ARTICLE IN PRESS
Quaternary International 187 (2008) 97–104
Dated Paleontological cave sites of Central Europe from Late Middle Pleistocene to early Upper Pleistocene (OIS 5 to OIS 8) Doris Do¨ppesa,, Stephan Kempea, Wilfried Rosendahlb a
Institut fu¨r Angewandte Geowissenschaften, Schnittspahnstr. 9, D-64287 Darmstadt, Germany b Reiss-Engelhorn-Museen, Zeughaus C5, D-68159 Mannheim, Germany Available online 10 April 2007
Abstract Caves are terrestrial depositories that preserve a large variety of organic and inorganic remains. These may contain important Quaternary climatic and ecological information. Most of the faunal remains, however, cannot be linked to any Interglacial or Glacial period exclusively. Reliable dating of such remains is therefore required. Experience has, however, shown that ESR dating of speleothems or 230Th/U dating of bones are of disputable value. Only TIMS-230Th/U dating of speleothems appears to yield reliable ages. Dating the bottom and top of speleothem layers permit assigning Pleistocene faunal remains to the OIS chronology if the deposition of the speleothems and the faunal remains are clearly correlated. Care must be taken to consider the depositional situation of each site before interpreting any age dates. In this paper we present an overview of all numerically dated paleontological cave sites in Central Europe between OIS 5 and OIS 8. A total of 25 strata were dated from 13 sites, most of them deposited during OIS 5; the rest belonging to OIS 6 and 7. Numerically dated paleontological sites older than OIS 8 are not known. r 2007 Published by Elsevier Ltd.
1. Introduction Paleontological remains are brought into caves through a variety of processes. The excellent preservation of bones, molluscs and sometimes even other organic remains is due to the constant cave climate in which seasonal temperature changes are largely missing, and which have a rather constant humidity, wet in temperate climates and dry in desert settings. Even more important is the carbonate chemistry of the seepage waters and of the sediments that prevent dissolution of bones. The dating of many species of Pleistocene mammals was established using bone deposits from caves or karst pits, among them cave bear, cave hyena, cave lion, mammoth and woolly rhinoceros. Thus, fossils from caves can deliver important paleoecological clues. Since many species are highly sensitive to climate and specific environments, their presence is a proxy for past environmental conditions. Cave fossils or fossil Corresponding author. Tel.: +49 6151 16684; fax: +49 6151 166539.
E-mail addresses:
[email protected] (D. Do¨ppes),
[email protected] (S. Kempe),
[email protected] (W. Rosendahl). 1040-6182/$ - see front matter r 2007 Published by Elsevier Ltd. doi:10.1016/j.quaint.2007.03.023
communities, however, cannot be used as dating tools a priori, since the same communities or animals may reoccur several times as the climate shifts between colder and warmer conditions. This is specially a problem during the OIS 6 and OIS 4. Nevertheless, certain mammalian species do show a pronounced evolution throughout the Pleistocene and changes in certain physical characteristics, such as the structure of their teeth that can be used for an age proxy. When comparing characteristics of a certain species between different localities it is often possible to deduce a relative temporal succession. Specifically certain small mammals, which in general show a fast evolutionary adaptation, have been found to be very valuable in this respect (Koenigswald, 1992). The Arvicolides, for example play an important role in the biostratigraphic dating of the Middle Pleistocene since they evolved rapidly during this time interval (e.g., Koenigswald, 1973, 1992; Heinrich and Koenigswald, 1999). But even with these tools, only a relative age determination within the Pleistocene can be obtained (Lower Pleistocene, older or younger Middle Pleistocene or Upper Pleistocene) (Heinrich and Koenigswald, 1996, 1999). Paralleling certain fossils with specific
