 – 79, 87 mammalian 33: 78, 79, 79 post-translational 33: 79, 86 – 88 events/stages 33: 88, 89, 91, 94 in vitro analysis in yeast 33: 91 – 94 as evidence of in vivo system 33: 93 assay characterization 33: 91 – 94 requirements 33: 92, 93 ‘semi-intact’ cells 33: 92, 93 transitional vesicle isolation 33: 94 mammalian paradigm 33: 89 – 91 molecular analysis of genes stimulating 33: 94 – 103 see also individual SEC genes; sec mutants early SEC gene products 33: 95 – 100 GTP-binding proteins 33: 101– 103 requirements 33: 89, 92, 93 retention of proteins, see Endoplasmic reticulum (ER) vesicle budding, requirements for 33: 89 yeast system advantages 33: 74, 91, 139 Protein tyrosine kinase activity of insulin-binding proteins in N. crassa 34: 121 Proteinases A, B, C 26: 36, 37 Protein-binding sites 45: 5, 18 Proteins, see also Trichodermin modifier [M proteins], Pseudomonas27: 138 function 27: 146, 147 “single cell protein”, 27: 191 synthesis, abnormal, in bacteria 27: 14 cell walls 27: 293
Proteobacteria 37: 287, 293, 294, 302; 39: 253 sulfur oxidation 39: 251– 274 Proteolysis 29: 14; 37: 9; 44: 121, 122 Proteomics, sigma factor function analysis 46: 59 Proteus 35: 99 Proteus mirabilis 41: 275; 35: 143; 45: 23, 214, 248 antibiotic-treated, effect of serum 28: 240, 241 cell shape 36: 197 enlarged forms, b-lactam treated rabbits 28: 248 error-prone repair deficiency 28: 25 glutathione-related processes 34: 249– 251, 255, 282 LED control 36: 207 morphological changes, b-lactams 28: 214 susceptibility to biocides affected by biofilm formation 46: 217 Proteus spp., sensitivity to pyocyanine 27: 267 Proteus vulgaris 37: 181, 182; 35: 91 Protists, CYPs 47: 162, 163 Protocatechuate 39: 341, 342 Protocatechuate 3,4-dioxygenase 38: 73 ‘Protofilaments’ 32: 125 Protohaem 46: 259, 275 see also Haem biosynthesis 46: 261 ferrochelatase role 46: 273– 275 modification for cytochrome oxidase haems 46: 275, 276 pathway from uroporphyrinogen III absent 46: 300, 301 structure 46: 259 Proton currents, in Achlya 30: 97 – 99, 117 amino acid-proton symport model 30: 95, 98 entry and local growth 30: 98, 99 in Blastocladiella rhizoid formation 30: 94 – 96 in Neurospora 30: 101, 102 influence on enzyme action and exocytosis 30: 117, 118 Proton displacement metal analysis 38: 199 Proton electrochemical potential (Dp) generation 31: 233 electrical/concentration components 31: 233, 234 fumarate respiration 31: 253– 255 methanogenesis, see Methanogenesis respiration using oxides of nitrogen 31: 256, 257
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 nitrate reduction 31: 256, 257 nitrite reduction 31: 257, 259, 260 sulphate reduction 31: 247– 251 acetate/sulphate 31: 251 formate/sulphate 31: 251 hydrogen/sulphate 31: 247–249 lactate/sulphate 31: 249– 251 sulphur/iron(III) respiration 31: 263, 264 Proton flux, in flagellar rotation 33: 293 Proton gradient 32: 96 Proton motive force 37: 100, 236, 237, 277 bacterial processes energized/regulated 26: 143 (table), 144 Proton permeability, pH stress 37: 253 Proton pumps 31: 233; 33: 184 effect of amphotericin B 27: 32, 33, 58 uptake of nitrogen bases, yeasts 27: 12 Proton release, from hydrogenase 29: 24 Proton translocation 31: 230, 232, 233, 233, 234 fumarate respiration 31: 255 nitrate respiration 31: 256, 257 Proton-motive force 28: 146, 148, 149; 32: 96 see also Transmembrane proton-motive force in bacterial motility 33: 288, 292, 293 threshold 33: 293 in bacterial swimming 33: 280 in chemotaxis 33: 299 in gliding motility 33: 288 secondary transporters 46: 174 Protons, chemical gradient 39: 208 Protoplasmic streaming 37: 93 Protoplast fusion, C. albicans 30: 56, 57 Protoplasts, biosynthesis of teichoic acids in 29: 275, 276 glycerol production increase, in osmotic stress 33: 190 lysis by organic acids 32: 95 osmotic potential determinations 33: 151, 152 Protoporphyrin biosynthesis 46: 272, 273 deficiency 46: 272 requirement by Haemophilus influenzae 46: 292 synthesis 46: 261 shrinkage, plasmolysis and 33: 162, 163 Protoporphyrin IX 40: 293, 295, 298; 46: 288 synthesis 46: 269, 270
205
Protoporphyrinogen IX oxidase 46: 272, 273 electron acceptors 46: 272 in anaerobes 46: 272 molecular characterization 46: 272, 273 Protoporphyrinogen oxidase 46: 297 genes, absence 46: 297–299 homologues 46: 297, 298 mutants in E. coli and B. subtilis 46: 299 types 46: 297 Protoporphyrinogen, protoporphyrin synthesis from 46: 272, 273 Protozoa, anti-oxidant defense system 34: 272 diploid apomixis in 30: 32 heat-shock 31: 210– 212 ionic currents in 30: 93, 102, 103 applied electrical fields and ionophores 30: 109 oxygen affinities 26: 278 stress proteins in 31: 187, 188, 210 Providencia stuartii 43: 204; 45: 218 Prunus persica 37: 14 Ps. aeruginosa 43: 211 pSc3 protein 34: 169, 176, 177 pSc4 protein 34: 169, 177 pScl protein 34: 169, 177 Pseudohyphae, C. albicans 30: 58, 64, 83 Pseudomixis 30: 28 Pseudomonads, glucose dehydrogenase in 40: 45, 46 Pseudomonads, SmtA in 44: 205, 206 Pseudomonas 43: 183 Pseudomonas 2941, 27: 132, 134; 35: 100, 262; 37: 198, 294; 38: 47; 39: 3, 347, 355; 40: 7, 8, 10, 17, 18, 39, 41; 41: 273, 294; 45: 88, 95, 127, 131 dioxygenases 38: 50 haloalcohol dehalogenases 38: 154, 156, 157 multiple signals in 45: 219– 221 Pseudomonas atlantica 35: 214, 227 Pseudomonas caroxydoflava 35: 88 Pseudomonas indigofera 35: 278 Pseudomonas mevalonii 35: 268 Pseudomonas pisi 35: 282 Pseudomonas sesami 35: 261 Pseudomonas solanacearum 35: 196, 205, 223, 277, 278, 286 Pseudomonas syringae 35: 144 Pseudomonas syringae p.v. phaseolicola and ethylene production 35: 277– 279, 303 biosynthetic pathways 35: 281, 284– 288 comparison with related enzymes 35: 295– 302
206
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
mechanisms for 35: 288– 292 molecular cloning and expression of gene 35: 292, 293 pv. glycinea 35: 278 mori 35: 278 species 113, dehalogenase 38: 139, 144 species CBS 3 38: 138, 141 Pseudomonas aeruginosa 31: 260; 37: 155, 155, 162, 231, 290; 39: 5, 270; 40: 9, 11, 21, 24, 37, 42, 43, 46, 61, 287, 292, 300, 309, 311– 313, 323, 327, 328, 329; 41: 237, 293; 42: 41, 136, 252, 253, 262; 43: 47, 182, 183, 211; 44: 28, 186, 206; 45: 57, 87 – 90, 95, 122, 127, 175, 176, 178, 180, 211– 215, 219, 220, 223– 230, 253 and cell-surface polysaccharide biosynthesis export 35: 184 genetics 35: 198, 199, 206 process 35: 166, 167 regulation 35: 214, 221, 224– 226 structure and attachment 35: 142, 144, 146, 149 ALA dehydratase 46: 267 alginate synthesis 46: 219 amino-acid transport, genetics 28: 149 LIVAT-binding protein 28: 162 LIV-I and LIV-II system 28: 160, 161, 163 reconstitution of components 28: 163 antibiotic susceptibility 46: 221, 225 biofilm antimicrobial susceptibility 46: 221, 225 susceptibility to biocides 46: 217 enzyme synthesis, inhibition, gentamycin 28: 237 tobramycin 28: 237 haem biosynthesis 46: 267 regulation 46: 291 mutation to drug resistance 28: 245 peptide transport in 36: 35, 36 porins in 36: 8, 9 protease inhibition, tetracycline 28: 236 RND multidrug efflux pump 46: 231 sigma factors 46: 52, 91, 96, 229 s E 46: 91, 98 s PvdS 46: 96 CD4 and PA103, pilin amino-acid sequence 29: 98, 99 PAK microarray expression profiling of host cell response 46: 35, 39, 40 pneumocyte gene regulation 46: 39, 40
PAK/2Pf mutant 29: 96 pili, as virulence factor 29: 96, 97 bacteriophage receptors 29: 96 conjugative, summary of 29: 59 genetic organization 29: 81, 82 incompatibility groups 29: 60 NMePhe 29: 56, 63 non-conjugative 29: 57, 63 PAK, PAO, see also Pili, PAK; Pili, PAO X-ray diffraction studies 29: 66 – 68 pilin, antigenic determinants 29: 63, 94 gene nucleotide sequence 29: 99 structure – function relationship 29: 96 – 100 twitching motility 29: 63, 96 antibiotic resistance in biofilms 32: 75 chorismic acid 27: 244–246 cyanogenesis 27: 74 – 77 DAHP synthetase activity 27: 263, 264 glucose dehydrogenase, quinoproteins 27: 155 phenazine metabolism 27: 248 other phenazines 27: 221– 223 phosphate regulation haemolysin gene 27: 262 pigmentation mutants 27: 227, 251 pyocyanine 27: 219– 221, 249– 253 ring assembly 27: 246 safety valve hypothesis, phenazines 27: 265 shikimic acid 27: 243 silver accumulation 38: 229, 230 Pseudomonas alcaligenes 45: 214 Pseudomonas AMI 27: 132, 134 amino acid analysis 27: 167 cytochrome c– deficient mutant 27: 164, 165, 167 EDTA, inhibition, methanol oxidation 27: 176 electron transport and proton translocation 27: 181, 186– 189 extra cytochrome c 27: 174, 184 membrane vesicles 27: 144, 164 mutants, lacking cytochrome c 27: 163 oxidation, propanediol 27: 138 specificity, cytochrome c 27: 175 substrate specificity 27: 131 Pseudomonas arvilla met-2, see Pseudomonas putida mt-2 Pseudomonas aureofaciens 27: 212, 216 common phenazine precursor 27: 247 phenazine-1-carboxylic acid 27: 225, 226, 245, 246, 248, 253– 256 other phenazines 27: 226– 228 shikimic acid 27: 243
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Pseudomonas C 27: 132, 134, 138, 143 Pseudomonas cepacia 27: 216, 228– 230; 40: 44, 46 dehalogenases 38: 138, 141, 142 metabolism 27: 249 phenazines produced 27: 229 phthalate dioxygenase analysis 38: 65 – 67, 66 Pseudomonas chloroaphis 27: 212, 216 chlororaphine production 27: 223, 224, 253 Pseudomonas dehalogenans, dehalogenase 38: 137, 141 Pseudomonas echinoides, non-starforming (sta – ) mutant, pili in 29: 65 Pseudomonas extorquens 27: 132, 164, 169 electron transport 27: 183, 185 Pseudomonas fluorescens 35: 278; 40: 22, 53, 54, 331; 45: 57, 207, 208, 214 calcium 37: 122 cellulose hydrolysis 37: 10, 14, 15, 17, 22, 27, 29, 32, 33, 38, 41, 53, 55, 62 cyanide degradation 27: 101 cyanogenesis 27: 74, 75 ECF s PrtI 46: 63, 96 ECF s PvdS 46: 96 methylglyoxal 37: 196 microcolony formation 32: 68 organic acid effect on macromolecule synthesis 32: 97 utilization 27: 103, 104 Pseudomonas J26 27: 132, 134 Pseudomonas M27 27: 131, 132, 134, 143 Pseudomonas mendocina 31: 12; 37: 289, 290 Pseudomonas methanica, see Methylomonas methanica Pseudomonas oleovorans 39: 357 Pseudomonas oxalaticus 29: 142 Pseudomonas pallerni 39: 260 Pseudomonas phenaxinium 27: 216, 231 DAHP synthetase activity 27: 264 phenazine-1-, 6-dicarboxylic acid 27: 247, 256, 257 phosphate regulation 27: 263 ring nitrogen 27: 246 safety valve hypothesis 27: 265, 266 shikimic acid 27: 244 Pseudomonas PP 27: 132 Pseudomonas pseudoalkaligenes 37: 289 Pseudomonas pseudoflava 39: 260 Pseudomonas putida 35: 223; 37: 122, 190– 192, 198, 203, 204, 205, 213; 39: 14, 39; 40: 9, 11, 13, 39, 43, 44, 287, 309; 41: 257, 273; 44: 185, 186, 205, 206; 45: 175, 176
207
AC858, TOL plasmid transfer 31: 59 aromatic catabolism in, evidence 31: 3, 4 benzene dioxygenase analysis 38: 65 dehalogenases 38: 139, 140, 143– 145 germanium uptake 38: 227 iron –sulphur cluster analysis 38: 219, 220 HS1, growth on benzoate, plasmid-deletion mutants 31: 39 – 41 pDK1 in, see Plasmid pDK1 MT14, growth on benzoate, TOL mutants 31: 40, 41, 50 pWW14 and pWW17 plasmids 31: 43, 50, 51 MT15, growth on benzoate, TOL mutants 31: 40, 41, 43, 51 mt-2 UCC2 strain 31: 9 mt-2, 4-ethylbenzoate (4EB) catabolism block 31: 60, 61 aromatic catabolism in, see Toluene catabolism benzoate curing 31: 5, 39 explanation 31: 43, 44 growth on toluidine 31: 9 substrates supporting growth 31: 5, 8 TOL plasmid, see Plasmid pWWO; TOL plasmids xylS gene 31: 4-ethylbenzoate catabolism block 31: 61 MT20, B3 mutants 31: 40, 41 growth on benzoate, TOL mutants 31: 40, 41 MT53, growth on benzoate, TOL mutants 31: 40, 41 mutants, meta-pathway expressed constitutively 31: 27 MW1000 31: 10, 61 organic acids effect on DNA repair 32: 98 PP1 – 2 strain 31: 57 rpoN gene, cloning 31: 33 S1 strain 31: 57 Pseudomonas putis B13 31: 58, 60 haloaromatic/alkylaromatic catabolism, mutually incompatible 31: 58 – 60 WR211 transconjugant 31: 35, 58 Pseudomonas diazotrophic strains 30: 17 RJ1 27: 134 S9, oxygen consumption 32: 69 TP1 27: 131, 132, 134 WI 27: 132, 134, 138
208
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Pseudomonas saccharophilia 37: 181, 182 hydrogen oxidation-dependent ATP synthesis 29: 24 Pseudomonas solanacearum 37: 12, 39 Pseudomonas sp. 36: 263 amino-acid assimilation, hydrophobicity of surface and 32: 66, 67 Pseudomonas spp. aeruginosa fluorescens, ice-nucleation gene in 34: 212, see also specific gene glutathione reductase in 34: 275 glutathione S-transferase in 34: 281 lasR of, luxR homology with 34: 40 multiplasmid. construction 31: 56 other/non-specified species, glyoxylase pathway in 34: 286 putida glutathione peroxidase activity 34: 248, 271 glyoxylase pathway in 34: 285, 287, 288 syringae, ice nucleation in 34: 209, 210 applications 34: 232 genes for 34: 212, 233, see also specific genes viriflava, ice nucleation gene 34: 212, see also specific gene Pseudomonas stutzeri 39: 360; 44: 5, 27, 28; 45: 86 germanium accumulation 38: 227 Pseudomonas suboxydans 36: 287 Pseudomonas syringae 41: 213; 43: 15; 37: 245, 246 copper-resistant 38: 214 pv phaseolicola 36: 54; 37: 232 Pseudomonas tabacii 37: 118, 119 Pseudomonas thermophila carboxysomes 29: 129, 153 containing RuBisCO in 29: 121DNA attachment to 29: 129 Pseudomonas viridiflora 37: 122; Pseudomycelia 30: 59 Pseudopods, in amoebae, ionic currents and 30: 103 Psi factors, A. nidulans 34: 103, 104 PSI-BLAST program 45: 186 pssA operon 46: 68, 70 Pst I restriction endonuclease 29: 81 Psychroserpens burtonensis 46: 237 PTS 45: 295, 314, 315, 322, 324 protein, role in ALA transport 46: 287 PTX 44: 146, 147, 153, 155 PUB see phycourobilin Pueraria lobata 35: 277, 288 Pullulanase 37: 35, 36; 39: 53, 56 – 58
Pulse and shift technique 36: 171, 172, 174, 176 Pulse– chase experiments, diacylglycerol recycling 29: 248, 259, 260 lipoteichoic acid, metabolic fate 29: 272 metabolism 29: 252, 253, 260 synthesis 29: 247, 248 Pulsed field gel electrophoresis 42: 36 Purines 42: 141– 145, 198, 199 as nitrogenous nutrient 26: 2 Purine catabolism in streptomycetes 42: 142 Purine nucleotides, biosynthesis, in M. microti, M. avium 31: 95 deprivation, by host in M. leprae infections 31: 111 scavenging by M. leprae 31: 95 – 97 source in axenic culture of M. leprae 31: 113 sources for M. leprae 31: 96, 113 Purine synthesis, bacterial primary metabolic pathway 27: 82, 85 Purine synthesis, inhibition 28: 48 Puromycin 39: 296 Purple non-sulfur bacteria 39: 348, 349, 354, 355 carbon compounds effect on 39: 361– 364, 361 quinone system in 39: 350, 351 Putidaredoxin, Mo¨ssbauer parameters 38: 65 Putrescine 37: 280 PvdS 45: 122 pWWO, see Plasmid pWWO Pyelonephritis 28: 67, 78 – 81 mannose sensitivity, epithelial adhesins 28: 79 O: K: H serotypes, human pathogenicity 28: 78 X specificity 28: 89 Pyocyanine 27: 211, 212 antibiotic action, E. coil 27: 267 biosynthesis, proposed pathway 27: 252 chemical identity 27: 217, 219 effect on respiration rate, various organisms 27: 221 pigmentation mutants, P. aeruginosa 27: 257 production, P. aeruginosa 27: 219– 221, 249, 250 shikimic acid as precursor 27: 243, 250 structural formula 27: 220, 237 tyrosine and 27: 263 Pyoverdine 27: 219 Pyrazines 37: 188; 39: 348
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Pyrazinoic acid 39: 348 Pyrenopeziza brassicae, sexual factors 34: 103, 104 Pyricularia oryzae, anti-oxidant defense in 34: 272 Pyridine nucleotides 45: 90, 91 Pyridine, in haem protein analysis 38: 218 Pyridium-2-azo-p-dimethylanaline cephalothin (PADAC) 37: 163 Pyridoxal phosphate 30: 196, 198– 200; 46: 265 Pyrimidine dimers and photoreactivation 28: 12 UV radiation 28: 14 Pyrimidines 42: 141, 198 biosynthesis and scavenging, M. leprae 31: 93 – 95, 108 Pyrococcus 29: 221 Pyrococcus furiosus 40: 161 tungsten in 38: 180 Pyrococcus horikoshii 45: 184 Pyrococcus spp., haem pathway genes 46: 295 Pyrodictium 29: 221 Pyrodictum occultum, AP1A hydrolases in 36: 93 Pyrophosphate bond hydrolysis-driven transporters 40: 131 Pyrophosphate, hydrolysis 31: 245 Pyrorubin 27: 217 chemical identity 27: 223 occurrence 27: 222 Pyrraline 37: 187 Pyrroline 5-carboxylate 26: 15, 24 mitochondrial degradation 26: 15 dehydrogenase 26: 13, 15, 24 Pyrrolo-2 carboxylic acid 40: 51 Pyrroloquinoline quinone (PQQ) 36: 248; 40: 1 –80 adducts 40: 5 amino acid sequences of proposed polypeptide precursor of 40: 52 biosynthesis genetics 40: 52 –57 exogenous, effect on bacterial growth 40: 7 genes required for synthesis 40: 53 identification 40: 6, 7 in bacteria 40: 6 – 8 isolation 40: 3 organization of genes in bacteria 40: 54 origin of backbone 40: 51, 52 origin of carbon atoms 51 regulation 40: 59 – 66 structure 40: 4, 4 synthesis 40: 51 – 59 model 40: 55, 56
209
Pyrrolo-quinoline quinone (PQQ)containing quinoproteins importance of divalent metal ions in structure and function 40: 20 – 26 structure and mechanism 40: 26 –35 that oxidize alcohols 40: 9 that oxidize glucose 40: 18 Pyrrolo-quinoline quinone absorption spectra 27: 148 adducts 27: 153 biological activity 27: 151 chemical characteristics 27: 149– 152 chemical reactions 27: 152– 154 dehydrogenases having PQQ 27: 158, 159 detection and determination 27: 154, 155 mechanism, catalysis, MDH 27: 163 other quino proteins 27: 155– 159 ultraviolet absorption spectra 27: 150, 154 Pyrularia pubera 37: 146 Pyruvaldehyde 37: 197 Pyruvate 37: 296, 305; 39: 36, 101; 41: 5, 25, 26, 37; 45: 322, 325 carbon sources entering pool 45: 304– 309 energy production 45: 316, 317 flux analysis of growth on 45: 306, 308 flux analysis of transacetylase less mutant on 45: 310 phenotype 45: 325 Pyruvate amino acids 42: 139, 140, 190, 191 Pyruvate and hopanoids 35: 264 Pyruvate decarboxlase (PDC) 41: 4, 5, 14 – 17, 19, 21, 24 – 27, 32, 37 and provision of substrates 41: 6 – 9 Pyruvate decarboxylase 29: 175 Pyruvate dehydrogenase (PDH) 29: 175; 31: 92; 45: 288– 290, 299, 304, 316, 322, 325 acetyl-TPP formation in E. coli 29: 203 active-site coupling in 29: 200 in eubacteria and eukaryotes, diversity 29: 209 Pyruvate formate lyase 29: 202 Pyruvate metabolism in Helicobacter pylori 40: 159– 161, 163 Pyruvates 26: 171, 172 formation, acetyl-CoA 29: 175 in archaebacteria (acetyl-CoA formation) 29: 186 in eubacteria and eukaryotes 29: 175, 176 six types of reactions 29: 175
210
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
from 2-keto-3-deoxygluconate in S. solfataricus 29: 179, 191 from glucose, ATP not required in H. saccharovorum 29: 177 from glyceraldehyde 3-phosphate in halophiles 29: 183 glucose metabolism to, in eubacteria and eukaryotes 29: 172–174 in archaebacteria 29: 177, 178– 180 metabolic fate, ammonia oxidizer growth in presence of heterotrophs 30: 135 control of glycolysis 28: 207 decarboxylase 28: 195 dehydrogenase Km value 28: 195 separation of fermentative and respirative pathways 28: 194, 197 Pyruvate/acetyl-CoA 43: 141 Pyruvate: acceptor oxidoreductase (POR) 40: 161, 162 Pyruvate: ferredoxin oxidoreductase (PFOR) 26: 172 (fig), 173; 39: 75; 46: 138, 139 see also 2-Oxo acid: ferredoxin oxidoreductase in archaebacteria 29: 177, 180, 186, 202 in H. halobium 29: 202 in H. saccharovorum 29: 177 in T. acidophilum 29: 180 Pyruvate:formate lyase 26: 171, 172 (fig) 46: 129, 131 Pyruvic acid 37: 197, 198, 200, 216 cyanohydrin, high glucose, fungal metabolism 27: 88 Pyruvic oxime 30: 167 Pythium spp. sex hormones 34: 80, 81 sylvaticum 34: 80, 81 Q/QH2 pool 45: 74, 76, 77, 80 Quinohaemoprotein 40: 8, 24 Quinohaemoprotein alcohol dehydrogenases (type II alcohol dehydrogenases) 40: 12, 13, 39 Quinohaemoprotein alcohol dehydrogenases (type III alcohol dehydrogenases) 40: 13 – 16, 39 Quinol 31: 256 Quinol oxidase 40: 197 Quinol:oxygen oxidoreductases 31: 233 Quinolones 36: 221 Quinolphos 39: 363 Quinone 29: 181; 31: 232, 260; 43: 178, 179, 208 in purple non-sulfur bacteria 39: 350, 351 in TMAO reduction 31: 262
Quinoprotein alcohol dehydrogenases 40: 10 – 13 type I 40: 39 Quinoprotein dehydrogenases 40: 3 amino acid sequence alignment 40: 27 factors affecting synthesis 40: 60 – 66 physiological functions 40: 42 – 51 PQQ-containing 40: 7 – 20 Quinoproteins 27: 155– 157, see also Pyrrolo-quinoline quinone in energy transduction 40: 35 – 42 prosthetic groups 40: 4, 6, 7 wrongly identified as PQQ-binding domain 40: 35 Quorum sensing (QS) 45: 199– 270 basic concepts and definitions 45: 200– 203 blocking compounds 45: 213, 214 ecological considerations 45: 253, 254 for full virulence of Pseudomonas aeruginosa 45: 226– 230 hierarchical cascade 45: 220 integration of control with other regulators 45: 230– 236 non-AHL signalling in Gram-negative bacteria 45: 215–221 pathogenesis 45: 225– 236 physiology 45: 221– 253 signal molecules 45: 205 signal response 45: 208– 211 signalling 45: 203– 221 symbiosis 45: 237–243 Quorum sensing 41: 120– 122; 42: 38 responses 44: 222, 223 R. pilimanae 43: 47 R. sphaeroides 43: 182 R. tropici 43: 136 R1881, C. immitis binding sites for 34: 118 R-3-Chloro-1, 2-propandiol, enzymatic dechlorination 38: 159 R5020, see Promegestone rab proteins 33: 91, 136 Rabbits ampicillin, E. coli 28: 249 antigenicity, Salmonella wien 28: 239 aortic valve trauma endocarditis 28: 226 E. coli K99, intestinal adhesins 28: 75 E. coli RDECI, specificity in vivo and in vitro 28: 77 E. coli, enterotoxigenic strains 28: 74, 75 human CFI, CFII 28: 76 gentamycin, E. coli 28: 249 lactam antibiotics, changed bacterial morphology 28: 248, 249 phagocytosis, diffusion chambers 28: 249, 250
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 RAD6 gene 31: 195 Radiolabelled substrate assimilation, by particle-associated cells 32: 78 Radiolabelling glucose, incorporation into polysaccharide, C. albicans27: 311– 313 glycine studies, cyanide formation 27: 77, 87, 89 Reducing agents, growth effects, C. albicans 27: 294– 297 Rhodanese, detoxification of cyanide 73, 74 site of MDH, bacteria 27: 145 Radioprotective effects of glutathione 34: 242, 256, 257, 277– 280 Raffinose sporulation media 28: 29 utilization, K88 fimbriae, E. coli 28: 114 Ralstonia eutropha 45: 57, 71, 76, 77, 82, 96, 139 Ralstonia solanacearum 45: 221 RAM/DPR1 34: 89 Ramaline stenospora, metal analysis 38: 196, 197 Raman spectroscopy 37: 6 Ramie fibre 37: 8 Rana esculenta 37: 140, 142, 150 Raphanus sativus 37: 145 RAS proteins in C. albicans, and their genes 34: 133 in Sacch. cerevisiae, farnesylation 34: 89 ras1, ras2 mutations 32: 12 Rate definitions 43: 108– 111 RatNP 37: 144, 145 Rats E. coli enterotoxigenic strains 28: 75 E. coli K99, intestinal adhesins 28: 75 peritoneal macrophages, E. coli mannose-insensitive 28: 90, 92 tetracycline-resistant lactose fermenting microflora 28: 247 Rattus norvegicus 37: 144, 145; 40: 100 R-DNA 45: 249, 250 RdxA 45: 61 Reactive dioxygen species (ROS) 43: 202 Reactive oxygen species, generation 46: 134 “Reactive Red” affinity columns 29: 13, 18 Receiver dendrographs 41: 200 Receiver domain subfamilies 41: 210 Recombinant DNA technology 42: 14 Recombinant gene technology 37: 55 Recombinant plasmids, E. coli K88 fimbriae 28: 114, 115 not seen in Bacteroides spp. 28: 4
211
R-plasmids, rifampicin- and tetracycline-resistant 28: 246, 247 Recombinase specificity 45: 28 – 31 Recombination, plasmid pWWO-8 deletion caused by 31: 20 TOL plasmids 31: 34 – 39, 44 Recycling during growth on glucose 45: 283, 284 Red algae 37: 289, 300 Redox centres 31: 230, 231 Redox control, cytochrome c biosynthesis 46: 281, 282 Redox potential 26: 126, 138– 140; 29: 17; 31: 234 component 29: 35, 37 cytochrome c 29: 33 cytochrome c3 29: 17 enrichment cultures of magnetotactic bacteria 31: 142, 143 flavoprotein 29: 33 of ferrichrome A as function of pH 43: 67 phototaxis and growth of microorganisms on 26: 140 respiratory oxidants 31: 226, 227, 229 Redox properties, oxygen 46: 111, 113, 114 Redox reactions 46: 111, 115 Redox sink, polyols role 33: 175 Redox substances, adsorbed on surfaces, effect of 32: 60 Redox-cycling agent PQ 46: 322, 335 Redox-cycling compounds, free radical generation 46: 322 Redox-cycling, in yeast, oxidative stress effect 46: 336 Reducing agents 29: 19 Reducing equivalent 29: 24 Reducing terminus, growth of O-polysaccharide at 35: 160, 161 Reductase systems 26: 247 Reductase(s) bis-g-glutamylcysteine 34: 275 fatty-acid, see Fatty-acid reductase fumarate nitrate, lux gene regulation and 34: 48 glutathione 34: 274– 277 glycine 35: 73 – 76 NAD(P)H:FMN oxido- 34: 24 ribonucleotide 34: 267– 269 trypanothione, see Trypanothione reductase Reductive pathways 36: 151 Regulation in Bacillus subtilis see transition-state regulators
212
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
mitotic, in Physarum polycephalum 35: 53 – 58 factors 35: 54, 55 heterophasic fusions 35: 53, 54 heteroploidic fusion 35: 53 MPF, p34 and cyclin 35: 55 – 58 of cell-surface polysaccharide biosynthesis 35: 212– 229 see also extracellular regulation of cell-surface polysaccharides liposaccharides 35: 212– 216 transcriptional and cell-surface polysaccharide biosynthesis 35: 223, 224 of genes for phosphorelay components 35: 123– 126 regulation, enzyme activity 28: 191 catabolite-repression insensitivity 28: 204, 205 “glucose effect” 28: 187, 188 regulatory mechanism 28: 188, 189, 194, 197 “glucose repression” 28: 194, 203– 205 glycolysis, regulation 28: 203– 206 coupling mechanisms 28: 205 ethanol production, and dilution rate 28: 185 feedback control 28: 205, 207 inhibition of respiration 28: 187, 199 glyoxalate cycle enzymes 28: 189, 197, 204 growth pattern (diauxie) 28: 183 in absence of glucose 28: 182 specific growth rate, maxima 28: 185 H1022, maximum growth rates 28: 185 biomass yields 28: 185 hex1 decreased hexokinase activity 28: 204 hexokinase isoenzymes 28: 204, 205 mutants hex1, hex2 28: 204 invertase (b-fructofuranosidase) 28: 187, 204 malate dehydrogenase 28: 191, 192 maltase, “glucose repression” 28: 204 mitochondrial cytochromes 28: 192 adaptation to respiro-fermentative metabolism 28: 195, 196 cytochrome oxidase 28: 204 decrease, oxygen limitation 28: 202 mitochondrial enzymes 28: 189, 197 catabolite repression 28: 205 mutations, aerobic ethanol formation 28: 205 pH stress 37: 230 Regulons, identification by microarray analysis 46: 5, 6, 25 relA gene 30: 226, 232 Relative efficiency 29: 4, 5
Relative transcription timing in chromosome replication in Physarum polycephalum 35: 50, 51 Repeating unit structure in cell-surface polysaccharides 35: 144–148, 150– 153 Repellents (chemotactic) 33: 304, 305 CheB methylesterase activation 33: 327, 330 demethylation stimulated 33: 327, 333 in chemotactic signalling model 33: 333 low-affinity response by transducers 33: 301, 305 motility response 33: 297, 313, 315 R-Epichlorohydrin 38: 158 Reporter gene-based studies 41: 107, 108 Repression 44: 26 Repressor 42:128 – 130 ARGR 26: 16 CARGR 26: 16 reproduction phase, formation of ethanol 28: 193 Repressor-based mechanisms to regulate heat shock response 44: 128– 130 Repulsion, interparticle 33: 11, 14 causes after charge neutralization 33: 27 collision frequency and 33: 27 in flocculation, see Flocculation neutralization effect 33: 14, 17, 24, 27 steric 33: 27 Resinium bicolor 41: 58 Resistance nodulation division (RND) efflux pumps 46: 229– 231 Resistance plasmid 31: 20, 34, 35 Resistance, pH stress 37: 250– 263 Resistance-nodulation-cell division (RND) family 40: 97, 104, 105, 129 Resorcinol 39: 342, 345 Respiration 31: 226– 229 see also Anaerobic respiration aerobic vs. anaerobic, thermodynamics 31: 227, 228 respiration rate, maximum value 28: 194 repression, by glucose 28: 188– 199 low water potentials affecting 33: 198 Respiration-dependent Na+extrusion 40: 423 Respiration-linked pathways 36: 153 respirative glucose metabolism, cytochrome content, dependence 28: 192 oxygen uptake 28: 190 “Respirative” glucose metabolism, yeasts 28: 190, 192 Respiratory activity,
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 microbial activity on surfaces assessment 32: 63 particle-associated bacteria 32: 77 Respiratory capacity 36: 154 Respiratory chains 31: 230– 235; 36: 271– 286; 40: 423, 424, 424, 430 alcohol- and sugar-oxidizing coupling sites 31: 230– 232 functional aspects 36: 294– 297 periplasmic oxidase systems 36: 294, 295 relation between oxidation reactions and energetics 36: 296, 297 in Acetobacter aceti 36: 274, 280– 285 in Acetobacter methanolicus 36: 285, 286 in Gluconobacter suboxydans 36: 272– 280, 274, 287– 289, 292– 294 M. leprae 31: 89 reconstitution of 36: 286 –294 of G. suboxydans 36: 292– 294 cyanide-insensitive respiratory chains 36: 291– 294 cyanide-sensitive respiratory chains 36: 286– 291 electron transfer through ubiquinone 36: 291, 292 ethanol oxidase respiratory chains 36: 289– 291 glucose oxidase respiratory chain of G. suboxydans 36: 287– 289 redox centres 31: 230, 231 structure and organization 31: 230–233 thermodynamic considerations 31: 226, 228, 233– 235 Respiratory metabolism 43: 193– 205 Respiratory oxidants 31: 226 see also Anaerobic respiration; Carbon dioxide; Nitrogen, oxides of Sulphate alternative/anaerobic 31: 226, 227, 261– 264 oxygen as ideal 31: 226, 233 redox potentials 31: 226, 267, 229 Respiratory protection 43: 194– 196, 206; 44: 10 respiro-fermentative process 28: 188, 191 allosteric feedback regulation 28: 205– 207 cytochrome content 28: 192 effect of glucose pulse 28: 194 long term adaptation 28: 195–198 maximum energy generation 28: 203 saturation of respiration 28: 205 short term ethanol production 28: 196
213
“Respiro-fermentative” process, yeasts, see under Saccharomyces Response regulator, TNC 47: 67 Restriction-enzyme map, plasmid pDK1 31: 46 plasmid pWW53 31: 46 plasmid pWWO 31: 19, 48, 51 Restriction-enzyme mapping, Salmonella spp 28: 165, 166 Resuscitation non-culturable cells 47: 96 – 103 TNC 47: 76 Resuscitation-promoting factor (Rpf) 47: 101– 103, 106 Retinal, trisporic acid formation and 34: 82, 83 RETRIEVE 38: 211 Reverse transcription and polymerase chain reaction (RT-PCR) 41: 106 Reverse-phase high-performance liquid chromatography (HPLC) 39: 160 Reversibility of sensor (ESC) activation 44: 240 Reynold’s number 41: 310, 317 low 33: 288 R-factor E. coli, tetracycline resistance 28: 246 R-plasmid transfer 28: 247 rfe-independent O-polysaccharides, transport of 35: 175–177 RflA (repression of flagellar operons) 32: 121 R-Glucan, degradation, fruiting and 34: 154, 155, 188 R-Glucanase 34: 155, 163 Rh1I 45: 203 Rh1RI 45: 227 RHA1/RHA2/RHA3 34: 99 Rhamnose 37: 195, 206 RheA 44: 129 RhiR 45: 240 Rhizobactin 1021 45: 123, 124 synthesis, uptake and regulation 45: 124 Rhizobia 37: 302; 40: 191– 231; 45: 86, 114 calcium in 45: 142, 143 citrate uptake and synthesis in 45: 130 copper in 45: 143, 144 gene regulation 45: 132– 136 haem uptake in 45: 127–129 iron in 45: 116, 117 manganese in 45: 142 molybdenum uptake in 45: 136– 138 nickel in 45: 138– 141 non-cytochrome-containing branch of respiratory chain 40: 207 respiratory chains 40: 198– 205 respiratory pathways 40: 195
214
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
root nodule symbiosis 45: 239– 243 siderophore production by 45: 117– 127 symbiosis-specific cytochromes 40: 209– 214 terminal oxidases 40: 194 zinc in 45: 142 Rhizobiaceae 37: 283; 40: 193 Rhizobial genes in cytochrome c assembly 40: 220 in free-living respiration 40: 196 in symbiosis-specific oxygen respiration 40: 211 Rhizobial mutants with altered oxidase activity and improved symbiotic nitrogen fixation 40: 221 Rhizobial– legume symbiosis 45: 113– 155 Rhizobium 35: 149; 39: 100; 40: 193; 43: 137, 140, 181 aluminium toxicity 38: 215 carbon and nitrogen metabolism 43: 117– 163 dehalogenases 38: 138, 139, 141– 144 haem pathway 46: 263, 286 R. fredi 35: 168 R. leguminosarum 35: 196, 198, 205, 215, 229 R. meliloti and cell-surface polysaccharide biosynthesis export 35: 179, 180 genetics 35: 190, 196, 204, 205 regulation 35: 214, 215, 223, 229 structure and attachment 35: 144– 146, 158 R. trifolii 35: 158, 278, 282 symbiotic differentiation regulated by oxygen 46: 290, 291 Rhizobium bacteriods 43: 151 Rhizobium etli 40: 191, 199, 208; 45: 134 Rhizobium japonicum autotrophic 29: 2, 6, 9 bacteroid, effect of nickel 29: 20 kinetic mechanism 29: 23, 24 Km value 29: 17 nickel and iron content 29: 21 properties 29: 13 absorption spectrum and iron content 29: 14, 15 component 559– H2, absence, evidence for 29: 37, 38 cytochromes b- and c-reduction 29: 32, 33 electron-transport system 29: 32 – 35 Hupc mutants, RuBp carboxylase activity absence 29: 10 hydrogen oxidation, ATP increase 29: 24, 25
hydrogen sole source due to nitrogenase 29: 16 hydrogen uptake (Hup) activity 29: 6, 7 hydrogenase, oxygen-insensitive mutants 29: 7 cytochrome pattern 29: 30, 31 free-living hydrogen oxidation electron transport 29: 28 – 32 hydrogenase expression 29: 38 oxygen and carbon regulation of hydrogenase 29: 6 gene bank 29: 43 Hup genes 29: 43 – 45 on indigenous plasmids in 29: 42, 43 site-directed mutagenesis 29: 41, 42 Hup – mutants, hup DNA excised from chromosome to create 29: 43 plasmids in 29: 42, 43 + Hup strains 29: 2, 6 beneficial effects 29: 5, 9 symbiotic advantage 29: 5, 46 Hupc mutants, see Hydrogenaseconstitutive mutants Hup-specific DNA, homology with R. leguminosarum 29: 47 hydrogen oxidation, cytochrome aa3 and o in 29: 28, 29 – 32 efficiency 29: 16 maximal C2H2 reduction 29: 25 proposed electron-transport pathway 29: 31, 32 ubiquinone in 29: 31 without nitrogen fixation 29: 2 hydrogen oxidizing, electrontransport system 29: 27, 28 – 38 hydrogenase 29: 4, see also Hydrogenase anaerobic purification, half-life 29: 18 carbon dioxide fixation and 29: 9, 10 carbon regulation 29: 6 – 9 detrimental action in oxygen consumption 29: 25 electron acceptor reactivity 29: 16, 17 expression, cyclic AMP in 29: 7 high affinity for hydrogen 29: 16 host control 29: 10, 11 increased efficiency of nitrogen fixation 29: 4, 9 iron– sulphur clusters 29: 15 Km value 29: 16 lipid requirement 29: 21, 22 nickel in 29: 21 oxygen lability 29: 18, 19, 27 oxygen regulation of 29: 6 – 9
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 purification and properties 29: 13 –15, 18 membrane particles 29: 27, 28 nif gene 29: 42, 43 oxygen-hypersensitive mutants 29: 6, 7, 40 oxygen-insensitive mutants 29: 7, 40 RuBisCO structure in 29: 134 RuBP carboxylase in 29: 6, 9, 25 sphaeroplasts 29: 41 PJ17, PJ18, PJ20 29: 43 PJ17nal, PJ18nal 29: 43 SR1, SR2, SR3, 29: 43 SR106, SR166 29: 39 SR139 mutant (Hup2 Nif2) 29: 40, 44 SR 143 mutant (Hup2 Nif2) 29: 39, 40 SRl18, SR14629: 39 SU306 – 347 29: 45 USDA 122 29: 10, 11, 39 USDA61, USDA74 29: 10, 11 Rhizobium leguminosarum 37: 39, 248, 261, 262; 40: 191; 41: 213; 43: 120, 121, 123– 125, 127, 128, 132, 134, 136, 140, 142, 146– 149, 181, 201; 45: 117, 119– 123, 125, 128, 131– 134, 139– 144, 175, 212, 240– 243 biovar trifolii 37: 232 b.v. phaseoli 43: 128 b.v. trifolii 43: 129, 131 biovar viciae 40: 194, 196, 220 biovar viciae and trifolii 40: 199 biovar viciae and trifolii cytochrome d 40: 208 biovar viciae cytochrome bc1 complex 40: 201 biovar viciae cytochrome CycM 40: 202 biovar viciae symbiosis-specific oxidase 40: 215, 216 bv. phaseoli 45: 115, 125 bv. trifolii 45: 115 bv. viciae 45: 115, 126 CAS phenotypes and pleiotropic effects 45: 126, 127 host control of hydrogenase 29: 11 Hup genes 29: 45 – 47 on plasmids 29: 42 Hup phenotype, effect on nitrogen fixation 29: 46 Hup+ strains 29: 4 hydrogen oxidation, ATP synthesis coupling 29: 25 nitrogen fixation not increased with hydrogen oxidation 29: 5, 46 nitrogenase protection from oxygen 29: 25 possible benefits of hydrogen oxidation 29: 5, 46, 47
215
Rhizobium leguminosarum strain 12 29: 300, 11 hydrogenase, host control of 29: 10, 11 strain 128C53 29: 44, 45, 47 strain 16015, Nod and Hup genes cotransferred 29: 42 strain 3960 29: 45 strain CNA 311 29: 10 strain ONA 311 29: 10 Rhizobium loti 37: 294 Rhizobium lupini 43: 121 flagellar filament lattice arrangement 32: 124, 125 Rhizobium meliloti 37: 261, 262, 279, 290, 301, 305, 309– 311; 43: 132; 40: 7, 104, 195, 210, 212, 220, 414, 415, 416; 41: 294 102F51, Hup genes 29: 44 complex flagella and flagellins 33: 283 motility pattern 33: 289 site-directed mutagenesis 29: 41 Rhizobium NGR234 43: 132 Rhizobium ORS, 571 29: 25, 26 Rhizobium sp. 37: 40, 246, 251, 261, 262 Rhizobium spp. 42: 151 GSII 42: 152 chemotaxis 33: 279 Rhizobium strain 32H1 29: 4 Rhizobium trifolli 40: 194 Rhizobium tropici 40: 194, 196; 45: 115, 130 coxA 40: 204 Rhizobium, “cowpea”, uptake hydrogenase in 29: 4 DNA transfer, cloning vehicles 29: 41 Hup+ strains, hydrogenase activity in 29: 2 hydrogen metabolism in 29: 1 – 52 molecular genetics techniques for 29: 40 – 42 site-directed mutagenesis 29: 41, 42 Tn5 mutants 29: 41, 42 esters 26: 110 Rhizobium-legume symbiosis 40: 195; 43: 119, 128, 139, 142 Rhizobiumme systems 30: 15 Rhizocoenoses 30: 17 Rhizoferritin 43: 53 Rhizoids, ionic currents and, formation site and growth 30: 94, 95 evidence for/against role 30: 115 formation, in Pelvetia 30: 105, 106, 113 inward, in Acetabularia 30: 110 in Allomyces 30: 100, 101 in Blastocladiella 30: 94, 95 nutrient transport 30: 95, 96, 101
216
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
orientation, phosphate and amino acids affecting 30: 94 Rhizolotine 37: 294 Rhizomucor pusillus 37: 145, 151 Rhizopus 43: 53 Rho 44: 146 Rhodamine-123 41: 116 Rho-dependent terminator, Vibrio spp. lux genes 34: 29 Rhodobacter 39: 11; 45: 137 Rhodobacter adriaticus 39: 252, 259 Rhodobacter capsulata 37: 100; 43: 182, 199; 35: 255, 269; 39: 237, 245, 252, 258, 259, 276, 343, 348, 350, 353, 356, 361, 364, 366 40: 287, 292, 309, 335, 336; 45: 57, 60, 68, 72, 77 –80, 82, 95, 137 Rhodobacter capsulatus, Rieske proteins amino acid sequence 38: 67, 71 site-directed mutagenesis 38: 69, 71, 72 Rhodobacter etli 40: 220 Rhodobacter sphaeroides 36: 270; 39: 9, 10, 217, 258, 259, 348– 350, 352, 355– 357, 359– 364, 366, 367; 41: 237, 238, 244, 251, 252, 255– 2257, 260, 264, 266, 268, 272, 293, 294, 299, 300, 306, 310; 44: 6, 28, 112; 45: 57, 61, 68, 71, 77, 79, 80, 87, 95, 96, 174, 175, 181, 247 ALA synthase 46: 262, 263 chemosensory pathway 41: 258 clustering of MCPs 41: 250 f. sp. denitrificans 45: 81, 86, 87 hemN genes 46: 290 operon organisation 41: 248, 249 oxygen-independent coproporphyrinogen oxidase 46: 271 tetrapyrrole synthesis regulation 46: 289 Rhodobacter spheroides, swimming pattern 33: 289 Rhodobacter sulfidophilus 37: 289, 290, 291; 39: 252, 259, 275, 350 Rhodobacter veldkampii 252, 259 Rhodobacter viridis 45: 93 Rhodococcus erythropolis, dehalogenases 38: 164 oxygenase type 38: 165 Rhodococcus ruber 39: 359 Rhodococcus sp. 42: 106 Rhodocyclus gelatinosus 35: 255; 39: 348, 350, 355, 356, 360 Rhodocyclus purpureus 39: 356 Rhodocyclus tenuis 39: 356
Rhodomicrobium vannielii 35: 251, 255; 39: 343, 353, 362 isocitrate dehydrogenase in 29: 195 RuBisCO structure 29: 133 Rhodopseudomonas (Rhodobacter), RuBisCO structure 29: 133 Rhodopseudomonas 35: 264 Rhodopseudomonas acidophila 35: 251, 255, 261, 262, 268; 39: 343, 355; 40: 8, 43 Rhodopseudomonas blastica 39: 343 RuBisCO, S subunit function 29: 138 structure 29: 134 Rhodopseudomonas capsulata 26: 140, 158 (fig); 31: 262 nickel in hydrogenase 29: 20 RuBisCO S subunit function 29: 138 structure 29: 134 Rhodopseudomonas palustris 35: 251, 255, 261, 262, 268; 39: 252, 258, 275, 343–348, 346, 348, 352– 354, 354, 363 Rhodopseudomonas sp. 37: 290; 132, 134 methanol dehydrogenase, unusual 27: 139, 140 aminoacid composition 27: 143 competitive inhibition, KCN 27: 142 uniqueness 27: 144 photosynthetic methylotroph 27: 138 Rhodopseudomonas sphaeroides 40: 201, 287, 292, 300 ADPglucose pyrophosphorylase 30: 195, 197, 198 alanine uptake 26: 147 (fig) gating 26: 146 homoeostasis 26: 147 membrane potential 26: 147 (fig) potassium efflux 26: 130 cytochrome aa3 in 29: 28 Form I, 134, 138 RuBisCO genes on plasmid 29: 148 substrate specificity 29: 141 Form II, 134, 138 RuBisCO gene on chromosome 29: 148 modified Entner-Doudoroff pathway in 29: 179 RuBisCO, gene cloning 29: 146 S subunit function 29: 138 structure 29: 134 Rieske proteins 38: 67 Rhodopseudomonas spheroides, AP1A hydrolases in 36: 93 Rhodopseudomonas sulfoviridis 39: 252, 259
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Rhodopseudomonas viridis 35: 141; 39: 259, 350 Rhodoquinone (RQ) 39: 350 Rhodospirillaceae 26: 160; 39: 252; 45: 77, 79 gene transfer systems 39: 259 growth properties 26: 160, 161 growth under dark anaerobic conditions 26: 170, 171 maximal rate of H2 photoproduction 26: 166, 167 (table) nitrate reduction 26: 163, 164 nitrogenase activity regulation 26: 190 nitrogenase function/regulation 26: 203 (fig) sulfur oxidation 39: 257, 258 Rhodospirillales 26: 158, 159 (table) 160 Rhodospirillum centenum 41: 266 Rhodospirillum fulvum 39: 343 Rhodospirillum rubrum 35: 251, 255; 39: 249, 252, 256, 258, 259, 349, 350, 352, 355, 357, 359, 361, 363, 364; 40: 287, 292, 361; 41: 234, 295; 44: 6 RuBisCO, activation site 29: 136 ADPglucose pyrophosphorylase 30: 195 as per cent of total protein 29: 132 carbonic anhydrase in 29: 127 catalytic site 29: 137 gene cloning 29: 146 gene probe 29: 148 L subunit, amino acid sequence 29: 147 L subunit, gene number 29: 147 nucleotide sequence of gene 29: 146, 147 regulation 29: 140 structure 29: 133, 135 structure (model) 29: 135 stimulation of inactive RuBisCO by 6PGLU 29: 142 Rhodospirillum tenue, ADPglucose pyrophosphorylase 30: 195 Rhodosponidium toruloides, sex hormones in 34: 87, 99, 100 Rhodosporidium 30: 31 Rhodosporidium toruloides 37: 208, 209 Rhodotorucine A 37: 208 Rhodotorucine A1 02 34: 99, 100 amino-acid sequence 34: 87 Rhodotorula 43: 5 Rhodotorula gracilis, polyol uptake mechanisms 33: 180 Rhodotorula minuta 43: 53 Rhodotorula pilimanae 43: 42 Rhodotorulic acid 43: 42, 53, 54
217
Rhodotovida mucilaginosa, guanylyltransferase in 36: 91 Rhodovibrio 39: 343 Rhodovulum sulfidophilum 39: 252, 259, 275, 350 Ribitol phosphate 29: 234, see also Teichoic acid polymerization 29: 280 polymerase 29: 277, 278 Riboflavin as luciferase substrate 34: 7 Ribonuclease III 32: 122 Ribonucleic acid bases 26: 140 Ribonucleotide reductase 34: 267–269; 46: 130 Ribose-binding protein (RBP) 33: 298, 299 structure 33: 303 Ribose-galactose-glucose transducer (Trg), see Trg protein Ribosomal DNA replication in Physarum polycephalum 35: 52, 53 Ribosomal RNA, fruiting and detection of 34: 151– 153 Ribosome, eubacterial features, in archaebacteria 29: 170, 171 morphology, in phylogenetic analysis 29: 169 rRNA in, archaebacteria 29: 170 Ribotyping 42: 36 Ribulose 1, 5-bisphosphate (RuBP) 29: 135, 136 carboxysome membrane permeability 29: 152 Ribulose 1, 5-bisphosphate carboxylase/ oxygenase (RuBisCO) 29: 6, 39, 132– 149; 30: 133, 141 see also Carboxysomes absence from, heterocysts 29: 122, 131 T. neutrophilus 29: 189 activase 29: 144, 145 activation 29: 135, 136, 144, 147 in light 29: 144, 145 in vivo 29: 150 site (lysine-201 of L subunit) 29: 136, 137, 147 activity, under carbon dioxide limitation 29: 150, 151 antiserum 29: 125, 131 carbon dioxide fixation activity 29: 9, 10 carbon dioxide/oxygen specificity 29: 140– 142 carboxylation reaction 29: 136, 137 oxygen inhibition 29: 137, 140, 153 proposed scheme 29: 137, 138 catalysis 29: 136– 138, 147
218
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
catalytic site 29: 137, 147 metabolic effector interaction 29: 143 coregulation with hydrogenase in R. japonicum 29: 9, 10 diurnal changes 29: 144 evidence and significance of 29: 143 function 29: 136–138, 155 gene regulating 29: 10 gene, copy number 29: 147, 148 expression 29: 146, 149 location and cloning 29: 145, 146 nucleotide sequence 29: 146, 147 on extrachromosomal DNA, evidence 29: 148 probe 29: 147, 148 genetics 29: 145– 149 growth yield on oxygen 29: 25, 26 heterologous subunit reconstruction 29: 138, 139 importance 29: 116, 140, 155– 157 in in carboxysomes, evidence for 29: 124, 125 in chemoheterotrophic growth 29: 154 in cyanelles 29: 123 in Pseudomonas thermophila 29: 121, 129, 153 inhibition, by 6PGLU 29: 143, 144 by sodium chloride 29: 154 inhibitors 29: 153, 154 endogenous 29: 144 kinetics 29: 140 large (L) subunit 29: 125, 133 function 29: 136– 138 lysine-201 29: 136, 137, 147 man-made bodies containing 29: 156, 157 Mr values 29: 133, 134 mutants lacking 29: 39 oxygenase reaction 29: 136, 137 advantages of abolition of 29: 140 oxygenation/carboxylation, enzymic partitioning 29: 139 phosphorylated effectors in regulation 29: 142, 143 Prochlorophyta 29: 122 protection by carboxysomes 29: 152– 154 purification 29: 132, 133 purification from R. japonicum 29: 9 regulation, carbon dioxide/oxygen 29: 140–142 endogenous inhibitors 29: 144 phosphorylated effectors 29: 142, 143
removal of S subunits (catalytic core) 29: 138 RuBisCO activase 29: 144, 145 site-directed mutagenesis 29: 137, 138, 142, 149 glutamic acid change 29: 147 small (S) subunit 29: 125, 133 function 29: 138– 140 to renature L subunits 29: 140 specificity and regulation 29: 140– 145 spinach, activation site 29: 136 catalytic site 29: 137 hybridization with Synechococcus RuBisCO 29: 139 L subunit amino acid sequence 29: 147 stability in vitro 29: 132 storage in carboxysomes? 29: 154 8L8S 29: 133, 134 in vitro construction 29: 139 occurrence 29: 133– 135 Ribulose 5-phosphate 40: 156 Ribulose 47: 1, 5-bisphosphate carboxylase/oxygenase (RubisCO), carbon fixation 47: 14 – 17 Ribulose bisphosphate carboxylaseoxygenase (Rubisco) 31: 194, 214 Rickettsia prowazekii genome 46: 293, 294 haem biosynthesis 46: 293 iron transport 46: 293, 294 surface-protein antigen (SPA), gene 33: 247 Rickettsia, genome 46: 293 Rickettsiae, crystalline surface layers 33: 217 Rieske proteins 38: 63 amino acid sequences 38: 67 – 72 site-directed mutagenesis 38: 68 – 72 Saccharomyces cerevisiae 38: 68, 69, 70 spectra 38: 64 spectroscopic analysis 38: 65 – 67 Rifampicin 28: 218; 37: 121 resistance, and tetracycline challenge 28: 246, 247 RNA polymerase inhibition 28: 50 stringent response 28: 11 Riftia pachyptila 39: 260 RimJ 45: 16 RisA 44: 169, 170 RisS 44: 169, 170 RME gene of Sacch. cerevisiae 34: 172
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 RNA (in general), regulation, in higher fungi see also genetics; selenocysteyl-tRNA during fruiting, in dikaryon 34: 165– 170 during vegetative growth 34: 161–163 and Physarum polycephalum 35: 7, 10, 12, 25, 37, 43 and selenium metabolism 35: 88, 89, 94 –97, 102, 104 polymerase inhibitors 28: 50 synthesis, co-ordination with protein synthesis 28: 157 RNA polymerase (RNAP) 37: 178; 39: 95, 97; 42: 100, 125; 44: 22, 24, 29, 52, 94, 99, 102, 125– 128, 154, 156, 201; 45: 39, 60, 84 absent from Saccharomyces cerevisiae 33: 84 bacterial 46: 49 s-factor 39: 66 Schizosaccharomyces pombe 33: 83 – 85 sigma factors associated 46: 52 Yarrowia lipolytica 33: 83, 84 7SL component of signal recognition protein 33: 78 RNA, messenger (mRNA), eukaryotic features in archaebacteria 29: 171 ribosomal (rRNA), 165 sequences, phylogenetic tree for archaebacteria 29: 168, 169 eubacterial features in archaebacteria 29: 170 hybridization homologies of archaebacteria 29: 169 Shine – Dalgarno sequence in halophiles 29: 170 5S, in phylogenetic relationship analysis 29: 169 16S/18S, measurement of phylogenetic relationships 29: 166– 168 ribosomal (rRNA), M. leprae 31: 87 synthesis, limiting growth of M. leprae 31: 74 transfer (tRNA), in archaebacteria 29: 170, 171 introns in genes in archaebacteria 29: 171 gene-specific abundance, measurement 46: 4 see Nucleic acids RNAse 37: 118, 187 RND efflux pumps 46: 229– 231 ROAM mutations 26: 23, 30, 31 Robillarda sp. 37: 12 Rod elongation 40: 382–384
219