ARTICLE IN PRESS 98
D. Do¨ppes et al. / Quaternary International 187 (2008) 97–104
Glacials or Interglacials or Marine Isotope Stages (OIS) is only possible by numeric dating. Within the discussed time frame only the 230Th/U methods (a-spectrometry or TIMS) (e.g., Edwards et al., 1986/87) and with very strict limitations, the ESR method (e.g., Rink, 1997) can deliver useful age dates. 2. Site descriptions In the following overview, we therefore summarize only those Central European cave sites (Fig. 1) for which numeric age data covering the period OIS 5–8 are available. The information regarding the respective sites was taken from the cited literature. A detailed critical discussion of the dating methods and the validity of the respective dates are, however, beyond the scope of this paper. It is necessary to point out that the individual dates obtained from bones or teeth must be viewed critically due to the open-system problem inherent to all samples, which potentially suffered exchange with a fluid phase during their depositional history. 2.1. Grotte Scladina, Belgium Coordinates: 21180 3800 E, 491170 4300 N. Stratigraphy: The main profile is 5.5 m thick and consists of intercalated clastic sediments and flowstone. It can be divided into following units: From top to bottom these units are CC1, 36, 37, 38, 39 and 40, 1A, 1B, 2A, 2B, 3, CC4, 4A with CC14, 4B, 5, 6, 7A and 7B (Otte et al., 1983). Dating: Several flowstone layers were dated by the 230 Th/U method in several laboratories (Gewelt et al., 1992). Four dates for unit 3 yielded an average age of 83723 ka. Layer CC4 was dated seven times. Two cores yielded mean ages of 114723 and 110714 ka, respectively.
This layer was also dated by TL yielding at its top 117.2711 and 122711 ka at its base (Debenham, 1998). From unit 5 a burnt artifact was also dated by TL and yielded 130720 ka (Aitken and Huxtable, 1992). According to magnetostratigraphical results unit 3 coincides with OIS 5b, unit 4 with OIS 5c and unit 5 with OIS 5d (Ellwood et al., 2004). Fauna: Unit 3: Canis lupus, Vulpes. vulpes, Ursus spelaeus, Ursus arctos, Panthera leo spelaea, Crocuta crocuta spelaea, Equus caballus, Sus scrofa, Cervus elaphus, Rangifer tarandus, Dama dama, Capreolus capreolus, Bovinae, Capra ibex, Rupicapra rupicapra, Lepus sp., Hystrix cristata (Simonet, 1992). Microtus arvalis/agrestis, Microtus sp., Arvicola terrestris, Clethrionomys glareolus, Apodemus cf. sylvaticus, Talpa europaea, Citellus sp. (Cordy, 1992). Unit 4: Homo neanderthalensis, C. lupus, Cuon sp., V. vulpes, Alopex lagopus, U. spelaeus, U. arctos, Ursus sp., Meles meles, Mustela putorius, Martes martes, Panthera leo spelaea, Panthera pardus, Felis silvestris, Crocuta crocuta spelaea, Mammuthus primigenius, Coelodonta antiquitatis, E. caballus, S. scrofa, C. elaphus, R. tarandus, D. dama, C. capreolus, Bos primigenius, C. ibex, R. rupicapra, Lepus sp., H. cristata, Castor fiber (Patou-Mathis, 1998). Lagurus lagurus, Citellus sp., Dicrostonyx gulielmi, Microtus gregalis, Microtus oeconomus, M. arvalis/agrestis, Pitymys subterraneus, Microtus sp., A. terrestris, C. glareolus, Apodemus cf. sylvaticus, T. europaea, Lemmus lemmus, Chiroptera (Cordy, 1992). Unit 5: C. lupus, V. vulpes, A. lagopus, U. spelaeus, U. arctos, Cuon sp., M. meles, M. martes, Panthera leo spelaea, P. pardus, F. silvestris, Crocuta crocuta spelaea, M. primigenius, C. antiquitatis, E. caballus, S. scrofa, C. elaphus, R. tarandus, D. dama, C. capreolus, B. primigenius, C. ibex, R. rupicapra (Patou-Mathis, 1998). 2.2. Einhornho¨hle, Germany
Fig. 1. Map of the reported Central European cave sites (numbers refer to the text).