rodA A. nidulans gene, in conidiogenesis 38: 27 Rodlet layer 38: 4, 8 and hydrophobin wettability 38: 17, 18 formation 38: 20, 21 in lichen/algal symbiosis 38: 34 in pathogenicity 38: 33 Rodlets 38: 10, 10 – 13 bacterial 38: 11 genetic experiments 38: 11, 12 hydrophobins in formation 38: 11 –13 isolation from fungal spores 38: 10, 11 Rod-shaped bacteria 40: 386, 387 ROMA Bacillus subtilis s W 46: 76 sigma factor function analysis 46: 59 Root genotype, in host control of hydrogenase 29: 11, 12 Root nodule bacteria 37: 261– 263 ros (mucR) 134, 135 Roseobacter denitrificans 45: 80 Rotenone 29: 28 Rotifers, apomixis in 30: 32 Royalisun 37: 145, 148, 149 RP4, pWWO plasmid co-integrates 31: 20, 35 – 37 TOL plasmids co-integrate formation 31: 20, 38, 39, 45, 50 Rpf see resuscitation-promoting factor RpoD 46: 50, 51 RpoH 46: 50 rpoH gene, target of E. coli s E 46: 57 rpoH, mutant defect 31: 205 RpoI 45: 122 rpoN gene 30: 11; 31: 31, 33 RpoN2 mutant 31: 34 RpoN, in TOL regulation 31: 31 – 34 RpoS (E. coli s S) 46: 50, 51, 229, 326, 327 RpoS 45: 34, 38 effect on fimA transcription 45: 40 E. coli O157:H7 adaptation to acid 46: 19 rpoS-regulon 40: 253 –256 rRNA (ribosomal RNA), fruiting and detection of 34: 151– 153 Rs-AFP, peptide 37: 145 RsbP 44: 49 RsbS 44: 46 RsbT 44: 46 RsbU 44: 46, 48 RsbV=P 44: 46, 47, 49 RsbW 44: 48 RsbX 44: 47, 48 rsd1 mutants 33: 130 rsiX 46: 68
220
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Rubidium in potassium transport studies 38: 200 RuBisCO 30: 133, 141 RubisCO see Ribulose 47: 1,5bisphosphate carboxylase/oxygenase Rubisco-binding proteins, stress protein homology 31: 194, 214 Rubrerythrins 40: 286, 287, 291–293 see also ferritinbacterioferritin’rubrerythrin (F-B-R) superfamily sequence alignment 40: 309 Rubrivivax gelatinosus 39: 343 Ruminal acidosis 39: 225 Ruminal bacteria, acid-resistant versus acid-sensitive 39: 226 Ruminal fermentation 39: 224– 226 Ruminococci 37: 53 Ruminococcus albus 37: 11, 12, 40, 51, 52; 39: 226 Ruminococcus flavefaciens 37: 11, 12, 15 – 17, 21, 38, 51, 52, 58, 59 Ruminococcus sp. 37: 52 Run-off transcription - macroarray analysis see ROMA Run-tumble motion of bacteria, see Flagellar rotation; Motility, bacterial Ryanodine-inositol 40: 1, 4, 5triphosphate receptor Ca2+ channels(RIR-CaC) 40: 129 S-2-hydroxyacylglutathione hydrolase 37: 179 SAC1 gene 33: 122, 129 sequence and features 33: 131 sac1cs mutants 33: 130 suppression of act1 – 1ts and sec14– 1ts mutants 33: 130 suppression of secretory/cytoskeletal defects 33: 130, 131 SAC1p influence on, model 33: 132 SAC1p, antibodies 33: 131 orientation and localization 33: 131 SEC14p influenced by 33: 132 secretory and cytoskeletal effects, model 33: 131, 132 structure 33: 131 ts sac1 mutants, genetic interactions with sec ts mutations 33: 130, 131 Saccharomyces 26: 5 growth phase 26: 5, 6 Saccharomyces carlsbergensis 41: 4, 7, 12, 17, 18 arsenate-adapted cells 32: 15
Saccharomyces cerevisae 29: 216; 33: 6; 34: 86 – 95, 106, 119, 120, 123, 124, 127; 39: 307, 308; 40: 98, 100, 104, 122, 314; 41: 6 – 8, 10, 13 – 17, 20, 21, 23– 26, 29 – 32; 42: 11, 51, 63, 106, 109; 43: 41, 45, 52, 53; 44: 188, 189and ethylene production 35: 278, 279, 292 ABC drug transporters 46: 167, 168– 170 CDR1 homologues 46: 173 PDR subfamily 46: 171, 172, 183 phospholipid translocation 46: 186 action of polyene macrolide antibiotics 27: 23 advantages as experimental organism 30: 26, 47 aerobic processes, batch culture 28: 182 continuous culture 28: 183, 184, 204 ethanol production 28: 182, 189, 190 specific growth rate 28: 185 aerobic to anaerobic transition, see “Pasteur effect” ALA dehydratase 46: 266 allantoin transport system 26: 54 allantoin– urea degradation see Allantorin – urea degradation allophanate hydrolase activity 26: 28, 29 (table) allosteric feedback regulation, glycolysis 28: 205– 207 amino acid uptake systems 26: 38, 39 (table) ammonia uptake 26: 8, 9, 51, 52 ammonia-sensitive permeases 26: 54 anaerobic growth 28: 184, 185 and hopanoids 35: 255, 268, 269 AP1 phosphorylases in 36: 95, 96 Ap1A hydrolase in 36: 92 AP1A hydrolases 36: 96, 97 apal and apa2 genes encoding AP1A phosphorylases in 36: 98, 99 apomixis in 30: 23 – 25, 36, 48 see also Apomixis; Ascus; Meiosis; specific strains (below) inheritance of 30: 33, 34 strains 30: 25, 26, 48 arginase 26: 16 – 22 activity in different strains 26: 19 (table), 20 arginase-less strains 26: 24 arginine: degradation/synthesis 26: 14 metabolism 26: 12, 13 (fig) arginyl-tRNA synthetase in 36: 87 asparaginase I 26: 31 asparaginase II 26: 31 – 34 ATCC4098 strain 30: 25, 33
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 ATCC4117 strain 30: 25, 33 apomictic dyad formation 30: 34, 35 carbon source effect on tetrad formation 30: 37, 39 meiotic tetrad production on heat-shock 30: 37, 39, 42 mutations in 30: 33, 34 see also spo12– 11 and spo13– 11 mutants ATPase mutants 33: 202 batch culture, aerobic 28: 182, 191 anaerobic 28: 191 lack of respirative glucose metabolism 28: 191 biomass formation 28: 190, 195, 196 as function of dilution rate 28: 183– 185 respirative glucose metabolism, effect 28: 204 BiP homologue 33: 104 bud growth 33: 129 b-fructofuranosidase 28: 187, 204 catabolite repression 28: 187, see also Glucose repression clathrin function studies 33: 128 cell cycle dynamics and control in 36: 157– 159, 158, 161 cell shrinkage as osmotic response 33: 161, 162 rapidity 33: 163 cell wall permeability 27: 292, 310 cell wall, structure 33: 43, 44 cellulose hydrolysis 37: 11 comparison with Physarum polyphalum 35: 7, 10, 16, 48, 57 complementation of mutants, C. albicans genes 30: 57, 58 containers for cell growth 36: 165, 166 continuous culture (chemostat) 28: 191, 204 aerobic 28: 183, 184 anaerobic 28: 191, 204 dilution rates, shifts 28: 188, 199– 201 oxygen uptake 28: 190 respirative glucose metabolism 28: 191, 194 copper transport in 43: 14 copper uptake 38: 221 copper uptake in 43: 13 –19 Crabtree effect 28: 187, 188, 199– 202 cytochrome c haem lyase genes 46: 277 cytochromes, see Mitochondria, cytochromes desiccation tolerance, trehalose role 33: 195, 196 diauxie, growth pattern 28: 183
221
dilution rate, effect on anaerobic growth 28: 183– 185 effect of shift, continuous culture 28: 196 dinucleoside oligophosphates in 36: 83, 85, 103 drug resistance mechanisms 46: 165, 167 drug resistance, mechanisms 27: 18 DUR3 urea transport system 26: 54 energy expenditures at low water potentials 33: 199, 200 erg mutants 46: 165 ethanol as overflow product 36: 153, 154 ethanol formation, in aerobic batch cultures 28: 182 dominant mutations, inhibition of 28: 205 increase of dilution rate, reduction of biomass yield 28: 183– 185 repression/derepression 28: 194 substrate for further growth 28: 182 fructose phosphates, control 28: 207 fructose 1, 6-biphosphatase 28: 192 fructose 2, 6-biphosphatase 28: 205 galactokinase, “glucose repression” 28: 204 gene expression and its interactions with intermediary metabolism and cellular energetics during sporulation 43: 78 – 89 gene expression during sporulation 43: 75 – 115 general amino-acid permease see General amino-acid permease genetics of conidiogenesis 38: 27 genome 46: 167 gluconeogenic enzymes 28: 189, 191 regulatory mechanisms 28: 193 decrease, excess glucose 28: 198 “glucose repression” 28: 204 glucose consumption rate 28: 188 glucose transport system, low water-potential effect 33: 198, 199 glutamic acid permeases 26: 53, 54 glutamate dehydrogenase 26: 9, 34, 35 glutamate synthase 26: l0, 11 (table) glutaminase 26: 11 glutathione-related processes 34: 242, 244, 248– 250, 252– 255, 257– 262, 273, 275, 280, 282, 285, 286– 289 glycerol content correlated to salinity 33: 169, 188– 190, 193 NMR studies 33: 169 regulation 33: 188– 190
222
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
glycerol production 33: 177 high costs, reasons 33: 203 maximum 33: 204 NADH oxidation 33: 175, 204 potassium-ion independence 33: 190 protoplasts 33: 190 regulation 33: 188, 189 glycerol uptake and transport, regulation 33: 189 glycerol utilization 33: 178 Golgi-complex identification 33: 112, 113 growth 26: 6 guanylyltransferase in 36: 91 heat-shock protein induction/thermotolerance 31: 204 heat-shock response 31: 202, 203 haem biosynthesis 46: 270 HDEL and DDEL recognition 33: 108 heat conditioning 33: 196 hsp26 protein 31: 186 hsp60 role in protein folding 31: 214 Hsp70 genes 31: 185 hsp70 protein 31: 193 hsp90 protein 31: 186 hypoxia 46: 270 immobilized, inositol auxotrophs, see Inositol inositol-containing phospholipids 32: 3, 5 see also Inositol; Phosphatidylinositol mutants, see individual mutants intracellular components during glucose metabolism 32: 64 intracellular NADH 32: 64 inhibition by anticapsin 36: 53 inorganic ion transport 33: 184, 202 iron metabolism 38: 221 iron transport in 43: 4 iron uptake in 43: 3 – 13 KAR2 gene 31: 185, 213 L -asparaginase uptake 26: 51 L -glutamine uptake 26: 51 life cycle 30: 33, 36 lysyl-tRNA synthetase 36: 89 maintenance costs 33: 199, 200 at low pH 33: 200 mammalian hormones affecting 34: 105, 106, 123, 124, 127, 128, 133 mammalian hormones with binding sites in 34: 115, 119– 121 manganese transport in 43: 19 manganese uptake in 43: 19 – 22 mechanisms, drug resistance 27: 18 medium design 36: 170 membrane-lipid composition 33: 181 metal ion transport 43: 1 –38
methylamine uptake 26: 8, 51 methylglyoxal 37: 178, 181, 182, 184– 186, 190– 196, 198, 200– 213, 201, 203, 207, 208, 210, 211 MFS drug transporters 46: 167, 175, 176 minimum water potential, Zygosaccharomyces rouxii comparison 33: 203 multidrug resistance gene regulation 46: 177–180 PDR network 46: 177– 179 YAP network 46: 179, 180 multidrug resistance mechanisms 46: 167 mutation gdhA 26: 43 mutation gdhCR 26: 30, 31, 42, 43 mutation pgr 26: 43 mutation(s) constituivity, acting in cis and under control of mating type 26: 30, 31 effect on ammonia-sensitive permease activity 26: 45 (table) nitrogen-catabolite repression 26: 4, 5, 7 metabolism 26: 3 non-osmotic volume 33: 164 NCYC 1195 strain, floc morphology 33: 34, 35 flocculation 33: 28 –30 oligosaccharides on glycoproteins 33: 113, 114 osmoregulation in 33: 169, 188– 190, 193 osmotic hypersensitivity 33: 191, 192 viability decrease 33: 192, 193 osmotic potential determination 33: 151, 152 osmotolerance 33: 188– 190 protein synthesis and 33: 194 trehalose levels and 33: 195 overflow reaction in 36: 152 peptide transport in 36: 42 –45, 48 periplasm in 36: 11 phenylalanyl-tRNA synthetase 36: 89 plasmolysis not observed 33: 163, 164 polarized mode of secretion in 33: 129 polyol content 33: 169 glycerol as major solute 33: 169 regulation 33: 188– 190 polyol uptake 33: 180, 189 proline:metabolism 26: 13 (fig) transport 26: 48– 50 proline-futile cycle 26: 13 (fig) pyrroline 5-carboxylate dehydrogenase 26: 15, 24 resistance to environmental factors, growth cycle and 33: 192
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 respiratory capacity 36: 154 respiration/fermentation at low water potentials 33: 198 Rieske proteins amino acid sequence 38: 68 site-directed mutagenesis 38: 68, 69, 70 SEC14p in 33: 126 comparison with other yeasts 33: 126, 127 secretory pathway function, see Secretory pathway, yeast see also Yeast signal recognition protein (SRP54) 33: 84 sodium/potassium ion changes with salinity 33: 183 specific oxygen uptake rate 36: 154 sphaeroplasts, lipid composition affecting stability 33: 182 sporulation in 30: 23, 24, 33, 36 starvation for nitrogen 26: 7, 8 sterol demethylation 27: 43 – 45 strain 19e130: 25, 33 meiotic tetrad production on heat-shock 30: 37, 39, 42 nuclear division regulation 30: 40, 41 presporulation medium effect on tetrad formation 30: 37, 39, 43 spo12– 11 mutation 30: 33 strains 26: 4, 5 arginase production 26: 4, 5 stress proteins in 31: 188, 189, 203, 204 superoxide dismutase/catalase induction, role 31: 200, 201 transmembrane Fe(III) reductase in 43: 59 transport of 5-fluorocytosine 27: 12 trehalose 33: 195, 196 as compatible solute 33: 176, 195 content 33: 175, 176 uptake systems for nitrogen-containing compounds 26: 37 – 40 vacuole size, decrease with dehydration 33: 162 water loss, on sudden osmotic dehydration 33: 165 Y41 strain 33: 194 zinc transport in 43: 23 zinc uptake in 43: 22 – 28 7SL RNA absent from 33: 84 Saccharomyces meliloti 43: 125, 127, 128 Saccharomyces pastorianus 33: 6 sporulation in 30: 25 Saccharomyces sp. 37: 198 overflow reaction in 36: 152
223
Saccharomyces spp. 34: 86 – 96, 119, 120, 123, 124, 127, 132, 133 exiguus 34: 95, 96 kluyveri 34: 95, 96 mating-type control of sporulation in 34: 86– 96, 172 sex hormones in 34: 86 – 96, 132 Saccharomyces uvarum, guanylyltransferase in 36: 91 Saccharomycopsis lipolytica, glutathione-related processes 34: 260 Saccharopolyspora 42: 53 Saccharopolyspora erythraea 37: 116, 117, 124; 42: 140, 193, 206 Saceharomyces uvarum dilution rate shift, effect of 28: 196 glucose pulse, effect of 28: 194 oxygen limitation, formation of ethanol and acetate 28: 200– 202 respirative glucose uptake, maximum theoretical rate, energy generation 28: 203 Sacrophaga peregrina 37: 145, 147 S-adenosyl methionine (SAM)45: 205, 206 S-adenosyl-homocysteine (SAHC) 42: 196, 197 S-Adenosyl-L -homocysteine, and enniatin synthetase 38: 100, 101 S-Adenosyl-L -methionine, and enniatin synthetase 38: 100 S-Adenosylmethione and ethylene production 35: 281, 282, 287 S-adenosyl-methionine (SAM) 42: 196, 197 S-Adenosylmethionine 33: 325; 32: 27 demethylase 34: 261 synthetase 34: 261 “Safety-valve hypothesis”, antibiotic production 27: 265, 266 SAL plasmid 31: 52 Salicin, sporulation media 28: 40 Salicylate hydroxylase 31: 53, 57 Salinicoccus sp 37: 287, 290, 292 Salinity, see also Osmoregulation; Osmotolerance; Sodium chloride compatible solute increase, amino acids 33: 176 polyols 33: 169– 171 intracellular levels of inorganic ions and 33: 183, 184 osmotic hypersensitivity 33: 191 Salmonella 35: 99, 102, 141, 145, 146, 149– 151, 214; 39: 224; 40: 267; 41: 141, 276, 320; 44: 168, 169; 45: 188, 219, 245, 246 chemosensory pathways 41: 268
224
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Salmonella enterica and cell-surface polysaccharide biosynthesis 35: 215 export 35: 172– 177, 181, 185, 187 genetics 35: 189– 196, 198, 206– 211 process 35: 154, 155, 159– 161, 169, 170 structure and attachment 35: 144, 148, 149 serogroup kentucky 35: 156 serogroup newport 35: 156 serogroup seftenberg 35: 156 serovar anatum 35: 156, 160, 169, 170, 185, 187, 195, 213 serovar boecker 35: 149 serovar dublin 35: 196, 220 serovar madelia 35: 149 serovar minnesota 35: 144 serovar montevideo 35: 162 serovar paratyphi 35: 194, 211, 220 serovar typhi 35: 194, 220 serovar typhimurium 35: 99, 119 structure and attachment 35: 144, 154, 155 export 35: 172, 175, 185, 187 genetics 35: 190, 191, 194, 196, 206, 207, 208, 209 process 35: 161, 162, 169 regulation 35: 212, 213, 220, 227 and cell-surface polysaccharide biosynthesis S. typhimurium see S. enterica serovar typhimurium above Salmonella bareilly, recovery from organic acid effects 32: 98; 39: 3, 4; 40: 235; 46: 36 che and mot genes location 33: 314 chemotaxis 33: 278 flagella, filaments, helix 33: 280, 281 genes 33: 286 number on each cell 33: 281 protein-protein interactions 33: 293, 294 straight-curly in mutants 33: 281 structure 33: 281– 283 flagellar gene mutations 33: 290, 294 clockwise (CW) rotation 33: 290, 294 non-motile 33: 294 suppression 33: 294 flagellin, types 33: 283 plasmolysis 33: 162 swimming, rate 33: 288 Tar protein 33: 301 transducers 33: 299, 300 heat-shock acquisition of thermotolerance 31: 205, 206
protection against hydrogen peroxide 31: 199 stress proteins in 31: 104, 191, 199 b-cyanoalanine synthase activity 27: 83, 84 flagella, see also Flagellum, bacterial arrangement of 32: 113 assembly and cell cycle 32: 151 basal – body components 32: 136 cost of maintenance 32: 117 filaments packing arrangement 32: 124 flagellin structure 32: 129 genes 32: 117 hook and hook-associated proteins 32: 133 motor function, power source 32: 154 swimming and tumbling 32: 116 ser. typhimurium 45: 164– 170 Salmonella enteritidis 37: 35, 255, 262 PT4 44: 234 Salmonella sp. 37: 242; 42: 195 Salmonella spp. assay in food 34: 233 typhimurium, glutathione-related processes 34: 258, 284 chemotaxis 32: 110 flagellar genes 32: 119 infections, in poultry, organic acids to reduce 32: 99, 100 survival in poultry 32: 104 chemotaxis and motility, clinical relevance 33: 279 cyanide sensitivity 27: 99 Salmonella typhi 45: 87, 97 Salmonella typhimurium 43: 46, 49, 146; 39: 71, 206; 40: 235, 236; 41: 238, 293, 298– 300, 303, 306, 310; 42: 42, 196; 44: 231, 241; 45: 57, 58, 132, 184 see also starvation – stress response (SSR) ALA uptake 46: 286 alanine transport 28: 175 amino-acid transport, genetics 28: 148 antibiotic-treated cells, change in antigen distribution 28: 239 effect of human serum 28: 240, 241 apoptosis initiation 46: 37, 38 phoP gene role 46: 37, 38 arginine transport 28: 148 C5 pathway of ALA synthesis 46: 264 calcium 37: 85, 87, 88, 105, 108 dinucleoside oligophosphates in 36: 83, 84 dipeptide binding protein, DppA 36: 31 dipeptide permease in 36: 30, 32
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 effect of ACDQ on 36: 84 energetics of peptide transport in 36: 49 gene expression 37: 234, 238, 240, 241, 243, 248– 250 haem biosynthesis, regulation by haem 46: 292 hemN genes 46: 271 hin gene, flagellar variation 28: 118 histidine permease in 36: 24, 27 histidine transport, cloning 28: 163, 164 DNA sequencing 28: 165 energetics 28: 168 hisJ, hisP, hisQ genes 28: 148 models 28: 166 osmotic shock-sensitive system 28: 164 regulation 28: 167 homology, E. coli Type I 28: 99 N-terminal amino acids 28: 100 lactam antibiotics, changes in morphology 28: 248, 249 lysine transport 28: 148 macrophage genes induced during infection 46: 36 – 38 methylglyoxal 37: 178, 188, 189 microarray expression profiling of host cell response 46: 35, 36 – 38 mutagenesis, recA and recBC 28: 4 error-prone repair deficiency 28: 25 oligopeptide binding protein in 36: 17 – 18, 22, 23 opp operon in 36: 23 ornithine transport 28: 148 osmoadaptation 37: 279, 292, 302, 306, 310, 311 peptide permeases 36: 14 peptide transport in 36: 39 – 41 peptides 37: 162, 164 periplasmic protein in 36: 17 pH stress 37: 230– 233, 263 phase variation 28: 118 porins in 36: 7 proline transport 28: 174, 175 proP, proU 28: 148 putA and putP, mapping 28: 148, 175 regulation of the opp operon 36: 28 resistance 37: 252, 253– 257, 258, 262 tripeptide permease in 36: 33, 34 UV-induced DNA repair 28: 3 phage reactivation 28: 3 Salmonella typhimurium LT2, ADPglucose pyrophosphorylase gene cloning 30: 212 glgC gene sequencing 30: 193– 195
225
glycogen accumulation mutants 30: 192, 210, 217 properties 30: 210 JP23 and JP51 mutants 30: 210, 217 “Salmonella-like” disease 28: 66 Salt concentration, lux gene expression regulated by 34: 47 Salt stress 37: 229, 262; 44: 63 – 68 see also osmoadaptation Salt tolerance 33: 160 see also Osmotolerance SAM demethylase 34: 261 SAM synthetase 34: 261 Sambucus nigra 37: 14 Sapecin 37: 145, 147, 155 Saphenomycins 27: 217, 241 Saprolegnia ferex, sex hormones 34: 80 SAR1 gene 33: 101 SEC12 genetic interaction 33: 101 SAR1p, structure and possible function 33: 101 Sarcina 37: 251 Sarcoma 180 ascites cells 27: 240 %Sarcophaga 37: 148 Sarcoplasmic Ca2+ binding proteins (SCP) 37: 116 Sarcoplasmic reticulum 37: 94 Sarcosine 37: 296 Sarcosine transmethylase 37: 298 Sarcotoxin 37: 137, 145, 147, 163, 165 Saturation constants in nitrifying bacteria, for growth and enzyme activity 30: 143– 146 for oxygen 30: 150– 152 Sc1 gene 34: 162, 169, 173, 175 protein product (pSc1) 34: 169, 177 Sc3 gene 34: 162, 167, 169, 173, 175 protein product (pSc3) 34: 69, 176, 177 Sc4 gene 34: 162, 169, 173, 175 protein product (pSc4), 169, 177 SC4 hydrophobin 38: 5, 6 discovery 38: 3, 4 Sc7 gene 34: 169 Sc14 gene 34: 169 SC3 hydrophobin 38: 5, 6 discovery 38: 3, 4 hydropathy pattern 38: 6, 7 in aerial hypha formation 38: 19– 22 purification 38: 14 rodlet layer formation 38: 4 surface activity experiments 38: 14 – 18 Scaffoldin 37: 55 Scavenging systems 46: 328– 333 see also Superoxide dismutase (SOD) for free radicals 46: 321 for hydrogen peroxide 46: 125, 126 obligate anaerobes 46: 141, 142
226
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Schikophyllum commune 37: 16, 41 Schistosoma mansoni 40: 309 Schizophyllum commune 33: 180; 35: 278; 30: 31, 114; 42: 12, 14, 16 fruit body formation 38: 22 – 26 gene expression 38: 23, 23 – 26 hydrophobin function 38: 26 fruiting in 34: 148, 149, 151– 160, 163, 165– 168, 171– 176, 179– 181, 183– 185 hydrophobin genes 38: 3 hydrophobins from 38: 14 dendrogram 38: 5 hydropathy patterns 38: 6, 7 in rodlet formation 38: 12, 13 hyphal adhesion 38: 30, 31 rodlet layer 38: 4 rodlets 38: 10, 12, 13 sex hormones 34: 104 Schizosaccharomyces 43: 5 S. octosporus 35: 278, 279 S. pombe 35: 16, 17, 56 Schizosaccharomyces pombe 34: 96, 97; 39: 308, 316, 317; 43: 15, 24, 51, 60, 63; 44: 188, 189 ABC drug transporters 46: 168, 172 glutathione-related processes 34: 245, 258, 290 glycerophosphatidylinositol formation 32: 6 glycerol catabolism by oxidation 33: 178, 179 heavy-metal detoxification 34: 290 inhibition, mitochondrial ATPase 27: 51 inositol-1-phosphate synthase absence 32: 6 iron uptake 43: 9, 10 meiosis I without meiosis II in 30: 34, 35 MFS drug transporters 46: 176 mitochondrial role in surface protein formation 33: 20 sex hormones in 34: 96, 97 SEC14 gene 33: 126 SEC14p homologues 33: 126 signal recognition protein (SRP54) 33: 84, 85 two-spored asci 30: 26 7SL RNA in 33: 83 – 85 Schwanniomyces alluvius 33: 20 Sclerotinia laxa 35: 278 Sclerotinia sclerotinorum 37: 12; 41: 54, 64 osmoregulation 33: 173 Sclerotium rolfsii 41: 54, 55 Sclerotium rolgsii 37: 41 Scopulariopsis brevicaulis 35: 278
scy mutants 33: 324 scz mutants 33: 324 S-D-lactoylglutathione methylglyoxallyase 37: 179 S-D-lactoylglutathione, methylglyoxal 37: 179, 181, 187, 188, 208, 212– 216, 214 metabolism 37: 190, 191, 192, 193, 196 S-D -Lactoylglutathione, therapeutic uses and production 34: 287, 288 SDZ 214– 103 38: 107, 108 Sea water (marine environments), luminous bacteria in 34: 49, 50 Sea, water potential and costs of maintenance in 33: 200, 201 adsorption of organics to surfaces 32: 57, 58 SEC genes 33: 75, 76 see also individual genes/mutants BET1 gene interactions 33: 96 Sec mutants 33: 75 see also individual mutations; SEC proteins class A 33: 75 complementation groups 33: 75, 76 evidence of linear pathway 33: 76 stages of pathway affected 33: 75, 76 class B 33: 75 complementation groups 33: 75, 76 early, see sec mutants, class-I/-II class-I and class-II 33: 95, 96 double mutants 33: 95, 96 class-I and class-II, epistatic relationship 33: 95 class-I and class-II, genetic interactions 33: 96 class-I, 95 vesicle formation block 33: 95 class-II 33: 95 transport-vesicle consumption block 33: 95 epistasis analyses 33: 76, 95 isolation 33: 75 oligosaccharide modifications of invertase 33: 114 Sec pathway, cf.Tat protein translocation pathway 47: 189, 190, 192– 195 SEC proteins 33: 75, 76 early 33: 75, 95 see also SEC12p; SEC18p; SEC23p; sec mutants, class I/II for passage through Golgi complex 33: 76 see also SEC7p; SEC14p late-acting 33: 76, 132 see also SEC2p; SEC4p; SEC15p
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 participation at multiple steps in protein transport 33: 98, 100, 112 SEC11 gene, sequence 33: 85, 86 sec11ts mutants 33: 76 as signal-peptidase mutants 33: 85 SEC12 gene, SAR1 genetic interaction 33: 101 sequence 33: 97 sec12 mutant 33: 93 SEC12p, biogenesis, Golgi-complex role 33: 97 glycosyl modification and slow glycosylation 33: 97 localization and possible recycling 33: 97, 98 SEC14 gene 33: 118 clones, Schizosaccharomyces pombe 33: 126 in Kluyveromyces lactis 33: 126 PI-PC-transfer protein gene 33: 120 PIT1 gene identity 33: 119 sequence 33: 118 sec14 –1ts mutants 33: 118, 119 block at late Golgi-complex compartment 33: 119, 130 phospholipid transfer defect 33: 120, 121 SAC1 gene and 33: 130 suppressors 33: 121, 122, 130 SEC14p, antibodies and Golgi-complex structures 33: 119 as cytosolic species 33: 118, 119 as phosphatidylinositolphosphatidylcholine transfer protein 33: 119, 120 evidence 33: 119, 121 mammalian comparison 33: 119, 127 colocalization with KEX2p 33: 119 conservation of structure and function 33: 125– 127 function in vivo 33: 119 evidence 33: 121, 122 models 33: 121 models rejected 33: 123, 125 homologues in other yeast species 33: 125– 127 human retinaldehyde-binding protein (HRBP) homology 33: 119, 127 in Golgi-complex membranes 33: 119, 120 phospholipid mobilization model 33: 123– 125 phospholipid retrieval role disputed 33: 125 PI:PC ratio in Golgi-complex membranes control 33: 120– 125 evidence 33: 121, 122
227
model (in vitro activity as artefact) 33: 121 model (in vitro reflecting in vivo function) 33: 121 model (phospholipid mobilization) 33: 123, 125, 126 protein transport in late Golgi-complex compartment, evidence 33: 118 requirement bypassed by phosphatidyl-choline synthetic defects 33: 122, 123, 126 model to reconcile 33: 123, 125, 126 requirement bypassed by sac1csmutants 33: 130 significance of discovery 33: 120 sec14ts mutants 33: 117, 119 Golgi complex-like cisternae accumulation 33: 117 SEC15 gene 33: 137, 138 SEC15p 33: 137, 138 functions 33: 138 increased, secretory vesicle fusion impaired 33: 138 SEC17p, role 33: 100 SEC18 gene 33: 99 sec18 mutant 32: 15; 33: 93 SEC18p, as peripheral membrane protein 33: 99 as yeast N-ethylmaleimide-sensitive factor (NSF) 33: 99, 100 SEC17p role in delivery of 33: 100 sec19 mutants 33: 76 SEC2 gene 33: 138 SEC23 gene, sequence 33: 98 sec23 mutant 33: 93 SEC23p 33: 93, 94 cytoplasmic location 33: 98 function, transport-vesicle formation stimulation 33: 99 required for cell growth 33: 98 unglycosylated 33: 98 sec23ts mutant 33: 93 SEC2p 33: 138 coiled-coil domain in function of 33: 139 localization 33: 139 structure and cytoskeletal protein homology 33: 138 truncation and thermosensitivity 33: 139 sec2ts mutants 33: 139 SEC4 gene 33: 132 duplication, suppression of sec mutants 33: 137 SEC2 and SEC15 gene interactions 33: 137– 139 sequence 33: 133 sec4 – 8ts mutant 33: 133, 134
228
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
sec4-Ile133 allele 33: 136 SEC4p 33: 132, 133 action upstream of SEC15p action point 33: 138 activation and GTP binding 33: 135 as GTP-binding protein 33: 133 function, auxiliary factors in 33: 137 cycling model 33: 135, 136 evidence for cycling model 33: 136 mammalian system similarity 33: 136 membrane-binding requirement, evidence 33: 134 interaction with other late sec mutants 33: 137 kinetics of association with plasma membrane 33: 134 localization 33: 133 post-translational modification 33: 134 purification and GTP-GDP affinities 33: 137 recycling from membrane to secretory vesicles 33: 133, 134 release after secretory-vesicle fusion to membrane 33: 135 sequence and structure 33: 133, 134 C-terminus 33: 134 SEC4pIIe133 33: 136 SEC53 complementation group 33: 75 SEC53 gene 33: 75 SEC59 complementation group 33: 75 SEC59 gene 33: 75 SEC61 gene 33: 80 sec61 mutants 33: 82 in vitro translocation system 33: 87, 88 SEC62 gene 33: 80 nucleotide sequence 33: 81, 88 sec62 mutants 33: 80 – 82 in vitro analysis 33: 88 SEC62p 33: 81 role in protein translocation to endoplasmic reticulum 33: 81 SEC63 gene 33: 80, 81, 88 sec63 mutants 33: 81, 88 SEC63p, membrane-spanning regions 33: 81 role in endoplasmic reticulum and nuclear transport 33: 82 Sec6ts mutant 33: 133 sac1ts mutants interactions 33: 130 SEC7 gene 33: 117 SEC7p 33: 117 antisera to 33: 117 functions 33: 117 sec7ts mutant 33: 115 sec9ts mutant, sac1 ts mutants interactions 33: 130
secA gene product (SecAp) ATPase 33: 79 in E. coli 33: 79 SecB 44: 119 Second messengers 32: 3, 11 Secondary metabolites 45: 243– 247 Secretory granules 33: 74 Secretory leukocyte protease inhibitor (SLPI) 46: 40 Secretory pathway eukaryotic 33: 74 model, E. coli K88 fimbria 28: 124 yeast 33: 43, 75 – 144 components involved in multiple steps 33: 98, 100, 112 elucidation 33: 75 –77 see also sec mutants order of organelle involvement, evidence 33: 76, 77 sec mutants 33: 75 –77 Golgi complex as secretory organelle, see Golgi complex GTP-binding protein role, see GTP-binding proteins in flocculation control 33: 53, 54 late stages, actin involvement 33: 129 mammalian systems used in resolving 33: 87 protein transport to-from endoplasmic reticulum, see Protein transport regulatory role of Golgi complex, see Golgi complex yeast system advantages-significance 33: 74, 91, 139, 140 Secretory vesicles, see Golgi complex-derived secretory vesicles SecYp 33: 79 Sediment particles 32: 77 sel genes for UGA-decoding tRNA35: 90 –92, 93 Selenide 35: 100, 102, 103 Selenite and selenate 35: 99, 100, 102 Selenium metabolism in microorganisms 35: 71 – 109 see also selenoproteins biosynthesis see biosynthesis and selenium metabolism geochemistry 35: 100, 102, 103 selenium-containing enzymes see enzymes, selenium-containing selenium-containing tRNAs 35: 88 – 89 transport of compounds 35: 98, 99 Selenium, microbial toxicity 38: 182, 229 Selenium-containing organic compounds in anti-oxidant defense 34: 278, 279
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Selenium-dependent glutathione peroxidase 34: 262, 270 Selenocysteine 35: 72, 97, 98 codons discrimation from stop codons 35: 93, 94 incorporation, evolution of 35: 94, 95 Selenocysteyl-tRNA 35: 73, 91 from seryl-tRNA 35: 92, 93 unique elongation factor for 35: 93 Selenomethionine 35: 97, 98, 102 Selenomonas ruminantium 35: 99 superoxide dismutase presence 28: 7 Selenoproteins, biosynthesis 35: 89 – 95 see also selenocysteine; selenocysteyltRNA; sulphur from eukaryotes 35: 73, 89 from prokaryotes see prokaryotic selenoproteins gene for UGA-decoding tRNA: selC, 35: 90 – 92 Self-diploidization 30: 36 Self-flocculation 33: 20 see also Flocculation Self-organizing maps (SOMs), microarray data 46: 13 “Self-sporulation” 30: 31 self-synchronization, respirative glucose use 28: 193 Seminalplasmin 37: 145, 151, 166 Sendomycins 27: 240 Sensor histidine kinase, TNC 47: 67 Sensor, pH stress 37: 230, 234 Sensor/EIC system 44: 240 Septal dissolution, fruiting and 34: 158 Septum formation inhibition of 36: 199– 201 LED control over 36: 201–207 Serine 26: 20, 32; 37: 297; 42: 140, 141, 191 cyanide degradation studies 27: 101 hydroxymethyltransferase, formation of glucine 27: 82, 87 Serine acetyltransferase 34: 261 Serine dehydratase 42: 140 Serine protease, sporulation specificity 28: 38 Serine protein kinase 37: 107– 109 Serine residue of acyltransferase as acylation site (position 70) 34: 19, 20 of ice-nucleation proteins 34: 228 of luciferase a subunit (position 227) 34: 17 Serine transducer (Tsr), see Tsr protein Serine, acetylation 34: 260, 261 Serinemethyl ester 37: 197
229
Serpula lacrymans 43: 6 l ; 41: 61 water flow in 34: 151 Serratia 45: 211, 244, 245 Serratia liquefaciens 35: 278; 41: 275; 45: 249 Serratia marcescens 35: 146, 147, 278 antibiotic treated, effect of serum 28: 240, 241 motility 33: 288 susceptibility to biocides 46: 217 Serum, bactericidal effects 28: 239– 241 Seryl-tRNA, selenocysteyl-tRNA from 35: 91, 92, 93 Sewage 39: 367 Sewage treatment systems 30: 143 ammonia concentrations 30: 127, 140 nitrification in 30: 127, 140 denitrification coupling 30: 156 inhibitors 30: 140, 169 Sex hormones 34: 69 – 145 fungal (endogenous hormones; pheromones) 34: 70 – 104, 132 mammalian, fungi affected by 34: 105– 133 binding characteristics 34: 112– 123 biochemical responses of 34: 123– 128 in vitro growth and morphogenesis of 34: 105– 112 Sexual cycle of Physarum polycephalum 35: 3, 5, 6 Sexual factors, P. brassicae 34: 103, 104 Sexual morphogens, fungal hormones as 34: 103, 104 Sexual spores, fruit bodies for dissemination of, see Fruit bodies; Fruiting SF, P. brassicae 34: 103, 104 S-Formylglutathione hydrolase 34: 289 sfrA gene product 29: 71 sfrB gene product 29: 71 S-glucan, and rodlet location 38: 10 Shear forces, floc size and agitation effect 33: 32, 33 Shear modulus 32: 211 Shewanella 45: 93, 95 Shewanella hanedai, bioluminescence 34: 2, 50, 51 Shewanella putrefaciens 45: 57, 60, 87, 95, 96 Shigella 35: 141; 41: 276; 44: 168, 169 Shigella boydii 35: 192, 197, 210, 211 Shigella dysenteriae 35: 190, 192, 193, 197; 37: 252
230
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Shigella flexneri 35: 192, 197; 37: 257– 259; 39: 224; 40: 58; 43: 204 Shigella sonnei 35: 192, 197 “Shigella-like” strains, E. coli 28: 66 Shikimic acid 27: 227 defective regulation hypothesis 27: 263 DAHP synthetase 27: 263, 264 phenazine biosynthesis 27: 242– 244 structure 27: 245 Shine– Dalgarno sequence 29: 170; 39: 100; 37: 206 Shmoos, formation/development and behaviour, regulation 34: 89 – 93 Shoot factor, in host control of hydrogenase activity 29: 11, 12 Short-chain fatty acids 42: 29 see individual acids; Organic acids Shuttle mechanisms 43: 121, 122 Sialylgalactosides, see also Galactose K99 and S fimbriae 28: 91 receptor Type I (S, P) 28: 71 Sialylgangliosides, CFAI induced haemagglutination 28: 87 Side-chains and cell-surface polysaccharide biosynthesis 35: 168– 171 Siderophores 27: 219; 31: 105, 106, 113; 38: 181, 217, 218; 46: 136, 293 common handling of unrelated 43: 52, 53 in iron storage 43: 53, 54 iron-chelation inhibition, b-lactams 28: 236 iron-free 43: 51 reduction 43: 66, 67 Siderophore production by rhizobia 45: 117– 127 effect of uncharacterized mutants 45: 126, 127 Siderophore synthesis and uptake 43: 46 Siderophore synthesis regulation 43: 49 – 51 Siderophore uptake and synthesis 45: 118, 119 Siderophore uptake in fungi 43: 51, 52 Siderophore-mediated iron uptake 43: 45 sigE gene 46: 81, 82 sigH gene 46: 89 sigM gene 46: 79 sB expression and function 44: 71, 72 in natural ecosystems 44: 71, 72 in related bacteria 44: 73 – 78 prospects 44: 78 – 80
regulon, within the adaptive network 44: 52 – 56 strategies to uncover stress genes 44: 50 – 52 Sigma factor 44: 125– 128; 31: 27, 31, 33; 46: 24, 47 see also individual bacteria and s factors s 54 family 46: 49 70 s family 46: 49 – 52 E. coli 46: 49, 52 alternative 46: 24, 47, 49 – 52 discovery 46: 49 evolutionary clusters 46: 52 RpoS, in E. coli O157:H7 adaptation to acid 46: 19 Bacillus subtilis see Bacillus subtilis cyanobacterial 46: 51 s E 46: 26, 52, 98 E. coli see Escherichia coli sigma factors Mycobacterium tuberculosis 46: 88, 89 Pseudomonas aeruginosa 91, 98 Streptomyces coelicolor 46: 80, 81 – 83 E. coli see Escherichia coli sigma factors families 46: 49 – 56 group 1 (primary) 46: 50 group 2 (nonessential proteins) 46: 50, 51 group 3 see Sigma factors, alternative group 4 (ECF) see Extracytoplasmic function (ECF) sigma factors group 5 (TxeR) family 46: 50, 54, 56 M. tuberculosis 46: 88 – 91 nomenclature 46: 50 Pseudomonas aeruginosa 46: 52, 91, 96 regulatory cascades in M. tuberculosis 46: 17, 24, 26, 27 role 46: 49 RpoS (E. coli s S) 46: 50, 51, 229, 326– 327 S. coelicolor see Streptomyces coelicolor secondary see Sigma factors, alternative stationary phase (RpoS) 46: 50, 51, 229, 326, 327 switching mechanism 46: 49 Sigma (s) factors 30: 230, 237 consensus sequences of promotors 30: 222, 230 flagellar gene regulation 33: 286, 287, 314 FlhC and FlhD as 32: 121 LuxR gene as member of superfamily of 34: 40
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 monoclonal antibodies 30: 230 s54 30: 11, 222, 230 Signal hypothesis, in protein transport 33: 78 Signal molecule specificity and blockade 45: 211– 214 Signal peptidases leader peptidase 28: 227 prolipoproteins 28: 227 Signal peptide, processing 33: 79, 85, 86 S-layer protein 33: 248, 249 Signal recognition particle (SRP) 33: 78, 83; 44: 119 activities in yeast 33: 83, 84 canine 33: 83 mechanism of action 33: 78 polypeptide subunit SRP54, GTP-binding domains 33: 84 homologies 33: 84 yeast-mammalian comparison 33: 84, 85 7SL RNA association 33: 85 polypeptide subunits 33: 78, 84 cDNA clones and sequencing 33: 84 Escherichia coli FFH protein homology 33: 84 receptor 33: 78 7SL RNA component, see RNA Signal sequences 33: 78 removal 33: 79, 85, 86 Signal transducers, in completely sequenced bacterial and archaeal genomes 45: 179, 180 Signal transduction 37: 84, 93 in Sacch. cerevisiae following interactions with a/a mating factors or mammalian hormones 34: 132, 133 consequences of alteration in 44: 158 ferric citrate uptake system 46: 63 in C. albicans 30: 61 overview 45: 162– 164 see Chemotactic signal transduction pathways, phosphatidylinositol role 32: 3, 11 – 13 Signaling domain 45: 169, 170 Signalling systems 33: 317 see also Chemotactic signal transducers; Intracellular signalling Signal-peptidase, Escherichia coil 33: 79, 85 mammalian 33: 79, 85 mutants, decreased protein transit rate 33: 85 subunit homology between species 33: 86 Signal-peptide peptidase 46: 77
231
sigR operon 46: 83, 84 sigW gene 46: 71 sigX gene 46: 65 mutants 46: 65 Bacillus subtilis s w expression 46: 73 negative regulators 46: 68 Silage, organic acid added to 32: 99 Silages 39: 220– 222 Silkworms, apomictic reproduction in 30: 46 Sillucin 37: 145, 151 Silver, microbial toxicity 38: 229, 230 sin gene and transition-state regulators and sporulation in Bacillus subtilis 35: 128, 129 Sinefungin, as methylase inhibitor 38: 100, 101 Single-cell protein (SCP) 27: 191; 39: 365 “Single division meiosis” 30: 29 Single-domain globins 47: 258– 268 cf.flavohaemoglobins 47: 277 Sinorhizobium 43: 119 ; 44: 112; 45: 134 Sinorhizobium meliloti 43: 132, 135– 137, 139, 140, 141, 147– 149; 41: 235, 247, 260; 45: 115, 119, 123, 124, 125, 128, 129, 130, 131, 134, 137, 144, 175, 181 Sirenin 34: 71 – 74, 102 structure 34: 73 Sirobasidium magnum, sex hormones in 34: 99 Sirohaem 46: 261 sulfite reductase (SR) 39: 254 Sirohaem-dependent nitrate reduction 45: 90, 91 Site-specific recombination 45: 17 – 41 Skin, barrier to C. albicans infections 30: 68 Skin-borne micro-organisms 28: 235 S-layer 33: 213– 275 (glyco)proteins 33: 237, 239, 242 biosynthesis 33: 248– 250 cysteine residues 33: 237, 247 eubacteria 33: 239 genes 33: 244– 248 glycan structure 33: 243, 245, 257 glycans 33: 240– 243 glycosylation sites 33: 245 hapten binding 33: 259 linkages 33: 242, 243 signal peptide 33: 248, 249 structures 33: 240– 243 alternative terminology 33: 214 application potential 33: 257– 260 as carriers of artificial antigens 33: 259, 260
232
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
as isoporous ultrafiltration membranes 33: 257, 258 as model for extracellular protein production 33: 260 as support for Langmuir-Blodgett films 33: 259 as supports for macromolecule attachment 33: 258, 259 in vaccine development 33: 259, 260 as only cell-wall component 33: 228, 235, 253, 260 bacteria with, and characterization of 33: 215– 225 biological significance 33: 225, 260– 261 biosynthesis 33: 248– 250 lipid carriers in 33: 249, 250 pathways 33: 250 signal peptide 33: 248, 249 3-0-methylglucose 33: 250 charges on surface 33: 255, 256 chemical analyses 33: 237– 244, 261 see also S-layer, (glyco)proteins amino acids 33: 237, 238 glycosylation 33: 239– 243 molecular weights of subunits 33: 237 punctate-perforate layers 33: 239 purification techniques 33: 239 SDS-PAGE 33: 237, 245, 247 secondary structure 33: 238, 239 crystalline outer-membrane proteins differentiation 33: 237 detachment and disintegration methods 33: 231 discovery 33: 214, 260 double 33: 234 evolution and 33: 260, 261 extension patterns 33: 235 fission of cells and 33: 236 functional aspects 33: 225, 225, 226, 251– 257, 261 adhesive properties 33: 261 as molecular sieves, 254, 255 bacteria-bacteriophage interactions 33: 253 charged groups on, relevance 33: 255, 256 glycosylation relevance 33: 256, 257 in predation 33: 253 pathogenicity 33: 251– 253 scavenging of nutrients 33: 256, 261 shape-maintaining function 33: 253, 254 genes 33: 244 –248, 260 little homology between strains 33: 248, 261 nucleotide sequences 33: 238, 244– 248
genetic studies 33: 230, 244– 248 glycosylation 33: 239– 243 loss with cultivation 33: 257 relevance 33: 256, 257 lattice subunit bonding 33: 231, 232 location 33: 227, 228, 230 loss with cultivation 33: 214 monomer number 33: 233 morphogenesis and self-assembly 33: 231– 236 double layers 33: 232 dynamics 33: 233 in archaebacteria 33: 235, 236 incorporation sites of new subunits 33: 235 multilamellar planar sheets 33: 232, 233 phases 33: 232 sites of lattice assembly 33: 233 subunit synthesis rate 33: 233 orientation and order 33: 235 overproducers 33: 260 peptidoglycan layer-associated 33: 228, 234 permeability studies 33: 255, 256 properties 33: 214 protomers number in each cell 33: 249 secretion, relevance 33: 260 structure 33: 227– 236, 254 common lattice types 33: 228, 229 diversity between strains of species 33: 229, 230, 261 hexagonal symmetry 33: 228, 229, 254 of exposed surface 33: 229 plasma membrane and outer-membrane associations 33: 230, 231 pore morphology, 229, 254 pore size 33: 254, 255 regularity of 33: 214 ultrastructure 33: 228– 231 taxonomical significance 33: 214, 230 tubular sheath external to 33: 227, 228 ultrafiltration membranes 33: 257, 258 modification 33: 258 S-layer proteins 37: 48, 49, 122 S-layer, calcium 37: 85, 86 S-layer-like modules 37: 19, 21, 55 S-layer-like segment 37: 35, 36 –37 Slime layers, bacterial 32: 63 Slime moulds, apomictic and sexual reproductive modes alternation 30: 45 apomixis in 30: 31, 35, 36 ionic currents in 30: 93, 104, 105 migration and differentiation 30: 105 sex hormones in 34: 101
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Sludge communities 46: 237 Small heat shock proteins 44: 122 Small multidrug resistance (SMR) family 40: 130 SMART 45: 185 SmcR (luxR) gene, TNC 47: 95 smt mutants, hyper-resistant 44: 202, 203 SmtA 44: 190, 205 amplification of 44: 202, 203 expression 44: 192– 202 expression in response to zinc 44: 192, 193 in comparison with eukaryotic zinc metallothionein 44: 208, 209 in pseudomonads 44: 205, 206 in zinc storage and intracellular distribution 44: 206, 207 structure 44: 192 zinc acquisition and release by 44: 208 SmtB 44: 192– 202, 205 binding to smt operatorpromoter 44: 193, 194 mechanism of action 44: 199– 202 structure 44: 195– 197 zinc-responsive repressor of smtA 44: 193 smtB, deletion 44: 203 smtB-DNA-binding site 44: 194, 195 Smugglins 36: 51 natural 36: 52 – 55 Snake toxins, cysteine residues 38: 9 Snake venom L-amino acid oxidase, amino acids, formation of cyanide 27: 191 SNAP (soluble NSF attachment proteins) 33: 89 in vitro assay 33: 100 responsiveness to SEC18p 33: 100 a-SNAP, SEC17p as 33: 100 sn-Glycero-1-phosphate, carrier 29: 250, 276 in lipoglycan, synthesis from phosphatidylglycerol 29: 258 in lipoteichoic acid, see Lipoteichoic acid linkage of units in lipoteichoic acid synthesis 29: 253 linkage to glycolipid in lipoteichoic acid synthesis 29: 253 structure, configuration 29: 235, 240, 243 Snow mould disease [winter crown rot] cyanide linked disease 27: 86 detoxification, industrial wastes 27: 97 physiology 27: 88 –90 Snow-making with ice-nucleating bacteria 34: 231, 232
233
SNQ2 gene 46: 172, 184 Social behaviour, TNC 47: 103– 106 Socioeconomic conditions 40: 141 SOD see Superoxide dismutase (SOD) Sodium 37: 92, 94, 100, 109, 234, 235 see also osmoadaptation Sodium chloride, see also Osmoregulation; Salinity bridges, in thermophilic enzymes 29: 221 effect on alanyl residues in teichoic acid 29: 270, 271 external levels, intracellular polyol levels correlating 33: 169, 170, 173 glucose-transport system affected by 33: 198, 199 growth inhibition 33: 160 halophile requirements 29: 167, 217 increased costs of maintenance 33: 199, 200 ecological implications 33: 200, 201 osmotic hypersensitivity 33: 191 RuBisCO inhibition 29: 154 Sodium chloride, lux gene expression regulated by 34: 47 Sodium dodecyl sulphate (SDS) 29: 83, 93; 39: 256; 45: 223 carboxysome dissociation 29: 125 Sodium dodecyl sulphate polyacrylamidegel electrophoresis 28: 152, 172; 29: 125, 214, 219; 33: 237, 245, 247; 39: 47 Sodium hydroxide 39: 135 Sodium ion-hydrogen ion (NA+/H+) antiporter 33: 184 Sodium ions gradients 28: 146 regulation proline transport 28: 171, 175 accumulation in vacuoles 33: 185 flocculation induced by 33: 15 in vacuole 33: 185 intracellular level changes, external salinity increases 33: 183, 202 non-ionic solute in medium 33: 183, 184 transport 33: 184, 185, 202 Sodium pyrophosphate 29: 67 Sodium pyruvate, fermentative metabolism 26: 172 (fig) Sodium, requirement by methanogens 31: 238 Sodium, transport 38: 181 Sodium-motive force 33: 280 Soil ecology 39: 227, 228
234
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Solid– liquid interface, features of 32: 54 see also Bacteria, attached to solid surfaces; Surfaces hydrodynamic conditions 32: 54, 55, 65 interactions 32: 55, 65, 66 physicochemistry 32: 55 – 57, 66 Solid-phase cytometry 41: 109 Solute transport 37: 310–312 passive/facilitated 26: 132, 133 Solute uptake regulation 39: 64 – 71 Solutes, accumulation, in vacuoles 33: 185 adsorption to surfaces 32: 56, 57 compartmentation in fungi 33: 185, 186 compatible, see under Osmoregulation direct-indirect effects on water availability 33: 146, 148 intracellular concentration changes, see Osmoregulation ionic, effects on intracellular potassium-sodium ions 33: 183 mechanism to stabilize proteins 33: 168 minimum water potential affected by 33: 160 molality, water potential relation 33: 150– 152 non-ionic, effects on intracellular potassium-sodium ions 33: 183, 184 optimum water potential independent of 33: 158, 159 sodium symporter (SSS) family 40: 128, 128 stress, nature of and polyol accumulation 33: 174 Solvent conversion of carbohydrate by clostridia 39: 31 –130 Solvent formation activation 39: 82 – 93 clostridia 39: 75 – 106 genetics 39: 93 – 101 molecular biology 39: 93 – 101 Solvent-forming clostridia, transport mechanisms in 39: 60 Solvents, production 39: 33, 102– 104, 219, 220 Somatostatin as a coligand with pancreatic oestradiol-binding protein 34: 120 Sophorose 37: 62 Sorangium spp., 27: 216, 241, 242 Sorbic acid, proton gradient, effect on 32: 96 Sorbitol 37: 199, 306, 307 effect on lipoteichoic acid content of cells 29: 268, 269 in cell wall digestion 27: 285 Sorghum, leaf spot disease 27: 96 –98
SOS response 32: 98 gene induction 28: 5 Southern blotting 38: 212 SoxR 44: 17 protein 46: 325, 332 activation by nitric oxide 46: 326 soxS transcription 46: 326 superoxide detection 46: 131 response 46: 131, 132, 134 activation 46: 132 SoxR/SoxS system 46: 325, 326, 328 SoxS protein 46: 326 Soybean (Glycine max), hydrogenase activity control 29: 10 nickel effect on urease and hydrogenase 29: 20 oxygen as limiting factor in 29: 26 R. japonicum symbiosis, Hup+ trait effect 29: 5 Spacer motif, in peptide synthetases 38: 92 spaP gene 33: 247 specific growth rates, maximum 28: 185 Spectinomycin 28: 218 mannose-sensitive adhesins 28: 220 Spectrometry atomic fluorescence 38: 194 inductively coupled plasma-MS 38: 194 Spectrophotometry, in haem protein analysis 38: 218, 219 Spectroscopy atomic absorption 38: 193 atomic emission 38: 193 energy-dispersive X-ray, for TEM detection 38: 203, 204 for metal – microbe interactions 38: 205– 209 electron spin resonance 38: 208 electronic 38: 205, 206 metal binding sites 38: 205 Mo¨ssbauer 38: 209 nuclear magnetic resonance 38: 208, 209 vibrational 38: 206– 208 of iron– sulphur clusters in dioxygenases 38: 63, 65 – 67, 66 Spermidine glutathione metabolism and 34: 244, 245 Sphaeromonas sp. 37: 52 Sphaeroplasts 32: 175 flagellar assembly failure 32: 151 inositol-deficient 32: 14 lipid composition affecting stability 33: 182 potassium-ion channels 33: 185 Sphaerotilus natans 40: 283
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Sphingolipids inositol-containing 32: 3, 13 S. commune, as fruiting-inducing substances 34: 181 Sphingomonas natatoria 46: 214 SphX gene, phosphorus acquisition 47: 35 Spinach ferredoxin 38: 61 Spinach leaf ADPglucose pyrophosphorylase 30: 196, 198, 199 activator 30: 198, 199 subunits 30: 199 Spinach cyanide production 27: 91, 93 RuBisCO, see Ribulose 1,5-bisphosphate carboxylase oxygenase Spirillum 41: 237 Spirillum voluntans meliloti 41: 237 Spirillum volutans, motility 33: 291, 316 Spirochaeta 45: 176 Spirochaeta aurentia 41: 293 chemotaxis 33: 316 flagellin transport 32: 143 Spirochaeta spp., flagella 32: 114 Spirochaetes, crystalline surface layers 33: 215 motility 33: 280, 291 Spirulina platensis 29: 146, 220; 37: 99 Spirulina subsala 37: 109 Spirulina subsalsa 37: 313 SPO 12 and SPO 13 products, wild-type, prevention of meiosis II until meiosis I complete 30: 38, 39 Spo0A, B. subtilis s W affecting 46: 77 – 79 SPO11 gene 32: 37 spo12– 11 and spo13– 11 mutants 30: 33, 34, 36 apomictic dyad formation in 30: 34, 35, 40 CDC genes defective in 30: 35, 39, 40 culture conditions restoring meiosis 30: 37 – 39, 43 facultative apomictic 30: 36, 37, 41, 42 in origin of apomixis 30: 36 meiosis II before meiosis I complete 30: 34, 35, 39 nucleomitochondrial interactions 30: 41, 42 possible nature of mutations 30: 39, 40, 42 sporulation in presence of erythromycin 30: 41 sporulation under catabolite repression 30: 37, 38, 41 spo13, cloning 30: 40, 47 SPO13, epistatic to SPO12 30: 34