Coordinates: 101240 1000 E, 511380 1200 N. Stratigraphy: The 1.5 m thick standard profile from the ‘‘WeiXer Saal’’ encompasses the following layers: The ‘‘cave bear loam’’ is sandwiched between a younger flowstone layer and a fossiliferous clay layer (Nielbock, 1987). In the Jacob–Friesen Passage a more than 2 m thick profile yielded nine layers (0—upper unit, H—lowest unit) (Nielbock, 1987). Dating: Cave bear bones of the ‘‘WeiXer Saal’’ yielded ESR dates between 95 and 104 ka (Nielbock, 1987). Cave bear bones from the Jacob–Friesen Passage (units D to H) yielded 230Th/U dates of 126+10/9 and 173+19/16 ka (Wild et al., 1988). Fauna: ‘‘WeiXer Saal’’; C. lupus, U. spelaeus, Panthera leo spelaea (Nielbock, 1987). Jacob-Friesen Passage (units D to H): C. lupus, U. spelaeus, T. europaea, Sorex araneus, A. terrestris, Microtus nivalis, M. arvalis, M. agrestis, M. oeconomus (Nielbock, 1987).
ARTICLE IN PRESS D. Do¨ppes et al. / Quaternary International 187 (2008) 97–104
2.3. Hunas, Germany Coordinates: 111320 4100 E, 491300 1700 N. Stratigraphy: The cave is completely filled with layered sediments. The roof itself collapsed, covering the sedimentfill and sealing the cave entrance. About 12 m of sediment were investigated since 1983. The sediment stack can be divided into 22 layers. From top to bottom these are the units A, B, C, D, E, F1, F2, G1, G2, G3, H, J, Koben, Kmitte, Kunten, Loben, Lmitte, Lunten, M, N, O and P (Rosendahl et al., 2006). Dating: In 2002, a flowstone layer was discovered at the base of the section (unit P). The layer is clearly connected with the cover sediment series without interruption. A stalagmite from this layer was mass spectrometrically dated (TIMS) by the 230Th/U method. The base yielded an age of 79.378.2 and the top an age of 76.879.6 ka (Rosendahl et al., 2005, 2006). Fauna: Unit O-P: Various genera and species of smaller and larger mammals occur, which have not been determined in detail as yet (Hilpert, pers. com.). 2.4. Conturines-Ho¨hle, Italy Coordinates: 111590 E, 461340 N. Stratigraphy: The floor of the upper parts of the cave is covered by thick flowstone. It is overlain in turn by fossiliferous dolomitic sand that is buried below large blocks (Rabeder, 1991). Dating: The basal flowstone is older than 350 ka, beyond the range of dating by the 230Th/U method (Frisia et al., 1993). The bone-bearing sands are much younger; the two oldest dates obtained by dating the bones are 8775 and 108+8/7 ka (Withalm, 1995). Fauna: U. spelaeus, Panthera leo spelaea, Marmota marmota (Rabeder, 1991).