235
Spoilage organisms 37: 274 Sponge cells, cellular interaction in 26: 115, 116 Spongiporus sinuosus 35: 278 spoO genes and sporulation in Bacillus subtilis 35: 112– 120 see also phosphorelay; transition-state regulators and initiation of sporulation 35: 130, 131 functions of 35: 115, 116 sensor kinases isolated 35: 116– 118 Spores, sexual, fruit bodies for dissemination of, see Fruit bodies; Fruiting Sporichthya 42: 51 Sporogenesis, glycogen-like polymer accumulation 30: 185, 187, 188 Sporosarcina halophila 37: 290, 291, 293 Sporulation 37: 247, 248 acetate consumed during 43: 100 and gluconeogenesis 43: 82, 83 and IME1 expression 43: 85, 89 carbon and energy coupling during 43: 98 – 100 cellular differentiation during 43: 89 – 106 dynamics of 43: 89, 90 dynamics of pH and its effects 43: 96 effects of respiratory inhibitors 43: 93 – 96 efficiency 43: 87 energetics during 43: 78 – 100 genes involved in 43: 80, 81 in Bacillus subtilis 35: 111– 133 alternatives to 35: 129, 130 control of 35: 120–126 initiation of 35: 130, 131 phosphorelay 35: 113– 120 transition-state regulators 35: 126– 129 influence of metabolic, genetic factors and their interrelationships 43: 88 initiation control 43: 78– 89 interrelationships of events 43: 107 mating type and nutritional control 43: 83 – 85 Sporulation media, Bacillus spp. 28: 40 – 43 Sporulation model 43: 103 dynamics of cellular populations as simulated by 43: 105 metabolic variables simulated by 43: 104
236
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Sporulation, see also Apomixis; Ascus; Meiosis apomixis less demanding than meiotic 30: 41 – 43 Blastocladiella, ionic currents and 30: 94 catabolite repression 30: 37, 41, 47 Clostridium spp. media 28: 28 –30, 39 –43 morphological events 28: 30 – 32 physiological events 28: 32 – 38 regulation 28: 46 – 50 summary 28: 50 –52 technical difficulties 28: 27, 28 triggering 28: 39 – 46 environmental changes to apomictic phenotype 30: 37 – 39, 39, 43 glycogen accumulation 30: 185, 187, 188 in fungi 30: 30, 31 in S. cerevisiae 30: 23, 33 influence of vegetative cell cycle stage (age) 30: 24, 40, 43 lipoteichoic acid synthesis and 29: 270 nucleomitochondrial interactions 30: 38, 41, 42 spore number/ascus, factors influencing 30: 23, 24, 37 – 39, 43 triacylglycerol increased synthesis 32: 21 yeast 30: 23, 24, 33, 36 Sporulation-specific heat-shock proteins 30: 42 spoT gene 30: 232 SppA family 46: 77 Squalene accumulation in Candida, naftifine effect 27: 56 Squalene biosythesis 35: 257, 264– 267, 269 Squid, light organs of 34: 38, 39, 50 S-ring, flagellum 33: 284 SSA genes 33: 82, 83 SSA proteins 33: 82, 88 SSA, 2p 33: 88 ssa1 mutant 33: 82 SSa1, Ssa2 31: 215 SSA1p 33: 88 depletion, precursor accumulation 33: 83 ssa2 mutant 33: 82 SSC1 gene 33: 104 secretion of proteins engineered for expression in yeast 33: 109 Ssc1p 31: 185, 193, 215 ST genes 29: 77, 78 Stable expression and DNAtransformation and Physarum polycephalum 35: 61
Stachyose 37: 161 Standard release concentrations [SRC] 27: 285 see also Potassium ions, leakage 299 stationary phase: +/ 2 glucanase 27: Staphylococcal enterotoxin 37: 245 Staphylococci, coagulase-negative 32: 75 Staphylococcus 35: 262; 44: 168; 45: 137 Staphylococcus aureus 35: 278; 37: 139, 182, 233, 245, 302, 304, 312, 313; 39: 61; 40: 92, 108; 43: 204; 44: 73 – 75, 216; 45: 97, 203, 205, 219 52A5 strain, teichoic acid deficiency 29: 295 acetic/lactic acids as antimicrobial agents 32: 94 agressin 28: 233 alanine ester turnover and transfer to teichoic acids 29: 263, 264 antibiotics, effects, chloramphenicol 28: 219 b-lactamases 28: 232, 233 clindamycin 28: 233 cloxacillin exposure, large cells 28: 215 erythromycin 28: 219 methicillin, penicillin-binding proteins 28: 216 arsenic resistance 38: 226 catalase 28: 10 coagulase 28: 233 composition of lipid amphiphiles in log growth 29: 258, 259 dlt mutants 46: 70 enterotoxins 28: 233 exfoliative toxin 28: 233 extracellular lipoteichoic acid, penicillin effect 29: 273 extracellular proteins (toxins) 28: 233 fibronectin association 28: 225 glycerophosphoglycolipids, glycolipids and lipoteichoic acids in 29: 235, 236 a-haemolysin production 28: 232 hydrolysation of TA-243, 55 hypersensitivity, penicillin-induced 28: 250 large celled endocarditis, rabbits, cloxacillin-treated 28: 249 lateral-wall elongation and septum formation 36: 222, 223 lead resistance 38: 228 lipase production 28: 232 lipoteichoic acid 29: 234– 236 acting as carrier 29: 277
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 alanyl content, glucose effect on 29: 271 alanyl content, salt effect on 29: 270, 271 alanyl residues in 29: 242 anchoring, sublethal heating effect 29: 273 content, effect of growth stage 29: 267 estimates of content 29: 247 location 29: 274, 275 mesosomal vesicles associated 29: 275 metabolic fate 29: 272 metabolism 29: 247, 248 modifications and anti-autolytic activity 29: 287, 290 poly(glycerophosphate) chain 29: 277 re-esterification 29: 265, 266 substituted, inactive as carriers 29: 280– 282 synthesis (pulse-chase experiments), 252, 253 synthesis, energy deprivation effect 29: 269, 270 synthesis, membrane lipid metabolism 29: 259, 260 unsubstituted 29: 242 multidrug efflux pumps 46: 229 mutation to drug resistance 28: 245 PBPs in 36: 225 penicillinase 28: 233 penicillin-resistant, exposure to cyclacillin, nafcillin and vancomycin phagocytosis 28: 241 peptide exodus in 36: 12 peptide transport in 36: 38 recovery from organic acid effects 32: 98 ribitol teichoic acid linkage unit 29: 278, 279 susceptibility to biocides affected by biofilm formation 46: 217 teichoic acid 29: 234 assembly on LTC in vivo 29: 283 preformed, transfer of 29: 280 teichoic acid-synthesizing enzymes 29: 277 toluene-treated, re-alanylation of teichoic acid 29: 265 total cell protein synthesis 28: 233 Staphylococcus carnosus 35: 264; 45: 55, 57, 99 Staphylococcus epidermidis 37: 144, 151, 290 antibiotic susceptibility 46: 221
237
biofilm, antibiotic susceptibility 46: 221, 226, 227 exopolysaccharides 46: 219 organic acid effect on macromolecule synthesis 32: 97 Staphylococcus hyicus 36: 225 Staphylococcus pneumoniae, see also Forssman antigen Staphylococcus sp. 37: 251, 287, 292 Staphylococcus ureae 37: 197 Staphylococcus xylosus, ribitol phosphate polymerase requirements 29: 278 Star mitosis in Physarum polycephalum 35: 29, 30 Starch 37: 56; 39: 52 – 75, 360, 366 enzymes associated with 39: 52 hydrolysis regulation 39: 52 –58 soluble substrates 39: 59 – 75 Starvation 37: 249, 309 glucose, phosphoinositide metabolism 32: 16, 17 proteins, induction 31: 199, 200 surface adhesion as response to 32: 69 survival cryptic growth 47: 71, 72 experimental 47: 70 – 73 mRNA 47: 71, 72 physiological features 47: 70, 71 stress avoidance 47: 69 – 73 stringent response 47: 71 Starvation/stress specific versus general stress proteins 44: 61 Starvation – stress response (SSR) 40: 233– 279 acid tolerance 40: 269, 270 and long-term starvation survival 40: 263– 265 and resistance to other environmental stresses 40: 265– 270, 267 and Salmonella virulence 40: 270– 272 carbon-starvation-inducible crossresistance 40: 266 H2O2 resistance 40: 266– 268 osmotolerance 40: 269 physiologic changes during 40: 237, 238 polymyxin resistance 40: 270 thermotolerance 40: 268, 269 Starvation – stress response (SSR) loci carbon – starvation– inducible loci 40: 242, 243 core 40: 264, 265 C-starvation-inducible regulation 40: 254, 255 defined stresses/conditions 40: 261
238
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
environmental and physiologic regulation 40: 260– 263 genetic regulation 40: 252– 260 intracellular environments 40: 261– 263 Starvation –stress response (SSR) stimulon 40: 239– 251 carbon (C)-compound catabolic enzymes 40: 241– 245 known protective enzymes 40: 246 regulatory proteins 40: 248, 249 respiratory enzyme systems 40: 246– 248 transport systems 40: 240, 241 unclassified 40: 251 virulence functions 40: 249, 250 State variables and model parameters 43: 108 definitions 43: 107 Stationary phase culture, non-culturable cells 47: 80 – 89 cell wall changes, C. albicans 27: 289– 293 development of resistance to antibiotics 27: 281 fungal cultures glucanase activity and resistance 27: 299, 306 triacylglycerol increased synthesis 32: 21 Stationary-phase survival 43: 198, 199 Statistical analysis, microarray data 46: 11, 12 errors 46: 11 fold-differences 46: 11, 12 STE11 gene 34: 132 STE12 gene 34: 132 STE13 gene 34: 88 STE2 gene 34: 89 STE3 gene 34: 90 STE7 gene 34: 132 Stem– loop structures in lux genes 34: 31 – 33 Stemphylium loti [copper-spot disease] 27: 96 Steric hindrance-repulsion 33: 27 Steroid hormones, mammalian 34: 105– 120, see also specific hormones fungal binding sites for 34: 112– 120 fungi affected by 34: 105– 120 biochemical responses of 34: 123– 125 in vitro growth and morphogenesis of 34: 105– 111 Steroids, transporters 46: 184, 185 Sterols in eukaryotes 35: 250, 258, 266, 267
Sterols, see also Cholesterol absence in prokaryotes 27: 278 as fungal sex hormones 34: 80 cell wall, and lipids 27: 292 decreased permeability to glycerol 33: 181 demethylation 27: 43, 44 inhibition in vitro, Candida 27: 45, 55 inhibition, imidazoles 27: 41 – 46 interaction, with antibiotics, surface structures 27: 286–289 in cell membranes 27: 28 – 33 polyene-resistant strains, Candida 27: 31 with polyenes 27: 280 Stickland reaction, spore maturation 28: 43 Stigmasterol 33: 182 Stigmatella aurantiaca 37: 109 Stilboestrol, P. brasiliensis and effects of 34: 107 Stimulons 46: 5, 6 Stipes of fruit bodies, elongation 34: 185– 188 Stone, role of organic acids in corrosion 41: 72 – 74 Stop codons discrimation from seloncysteine codons 35: 93, 94 Storage material, in immobilized cells 32: 64 Streptococcal ATPase operons 42: 245– 247 Streptococcal F1 subunits 42: 247– 249 Streptococcus 41: 118, 206, 213, 310, 317 Streptococcus agalactiae 36: 201 lateral-wall elongation and septum formation 36: 222– 224 PBPs in 36: 226 Streptococcus bovis 39: 209, 209, 213– 215, 218, 225 Streptococcus bows lateral-wall elongation and septum formation 36: 222– 224 PBPs in 36: 226 peptide transport in 36: 36 Streptococcus cremoris homoeostasis:’phosphate potential 26: 148 proton motive force 26: 148 lactate 26: 134 proton motive force-generating mechanism 26: 136, 137 Streptococcus disgalactiae 36: 201 lateral-wall elongation and septum formation 36: 222, 223 PBPs in 36: 226
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Streptococcus faecalis 37: 101, 138; 44: 239 see Enterococcus faecalis catalase levels 28: 9 erythromycin, effect on transposon Tn917 28: 246 gating 26: 146 glutathione-related processes 34: 244 growth without membrane potential 30: 92, 93 inhibition of thymidylate synthase 27: 15 sodium transport 26: 136 superoxide dismutase levels 28: 7 Streptococcus faecium 35: 262; 36: 199 lateral-wall elongation and septum formation 36: 224 PBPs in 36: 225, 226 Streptococcus griseofuscus 36: 55 production of TA-243 36: 55 Streptococcus lactis 36: 201; 37: 101; 39: 39 Kiel 42171, see Lactococcus garvieae lateral-wall elongation and septum formation 36: 222, 223 PBPs in 36: 226 Streptococcus mutans 35: 262; 28: 24; 36: 40; 37: 260, 261, 139; 39: 210; 42: 241– 252 BHT 29: 267, 268 extracellular lipoteichoic acid 29: 272, 273 penicillin effect 29: 273 Ingbritt 29: 267– 269 lipoteichoic acid, content, carbohydrate source effect on 29: 268 extracellular, growth stage and 29: 272 growth stage effect on 29: 267 metabolic fate 29: 272 pH effect 29: 267 Streptococcus pneumoniae 28: 24; 37: 98, 122, 123; 44: 249; 45: 219 blpHR mutant 46: 22 competence induction 46: 17, 21, 22 density-dependent gene regulation 46: 17, 22 Forssman antigen inhibitory to autolysin 29: 283– 285 “lipoteichoic acid” from 29: 246, 247 lipoteichoic acid, mesomal vesicles associated 29: 275 peptide transport in 36: 39 – 41 virulence 46: 22 Streptococcus pyogenes 39: 72; 40: 287, 314 b-haemolytic toxins 28: 233, 234
239
effect of clindamycin 28: 234 effect of lincomycin 28: 234 inhibitory antibiotics, benzylpenicillin, tetracycline, rifampicin 28: 219, 225 lipoteichoic acid, surface component 28: 225 M protein 29: 82 streptolysin-S inhibition and enhancement 28: 234 Streptococcus rattus 37: 261 Streptococcus sanguis 28: 24; 36: 201; 37: 101, 260; 42: 241– 250 ATCC 10556 biotype B, acids absent 29: 245 poly(glycerophosphate) lipoteichoic endocarditis, model system 28: 225, 226 inhibitory antibiotics, benzylpenicillin, chloramphenicol, tetracycline, vancomycin 28: 219 lateral-wall elongation and septum formation 36: 222, 224 lipoteichoic acid, glycosylation 29: 261 metabolism 29: 247 release, penicillin effect 29: 273 PBPs in 36: 226 strain 29: 261 Streptococcus sp. 37: 238, 251 Streptococcus spp., flagellar energetics 33: 293 flagellar motor function 32: 152–155 Streptolydigin, RNA polymerase inhibition 28: 50 Streptolysin 28: 233 Streptomyces 35: 255, 279, 280;44: 112 canarius 27: 216, 241 cinnamonensis 27: 216, 241 cyanoflavus 27: 216, 236, 237 endus subsp aureus 27: 216, 240 griseoluteus 27: 216, 235, 236 lomondensis 27: 216, 258– 260 lomofungin production 27: 240 phenazine-l, 6 – dicarboxylic acid 27: 247 luteoreticuli 27: 216, 240 lomofungin synthesis 27: 248 phenazine biosynthesis 27: 260, 261 luteus, common phenazine precursor, misakiensis 27: 216, 236 production of chitin inhibitors 27: 59 recifensis 27: 216, 240 strain ME 679-m4 27: 216, 241 strain NRRL 12067 27: 216, 241 thioluteus 27: 216, 236 metabolism of phenazine 27: 237, 248 Streptomyces achromogenes var. streptozoticus 42: 56, 66
240
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Streptomyces aeriouvifer 35: 262 Streptomyces akiyoshiensis 42: 146 Streptomyces alboniger 42: 67, 96, 106 Streptomyces albus 44: 112, 129 Streptomyces ambofaciens 42: 135 Streptomyces antibioticus 42: 62, 67, 94 – 96, 125, 126, 128 s E 46: 82, 83 Streptomyces arenae 42: 61, 63, 66 Streptomyces aureofaciens 42: 62 – 67, 95, 96, 119, 133, 139– 141, 152, 191 Streptomyces autotrophicus 42: 53 Streptomyces avermitilis 42: 134, 135, 139, 140, 186, 190 Streptomyces azureus 42: 198 Streptomyces badius 42: 128 Streptomyces bikiniensis 42: 132 Streptomyces californicus 42: 94, 197 Streptomyces cattleya 42: 149– 151, 183, 184, 193 Streptomyces cavourensis 42: 146 Streptomyces cellulosae 42: 145 Streptomyces chrysomallus 38: 113; 42: 102 Streptomyces cinnamonensis 42: 133, 141, 152, 187 S noursei 35: 262 Streptomyces citreus 42: 119 Streptomyces clavuligerus 35: 294– 298; 42: 56, 63, 86, 118, 126, 130– 132, 137– 140, 147, 149, 150, 152, 183, 184, 186, 188– 190, 193– 195 ACV synthase from 38: 96, 97 Streptomyces coelicolor 42: 47, 50, 51, 57, 58, 62, 63, 65, 66, 68, 74, 76, 85 – 90, 95, 96, 102, 106– 110, 118, 126, 129, 130, 132– 134, 136, 139, 146, 147, 149– 152, 183– 185, 187, 188, 190, 193, 195, 197, 198, 204, 206; 44: 17, 129; 45: 57 sigma factors 46: 51, 56, 80 – 88 s BldN 46: 80, 81, 86, 87 discovery 46: 86 functions 46: 86 N-terminal extension 46: 87 E s 46: 52, 80, 81 – 83 characterization 46: 81 – 83 discovery and isolation 46: 81 functions 46: 81, 82 promoters 46: 81, 82 regulon 46: 82 s R 46: 80, 83 – 86 characterization by promoter consensus search 46: 84, 85 M. tuberculosis s H relationship 46: 90
orthologue of M. tuberculosis s H 46: 86 regulon 46: 84, 85 role 46: 83 target genes 46: 85, 86 T s 87 U s 87 various s factors 46: 87 Streptomyces coerulatus 42: 145 Streptomyces collinus 42: 66 Streptomyces cyanogenus 42: 143, 190, 199 Streptomyces cyanoviridis 42: 146 Streptomyces diastatochromogenes 42: 149 Streptomyces erythreus 42: 53, 186, 193 Streptomyces eurocidicus 42: 132 Streptomyces faecalis 42: 253 Streptomyces faecium 42: 253 Streptomyces fiavogriseus 42: 75, 76, 79 Streptomyces fiavotricini 42: 146 Streptomyces fiavovirens 42: 145 Streptomyces fiavoviridis 42: 119 Streptomyces filamentus 42: 119 Streptomyces flavochromogenes 42: 119 Streptomyces fradiae 42: 53, 116, 119, 133, 134, 136, 137, 152, 184, 186, 189, 195, 196 Streptomyces fulvoviridis 42: 145 Streptomyces galilaeus 42: 145, 151 Streptomyces glaucescens 42: 128, 138, 152, 193 Streptomyces glaucus 42: 146 Streptomyces globisporus 42: 119 Streptomyces gordonii 42: 256 Streptomyces granaticolor 42: 103 Streptomyces griseocarneus 42: 132 Streptomyces griseoflavus 42: 119 Streptomyces griseofuscus 42: 85 Streptomyces griseus 39: 360; 42: 56, 61, 62, 67, 74, 87 – 90, 96, 116, 117, 120, 129–132, 138, 183, 184, 197; 45: 203 subsp. cryophilus 42: 191, 193 BldN s 46: 87 Streptomyces griseus 35: 262 Streptomyces halstedii 42: 76 Streptomyces halstedili 37: 12, 59 Streptomyces hydrogenans 42: 121, 125 Streptomyces hygroscopicus 35: 262; 42: 56, 69, 74, 75, 93, 94, 98, 103, 139, 140, 152, 190, 196, 205 var. Jinggangensis 42: 151 bialaphos production by 36: 53, 54 phosphinothricin from 38: 120 Streptomyces jumonjinesis 35: 296– 298 Streptomyces kanamyceticus 42: 108 Streptomyces karnatakensis 42: 136
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Streptomyces lactamdurans 42: 119, 194, 205 Streptomyces lavendulae 42: 53, 146, 184, 188 Streptomyces limosus 42: 74, 108, 109 Streptomyces lipmanii 42: 125, 188, 190, 194, 195 Streptomyces lipmanni 35: 294– 298; 42: 194 Streptomyces lividans 37: 11, 12, 15 – 17, 22, 27, 29, 32, 36, 59; 42: 62, 65, 68, 74, 77 – 79, 85 – 91, 96, 108, 109, 118, 131, 138, 151, 152, 184, 193, 196 Streptomyces longisporus 42: 145 Streptomyces lydicus 42: 194 Streptomyces malachiticus 42: 145 Streptomyces michiganensis 42: 128 Streptomyces microflavus 42: 69 Streptomyces milleri 42: 253 Streptomyces mitis 42: 255 Streptomyces morookaensis 36: 92 Streptomyces murayamaensis 42: 66 Streptomyces mutans 42: 253, 257, 259– 263 Streptomyces nitrosporeus 42: 146 Streptomyces niveus 42: 130 Streptomyces noursei 42: 136, 139, 140, 188, 190 Streptomyces olivaceovirides 37: 36 Streptomyces olivaceus 42: 193, 196 Streptomyces olivochromogenes 42: 76, 91, 194 Streptomyces oralis 42: 245 Streptomyces pactum subsp. pactum 42: 193 Streptomyces parvulus 42: 61, 79, 93, 138, 151 Streptomyces peptidofaciens 42: 119 Streptomyces peucetius 42: 119 Streptomyces phaeochromogenes 42: 138– 140, 194, 195 Streptomyces pilosus 42: 139 Streptomyces plicatus 37: 29, 36; 42: 78, 108 Streptomyces pneumoniae 42: 245, 260 Streptomyces pyogenes 42: 245 Streptomyces rattus 42: 253, 254 Streptomyces rectus var. proteolyticus 42: 119 Streptomyces reticuli 37: 14, 30; 42: 62, 76, 79, 86 Streptomyces rimosus 42: 117, 120, 138, 141, 191, 193, 194 Streptomyces rochei 37: 17, 29 Streptomyces roseoflavus var. roseofungini 42: 119 Streptomyces roseofulvus 42: 145
241
Streptomyces roseolilacinus 42: 145 Streptomyces rubiginosus 42: 91 Streptomyces rutgersensis 42: 149 Streptomyces salivarius 42: 243, 255, 256 Streptomyces sanguis 42: 240, 253–255 Streptomyces scabies 42: 52, 62 Streptomyces setonii 42: 128 Streptomyces sioyaensis 42: 128 Streptomyces somaliensis 42: 52 Streptomyces sp. 37: 12, 16, 17, 64, 198 polyoxin production 36: 55 Streptomyces spheroides 42: 118, 119 Streptomyces spp., TOL genes in vectors 31: 62 Streptomyces tendae 42: 130, 138; 35: 251 Streptomyces thermoautotrophicus 42: 53, 54, 145; 46: 143 Streptomyces thermocarboxydovorans 42: 53 Streptomyces thermocarboxydus 42: 53, 54 Streptomyces thermodiastaticus 42: 79 Streptomyces thermoviolaceus 37: 15, 17; F42: 69, 74 Streptomyces thioluteus 42: 146, 147 Streptomyces tsukabiensis 42: 56 Streptomyces venezuelae 42: 56, 67, 69, 74, 78, 95, 96, 126, 136, 138, 146, 149, 150, 187, 188 Streptomyces verticillatus 42: 66, 128 Streptomyces violaceoniger 42: 91 Streptomyces violaceoruber 42: 63, 85, 92, 146 Streptomyces virginiae 42: 53, 194 Streptomyces viridochromogenes 42: 95, 103, 138, 151, 152 phosphinothricin from 38: 120 Streptomyces viridosporus 42: 128, 145 Streptomyces zelensis 42: 146 Streptomycetes 37: 294; 42: 47 – 228; 44: 78 amino acid biosynthesis in 42: 200– 203, 204 autotrophic 42: 53, 54 carbohydrate catabolism in 42: 88, 89 carbohydrate uptake in 42: 82, 83, 84, 85 – 87 carbohydrates, repressive effect in 42: 98 carbon carbohydrate repression in 42: 101 carbon catabolic pathways in 42: 68 – 92 carbon metabolism in 42: 62 carbon storage compounds in 42: 92 – 96 control of secondary metabolism 42: 56 – 58 CYPs 47: 143– 150 developmental programme 42: 54 – 56
242
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
disaccharidases in 42: 80, 81 disaccharide degrading enzymes in 42: 78, 79 disaccharide transport in 42: 86 ecological niche 42: 52 glucose catabolism in 42: 62 – 68 glucose repressive effect in 42: 97 induction of metabolic differentiation 42: 60-61 isozymes of enzymes in 42: 61 life cycle 42: 55 osmotic stress response in 42: 197 overview 42: 50 – 62 pathogenic 42: 52 phylogeny 42: 51 polysaccharidase production in 42: 70 – 73 primary metabolic pathways 42: 59 primary metabolism 42: 56, 206 problems of studying primary metabolism 42: 60 – 62 secondary metabolism 42: 56 – 60 secondary metabolite biosynthetic pathways 42: 59 secondary metabolites 42: 56 Streptomycin 42: 56 E. coli, adherence and aggregation 28: 133 growth promotion, meat animals 28: 244, 245 haemolysin, inhibition 28: 232 low concentrations, adhesion inhibition 28: 218, 219 mannose-sensitive adhesins 28: 220 RNA misreading 28: 226 synergistic effect with complement 28: 240 uropathogenic bacteria 28: 221 Vibrio sp. 28: 224 Streptosporangium amethystogenes var. nonreducens 27: 216, 234 Streptosporangium spp. 42: 194, 196 Streptovaricin, RNA polymerase inhibition 28: 50 Streptoverticillium 42: 51 Streptoverticillium kentuchense 42: 194, 196 Stress affecting Enterobacteria 44: 218, 219 and starvation 44: 36 – 39 in E. coli 44: 21 – 57 Stress avoidance cross-protection 37: 262, 263 genes, s B dependent 44: 50 starvation survival 47: 69 – 73 TNC 47: 69 – 92
Stress proteins 31: 103, 183– 223; 44: 56 – 72 see also Heat-shock proteins; specific stress proteins abnormal protein degradation and 31: 195, 211 acquired thermotolerance, see Thermotolerance conservation, sequences 31: 185, 186, 192, 193 definition 31: 184, 185 discovery 31: 184 genes coding, consensus sequence 31: 194, 211 groups 31: 185 host homology and auto-immune response 31: 212 immune response and 31: 210– 212 induction 31: 184, 194– 203 abnormal/damaged proteins 31: 194– 196 by hybrid/aberrant proteins 31: 196 heat-shock (temperature), see Heatshock proteins oxygen stress, see Oxidative damage intracellular location 31: 215, 216 in normal unstressed cells 31: 185, 186 mycobacterial antigen homology 31: 79, 103, 104, 210, 211 nucleic-acid and amino-acid homologies 31: 185, 186, 192– 194, 211 protein assembly and translocation 31: 212– 215 protein folding 31: 194, 213, 214 synthesis, in bacterial infections 31: 211, 212 types in micro-organisms, references 31: 186– 192 Stress response 31: 103, 183; 44: 35 – 91 involving extracellular components 44: 222, 223 M. leprae 31: 103, 104 Stress tolerance, inherent and inducible 44: 219– 222 Stress, oxidative, see Oxidative stress Stress, wall 32: 192– 194, 209 analysis, cell-wall models 32: 207– 211, 216 surface tension and cell-wall growth 32: 205, 206 Stress/strain curves, bacterial cell walls 32: 192– 193 Stress-inducible proteins 37: 177, 178 Stress – relaxation curves 32: 200, 201, 210 Stress-response-inducing effects of killed cultures 44: 252
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 “Stringent phenomenon”, rRNA synthesis 28: 157 Stringent response, rel genes, hyperoxia 28: 11 Stringent response, starvation survival 47: 71 Strontium ions 33: 15 Structural diversity of hopanoids 35: 248, 249, 250– 252 structure 29: 133– 135; 33: 118 in T. neapolitanus, see Thiobacillus neapolitanus L subunit heterogeneity 29: 134 microbial versus plant 29: 135 model (Alcaligenes eutrophus), 134– "135 multiple forms, occurrence 29: 134 subcellular distribution 29: 130, 131 symbiotic repression of 29: 10 tobacco, inhibitors 29: 144 structure 29: 135 toxic sulphur compound effect 29: 154 Structure modification genes of O-polysaccharides 35: 197, 198 Stylonichia lemmae 35: 16 Stylopage sp. 36: 118 Subtilin 37: 145 Succinate 31: 251, 252, 296 cytochrome o reduction 29: 37 cytochrome reduction in bacteriod membranes 29: 37, 38 cytochrome reduction, evidence against component 559– H2 29: 36 in porphyrin and amino acid synthesis 29: 193 in represssion of hydrogenase activity, oxygen-insensitive mutants 29: 7 molar growth yield, RuBP carboxylase induction 29: 26 oxaloacetate conversion into, in evolution of citric acid cycle 29: 193 Succinate and ethylene production 35: 285 Succinate dehydrogenase 26: 139; 31: 110, 232, 252 Succinate respiration in Helicobacter pylori 40: 171, 172 Succinate thiokinase, in archaebacteria 29: 213, 215, 216 in eubacteria and eukaryotes 29: 210– 213 properties (summary) 29: 212 in halophilic archaebacteria 29: 186, 215 in methanogenic archaebacteria 29: 189, 215
243
in thermacidophilic archaebacteria 29: 187, 215 reaction catalysed by 29: 212 Succinate/fumarate couple 31: 231, 232 Succinate:fumarate oxidoreductase 31: 252 Succinoglycan 35: 145, 146 Succinyl coenzyme A, ALA formation 46: 261 Succinyl-CoA 29: 189; 42: 141; 43: 140 synthetase 43: 134 Sucrose 37: 282, 283, 306, 307 glycogen synthesis from 30: 189– 191 Sugar 37: 63, 64, 91, 287, 280– 283 Sugar catabolism 43: 131 see Glucose Sugar metabolism 42: 262, 263 Sugar polymers, in cell walls 32: 174 Sugar tolerance 33: 160 Sugars, binding sites on lectins 33: 48, 49 chemotactic response 33: 299 flocculation inhibited by 33: 3, 16, 17 see also Flocculation; specific sugars as direct or indirect effect 33: 17 specificity of lectins 33: 49, 53 Suicide-less mutants 46: 231, 232 Sulfate-reducing bacteria 45: 91 – 93 Sulfatides 39: 149–152 Sulfide:quinone reductase (SQR) 39: 248– 250, 258 Sulfite dehydrogenase (STD) 39: 267 Sulfolobales 29: 169; 39: 238 Sulfolobus acidocaldarius 39: 244; 40: 197; 43: 190, 192 citrate synthase and succinate thiokinase in 29: 214 citric acid cycle enzymes in 29: 189 glycerol synthesis in 29: 185, 186 glycerol, in ether lipids of 29: 185 haem proteins and haem biosynthesis pathway 46: 300, 301 isocitrate dehydrogenase of 29: 189, 195, 196, 198 malate dehydrogenase from 29: 198 2-oxo acid oxidoreductases 29: 202 respiration-coupled phosphorylation 29: 181 S-layer structural organization 33: 254 triose phosphate isomerase in 29: 183 Sulfolobus brierleyi 39: 239 non-phosphorylated modified Entner – Doudoroff pathway in 29: 180 reductive citric acid cycle in 29: 187, 189, 191 Sulfolobus islandicus 39: 243 Sulfolobus NOB8H2 39: 244
244
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Sulfolobus shibatae 39: 243 Sulfolobus sofataricus 39: 243, 244 Sulfolobus solfataricus 43: 191 glucose dehydrogenase (dual specificity) 29: 196, 197 haem proteins and haem biosynthesis pathway 46: 300, 301 non-phosphorylated modified Entner – Dudoroff pathway 29: 178, 179 tRNA in 29: 171 Sulfolobus, autotrophic 29: 187 heterotrophic growth on yeast 29: 183, 187 non-phosphorylated pathway of glucose catabolism 29: 177 oxidative citric acid cycle evidence lacking 29: 189 strain LM, non-phosphorylated modified Entner – Doudoroff pathway in 29: 180 Sulfur oxidation 39: 235– 289 aerobic 39: 238–244 Cyanobacteria 39: 244– 248 green sulfur bacteria 39: 248– 251 Proteobacteria 39: 251– 274 Sulfur oxygenase-reductase (SOR) 39: 239– 243, 243 Sulfurospirillum deleyianum 45: 92, 93, 95 Sulfur-oxidizing bacteria 39: 235– 289 Sulphadiazine 28: 218 Sulphamethoxazole 28: 218 Sulphate esters as glutathione S- transferase substrates 34: 282 Sulphate, as respiratory oxidant 31: 227, 228, 243– 252 reduction 31: 226– 228, 244– 247 acetate/sulphate 31: 251 ATP utilization 31: 245, 246 bisulphite reduction to hydrogen sulphide 31: 245– 247 formate/sulphate 31: 251 hydrogen/sulphate 31: 247– 249 lactate/sulphate 31: 249– 251 Dp generation 31: 247– 251 reactions 31: 244– 247 substrates for catabolism 31: 247– 251 to bisulphite 31: 245 transport of sulphate 31: 244, 245 Sulphate-reducing bacteria 37: 91 Sulphathiazole 28: 218 Sulphide, bisulphite reduction to 31: 245, 246, 246, 247 in bacteria 34: 241, see also Disulphides
in enrichment cultures for magnetotatic bacteria 31: 137, 138 in magnetotatic bacteria, protection against peroxide 31: 142 tolerance of anaerobic vibrioid MV-1 31: 142 Sulphidogens 31: 244 Sulphite reduction 37: 113 competition during incorporation 35: 97 in catalysis 35: 96, 97 Sulphur, cycle 31: 228, 243 reduction 31: 251, 252 of iron(iii) 31: 263, 264 source, glutathione mobilization as 34: 260– 262 toxic, effects on RuBisCO29: 154 versus selenium 35: 96 – 101 Sulphur-containing amino acids 42: 141, 191– 197, 193 Sulphur-dependent Archaebacteria, see Archaebacteria Sulphur-oxidizing bacteria, colourless, carboxysome distribution and structure 29: 119, 120, 153 dark environments, carboxysome absent 29: 155, 156 RuBisCO in 29: 116 Sulphydryl blocking/modifying agent hormone binding in C. albicans and effects of an 34: 116 ice nucleation in bacteria and effects of 34: 222 summary 28: 206–208 Supercoiling, genes 37: 249, 250 Superoxide 37: 178; 46: 111, 114 anion 31: 197 bacterial responses 46: 131, 132 bacterial sensing 46: 131 formation in aerobic cells 46: 115–118, 321 amount and rate 46: 118, 119 enzymes involved 46: 115, 118 sites 46: 115 level in cells 46: 124 E. coli 46: 121 levels affecting cells 46: 134 mechanism of damage by 46: 119–122 dihydroxyethyl-thiamine intermediate 46: 122 DNA damage 46: 123, 124 hypermutagenesis 46: 122 iron-sulphur cluster damage 46: 119– 122 other targets 46: 122 redox potential 46: 119 stimulon 46: 334
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Superoxide dismutase (SOD) 28: 6 –10; 31: 100, 108, 197; 37: 187; 40: 153, 154; 46: 114, 115, 320, 328– 330 see also Oxygen, stress factor amount produced by E. coli 46: 134, 324, 328 Cu– Zn 38: 223 dismutase-calatase 37: 178 E. coli mutants lacking 46: 115, 328 function 46: 114, 119 genes and regulation of 46: 328, 330 in A. magnetotacticum 31: 143 in anti-oxidant defense 34: 272 in hydrogen peroxide detoxification 31: 199– 201 induction 31: 199, 200 levels 28: 7 mutants 46: 120 yeast 46: 121 mutants deficient and oxidative damage 31: 198 overproducing strains and oxidative damage hypersensitivity 31: 198 reductase (SOR), in obligate anaerobes 46: 142 Supports for macromolecules, S-layers as 33: 258, 259 Suppression of mutations, act1ts mutants 33: 129, 130 causing counter-clockwise and clockwise phenotypes 33: 323, 324 flagella genes 33: 294 maltose-binding protein (MBP) 33: 306 motA and motB 33: 295 sec14 – 1 ts mutants 33: 121, 122, 130 transmembrane regions of transducers 33: 312 Suppressor genes, flocculation suppression 33: 61 Suppressor mutations, SRB2 – 1 32: 42 Surface association of bacterial polysaccharide biosynthesis 35: 138– 144 Surface charge, yeasts, see Flocculation; Yeast Surface exclusion 29: 68, 88, 89, 89 F pili (genes and proteins in) 29: 69, 88 Surface free-energy 32: 55 Surface interactions, surface thermodynamics 28: 93 – 95 Surface tension 32: 55 and adhesins 28: 95
245
Surface tension-like stress, cell-wall models 32: 205– 207 Surfaces, adsorption of dissolved solutes 32: 56, 57 low-molecular weight 32: 56 as substrates 32: 74 bacteria attached to, see Bacteria, attached to solid surfaces composition, effect on bacterial activity 32: 65, 66, 70 electrolytes adsorbed, effect on bacterial envelope 32: 66 electronegative, enzyme adsorption, pH affecting 32: 59 electrostatic charge, effect on bacterial activity 32: 65, 66 hydrodynamic conditions of 32: 54, 55, 65 hydrophilicity 32: 55 hydrophobicity 32: 55, 56 amino-acid assimilation 32: 66, 67 growth response of Vibrio DW132: 69 protein adsorption 32: 59 interaction capability 32: 55 interactions on 32: 55 effect on bacterial activity 32: 65, 66 ionic groups at 32: 56 ionogenic 32: 56 low molecular-weight solute adsorption 32: 56 macromolecule adsorption 32: 56 – 61 degradation by bacteria effect 32: 60 hydrolysis 32: 57, 73 of enzymes 32: 59 – 61, 73 of proteins 32: 58– 61 micro-environment 32: 54 – 62 nucleic acid adsorption 32: 60 organics adsorption 32: 57, 58 physicochemistry 32: 55 – 57, 65, 66 Surface – stress theory 32: 206 Surfactin 38: 117– 120 enzymes in assembly 38: 117, 118, 119 reactions in amino acid positions 38: 118, 119 structure 38: 118 synthesis initiation 38: 118 synthetases, structure/function 38: 119, 120 Survival, glycogen accumulation and 30: 185, 187, 188 Sus scrofa 37: 140, 144 domestica 37: 142, 144 SV sequences in gonococcal pilin genes 29: 79, 80 Swann committee, antibiotics, animal feeds 28: 244, 245 Swarming motility 33: 287, 288
246
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Swimming motility 32: 110 analysis 32: 160, 161 counterclockwise rotation of helical filament 32: 115, 123, 156 direction and mechanism 32: 115, 116, 156 flagella rotation 32: 115, 123 random path 32: 111 speed and filament rotation speed 32: 161 tumbling episodes, see Tumbling episodes Switch complex (or C-ring) 32: 139, 140; 41: 235, 306– 308 Symbioses, physiology 30: 15, 16 Symbiosis, fungal 38: 33, 34 Symbiosis, hydrogenase synthesis and RuBP carboxylase repression 29: 10 Symbiotic nitrogen fixation 40: 221 Synaptonemal complexes 30: 34 Syncephalastrum racemosum spores, rodlet layer 38: 11 Synechococcus 35: 255; 37: 91, 92, 101, 118, 124, 301, 314; 39: 1, 4, 6, 7, 9, 10, 12, 18, 20, 21, 293, 308– 311, 310, 324; 40: 98, 315; 44: 185; 45: 55, 57 Synechococcus carbon fixation 47: 2 carbon metabolism 47: 11 – 17 carboxylation mechanism of RuBisCO 29: 137 cell cycle 47: 39 – 43 characteristics 47: 4 – 6 characteristics, clade-specific physiological 47: 20 – 27 chemotaxis 47: 39 consensus tree 47: 7 diversity, genetic 47: 6 diversity, physiological 47: 1 –64 division cycle 47: 41 – 43 grazing 47: 44 – 46 growth irradiance 47: 12 – 14 iron deficiency 47: 38 light-harvesting apparatus 47: 8 – 11 marine clusters characteristics 47: 4– 6 micro-nutrient acquisition 47: 36 – 38 motility 47: 39 niche adaptation 47: 1 –64 nutrient acquisition 47: 18 – 38 PCB 47: 11 PCC 6301 44: 190, 202 PCC 7942 39: 245 PCC 7942 44: 190, 193, 204, 206 DNA-primase in 44: 207 zinc accumulation in smt-deficient mutants of 44: 206, 207
PE 47: 9, 10 PEB 47: 9 – 11 phosphorus acquisition 47: 31 – 35 phylogeny 47: 4 – 8 populations distribution 47: 8 PUB 9 –11 removal of RuBisCO S subunits, activity loss 29: 138 RuBisCO heterologous subunit reconstruction 29: 138, 139 RuBisCO structure 29: 135 viruses 47: 44 – 46 Synechococcus leopoliensis, carboxysome abundance versus photosynthetic characteristics 29: 151, 152, 154 in carbon limitation, carboxysome numbers 29: 152, 154 nitrogen limitations, growth effect 29: 151, 155 oxygen protection mechanism for RuBisCO, 153, 154 Synechococcus sp. 36: 83 Synechococcus spp., hydroperoxide scavenging in 34: 271 motility 33: 280 Synechococcus vulcanus 44: 112, 186 Synechocystis 35: 251, 255, 258; 37: 300, 301, 304; 39: 6, 9, 18; 40: 292, 300, 311–313, 329; 41: 213; 43: 210; 44: 78; 45: 57, 182, 183, 185 PCC 6803 40: 122, 124, 287, 309, 331, 335 PCC 6803 44: 203– 205 Syneresis 33: 36 Synthase(s) auto-inducer 34: 38 gene, in luminescent bacteria, see LuxI b-cystathionine 34: 261 chitin, Sacch. cerevisiae 34: 91, 92 g-cystathionine 34: 261 glycogen, N. crassa, insulin effects on 34: 126, 127 homocysteine (OAH sulphydrylase) 34: 260– 262 methylglyoxal 34: 285, 286 Synthesis 40: 373 Synthetase(s) g-glutamylcysteine, see g-Glutamylcysteine synthetase glutathione, see Glutathione synthetase of fatty-acid reductase complex (luxE) acylation of 34: 20, 21 amino-acid sequence comparisons with other lux proteins 34: 53, 54 gene, see LuxE SAM (S-adenosylmethionine) 34: 261
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 System theory 36: 146, 147 Syzygites megalocarpus 30: 30 t test, microarray data analysis 46: 12 TA-243 36: 55 Tabtoxin 36: 54 Tachyplesin 37: 145, 146, 151, 152 Tachypleus gigas 37: 146, 151 Tachypleus tridentatus 37: 145 Talaromyces emersonii 37: 41 Talc, surface adsorption of enzymes 32: 60 Tam-Horsfall glycoprotein 28: 80 Tamm-Horsfall protein 29: 61 Tamoxifen effects on C. immitis 34: 108 TAP (trachael antimicrobial peptide) 37: 137, 146 Tap 45: 166 Tap protein, see Dipeptide transducer (Tap) Tar 45: 166, 167, 181 tar gene 33: 299, 300, 314, 325 Tar protein 33: 299 amino-acid substitutions, MBP mutations suppressed 33: 306 as methyl-accepting chemotaxis protein (MCP), 325 as primary chemoreceptor 33: 301 attractants 33: 305 interactions with 33: 305– 310 CheY phosphorylation 33: 319 chimeras 33: 334 copies in each cell 33: 302 cysteine mutagenesis 33: 311 cytoplasmic domain 33: 305 ligand interactions 33: 304, 305– 310 maltose-binding protein (MBP) interaction 33: 305 affinity 33: 303 possible mechanism 33: 309, 310 residues 33: 305, 306, 309 methylation 33: 325, 326 signal produced by ligand influenced by 33: 328 mutant, reduced affinity for aspartate 33: 304, 306, 307 periplasmic domain 33: 304, 305 AL1 and AL2 loops 33: 304, 307, 308– 310 hydrogen-bonding interactions 33: 303– 309 model 33: 308, 309 monomer and dimer forms 33: 311 mutational analysis 33: 306, 307 mutations affecting aspartate 33: 304, 306, 307 mutations affecting aspartate and maltose 33: 307, 308 mutations affecting maltose 33: 307 proposed structure 33: 304, 308
247
site-directed mutagenesis 33: 328 tas gene 33: 300 Tat protein translocation pathway 47: 187– 254 amidase puzzle 47: 217, 218 cell wall biosynthesis 47: 217, 218 cf.Sec pathway 47: 189, 190, 192– 195 cobalamin cofactors 47: 211, 212 components 47: 219– 222 copper cofactors 47: 207– 210 evidence 47: 191, 192 GFOR 47: 201, 202 hydrogenases 47: 203– 207 iron-sulphur clusters 47: 202, 203 mechanism 47: 232– 236 membrane protein biosynthesis 47: 236– 239 MGD 198– 201 mis-targeting mechanisms 47: 192–195 MPT cofactors 47: 197– 201 nitrous oxide reductase 47: 209, 210 oligomeric protein biogenesis 47: 199, 212, 213 organisation 47: 219–222 pathogenicity 47: 218, 219 phospholipid bilayer 47: 233 proofreading properties 47: 213– 215 proteins without cofactors 47: 215–219 routing 47: 195– 197 substrate biogenesis 47: 192– 195 substrate diversity 47: 197– 215 substrate transport preparation 47: 197– 215 TatA/B protein family 47: 224– 230 TatC protein family 47: 230– 232 transport cycle 47: 222– 224 TTQ cofactor 47: 210, 211 virulence attenuation 47: 219 Taurine 37: 303, 310, 311 Taxis 32: 110 Taz protein 33: 334 Taz1 37: 111, 112 TCA cycle 40: 47, 48; 43: 92, 93, 97, 100, 101, 117, 118, 120, 127, 129, 141 enzymes 40: 246 functionally split 43: 135, 136 regulation 43: 132–142 by overflow metabolism 43: 136, 137 T-cells, mycobacterial antigen response to 31: 211 T-cells, suppressor factor induced by C. albicans 30: 70 Tcp 45: 166 TCP pilus production 37: 245 TDM 39: 149– 151, 168, 177 T-DNA 45: 249, 250
248
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Teflon, hydrophobin adsorption 38: 15 – 17, 35 Teichoic acid 29: 233 biosynthesis, location 29: 276 CDP-glycerol role in 29: 234 D -alanyl residue transfer to 29: 263– 265 salt effect on 29: 270, 271 deficiency in Staph. aureus mutant 29: 295 definition 29: 234 degradation 29: 272 glycerophosphate residues in 29: 234 in action of N-acetylmuramyl-L -alanine amidase 29: 284, 285 intracellular (membrane) 29: 234 lipoteichoic acids relationship 29: 234 magnesium ion binding 29: 291 mode of chain growth 29: 249 poly(hexosyl glycerophosphate) 29: 234, 243 re-alanylation in Staph. aureus 29: 265 ribitol phosphate, influence of substitution on LTC activity 29: 282 linkage to lipoteichoic acid carrier 29: 277, 278 polymerization and transfer to linkage unit 29: 280 synthesis (pathway for) 29: 277–279 synthesis 29: 234 enzymes in 29: 277 linkage unit (structure and synthesis) 29: 278, 279 transfer of preformed 29: 280 Teichoic acid lipid complexes 29: 234 Teichoic acids 32: 181, 209 modification controlled by dlt operon 46: 69, 70 wall (WTA) 70 Teichoicases 29: 272 Teichuronic acid 29: 268; 32: 181 Tellurium, microbial resistance 38: 230, 231 Temperature apomictic phenotype modification 30: 37, 43 axenic culture of M. leprae 31: 113 cardinal, for growth 33: 157 collision frequency and 33: 29 effect on alanine content of lipoteichoic acids 29: 271 effect on flocculation 33: 18 floc melting 33: 12, 18, 45, 46 fruiting and effects of 34: 181– 184 ice nucleation and effects of 34: 209– 211, 224, 225 low, transport to Golgi complex inhibited 33: 92
optimum water potential and 33: 159 osmophilic and halophilic response affected by 33: 157 pilus retraction and 29: 93 stress 37: 229, 249, 262 stress protein induction 31: 186, 202, 203 see also Heat-shock proteins: individual hsps thermophile growth 29: 220– 222 water potential relationship 33: 157 yeast-to-hypha conversion in C. albicans 30: 59, 80 Temperature effects, see heat-shock stress Temperature regulation, E. coli fimbriae 28: 115 Temperature-conditional mutants 33: 158 Temperature-sensitive mutants, see also individual sec mutants bet mutants 33: 96 flocculent yeasts 33: 18 in secretory pathway elucidation 33: 75 – 77 sec61, sec62, sec63, 33: 80, 81 Temporal factors, phosphorus acquisition 47: 34 Temporarily non-culturable bacteria 41: 98 Tensile strength of cell walls 32: 192, 194 Tensile tests on bacterial threads 32: 191, 192 Teratoma, genesis 30: 47 Terbinafine, structure 46: 158 Teredinidae 37: 63 Terminal oxidase 29: 27; 40: 205– 209; 46: 289, 290 see also individual cytochromes cytochromes aa3 and o as 29: 29, 30 in R. japonicum bacteroids 29: 32 in Helicobacter pylori 40: 174, 175 Testosterone C. immitis affected by 34: 108 C. immitis binding sites for 34: 115, 118 Tethered cells 33: 290, 315, 316 in flagellar motor function analysis 32: 152, 157, 160 Tetra ethers 29: 170 Tetracycline bacterial adhesins, inhibition 28: 218 complement deficiency and “natural” antibodies 28: 240 dimethylchortetracycline inhibition, lipase production 28: 233 endocarditis, adhesins 28: 226 “excess”dosage 28: 250 gonococci 28: 224, 227 growth promotion, meat animals 28: 244, 245 heat-labile enterotoxin 28: 235
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 lipase production, inhibition 28: 233, 235 mannose-sensitive adhesins 28: 220 meningococci, outer membrane 28: 227 oxytetracycline, low-dose selective response 28: 247 protease inhibition 28: 236 resistance, Bacteroides fragilis, pigs, after 10 years 28: 245 plasmid transfer 28: 246 streptococcal adhesins 28: 225 stringent response 28: 11 synergic effect, with complement 28: 240 uropathogens 28: 221 Tetradecanal as natural aldehyde in bioluminescence 34: 8 Tetradecane 39: 366 Tetradecanoic (myristic) acid 26: 253– 255 Tetradecanoyl derivatives as acyl substrates for acyltransferases 34: 19 Tetrahydrofolate 37: 296, 298 Tetrahymanol and hopanoids 35: 258, 266, 267 Tetrahymena 35: 9; 39: 293 Tetrahymena pyriformis 35: 258, 266, 267; 39: 301, 313 heat-shock protein induction 31: 207, 208 hsp58 homology with groEL protein 31: 193, 194 Tetrahymena thermophila 35: 8, 62; 39: 313 glutathione transferase in 34: 282 hsp58 31: 213 thermotolerance mechanisms 31: 207 Tetramethylthiuram disulfide (thiram) 37: 204 glutathione metabolism and effects of 34: 278–280 Tetrapyrroles 46: 260 biosynthesis 46: 260, 261 see also Haem biosynthesis oxygen limitation 46: 289 Tetrasaccharides 37: 161 Tetrathionate, ion chromatography 38: 197, 198 Tetrathionate-reducing activity (TTR)39: 264 Tetrazolium dye 32: 77 TGA codon 35: 72, 89 Thamnidium elegans 35: 278 Thennophilic marine bacteria 29: 222 Theobromine, see Methylxanthines Theophylline, sporulation medium 28: 29 Thermoacidophiles 29: 167
249
Thermoanaero bacterium thermosulfurigenes 37: 35, 36, 37 Thermoanaerobacter 39: 34 Thermoanaerobacter saccharolyticum 37: 15, 21, 31, 36, 37, 49 Thermoanaerobacter thermohydrosulfuricum 37: 36 Thermoanaerobacterethanolicus 39: 55, 56, 58, 63, 68, 104, 105 see also Clostridium thermohydrosulfuricum Thermoanaerobacterium 39: 34 Thermoanaerobacterium thermosulfurigenes 39: 52, 55, 56, 58, 60, 63, 68, 69 see also Clostridium thermosulfurogenes Thermoanaerobacter thermohydrosulfuricus 39: 52, 57, 64, 69, 104, 105, 558 see also Clostridium thermohydrosulfuricum Thermoascus aurantiacus 37: 15, 22 Thermocaccales 29: 169 Thermococcus celer, dihydrolipoamide dehydrogenase in 29: 207 Thermocouple psychrometry 33: 154 Thermodynamic activity of water (aw) 33: 149 Thermodynamic state, of water, see Water Thermodynamic water equilibrium 33: 146, 151 Thermodynamics, respiration 31: 226, 228, 233– 235 Thermomonospora curvata 37: 53 Thermomonospora fusca 37: 11, 12, 14, 17, 22, 29, 30, 32, 33, 39, 41, 42 – 44, 59, 60 Thermomyces lanuginosus 37: 233 Thermophilia 40: 364 Thermophilic Archaebacteria, haem pathway 46: 301 genes 46: 295, 296 Thermophilic bacterium 37: 15, 229 Thermophilic diazotrophy 30: 17, 18 Thermophily 29: 221 Thermoplasma 29: 221 non-phosphorylated pathway of glucose catabolism 29: 177 Thermoplasma acidophilum 29: 167 acetyl-CoA generation and conversion into acetate 29: 180 acetyl-CoA synthetase (ADP forming) in 29: 180 citrate synthase in 29: 213, 214
250
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
dihydrolipoamide dehydrogenase in 29: 207 ferredoxin 29: 221 glucose dehydrogenase (dual specificity) in 29: 197 glycolytic enzymes not detected 29: 181 HTa protein in 29: 171 isocitrate dehydrogenase (dual specificity) in 29: 196 malate dehydrogenase 29: 198, 221 non-phosphorylated modified Entner – Doudoroff pathway 29: 180, 181 oxidative citric acid cycle 29: 187, 191 respiratory chain in 29: 181 succinate thiokinase in 29: 214 triose phosphate isomerase in 29: 183 2-oxo acid oxidoreductases 29: 202 Thermoplasma acidophilum, flagella 32: 137 haem biosynthetic pathway 46: 301 Thermoplasma volcanium 46: 301 haem pathway genes 46: 295 Thermoproteales 29: 169 Thermoproteus neutrophilus 29: 181 carbon dioxide fixation pathways 29: 188, 189, 191 Thermoproteus tenax, S-layer growth 33: 235, 236 S-layer structural organization 33: 254 Thermoreceptor, serine transducer (Tsr) 33: 301 Thermostability, salt bridges 29: 221 Thermotoga maritima 37: 15, 31, 37; 40: 161, 287, 304 Thermotolerance 31: 202– 210; 33: 196, 197; 37: 309 arsenite-induced hsp synthesis and 31: 208 as distinct state from heat shock 31: 206 heat-shock acquisition 31: 204– 206 amino-acid analogues effect 31: 207, 208 cell ploidy 31: 210 cycloheximide inhibition of 31: 207 in E. coli 31: 202, 205 in S. typhimurium 31: 206 in Sacch. cerevisiae 31: 204 kinetics 31: 205 stationary/log-phase cells 31: 199, 206 heat-shock protein induction, correlation 31: 202, 204– 206 lack of correlation 31: 204– 207 kinetics of loss of 31: 204, 206 mechanisms 31: 207 reasons for contradictory evidence 31: 208– 210