99
Stratigraphy: The terminal hall yielded most of the fossils (site 2) where stalagmites sit directly on the rock floor. Above them a fossil-free loamy sand (unit 6) was deposited followed by a 1.3 m thick fossiliferous layer (unit 5), which is covered by a layer of flowstone (unit 2). Dating: The basal and top (unit 2) flowstone layers yielded 230Th/U ages of 11675 and 78+30/23 ka, respectively (Frank and Rabeder, 1997b). Fauna: U. spelaeus (Pacher, 2000). 2.7. Herdengelho¨hle, Austria Coordinates: 141580 3800 E, 471500 2500 N. Stratigraphy: The 8 m thick sediments contain six layers. The lowest layer (down to 750 cm) is a sterile, fine sand covered by flowstone. Unit 1 (380–430 cm) above it is a black-yellow loam which contained bones stained black. Unit 2 (360–380 cm), a flowstone layer, shows welldeveloped stalagmites. Unit 3 (330–360 cm) and unit 4 (300–330 cm) contained partially –to –well-preserved brown stained bones. Unit 5 (280–300 cm) is composed of blocks and reddish loam. Unit 6 (200–280 cm) forms a 2 m thick cover composed of fossil free, light yellow loam (Leitner-Wild et al., 1994). Dating: The flowstone layer of unit 2 was 230Th/U dated to 111+11/10 ka. The cave bears bones of unit 1 which dates back to the period from 135+11/10–12777 ka (Leitner-Wild et al., 1994). Fauna: Unit 1; U. spelaeus (Frank and Rabeder, 1997a). 2.8. Repolustho¨hle, Austria
Coordinates: 141150 E, 471390 N. Stratigraphy: Undisturbed deposits are found only in the entrance hall (Draxler et al., 1986). Below a Holocene layer with gastropods (unit A) a typical cave loam with cave bear bones occurs (units B–E). Further down sterile loams fill the interstices between large blocks below dark sediments with cave bear remains, allochthonous pebbles (unit G) and fossil-free pebble-bearing sands (so-called ‘‘Augensteinsande’’, unit H). Dating: Cave bear bones from unit G yielded 230Th/U dates between 117+11/10 and 150+25/19 ka (Draxler et al., 1986). Fauna: Unit G; U. spelaeus (Draxler et al., 1986).
Coordinates: 151200 5100 E, 471180 3500 N. Stratigraphy: The sedimentary profile in the pit (from the bottom to the top) shows loam and clay followed by rustcolored phosphate-rich sediments with manganese streaks, gray sands and a rust-colored phosphate-rich soil (Mottl and Murban, 1955). Dating: A cave bear bone from the lowest layer in the pit yielded a 230Th/U age of 230+13/12 ka (Fu¨rnholzer, 1997). Fauna: Lower rust-colored phosphate-rich sediment; C. lupus, Canis mosbachensis, V. vulpes, Cuon alpinus sp., Ursus deningeri, U. arctos, M. martes, M. meles, Mustela nivalis, Putorius sp., F. silvestris, Lynx lynx, P. pardus, Panthera leo spelaea, Elephantidae indet., S. scrofa, C. elaphus, Megaloceros giganteus, C. capreolus, R. tarandus, Bison priscus, R. rupicapra, C. ibex, Lepus sp., T. europaea, Sorex cf. araneus, Myotis bechsteini, Plecotus auritus, Marmota marmota, Spermophilus cf. citellus, Cricetus major, Apodemus sylvaticus, Apodemus flavicollis, C. glareolus, Arvicola hunasensis, M. arvalis, Hystrix cf. vinogradovi, Aves (Rabeder and Temmel, 1997).
2.6. Schwabenreith-Ho¨hle, Austria
2.9. Divje babe I, Slovenia
2.5. Ramesch-Knochenho¨hle, Austria
Coordinates: 141580 3800 E, 471500 3300 N.
Coordinates: 131540 E, 461010 N.
ARTICLE IN PRESS 100
D. Do¨ppes et al. / Quaternary International 187 (2008) 97–104
Stratigraphy: This Upper Pleistocene site contains a long stratigraphic sequence spanning the period from approximately 120 to 35 ka (Turk et al., 2001). The 11.5 m thick profile is divided in 21 units; the oldest is unit 21 (Turk et al., 2002). Dating: 230Th/U dating of a bear bone yielded 81710 (unit 20) and 8477 ka for unit 19 (Nelson, 1997). Fauna: Unit 20–17; U. spelaeus (99%) (Turk et al., 1989). 2.10. Vindija, Croatia Coordinates: 161200 3800 E, 461190 N. Stratigraphy: The 12 m thick stack of sediments in Vindija cave can be divided in 13 layers designated from unit A (youngest) to unit M (oldest). Dating: 230Th/U dates from cave bear bones of unit J range from 15672–196+20/15 ka and of the underlying unit K from 150+16/13–212+17/13 ka (Wild et al., 2001). Fauna: Unit J: C. lupus, C. alpinus europaeus, U. spelaeus, Panthera leo spelaea, C. elaphus, C. ibex, Bovidae indet, M. marmota (Malez and Ullrich, 1982). Unit K: C. lupus, U. spelaeus, Panthera leo spelaea, P. pardus, Crocuta crocuta spelaea, Stephanorhinus kirchbergensis, S. scrofa, C. elaphus, M. giganteus, D. dama, C. capreolus, B. primigenius (Malez and Ullrich, 1982). 