stresses (treatments) inducing 31: 205, 208, 209 Thermus aquaticus 29: 213; 44: 119 Thermus thermophilus 36: 268, 270, 271; 37: 37; 40: 197; 43: 189– 191, 193; 44: 116; 45: 55, 57 iron isotope studies 38: 209 iron– sulphur clusters, spectroscopy 38: 65, 66 Rieske proteins, amino acid sequence 38: 68 tellurium resistance 38: 230 Thetines 37: 289 Thiamine pyrophosphate (TPP) 29: 200, 202, 204 Thiamine pyrophosphate 46: 138 ‘Thick-shell’ model, cell walls 32: 214, 215 Thielavia alata 35: 278 Thienamycin 36: 210 Thin (thn) mutation in S. commune 173 Thin-layer chromatography (TLC) 39: 160 ‘Thin-shell’ model, cell walls 32: 209– 214, 217, 218 Thiobacillus 37: 232, 251 as taxonomic tool 29: 119 carboxysomes in 29: 119, 120 size and structure 29: 119 cryptic plasmids in, species having 29: 129 in dark deep-sea environments 29: 155 Thiobacillus acidophilus 39: 270, 271– 274 Thiobacillus albertis, carboxysomes in 29: 119 Thiobacillus caldus 39: 261 Thiobacillus denitrificans 39: 261, 262, 264 Thiobacillus ferrooxidans 31: 234, 238, 263, 264; 35: 102, 278; 38: 220; 39: 237, 238, 260, 261, 271, 272, 274; 44: 6 organic acid effect on enzymes in 32: 97 Thiobacillus intermedius 29: 151; 39: 270 Thiobacillus kakobis, carboxysomes in 29: 119 Thiobacillus neapolitanus 39: 260, 270 carboxysomes 29: 119, 120 carbonic anhydrase absence 29: 127, 152 DNA associated 29: 129, 130 glycoproteins in 29: 125 large subunit heterogeneity in 29: 125 lipid absence from 29: 126 polypeptides in 29: 126 role as storage body 29: 155 RuBisCO 29: 116, 120
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 activity, in carbon dioxide limitation 29: 150, 151 as per cent of total protein 29: 132 carbon dioxide fixation rates 29: 150 distribution and levels, in oxygen changes 29: 153 Km (CO2) values 29: 142 levels in nitrogen limitation 29: 155 shape 29: 119, 120 stability in vitro 29: 124 Thiobacillus novellus 35: 278, 281; 39: 249, 256, 261, 262, 270, 271, 273, 275 Thiobacillus perometabolis 39: 270 Thiobacillus plumbophilus 39: 261 Thiobacillus tepidarius 39: 262, 263 Thiobacillus thiooxidans 39: 260, 271, 272, 274 carboxysomes 29: 119 Thiobacillus thioparus 39: 263 Thiobacillus versutus 39: 261 plasmids in 29: 129 Thiocapsa 37: 282, 290 Thiocapsa pfennigii 39: 254 Thiocapsa roseopersicina 26: 161; 39: 254 Thiocystis 37: 282 Thioesterase genes, in peptide synthesis 38: 92 Thioglucose 27: 311, 314, 317, see also Glucose analogues Thioglycollic acid, enhancement, amphotericin activity 27: 294, 295 Thiol disuiphide oxidoreductases 46: 281 Thiol template peptide synthesis model 38: 86 – 88 see also peptide synthesis systems, bacteria/fungi Thiol-b-binding agents 27: 294– 296 Thiol-disulphide balance 46: 331 Thiol – disulphide exchanges 34: 263–266 Thiol-reducing systems 46: 127 Thiols, oxidation 46: 125– 127, 136 Thiomethylgalactoside (TMG) phosphate 39: 72 Thiomicrospira 29: 155 Thionin 37: 146, 151 Thionins, cysteine residues 38: 9 Thiophene-2-carboxylate 39: 353 Thiophenol 36: 14 Thioploca 41: 269 Thioredoxin 26: 139; 46: 331 Thioredoxin oxidoreductase 26: 139 Thioredoxin system 34: 266– 269 Thiosphaera pantotropha 30: 168, 169; 39: 265; 45: 53, 81 carboxysomes absent from 29: 119 plasmids in 29: 129
251
Thiosphaera versutus 39: 265 Thiosulfate reductase (TSR) 39: 264 Thiosulfate-oxidizing enzyme (TSO) 39: 263, 264 Thiosulphate, ion chromatography 38: 197, 198 Thiourea 26: 72 Thiram, glutathione metabolism and effects of 34: 278– 280 THN gene and thn (thin) mutation in S. commune 173, 175 THN gene, in fruit body formation 38: 24 Thn mutation, and SC3 expression 38: 19 Thraustochytrium aureum, amino acids as compatible salutes 33: 176 Thraustochytrium roseum, amino acids as compatible solutes 33: 176 Threonine 26: 41; 37: 38, 182; 42: 125, 136, 137, 190 phenazine production 27: 264 replacement of glycine, cyanide formation 27: 75 Threonine aldolase 37: 180, 182 Threonine deaminase 37: 180 Threonine debydratase (TD) 42: 185 Threonine dehydrogenase 37: 180, 182 Threonine permease 26: 41 Threonine protein kinase 37: 107– 109 Threshold phenomenon (gating) 26: 145, 146 Thylakoids 29: 131 Thymidine synthesis 27: 82, 85 Thymidine, scavenging by M. leprae 31: 93, 108 Thymidylate synthase active site, structure 27: 15 inhibition, DNA synthesis 27: 14 – 16 Thymine-7-hydroxylase 26: 58, 76 Thymocytes, neutral amino acid transport in 26: 140 Thyroxine de-iodinase 35: 73 TIM 39: 319 Time domains of living systems 39: 294 Timing in chromosome replication in Physarum polycephalum 35: 49 – 51 Tin, microbial toxicity 38: 231 Tioconazole sterol demethylase inhibition 27: 45 structural formula 27: 40 Tip (taxis-involved protein) 33: 300 Tissue engineering, hydrophobins in 38: 35 Tlps 41: 259 TM1 41: 241, 243 TM2 41: 241, 243 TM2 45: 166 TMAO reductase 45: 69 – 71 see Trimethylamine oxide (TMAO)
252
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
TMPD 40: 200, 213 TNC see transient non-culturability tnp genes 31: 38 Toadstools, fruiting in, see Fruiting Tobacco mosaic virus 29: 67; 37: 186 Tobramycin 28: 218; 46: 222 protease, inhibition, Ps. aeruginosa 28: 236 resistance 32: 75, 76 TOD pathway 31: 12 TOL plasmids 31: 1 – 69 see also Benzoate see also Plasmid(s); Plasmid pWWO; Pseudomonas putida spp.; xyl genes benzoate curing 31: 5, 24, 39 – 44 chromosomal DNA recombination 31: 35 co-integrates 31: 20, 35 – 38, 50 enzymes encoded 31: 5, 6, 13 – 18 evolutionary relationships 31: 45 – 52 selective pressure response 31: 52, 59 transposition role 31: 50 – 52 with other catabolic plasmids 31: 52 –55 genes, see Plasmid pWWO; Toluene catabolism; xyl genes in construction of novel strains/vectors 31: 55 – 63 catabolic pathways linked 31: 56 for bioaccumulations 31: 61, 62 multiplasmid Pseudomonas spp. 31: 56 properties predisposing 31: 55, 56 range of substrate extension 31: 60, 61 strains with hybrid pathways 31: 57 – 60 vectors 31: 62, 63 in other TOL strains 31: 10 – 12 in Ps. putida mt-2 31: 3 – 8 see also Plasmid pWWO mutants/‘partial’ mutants 31: 19, 39 – 41, 45 see also Benzoate Ps. putida HS1 31: 39, 40 Ps. putida MT14, MT15, and MT20 31: 40, 41, 43 Ps. putida MT53 31: 40 Ps. putida PPK1 31: 42 partitioning failure 31: 43, 44 pathway encoded by 31: 5, 6 recombination and transposition 31: 34 – 39, 50 in evolution of 31: 50 – 52 other plasmids 31: 38, 39 pWWO 31: 34 – 38 RP4 co-integrate, see RP4
role in evolution of novel DNA combinations 31: 59 segregational instability 31: 34, 44 selection method 31: 10 Tol plasmids, organic acids effect on 32: 98 Toluate 1, 2-dioxygenase 31: 16, 58, 59 see also xylD gene Toluene catabolism 31: 3, 5, 6 alternative pathways for 31: 11, 12 biochemistry 31: 12 –18 b-ketoadipate pathway, see Toluene catabolism, ortho-cleavage pathway evolution of pathways 31: 44 – 55 gene organization 31: 18 – 23 see also xyl genes two operons 31: 6, 20 gene regulation 31: 23, 24 see also Operator-promotor; xyl genes additional elements 31: 31 co-induction of upper- and metapathways 31: 30, 31, 55 model 31: 29 – 31 molecular analysis of genes 31: 25, 26 mutants 31: 24, 25 promotors 31: 26 – 29 RpoN involvement 31: 31 – 34 meta-pathway 31: 3, 4, 6, 20 biochemistry/enzymes 31: 7, 16 – 18 expression in Ps. putida MT53 mutants 31: 41, 42 meta-pathway operon 31: 7, 21 – 23 see also xyl genes duplications 31: 45, 49 evolution (pDK1 and pWW53) 31: 46, 47 gene organization 31: 21 – 23 induction 31: 29 – 31 mutants lacking 31: 5, 39 of NAH7 31: 53 promotor (OP2), see Operatorpromotor pTDN1 and pWWO gene homology absent 31: 9 pWWO and NAH7 comparison 31: 53 regulation 31: 23, 24, 30, 31 regulatory genes 31: 23 rpoN gene in regulation 31: 32 two copies on pWW53 31: 45, 49 ortho-cleavage pathway 31: 3 – 5, 17, 41 regulation 31: 23, 24 regulatory genes 31: 23 see also xylR gene; xrlS gene upper-pathway operon 31: 6, 20, 26, 27 evolution (pDK1 and pWW53) 31: 46 gene organization 31: 20, 21
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 promotor (OP1), see Operatorpromotor upper-pathway, biochemistry 31: 6, 13 –15 Toluene dihydrodiol 31: 12 Toluene dioxygenase 38: 49 ferredoxin 38: 58 – 60 reductase 38: 57 Toluene-treated cells 29: 252 alanylation mechanism of lipoteichoic acid 29: 262 cyanobacteria, RuBisCO in 29: 143 lipoteichoic acid metabolism 29: 247, 249 re-esterification of lipoteichoic acid after alanine ester loss 29: 265, 266 TonB 45: 123 TonB gene mutants of E.coli, bioluminescence studies in 34: 45 Tonoplast response, to dehydration 33: 162 TopA 45: 34 Topoisomerase 37: 312 Topotypes 32: 179 Torulopsis glabrata, see Candida spp. Torulopsis halonitratophila, halophilic response and temperature 33: 157 Touch-sensitive genes 32: 177 tox promoters 46: 54 Toxic shock syndrome 37: 245 Toxin 1 and 2, peptide 37: 146 Toxin-agglutinin fold proteins, hydrophobin relationship 38: 8, 9 Toxin-antitoxin systems 41: 119, 120 TPQ (6-hydroxyphenylalanine or topa quinone) 40: 4 traA gene 29: 69 mutants and bacteriophage attachment 29: 89 Trace elements 38: 180 see also metals/metalloids deficiencies, and growth 38: 188– 190 Trace metals see micro-nutrient acquisition Trachael antimicrobial peptide (TAP) 37: 137, 146 Tracheal cytotoxin (TCT) 44: 145–147 traG gene 29: 69, 92 TraI 45: 203 traJ gene 29: 69, 70 TraJp protein 29: 70, 71 sfrA and cpxAB affecting 29: 71 traM 29: 69, 72 TraM 45: 252 traMYI gene 29: 69 Transamination 43: 125, 126
253
Transcription factors gene regulation in M. tuberculosis 46: 24 identification of genes encoding 46: 6 negative regulator (OPI1 gene product) 32: 36, 37 positive regulators (INO2, INO4 gene products) 32: 34 repression by Bordetella pertussis 46: 41 Transcription regulators 44: 22 – 27 Hmp 47: 287– 291 Transcription, control of flagellar region 32: 120– 122 control of gonococcal pilin gene expression 29: 80 eukaryotic features of, in archaebacteria 29: 171 F transfer operon 29: 71, 72 in Hfr strain 29: 73 initiation, meta-pathway operon 31: 27 – 29 INO1 gene, INO2, INO4, OPI1 gene products effect on 32: 39 – 43 lon gene 31: 196 pap genes 29: 77 perturbations, effect on INO1 gene transcription 32: 42, 43 pWW53, pDKI and pWWO plasmids comparison 31: 47, 48 regulation of pilus expression by pilA and hyp genes 29: 75 RuBisCO subunit genes 29: 146, 149 xylR and xylS genes 31: 26 Transcriptional profiling applications 46: 333 Bacillus subtilis s W 46: 75, 76 free radical stress 46: 333 sigma factor function analysis 46: 58, 100 Transcriptional regulation 39: 20 – 24; 45: 8, 9 and cell-surface polysaccharide biosynthesis 35: 223, 224 of genes for phosphorelay components 35: 123– 126 response to oxidative stress 46: 324 Transcriptional regulators, superfamily of, luxR as member of 34: 40 Transcriptome, genome vs 46: 4 Transcripts gene-by-gene assay of abundance 46: 4 whole genome DNA microarrays 46: 4-S Transducer-like proteins (TLPs) 45: 160 Transducers, see Chemotactic signal transducers Transduction 29: 41
254
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Transferase(s) as subunit (t) of fatty-acid reductase complex, see Acyltransferase g-glutamylcyclo- 34: 248 glutathione S- 34: 281– 284 glutathione thiol 34: 264 homocysteine methyl- 34: 261 homoserine acetyl- 34: 261 hygromycin phospho-, L. laccata transformation and the gene for 34: 191 in glycolipid and glycerophosphate linkage in lipoteichoic acids 29: 253 serine acetyl- 34: 261 Transferrin 39: 145 Transformation systems, DNA-mediated, for fruiting basidiomycetes 34: 191 Transhydrogenase 31: 232 Transhydrogenase, energy-linked 26: 139 Transient expression and DNA transformation and Physarum polycephalum 35: 59 – 61 Transient non-culturability (TNC) 65 – 129 see also non-culturable cells alkylresorcinols 47: 93 biofilms 47: 104 cannibalism 47: 104, 105 cell death 47: 68, 69 chemical inducers 47: 92 – 94 chemotaxis 47: 67 cooperative behaviour 47: 105, 106 environments 47: 99 environments, fluctuating 47: 66, 67 environments, natural 47: 76 – 79 genetic control 47: 94 – 96 metabolic activity, lowering 47: 68 non-culturable cells 47: 73 – 92 population heterogeneity 47: 95, 96 response regulator 47: 67 resuscitation 47: 76, 96 – 103 sensor histidine kinase 47: 67 smcR (luxR) gene 47: 95 social behaviour 47: 103– 106 stress avoidance 47: 69 – 92 transition 47: 84 Transition metal ions, in flocculation 33: 15 Transition metals in oxygenase catalysis 38: 49 see also metals/metalloids Transition metals, dinitrogen complexes 30: 5, 7 Transitional vesicles 33: 74 Transition-state regulators and sporulation in Bacillus subtilis 35: 126– 129 AbrB protein 35: 127, 128
hpr gene 35: 128 sin gene 35: 128, 129 Translational inhibitors 28: 236, 237 Translational regulation in cell-surface polysaccharide biosynthesis 35: 228, 229 Translocation phenomenon 37: 90 Transmembrane (electro)chemical potentials 26: 126 Transmembrane (TM) a-helices 45: 166, 181, 182 Transmembrane Fe(III) reductase in S. cerevisiae 43: 59 Transmembrane a-helical spanners (TMSs) 40: 99, 105, 106, 106, 110, 123 Transmembrane proton flux 39: 208, 209 Transmembrane proton-motive force, in flagellar motor function 32: 110, 115, 153, 154 changes in, duration/switching of direction 32: 156, 158 components 32: 153, 154 for flagellar assembly 32: 152 MotA protein role 32: 138 reversal of direction 32: 154 Transmembrane reductase NADPH-linked 43: 56 –58 substrates 43: 58 – 60 Transmembrane signalling 33: 310– 312, 334 Transmission electron microscopy for metals 38: 201–205 energy-dispersive X-ray spectroscopy detection 38: 203, 204 selected-area diffraction with 38: 204, 205 thin section preparation 38: 201– 203 whole mounts 38: 201 Transmitter, pH stress 37: 230, 234 Transport in hyphae 38: 2 metals 38: 180– 182 iron 38: 181, 217 isotope assays 38: 199, 200, 217 of polysaccharides across cytoplasmic membrane 35: 175– 181 energies of 35: 181 group-II-like capsular polysaccharides 35: 177–182 rfe-independent O-polysaccharides 35: 175– 177 to cell surface 35: 182– 188 of selenium-containing compounds 35: 98, 99 Transport Commission (TC) 40: 81, 86 Transport mechanisms in solvent-forming clostridia 39: 60
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Transport modes 40: 124– 126 Transport protein classification system 86 –95 expanded and updated 40: 131 Transport protein families 40: 88, 89 – 92 reconstructed histories 40: 105 Transport proteins, classification 40: 81 –136 Transport systems, non-PTS 39: 63, 64 Transport systems, starvation – stress response (SSR) stimulon 40: 240, 241 Transport vesicles 33: 88, 89 see also Protein transport, from endoplasmic reticulum to Golgi complex budding, from endoplasmic reticulum 33: 89, 91 early SEC gene products in 33: 95, 96 diameter 33: 95 formation, calcium ion fluxes and 33: 110 fusion and uncoating 33: 89 – 91 early SEC gene products in 33: 95, 96 homogeneous population and true transport intermediates 33: 94 isolation 33: 94 N-ethylmaleimide-sensitive factor (NSF) functions 33: 89 Transport, of substrates to surfaces 32: 56 Transport, periplasmic binding proteins in 33: 298, 299 Transporter families substrate ranges 40: 127, 127 topological features 40: 97, 97 Transporters of unknown classification 40: 92, 131 Transposase – DNA strand complex 44: 121 Transposition, TOL plasmids 31: 34 – 39, 50 in evolution of 31: 50 – 52 Transposon Tn401 31: 9 Transposon Tn4651 31: 37, 38, 50 Transposon Tn4652 31: 37, 38 Transposon Tn4653 31: 37, 38, 50 Transposon Tn5 31: 20, 25 Transposon, hypothesis for recombination of TOL plasmids 31: 37, 38 location on pWWO 31: 36 – 38 17kbp of TOL plasmid acting as 31: 37 Tn5 29: 41, 43 – 45 hyp gene inactivation in E. coli 29: 75 Transposons 35: 7 Trans-sulphuration pathway 42: 194, 195 TRAP transporters 40: 149
255
traQ gene 29: 69 in pilin processing 29: 69, 92 TraR 45: 217, 251, 252 traS gene 29: 88 traST gene 29: 69 traT gene 29: 88 TraTp protein 29: 88 traYZ 29: 69, 70, 72 Tree View program 46: 13 Trehalose 37: 280– 283, 281, 284, 285, 295, 300, 307, 308, 309, 314, 317; 42: 92 – 94 accumulation, stress treatments inducing 33: 196 as compatible solute 33: 175, 176 desiccation protection 33: 195, 196 dimycolate 31: 82 monomycolate 31: 82 mycolyltransferase 31: 79, 83 osmotic hypersensitivity and 33: 194– 196 osmotic shock tolerance 33: 176, 194– 196 reserve carbohydrate 28: 193 translocation in fungi 33: 175 Trehalose-6-phosphate 37: 296, 308, 309; 42: 93 Trehalose-6-phosphate phosphatase 37: 309 Trehalose-6-phosphate synthase 33: 196 Tremella spp. 34: 98, 99 brasiliensis 34: 98 mesenterica 34: 87 sex hormones in 34: 87, 98, 99 Tremerogen A-10 34: 98, 102 amino-acid sequence 34: 87 Tremerogen a-13 34: 98, 102 amino-acid sequence 34: 87 Tremerogen A-9291– I 34: 98 Treponema denticola 45: 176 Treponema pallidum 40: 287, 314, 316; 45: 176 haem pathway enzymes absent 46: 294 Trg 45: 166 trg gene, strains with multiple copies 33: 328 Trg protein 33: 299 as methyl-accepting chemotaxis protein (MCP) 33: 325 as secondary chemoreceptor 33: 301 cysteine mutagenesis 33: 311 G151D mutation 33: 310 interaction with binding proteins 33: 310 R85H mutation 33: 310 site-directed mutagenesis 33: 328 Triacyl glycerides 39: 151 Triacylglycerol lipase 31: 107
256
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Triacylglycerols 42: 95, 96 biosynthesis 32: 21 increase in stationary phase, sporulation 32: 21 Triazole antifungals 47: 158– 160 Triazole drugs 27: 39 Tricarboxylic acid (TCA) cycle 41: 54, 65, 114; 42: 64, 67, 68, 97; See TCAcycle Tricarboxylic acid (TCA) cycle enzymes, in M. leprae 31: 87, 89, 110 in magnetotactic bacteria 31: 140 tricarboxylic acid cycle enzymes 28: 189, 197 “glucose repression” 28: 203, 204 glycolytic activity, decrease 28: 206 reduction, presence of glucose 28: 187 Tricarboxylic acid cycle, yeasts 28: 187– 189, 197, 203, 204 Trichoderma harzianium 37: 17, 22, 27 conidiospores 38: 13 Trichoderma koningii 37: 13, 28, 42 – 44 Trichoderma longibrachiatum 37: 13, 28 Trichoderma reesei 37: 10, 12, 13, 17, 21, 22, 26, 27, 28, 32– 34, 38, 65; 39: 42; 42: 11 cellulase systems 37: 41 – 44, 46 genetics 37: 53, 56, 60, 62, 63 Trichoderma sp. 37: 7, 41 Trichoderma spp., sex hormones 34: 80, 81 Trichoderma viride 37: 13, 17, 28 Trichodermin activity, C. albicans 27: 302 amphotericin resistance 27: 293 inhibition, protein sysnthesis 27: 304– 307 Trichodesmium 45: 55 Tricholoma spp. matsutake, cultivation 34: 191 shimeji, glutathione degradation in 34: 250 Trichophyton mentagrophytes, microconidial rodlet layer 38: 10, 11 Trichophyton sp., resistance, griseofulvin and flurocytosine 27: 5, 10 Trichophyton spp. mentagrophytes disease caused by 34: 130 mammalian hormones affecting 34: 110, 111, 115, 130 rubrum disease caused by 34: 130 mammalian hormones affecting 34: 111, 115, 130 Trichosporon sp., overflow reaction in 36: 152
Trifluoperazine (TFP) 30: 62; 37: 87, 95, 98, 115, 123 Trifluoroacetolysis, separation, glycolipids 28: 85 Trifolium repens 39: 307 Trigger factor 44: 114, 130 Triglyceride, M. leprae nutrient acquisition 31: 107 Trihydroxyphenazines 27: 213– 216 proposed pathway 27: 255 structural formulae 27: 226 Trimer formation 40: 385 Trimeresurus wagleri 37: 146 Trimethoprim adhesions, enhancement 28: 231 inhibition 28: 218 synergistic effect with complement 28: 240 uropathogens, effect on 28: 221 Trimethoxyphenazines 27: 213 identification 27: 227 Trimethylamine (TMA) 31: 262 Trimethylamine oxide (TMAO) reductase 31: 261, 262 Trimethylamine oxide (TMAO), reduction 31: 226, 261, 262, 265 Trimethylammonium N-oxide 26: 171 Triose phosphate isomerase 29: 183 Triose phosphate translocator (TPT) family 40: 93, 96 Triosephosphate 37: 182, 183, 185 Triosephosphate isomerase 37: 180, 183, 187 Triphenyltetrazolium chloride 29: 38, 39 Triphosphorylated phosphatidylinositol, monoclonal antibody 32: 16, 17 turnover, glucose starvation effect 32: 16, 17 Tris(hydroxymethyl) aminomethane 37: 197 Tris/HCl buffer system 27: 284 Trisporic acids 34: 81 – 86, 102 Trisporol, trisporic acid formation and 34: 82, 84 ‘Trithionate pathway’ 31: 246 Triton X-100 29: 280, 290; 43: 130 TRK1 gene 33: 184 tRNAGlu 46: 263, 264 Tropheryma whippelii 41: 101, 102 Truncated globins 47: 268–275 conserved residues 47: 270 function 47: 273– 275 haem coordination 47: 270, 271 ligand binding 47: 271– 273 two-over-two a-helical fold 47: 269, 270 TrxA mutation 34: 268 TrxB mutation 34: 268
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 trxBA operon 46: 83, 84 Trypanosoma 35: 8 Trypanosoma brucei 29: 208; 35: 12, 17; 43: 24 Trypanosoma sp., heat-shock response 31: 210, 212 Trypanosoma spp. (and trypanosomatids) drugs acting against 34: 283 glutathione-related processes 34: 245, 251, 272, 275, 282, 283 Trypanothione reductase in H. salinarum 34: 275 in trypanosomatids 34: 245, 280 inhibitors of, as antimalarial drugs 34: 280 Trypanothione, trypanosomatid 34: 245 Trypsin, agglutination, human, erythrocytes 28: 82 Trypsin, amphotericin resistance 27: 297, 298 Trypsin, flocculent cell digestion 33: 18, 19 Tryptophan 37: 33, 34; 39: 352; 42: 126– 128 chloramphenicol biosysthesis 27: 263 phenazine production 27: 264 Tryptophan catabolism 31: 109 Tryptophan residues 40: 29 Tryptophan synthase 35: 98; 39: 349 Tryptophan synthetase, hydrophobicity causing stability 29: 221 Tryptophanase 39: 349 Tryptophan-specific transport 28: 171 Tryptophyl Tryptophanquinone (TTQ) cofactor, Tat protein translocation pathway 47: 210, 211 tse, gene 33: 300, 314 Tsr 45: 165, 166, 167, 181 tsr gene 33: 300, 325 mutations 33: 300 Tsr protein 33: 299 as primary transducer 33: 301 as thermoreceptor 33: 301 assembly 33: 300 copies in each cell 33: 302 in CheY-P formation 33: 320 periplasmic domain for serine sensing 33: 304 tsr mutants 33: 300 TTQ (tryptophan tryptophylquinone) 40: 4 Tuber spp. magnatum, cultivation 34: 191 melanosporum cultivation 34: 191 5-a-androst-16-en-3a-ol metabolite of 34: 132
257
Tuberculosis 39: 132, 133 non-culturable cells 47: 89, 91 see Mycobacterium Tubermycin 27: 217 structural formula 27: 237 Tubulin 37: 120 and Physarum polycephalum 35: 13, 25, 35, 36, 38, 40, 41 assembly into microtubules, effect of griseofulvin 27: 7, 8 genes and polypeptides 35: 14 –17 microtubule-associated proteins 35: 22, 23 multiple 35: 20 – 22 periodic variation 35: 42 –44 utilization 35: 17 – 20 Tumbling episodes 32: 111, 112, 156 see also Chemotaxis as basis for taxis 32: 111, 112 direction of wave propagation 32: 116, 156 mechanism 32: 115, 116, 156 Tungsten, as essential metal 38: 180 Tungsten, nitrogenase based on 30: 9, 18 Tunicamycin 33: 54, 57 lack of potential use 27: 62 structural formula 27: 62 Tunicates 37: 7, 8 Tunicin 37: 3 TUP1 gene 33: 61, 62 Turgor 32: 175, 189 Turgor pressure 32: 176, 183, 189; 33: 153– 155; 40: 358 as prerequisite for growth, evidence against 33: 153, 154 at plasmolysis point 33: 162 cell-wall stress and 32: 194, 205 magnitude in bacterial cells 32: 183 measurement methods 33: 153 gas vesicles 33: 155 probe 33: 154, 155 negative, plasmolysis and 33: 163 regulation 33: 154 removal, rapid changes in twist 32: 212 water potential relationship 33: 154 Turgor-regulating cells 33: 154 Twin arginine translocation (Tat) see Tat protein translocation pathway “Twitching motility” 29: 63, 96 Two component system s -anti-s pairs 46: 47 ECFs factors 46: 80 FixL/FixJ 46: 290, 291 low-oxygen gene regulation in M. tuberculosis 46: 24
258
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Two-colour hybridization system, microarray method 46: 8 – 10 Two-competing site (TCS) model 36: 181– 242 evolution of bacteria shape 36: 194– 196 foundations of 36: 188– 191 main features 36: 196, 197 major experimental data 36: 198, 199 previous proposals and 36: 197, 198 schematic depiction 36: 190 testing the model against known experimental observations 36: 199– 242 chemical composition of peptidoglycan 36: 226–228 effect of b-lactams on cell division, cell effects of alterations on cell shape, division and number 36: 224–226 effects of inhibition of lateral-wall elongation and septum formation 36: 220– 224 evolution of bacterial morphology 36: 199– 201 interaction between DNA and the bacterial envelope 36: 236– 242 lateral wall and septum formation 36: 228– 232 LED control over septum formation 36: 201– 207 morphology and cell-division mutants 36: 212– 220 peptidoglycan content and synthesis in morphological mutants 36: 207– 209 shape and peptidoglycan synthesis 36: 209– 211 shape maintenance during cell cycle 36: 232– 236 Two-component regulatory systems 45: 159 Two-component systems and cell-surface polysaccharide biosynthesis and synthesis of alginate 35: 221, 222 and transcriptional regulators 35: 223, 224 group-I-like 35: 216– 221 Two-component, sensor kinase/response protein mechanism 37: 106 Two-dimensional crystals, application potential 33: 257– 260 see also S-layer TxeR sigma factors 46: 50, 54, 56 Tylosin, growth promotion, meat animals 28: 244, 245 Type-III secretory pathway apparatus 42: 43
Tyromyces palustris 35: 278; 41: 54 Tyrosinase, fruiting and 34: 179 Tyrosine 37: 33, 241; 42: 128 pyocyanine formation 27: 263 suppression of pigment 27: 264 Tyrosine kinase 37: 107, 108 activity of insulin-binding proteins in N. crassa 34: 121 Tyrosine-specific transport, E. coli 28: 171– 173 energy source, proton-motive 28: 173 tyrR locus 28: 171–173 U. sphaerogena 43: 42, 47, 54, 60 UB14 polyubiquitin gene, mutants defective 31: 195 Ubiquinol oxidase 36: 263, 266, 268 Ubiquinol-cytochrome c oxidoreductase 40: 195 Ubiquinone in hydrogen oxidation 29: 31 Ubiquinone in methylotrophs 27: 179 Ubiquinones 39: 350 Ubiquitin 31: 185 amino-acid homology 31: 192 function/role 31: 193, 195 induction of synthesis 31: 195 transcription 31: 193, 195 Ubiquitination in histone modification 35: 45, 46 Ubiquitin-protein complexes 31: 195 ubiquity 46: 207 Ubisemiquinone 46: 118 UDP-galactofuranose 39: 159 UDP-galactopyranose epimerase 39: 160 UDP-galactopyranose mutase 39: 159 UDP-galactose 37: 300 UDP-glucose 29: 261 UDPglucose pyrophosphorylase deficient mutants 30: 189 UDP-N-acetylglucosamine, Sacch. cerevisiae 34: 92 UDP-N-acetylmuramyl-L-alanine synthetase 36: 57 UGA codon 35: 89, 93 – 95 UCA-decoding tRNA, gene for 35: 90 – 92 Ultradian rhythms in unicells 39: 311– 319 Ultrafiltration membranes, isoporous, S-"layers as 33: 257– 258 Ultraviolet irradiation, partial hybrids of C. albicans 30: 56 Ultraviolet radiation, free radical generation 46: 322 Ulva lactuca 37: 300 Unbalanced growth 32: 15
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Uncoupling 39: 208, 209 versus DpH-mediated anion accumulation 39: 218, 219 Undaria pinnatifida, ophthalmic acid 34: 246 Undecaprenol 33: 250 independent mechanisms in cell-surface polysaccharides 35: 166– 168 linked intermediates formed in cellsurface polysaccharides 35: 154– 159 Unfolded protein 44: 124, 125 Unicells circadian rhythms in 39: 295– 311 ultradian rhythms in 39: 311–319 Uptake hydrogenase 30: 15, 16 Uptake systems for nitrogen-containing compounds 26: 37 – 40 UQ/UQH2 pool 45: 80 URA3 genes, C. albicans 30: 58 Uracil-triphosphate [UTP], C. albicans27: 309 Urea amidolyase 26: 24 –26 activity in nitrogen-rich medium 26: 31 ammonia effect of 26: 27, 29, 30 nitrogen catabolite repression 26: 27 regulation 26: 20 Urea degradation see Allantoin – urea degradation Urea, nitrification stimulation 30: 165, 166, 176 Urease 37: 259; 42: 147, 255– 257 activity in ammonia oxidizers 30: 165, 166, 168, 176 nickel effects on 29: 20 of Helicobacter pylori 40: 176– 179 Ureidosuccinate-allantoate permease 26: 50, 51 Ureidosuccinic acid 26: 50 Uric acid 26: 78 Uridine monophosphate pyrophosphorylase, resistance to 5-fluorouracil 27: 18 Uridine nucleotides, in M. leprae 31: 95 Uridine triphosphate (UTP) 28: 168 Uridylase 37: 96 Uriease 31: 177 Urinary tract infections, adhesive pili of E. coli in 29: 55, 61 Urinary tract infections, see also Fimbriae; F72, IA2, Pap, uropathogenic strains endo-b-galactosidase-treated erythrocytes, screening E. coli 28: 90 host-specific adhesins 28: 67
259
mannose-insensitive adhesins 28: 87 – "90 identification of receptors 28: 90 MN specificity 28: 89, 90 P blood groups 28: 87– 89 X-specificity 28: 89, 90 uropathogenic strains, E. coli 28: 78 – 81 Uromyces appendiculatus, hydrophobic adhesion 38: 30 Uroporphyrinogen decarboxylase 46: 269, 270 Uroporphyrinogen I, formation 46: 268 Uroporphyrinogen III 46: 261 biosynthesis from ALA 46: 266, 268 coproporphyrinogen III synthesis from 46: 299, 300 in alternative haem biosynthesis pathway 46: 299, 300 protohaem formation pathway absent 46: 300, 301 protoporphyrin IX synthesis from 46: 269, 270 Uroporphyrinogen III methyltransferase 46: 268 Uroporphyrinogen III synthase 46: 268, 269 alternative haem pathway 46: 300 genes, absence in prokaryotic genomes 46: 296, 297 recombinant 46: 268 Ustilago 43: 5 Ustilago genus 26: 57 Ustilago maydis 43: 41, 47– 49 apomixis in 30: 31 mating-type genes 34: 160, 161 sterol demethylase deficiency 27: 45 Ustilago sphaerogena, nitrogen metabolite-repressible enzymes in 26: 72 UV radiation DNA repair 28: 3 effect of oxygen 28: 16 induction of proteins 28: 19 – 21 intrastrand pyrimidine dimers 28: 12 – 16 macromolecular synthesis 28: 16 – 18 phage reactivation 28: 3 Vaccines 37: 263 development, S-layers in 33: 259, 260 Vacidin, lipid-polyene complex 27: 33 Vacuolar membrane, transport systems in 33: 185 Vacuolating cytotoxin VacA 40: 144
260
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Vacuoles 33: 185 decrease in size with cellular dehydration 33: 162 inorganic ions and solute accumulation 33: 185 Vag 44: 157, 158 vag gene products 44: 158– 170 Vaginal fluid, C. albicans secretory proteinase activity 30: 73 Vaginitis, C. albicans, adherence capacity and 30: 72 colony morphology switching 30: 67 Valclavam 36: 55 Valeric acid production, Clostridium botulinum 28: 37 Valine 26: 21; 42: 132, 185, 186 Valine dehydrogenase (VDH) 42: 116, 132– 135 Valine permease 42: 125 Valinomycin 36: 38; 37: 97, 98; 39: 296; 41: 296 Valonia 37: 3, 6, 8 Van der Waal’s bonds 28: 93 – 95 van der Waals’ forces 33: 14, 24 Vanadium, nitrogenase based on 30: 6, 7, 9, 12, 18 in psychrophilic diazotrophs? 30: 18 Vancomycin 28: 218 adhesions, enhancement 28: 231 cell-wall synthesis inhibition 28: 236 cytotoxin inhibition, Clostridium difficile 28: 234 decrease, meningococcal adhesions 28: 224 endocarditis, adhesions 28: 226 a-haemolysin, enhancement 232 stress, Bacillus subtilis s W role 46: 77 subinhibitory concentrations, phagocytosis 28: 241 van’t Hoff relation, see Boyle-van’t Hoff relation Vaucheria terrestris, ionic currents in 30: 93, 111, 117 VBNC hypothesis 41: 96 – 99, 118 vbs genes 45: 121, 122 Vector, see also Plasmid(s) pCF32 31: 63 pKT240 31: 63 pNM185 31: 63 pTG402 31: 62 pTS1045 31: 63 TOL genes creating 31: 62, 63 Vectors, in S-layer gene cloning 33: 246, 247 Vegetative cells, sensitivity to organic acids 32: 94
Vegetative growth of higher fungi, RNA and protein regulation during 34: 161– 163 Veillonella alcalescens 35: 102 Venicillium balanoides adhesion in 36: 127, 127, 128 cuticle penetration in 36: 132, 133, 135 nematode trapping devices 36: 118, 124, 125 Verapamil 37: 95, 97, 98, 116 Vermiculite 30: 163 Verrucarin amphotericin resistance 27: 293 Verticillium sp. 36: 124 Vesicles, lipoteichoic acids, lipids and proteins in 29: 248, 274 mesosomal, lipoteichoic acid associated 29: 275 Vesicles, see Golgi complex-derived secretory vesicles; Transport vesicles Vespa crabro 37: 141 Vespula lewisii 37: 143 Vgb see Vitreoscilla haemoglobin Viability assessment at individual or community level 41: 122– 124 conceptual and operational definitions 41: 96, 97 developments in instrumentation 41: 108– 110 indirect assessments 41: 110 microbiological usage 41: 94 new methods of estimation 41: 102– 111 operational definition 41: 97, 98 Viable but non-culturable (VBNC) cells 40: 146 Viable but non-culturable hypothesis. See VBNC Viantigen 35: 145 Vibrating calcium electrode 30: 92 Vibrating probe 30: 90, 91 modifications and refinements 30: 91 Vibrio 43: 197 Vibrio alginolyticus 41: 270, 296, 305, 313; 44: 240 copper-binding proteins 38: 223 copper-resistant/-sensitive 38: 214 low molecular-weight nutrient utilization 32: 71 Na+ pump 26: 130 Vibrio anguillarum 41: 274; 45: 207 Vibrio cholera 41: 274 NMePhe pili 29: 63
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Vibrio cholerae 35: 192, 208, 209; 37: 233, 239, 244, 245; 40: 287, 304; 41: 98; 45: 57, 97, 219 chemotaxis and motility, clinical relevance 33: 279 cholera toxin 28: 235, 236 lincomycin, enhancement 28: 236 flagellar sheath 33: 284 lack of studies 28: 224 Vibrio costicola 37: 313 Na+ pump 26: 130 Vibrio DW1, oxygen consumption 32: 69 surface adhesion with starvation 32: 69 Vibrio fischeri 41: 272; 42: 37, 38, 41; 45: 201, 207, 210, 212– 214, 231, 237– 239, 244, 253 Vibrio haemolyticus 41: 305 Vibrio harveyi 45: 207, 211, 218, 219 Vibrio parahaemolyticus, flagellar changes with viscosity 32: 176, 177 lateral flagella 32: 68, 177 motility 33: 288 Vibrio proteolytica, inhibitory antibiotics, ampicillin, oxacillin, streptomycin 28: 219, 224 Vibrio sp. 37: 314 response to starvation, attachment and 32: 69 Vibrio spp. bioluminescent strains 34: 2, 43, 49 identification and ecology of 34: 50, 51 cholerae 34: 2, 49, 50 fischeri 34: 39, 40 assay of luciferase 34: 13 lux genes, amino-acid sequence comparisons with other species 34: 52 –7 passim lux genes, DNA downstream from 34: 29, 30 lux genes, DNA upstream from 34: 30 lux genes, expression 34: 36 – 40, 43 –48 yellow fluorescence protein, see Yellow fluorescence protein harveyi 34: 40 – 42 a and b luciferase subunit sequence 34: 14, 15 active-site residues in luciferase 34: 16, 17 aldehyde biosynthesis and the transferase subunit in 34: 19 assay of luciferase 34: 10, 12 flavin as substrate for luciferase in 34: 7
261
lux genes, amino-acid sequence comparisons with other species 34: 52 – 57 passim lux genes, DNA downstream from 34: 29 lux genes, DNA upstream from 34: 30 lux genes, expression 34: 31, 36, 40 – 46 lux-related proteins 34: 24 other/minor references 34: 4, 8 logei 34: 2, 50 orientalis 34: 2, 51 splendidus 34: 2, 51 vulnificus 34: 2, 49, 51 Vibrio succinogenes 31: 252 Vibrio vulnificus 41: 116, 117 Vibrionaceae, bioluminescent 34: 2 Vicia bengalensis 29: 10 Vicia faba 29: 10 Vicia sativa, b-cyanoalanine activity 27: 84 Vicia unguiculata (cowpea), 10 Vicibactin 45: 119–123 and in Planta studies 45: 123 and tonB-like gene 45: 123 synthesis 45: 119 uptake 45: 122 Vigna unguiculata 43: 132 Villus 42: 42 Vinegar production 39: 222 Vinegar, uses 32: 103 Viola odorata 35: 255 Vir plasmids, E. coli 28: 78 Viral lectins 33: 53 Viral proteins, secretion 33: 63 Virginiamycin, growth promotion, meat animals 28: 244, 245 Virulence attenuation, Tat protein translocation pathway 47: 219 Virulence, evolutionary aspects 46: 2 Viruses, Synechococcus 47: 44 – 46 Visco-elasticity of cell walls 32: 200, 201 Vitamin B12 39: 365 Vitamin B12, as cofactor in tetrapyrrole synthesis 46: 261 Vitamin E 46: 323 Vitamins 42: 29 Vitreoscilla 40: 409; 43: 197 biochemical characterisation 47: 264, 265 biotechnological implications 47: 267, 268 crystal structures 47: 265, 266 function 47: 264, 265 gene expression regulation 47: 266, 267 haemoglobin (Vgb) 47: 258– 268 heterologous expression 47: 267, 268 putative reductase 47: 266
262
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Volatile fatty acids 39: 207, 208, 224, 226 Voltage, applied 30: 108, 109, 113, 114 in Achlya and Neurospora 30: 113, 116 Voltage-induced gating 37: 158 Voltage-sensitive ion channel (VLC) family 40: 127 Voltage-sensitive micro-electrodes 30: 91 Voltammetry 38: 194, 195 Volume-regulating cells 33: 154 Volumetric elastic modulus (1), 164 Volvariella volvacea 42: 2, 16 Volvariella volvacea, commercial use 34: 190 Vrg 44: 157, 158 vrg gene products 44: 158– 170 Water chemical potential of 33: 148 concentration 33: 148 disinfection, copper/silver 38: 221 fruiting in fungi and the transport of 34: 151, 177, 186 in bacterial cell walls 32: 183 pure, concentration 33: 148 supercooled crystallization by bacteria of ice from, see Ice nucleation metastability 34: 205 thermodynamic state 33: 148– 155 parameters 33: 148 units of parameters 33: 148 water potential, see Water potential velocity, at boundary layer 32: 54 Water activity 33: 146, 149 Water depollution 26: 216 Water equilibrium, thermodynamic 33: 146, 151 Water loss, see also Osmotic response cell-wall elasticity and 33: 164– 166 Water moulds, ionic currents in 30: 93, 94, 100, 101 Water permeability coefficient, biological membranes 33: 163 Water potential 33: 148, 148– 151, 149 as colligative property of solution 33: 150 at incipient plasmolysis (cplasm) 33: 165 cardinal, of growth 33: 156– 161 see also Osmotolerance of cell 33: 151– 155 cell-size changes with changes in 33: 161, 162 components 33: 151– 55 matrix potential term 33: 149
osmotic potential 33: 151– 153 turgor pressure 33: 153– 155 during heat treatment 33: 197 gravitational term 33: 148, 149 growth affected by 33: 156 high, species unable to grow at 33: 157, 158 in osmotic hypersensitivity 33: 191, 192 low, cell shrinkage 33: 161 compatible-solute accumulation influencing 33: 202– 204 cost of maintenance at 33: 199– 201 energy (ATP) generation at 33: 198, 199 energy supplies influencing 33: 200, 201 glucose-transport systems 33: 198, 199 increased ATP utilization 33: 200 inorganic ion responses 33: 182– 185 ion transport-accumulation determining 33: 202 osmotic response, see Osmoregulation; Osmotic response respiration-fermentation affected by 33: 198 water loss and cell-wall elasticity 33: 165, 166 cmax 33: 151– 58 cmin 33: 159– 161 see also Osmotolerance; Water potential, low factors determining 33: 196– 204 of environment 33: 151 of pure water 33: 149 copt 33: 158-59 sensing mechanisms in fungi 33: 204, 205 solute particle molality relation 33: 150– 152 temperature relationship 33: 157 vacuole size decrease with changes in 33: 162 Water quality evaluation 26: 277 Water stress plating hypersensitivity, see Osmotic hypersensitivity Water-osmosis 33: 146 articles published 33: 146, 147 Wax D 39: 154 Western blotting 38: 213 WetA A. nidulans gene, in conidiogenesis 38: 27 Whipple’s disease 41: 101 “White scour”, pigs 28: 66 White-opaque transition, see Candida albicans
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 Wigglesworthia, Escherichia coli K12 genome comparison 46: 33, 34 Wine fermentations 33: 4 Winter crown rot, see Snow mould disease Wolinella recta, S-layer in pathogenicity 33: 252, 253 Wolinella succinogenes 35: 77, 78, 80, 83, 96; 40: 164, 165, 172; 45: 92, 93 flagella, basal-body rings 33: 285 Wollastonia biflora 37: 300 Wort, see also Brewing; Flocculation high molecular-weight factors 33: 59 nitrogen content 33: 58 pH value 33: 18 proteins, in flocculation 33: 13, 14 Wreck and check approach 33: 82, 86, 87 X specificity, urinary tract infections 28: 89 X-adhesins 29: 95 Xanthates 30: 170 Xanthine 26: 78 Xanthine dehydrogenase (XDH) 42: 143, 144 Xanthine dehydrogenases and seleniumdependent enzymes 35: 73, 86, 87 Xanthine oxidase 46: 123 Xanthine oxidase/dehydrogenase (XDH) 42: 143 Xanthobacter 40: 62 Xanthobacter autotrophicus 39: 260, 270 associated 29: 14 dehalogenases alkane 38: 160–162, 163 alkanoic acid 38: 138, 141 Dh1B overexpression 38: 151 1, 2-dichloroethane degradation 38: 152 hydrogenase, cytochrome Xanthomonas 41: 273 Xanthomonas albilineans 37: 12 Xanthomonas campestris 35: 278 and cell-surface polysaccharide biosynthesis genetics 35: 205, 211 process 35: 156, 170, 171 regulation 35: 214, 223– 225, 229 Xanthomonas campestris 37: 10, 92 ice nucleation gene 34: 212, see also specific gene Xanthomonas maltophillia 37: 92 Xanthomonas manihotis, inhibition by cyanide 27: 98 Xenobiotics 42: 30 Xenopsin 37: 150 Xenopsin precursor fragment (XPF) 37: 146
263
Xenopus 43: 20 Xenopus embryo cells 26: 112 Xenopus laevis 35: 56 –58, 292; 37: 143, 144, 146, 150 Xenorhabdus 26: 238 Xenorhabdus luminescens aldehyde specificity 34: 8 bioluminescence (in general) 34: 2 lux gene expression 34: 33, 34, 43, 46 auto-induced 34: 43 oxygen induced 34: 46 lux gene organization 34: 29 lux protein sequence comparisons with other species 34: 52 – 57 passim Xeromyces bisporus 33: 157, 159 Xerotolerance, see Osmotolerance Xho1 31: 19 Xho2 genes 31: 9 Xiphinema americanum 36: 127 Xiphinema index 36: 127, 128 XPF (xenopsin precursor fragment) 37: 146 X-ray absorption spectroscopy, phthalate dioxygenase 38: 66, 67 X-ray diffraction, pili structure 29: 64, 65, 67 X-ray photoelectron spectroscopy (XPS), for hydrophobins 38: 17 X-ray scattering, halophilic enzymes 29: 219, 220 Xy1A protein 31: 13 xyl genes see also Plasmid pWWO; Toluene catabolism cluster 31: 5 co-ordinated expression 31: 30, 31, 55 evolution 31: 44 loss 31: 5, 39, 41, 42 molecular analysis 31: 25, 26 organization 31: 18 – 23 map 31: 20, 22 PWW0, pDK1 and pWW53 31: 47 – 49 promotors, see Operator-promotors regulation 31: 23 – 34 see also Toluene catabolism evolution 31: 55 model 31: 29 –31 mutants 31: 24, 25 RpoN involvement 31: 31 – 34 XylS and XylR role and action 31: 24, 25, 30, 55 regulatory 31: 23 see also xylR gene; xylS gene in vector construction 31: 63 molecular analysis 31: 25, 26 xylA gene 31: 13, 21 Xylan 37: 3, 34, 61
264
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
Xylanase 39: 51, 52 Xylanase see cellulose Xylan-degrading enzymes 42: 76, 77 xylB gene 31: 14, 20 induction 31: 25 xylC gene 31: 14, 20, 21 xylD gene 31: 16, 60 xylDEFG genes 31: 20 xylE gene 31: 20 see also C230 algD gene fusion 31: 63 expression detection 31: 21, 62 homology with NAH7 gene nahH 31: 53 in vector pTG402 31: 62 induction 31: 25 Xylene mono-oxygenase 31: 13 Xylene oxidase (XO) 31: 13 – 15 xylL gene 31: 60 xylM gene 31: 13, 21 XylM protein 31: 13 xylN gene, product 31: 21 Xyloglucans 37: 3, 5, 34 Xylooligosaccharides, 37: 57 Xylose 39: 56, 64, 67 – 69 Xylose catabolism 42: 91 Xylosidase 37: 55 xylQ gene 31: 23 xylR gene 31: 23, 24 codon usage 31: 26 promotor (Pr) 31: 26, 27 transcription and sequencing 31: 26, 33 transcription in pDK1, PWW53 31: 49 XylR protein, binding site 31: 33 broad effector specificity 31: 30 effect on xylS transcription 31: 30, 31 function/role 31: 24, 25, 29, 30 OP1 and Ps interaction 31: 29, 30, 33 positive regulation by 31: 24, 25 RpoN involvement 31: 31, 32 xylS gene 31: 23, 24 expression 31: 30 in pWW53 and pDK1, homology 31: 49 mutant 4-ethylbenzoate catabolism 31: 61 promotor (Ps) 31: 26, 27 restriction-enzyme map on pWWO 31: 51 role/function 31: 24, 25, 30 transcription and sequencing 31: 26, 30, 31 XylS protein, interaction with OP2 31: 29, 30 narrow effector specificity 31: 30, 60 overproduction 31: 30 positive regulation by 31: 24, 25 xylT gene 31: 23
Xylulose 33: 179 xylXYZ gene, sequencing 31: 16 YAP network 46: 179, 180 Yap1, oxidative stress in yeast and 46: 336 Yarrowia 43: 5 Yarrowia lipolytica 33: 7SL RNA in 33: 84, 85 YCL313 gene 34: 266 YCSS, yeast cell agglutination 33: 18 Yeast ADH (YADH) 41: 11 Yeast copper metallothioneins 44: 188 Yeast gum 33: 14 Yeast hexokinase 27: 307 Yeast pheromone system 37: 149 Yeasts 39: 307, 308, 316– 318 apomixis in, see Apomixis cell-wall elasticity 33: 164 cell-wall structure 33: 43, 44 degeneration (flocculation decline), 5, 6 drug resistance see Drug resistance in yeast flocculation, see Flocculation; Flocculent strains gathering of cells 33: 3, 39 immobilized, intracellular components 32: 64 inositol metabolism, see Inositol L-phenylacetylcarbinol production 41: 1 – 45 metabolism modulated by oxidative stress 46: 336 mitochondrial enzymes, imidazole effects 27: 51, 52 mycelium transformations, imidazole 27: 53, 54 non-flocculent strains, see Non-flocculent strains osmoregulation, see Osmoregulation; specific yeasts overflow reaction in 36: 152 peptide transport 36: 10, 11 regulation of the cell cycle 36: 157– 163 secreted proteins 33: 43 secretory pathway, see Secretory pathway, yeast see also Candida, Saccharomyces, Schizosaccharomyces see also Flocculation see also individual genera see also individual species see also Saccharomyces cerevisiae agglutination, inhibition 28: 107 cells, agglutination, screening 28: 73 extract, DNA degradation, B. fragilis and E. coli 28: 15 mannan, inhibition, phagocyte binding 28: 91
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26– 47 semi-intact cells 33: 92 sex hormones in 34: 86 – 100, 132, 133, see also individual species stress proteins in 31: 188, 189 superoxide dismutase mutants 46: 121 surface charge 33: 14, 26, 44 see also Flocculation vegetative (mitotic) nuclear division 30: 24, 33, 43, 44 viability decrease, low water potential 33: 193 virus 33: 63 Yellow fluorescence protein(of V. fischeri) 34: 7, 23 gene (luxY), function/properties/ location 34: 27, 31 in bioluminescent reaction 34: 13 Yensinia pestis 40: 336 Yersinia 37: 120, 121, 251; 41: 276; 45: 245, 246 Y. enterocolitica 35: 192, 193, 213 Y. pseudotuberculosis 35: 192, 210 Y. ruckeri 35: 144 Yersinia enterocolitica 37: 244 Yersinia pestis 37: 97, 119, 120, 233, 243, 244; 45: 57, 97 Yersinia pseudotuberculosis 45: 211, 248 Yfe operon, Pasteurella multocida46: 18 yggX gene 46: 332 Yops 37: 120, 121 Young’s modulus 32: 192, 195, 198 YPT1 gene 33: 101 ypt1 mutants 33: 102, 110 YPT1p, calcium-ion function and 33: 102, 110 function 33: 101, 102, 110 stimulation of secretory pathway 33: 102 SEC4p homology 33: 133 sequence and structure 33: 134 YqeZ family 46: 77 YRE (YAP1 response element)46: 179 YRS1 gene 46: 172 ZAS family 46: 80, 81 Zea mays 35: 294, 295; 37: 143 Zearelenone as a fungal sex hormone 34: 104, 117 Zia 44: 205 zia divergon 44: 203– 205 ZiaA 44: 204, 205 ZiaR 44: 199, 200, 202, 205 Zinc 37: 121, 191, 192, 202, 204, 205 accumulation in smt-deficient mutantsof Synechococcus PCC 7942 44: 206, 207 acquisition and release by SmtA 44: 208
265
in yeast meiosis 30: 38 intracellular transport 43: 24– 26 microbial interactions 38: 223, 224 regulation of uptake 43: 26 –28 SmtA expression in response to 44: 192, 193 soluble 44: 207, 208 translocation, restoration of meiosis in apomictic strains 30: 38, 39 transport in Saccharomyces cerevisiae 43: 23 uptake in Saccharomyces cerevisiae 22 – 28 Zinc depletion 31: 104, 105 Zinc enzymes, ALA dehydratase 46: 266 Zinc in rhizobia 45: 142 Zinc storage, SmtA in 44: 206, 207 Zinc sulphate, effect on apomictic phenotype 30: 37 Zinc-binding sites 44: 196 Zinc-responsive repressor of smtA 44: 193 Zinc-sensitive E. coli 38: 214 Zinc-sensitive mutants 44: 190 Zones of adhesion see adhesion Zooloea ramigera 35: 214, 226 Zoophagus insidians 36: 122 Zoophthora radicans, osmotic potential 33: 152 Zoospores, Blastocladiella, ionic currents and 30: 93, 94 Zophobas atratus 37: 141, 147 Zwitterionic water molecules 33: 27 Zwitterions 37: 289, 292, 293 Zygomycetes 43: 53 hyphal structure 38: 2 sex hormones in 34: 81 – 86 Zygophore 34: 84 – 86 formation, induction 34: 81, 84 Zygophotropism 34: 84 – 86 Zygosaccharomyces rouxii, arabinitol production, pathway 33: 179 glycerol production 33: 187, 203, 204 minimum water potential, pH affecting 33: 161 Saccharomyces cerevisiae comparison 33: 203 osmophilic mutant 33: 158 osmosensitive mutants 33: 203 osmotolerance and water potential 33: 158, 203 polyol content 33: 169, 203 glycerol as major solute 33: 169, 171, 187, 188 regulation of 33: 187, 188 solute-specific increase in arabinitol 33: 171, 179, 188 polyol metabolism 33: 177
266
CUMULATIVE SUBJECT INDEXES FOR VOLUMES 26 – 47
reduced water loss on sudden osmotic dehydration 33: 165 viability decrease with low water potential 33: 193 Zymomonas mobilis 37: 274, 305, 306, 307, 309; 40: 100; 41: 4, 12; 42: 108; 43: 188 and hopanoids 251, 254– 259, 262– 264, 268, 269 Zymomonas spp. 36: 259 Zymormonas mobilis 39: 222 5-Fluorocytosine combination therapy, amphotericin 27: 58 inhibition, nucleic acid synthesis 27: 12 – 17 metabolism in yeast, effects, model 27: 13 morphological effects on fungi 27: 17 mutation, resistant strains 27: 19
narrow range antimycotic 27: 3 resistant strains, Candida 27: 17 – 19 Saccharomyces 27: 18 structural formula 27: 11 5-Fluoro-2-deoxyuridine metabolism, yeast 27: 13 misincorporation into DNA 27: 16 mutation rate, increase, Chinese hamster cells 27: 19 5-Fluorouracil abnormal proteins, synthesis 27: 14 C. albicans, resistance 27: 17, 18 S. cerevissiae, resistance profiles 27: 18 metabolism 27: 13 2 – Deoxy-D-glucose 33: 17 23 – Deoxyantheridiol 34: 74 5 – Oxyprolinase 34: 248 2 – mercaptopyridine 36: 59 v-conotoxin 37: 97, 98, 99, 110, 111 s-factor 37: 178