2.11. Krapina, Croatia Coordinates: 151520 E, 461100 N. Stratigraphy: The 12 m thick stack of sediments in Krapina can be divided into 10 layers designated unit I (oldest) to unit 9 (youngest) (Malez, 1970, 1978). Dating: The age of tooth enamel of hominids from unit 9 yielded a 230Th/U date of 113710 ka and an ESR date of 8777 ka. The ages of teeth from units 1–8 were indistinguishable, with a mean of 130710 ka (Rink et al., 1995). Tooth enamel of hominids from unit 9 to 6 and unit 1 was dated by U-series dates and ESR (Rink et al., 1995). Fauna: Unit 8, level 9 (Unit 9 after Malez, 1970): H. neanderthalensis, C. lupus, U. spelaeus, U. arctos, S. kirchbergensis, C. elaphus, M. giganteus, Bos/Bison, R. rupicapra, Lepus sp., M. marmota (Patou-Mathis, 1997). Unit 6, levels 7 and 8 (Units 7 and 8 after Malez, 1978): H. neanderthalensis, C. lupus, C. alpinus, U. spelaeus, U. arctos, Lutra lutra, M. putorius, M. martes, P. pardus, S. kirchbergensis, Sus scrofa, C. elaphus, C. capreolus, Bos/ Bison (Patou-Mathis, 1997). Unit 4, levels 5 and 6 (Units 5 and 6 after Malez, 1978): H. neanderthalensis, C. lupus, V. vulpes, U. spelaeus, U. arctos, M. putorius, S. kirchbergensis, E. caballus, C. elaphus, C. capreolus, Alces alces, Bison sp. (PatouMathis, 1997). Unit 1, level 1 (Unit 1 after Malez, 1970): H. neanderthalensis, U. spelaeus, Paleoloxodon antiquus, S. kirchbergensis, E. caballus, C. elaphus, Bos/Bison, C. fiber (Patou-Mathis, 1997).
2.12. Ku˚lna, Czech Republic Coordinates: 161440 2400 E, 491240 3600 N. Stratigraphy: The cave infill is up to 15 m thick and is divided in 14 layers (Valoch, 1988). Dating: The age of tooth enamel of B. primigenius and Equus sp. from unit 9b yielded an ESR date of 6978 ka (Rink et al., 1996). Fauna: Layer 9b: C. lupus, U. spelaeus, U. arctos (Urus. taubachensis), Panthera leo spelaea, Crocuta crocuta spelaea, M. primigenius, C. antiquitatis, S. kirchbergensis, Equus taubachensis, B. primigenius, Bovidae, C. elaphus, A. alces, Rangifer tarandus, Lepus sp., Aves (Valoch et al., 1969). 2.13. Bis´nik Jaskinia, Poland Coordinates: 191550 E, 501280 N. Stratigraphy: More than 7 m thick clastic sediments can be divided in 18 layers. The lowest series consists of layers 8–18 (Miros"aw-Grabowska, 2002). Dating: 230Th/U dating of bones from layers 12 and 13 yielded an age range of 115–128 ka, for layer 14 from 128–200 ka, for layer 15 from 200–250 ka and for layer 16 and 17 from 250–270 ka (Hercman, 2000). Fauna: Layer 12, 13: U. spelaeus, E. caballus, C. elaphus, C. capreolus, R. tarandus, B. primigenius, C. glareolus (Miros"aw-Grabowska, 2002). Layer 14: C. lupus, U. spelaeus, other carnivores, E. caballus, S. scrofa, C. elaphus, M. giganteus, R. tarandus, B. priscus, A. terrestris, M. oeconomus, C. glareolus (Miros"aw-Grabowska, 2002). Layer 15: C. lupus, V. vulpes, U. spelaeus, other carnivores, E. caballus, S. scrofa, C. elaphus, C. capreolus, R. tarandus, B. priscus, A. terrestris, M. oeconomus, A. sylvaticus, C. glareolus (Miros"aw-Grabowska, 2002). Layers 16, 17: V. vulpes, U. spelaeus, Crocuta crocuta spelaea, other carnivores, C. antiquitatis, E. caballus, C. elaphus, M. giganteus, C. capreolus, A. alces, R. tarandus, B. priscus (Miros"aw-Grabowska, 2002). 3. Discussion In spite of the fact that numerous paleontologically important cave sites are known in Central Europe that may be dated into the time period OIS 5–OIS 9 (e.g., Do¨ppes and Rabeder, 1997; Heinrich and Koenigswald, 1996, 1999), we found only 13 sites in the literature for which numerical dates have been published. A total of 32 layers have been dated in these sites (Fig. 2). More than half of the faunal strata have been dated because they are part of archeologically important sites. Numerical dates of purely paleontological sites are rare even though the archive cave and its rich bone beds offer enough potential for a systematic study.
ARTICLE IN PRESS D. Do¨ppes et al. / Quaternary International 187 (2008) 97–104
Fig. 2. Time table and assignment of cave deposits to the OIS chronology. Dot ¼ date without standard deviation, dot and line ¼ date with a standard deviation, solid line ¼ time range of strata with several dates. Explanation of abbreviations: BC ¼ Bis´ nik Jaskinia (12—number of site description), Cu ¼ Conturines-Ho¨hle (4), Db ¼ Divje Babe I (9), EH ¼ Einhornho¨hle (2), Hd ¼ Herdengelho¨hle (7), Hu ¼ Hunas (3), Kr ¼ Krapina (11), Ku ¼ Ku˚lna (12), Re ¼ Repolustho¨hle (8), Rk ¼ RameschKnochenho¨hle (5), SC ¼ Grotte Scladina (1), Sw ¼ Schwabenreith-Ho¨hle (6), Vi ¼ Vindija (10).
There are several reasons why this has not been carried out yet. First of all, cave sites are not easily accessible (compared to open air sites). Second, the mechanisms of deposition are complicated and can only be understood by investigating the genesis of the respective cave and its sediments in general. Cave studies therefore require additional knowledge in general speleology before the specific site can be interpreted correctly. The most important point, why so few dates exist is related to the dating itself. Beyond the reach of the 14 C-method, bones, as mentioned above, can only be dated by the 230Th/U- or ESR methods. The 230Th/U-method is the one most commonly used. From today’s view ESR dates of bones are highly problematic and should not be used (e.g., the dates of the Einhornho¨hle). Only ESR dates of tooth enamel seem to be correct (e.g., Krapina). TL-dating, used for speleothems (e.g., Grotte Scladina) exclusively, is methodologically also of doubtful quality and TL-dates should today be regarded with caution and their usage should be discontinued.
101
Even the 230Th/U-dating of bones is methodologically problematic due to the fact that bones very often proved to be open systems (for a discussion see Bischoff et al., 1995). The unusual standard deviations of the dates of unit J of Vindija (Wild et al., 2001) may be caused by exactly this open system problem. Therefore it is essential that before dating both the excavator and the geochemist discuss the chronostratigraphy, paleoecology and paleoclimatology of a site in detail. Even though, there are isotopists who view all 230Th/U bone dates critically and suggest they be discarded all together (e.g., Geyh, 2005). The 230Th/U-dating technique of speleothems has been improved substantially, resulting in more reliable results since the 1990s. These have been used for the reconstruction of Middle to Upper Pleistocene climate and environment (e.g., Winograd et al., 1992; Kempe et al., 2002; Genty et al., 2003; Holzka¨mper et al., 2005), the dating of bones is lagging behind. Only a few laboratories (e.g., Vienna and Warsaw) are currently applying it. It would therefore be profitable if the technique of dating bones with 230 Th/U could also be improved in the future. Interesting suggestions in this direction have been made by Hercman (2000), Pike et al. (2002) and Eggins et al. (2005). Hoffmann and Mangini (2003) also describe an interesting method to date teeth and perhaps bones from open systems. Even though speleothem dating with the TIMS 230Th/Umethod is also not entirely free of methodological problems, TIMS speleothem dates are the best dates available today to establish cave-based chronologies. Flowstone layers above or below the faunal strata can thus be dated, bracketing the ages of the bones (e.g., Schwabenreith-Ho¨hle). Those sites, which do not have speleothem supported age models should therefore be revisited and additional samples should be dated to give the currently available bone dates further credibility. For climatic and ecological investigations of speleological faunas we should therefore target those cave sites, which can be dated via speleothems. Additionally, bones could be dated with TIMS 230Th/U and teeth with ESR in order to advance dating techniques in general. Since the open system problem induces a substantial inaccuracy regarding dates of bones and teeth, a critical assessment of specific faunal assemblages with respect to their exact stratigraphical position remains difficult. In addition, numerical dates have a certain standard deviation caused by methodological problems. This deviation can be quite substantial with the consequence that only two of the faunal assemblages suitable for ecological discussion can be attributed to either a Glacial or Interglacial. These two faunas are Layers 12–13 of the Bis´ nik Jaskinia (attributed to OIS 5e) and the fauna recovered from the pit of the Repolustho¨hle (attributed to OIS 7). In case of Bis´ nik Jaskinia only the R. tarandus component is in contrast to its Eemian age, but the faunal remains of the Repolustho¨hle combine both Glacial and Interglacial species, i.e., R. tarandus and M. giganteus
102
Table 1 Overwiew of the numericallydated cave sites Site B B B B B B D D D D D I I I A A A A A A A A A SLO SLO CRO CRO CRO CRO CRO CRO CRO CRO CRO CS CS PL PL PL PL
138 138 138 138 138 138 370 370 370 520 521 2775 2776 2775 1960 1961 959 960 878 878 878 878 525 450 450 275 275 275 275 275 275 120 120 120 470 470 395 395 395 395
Unit 3 CC4 CC4 CC4 CC4 Unit 5a WeiXer Saal JFG-Unit D–H JFG-Unit D–H Unit P Unit P
Unit G Unit G Unit 2 top Unit 2 basal Unit 2 Unit 2 Unit 1 Unit 1 Lowest layer Unit 20 Unit 19 Unit J Unit J Unit J Unit K Unit K Unit K Unit 9 Unit 9 Unit 1–8 Unit 9b Unit 9b Layer 12–13 Layer 14 Layer 15 Layer 16–17
Material Flowstone Flowstone Flowstone Flowstone Flowstone Burnt artifact Bone Vertebra Cranial bone Flowstone Flowstone Bone Bone Flowstone Bone Bone Flowstone Flowstone Flowstone Flowstone Bone Bone Bone Bone Bone Bone Bone Bone Bone Bone Bone Tooth Tooth Teeth Tooth Tooth Bone Bone Bone Bone
Fauna
Method
Time
+
References
230
83,000 110,000 114,000 117,200 122,000 130,000 98,000 126,300 173,200 76,872 79,373 87,000 108,000 4350,000 117,000 150,000 78,000 116,000 110,900 112,800 126,900 135,200 230,000 81,000 84,000 156,300 158,600 196,000 150,400 159,300 212,200 113,000 87,000 130,000 69,000 69,000 115,000–128,000 128,000–200,000 200,000–250,000 250,000–270,000
23,000 14,000 23,000 11,000 11,000 20,000 4900 9800 18,800 9.686 8.237 5000 8000
23,000 14,000 23,000 11,000 11,000 20,000 4600 8800 15,900 9.686 8.237 5000 7000
11,000 25,000 30,000 5000 11,000 13,100 7000 10,900 13,000 10,000 7000 2100 8100 20,000 16,200 10,000 16,700 10,000 7000 10,000 8000 8000
10,000 19,000 23,000 5000 9800 11,600 6700 9600 12,000 10,000 7000 1800 7900 15,000 13,200 9500 13,000 10,000 7000 10,000 8000 8000
Gewelt et al. (1992) Gewelt et al. (1992) Gewelt et al. (1992) Debenham (1998) Debenham (1998) Huxtable and Aitken (1992) Wild et al. (1988) Wild et al. (1988) Wild et al. (19880 Rosendahl et al. (2006) Rosendahl et al. (2006) Withalm (1995) Withalm (1995) Frisia et al. (1993) Draxler et al. (1986) Draxler et al. (1986) Frank and Rabeder (1997b) Frank and Rabeder (1997b) Wild et al. (1988) Rabeder and Mais (1985) Leitner-Wild et al. (19940 Leitner-Wild et al. (1994) Fu¨rnholzer (1997) Nelson (1997) Nelson (1997) Wild et al. (2001) Wild et al. (2001) Wild et al. (2001) Wild et al. (2001) Wild et al. (2001) Wild et al. (2001) Rink et al. (1995) Rink et al. (1995) Rink et al. (1995) Rink et al. (1996) Rink et al. (1996) Miros"aw-Grabowska (2002) Miros"aw-Grabowska (2002) Miros"aw-Grabowska (2002) Miros"aw-Grabowska (2002)
Th/U Th/U 230 Th/U TL TL TL 230 Th/U 230 Th/U 230 Th/U TIMS TIMS 230 Th/U 230 Th/U 230 Th/U 230 Th/U 230 Th/U 230 Th/U 230 Th/U 230 Th/U 230 Th/U 230 Th/U 230 Th/U 230 Th/U 230 Th/U 230 Th/U 230 Th/U 230 Th/U 230 Th/U 230 Th/U 230 Th/U 230 Th/U 230 Th/U ESR ESR ESR ESR 230 Th/U 230 Th/U 230 Th/U 230 Th/U 230
Cave bear Cave bear Cave bear
Cave bear cave bear Cave bear Cave bear
Cave bear Cave bear Cave bear Bear Bear Cave bear Cave bear Cave bear Cave bear Cave bear Cave bear Hominid Hominid Hominid Bovid Equid
ARTICLE IN PRESS
Grotte Scladina Grotte Scladina Grotte Scladina Grotte Scladina Grotte Scladina Grotte Scladina Einhornho¨hle Einhornho¨hle Einhornho¨hle Hunas Hunas Conturines-Ho¨hle Conturines-Ho¨hle Conturines-Ho¨hle Ramesch-Knochenho¨hle Ramesch-Knochenho¨hle Schwabenreith-Ho¨hle Schwabenreith-Ho¨hle Herdengelho¨hle Herdengelho¨hle Herdengelho¨hle Herdengelho¨hle Repolustho¨hle Divje babe Divje babe I Vindija Vindija Vindija Vindija Vindija Vindija Krapina Krapina Krapina Ku˚lna Ku˚lna Bis´ nik Jaskinia Bis´ nik Jaskinia Bis´ nik Jaskinia Bis´ nik Jaskinia
Layer
D. Do¨ppes et al. / Quaternary International 187 (2008) 97–104
1 1 1 1 1 1 2 2 2 3 3 4 4 4 5 5 6 6 7 7 7 7 8 9 9 10 10 10 10 10 10 11 11 11 12 12 13 13 13 13
m a.s.l.
ARTICLE IN PRESS D. Do¨ppes et al. / Quaternary International 187 (2008) 97–104
occurs together with C. capreolus and S. scrofa. Thus, the presence of cold climate species is in contrast to the numerical Interglacial date. The accuracy of the numerical dates of all other sites and layers do not permit to attribute the faunas into a specific Glacial or Interglacial. Thus, the faunas cannot be evaluated regarding their ecological and climatic character. Contradicting occurrences of Glacial and Interglacial faunal elements cannot be resolved as long as the numerical dates allow for both possibilities. 4. Conclusion In conclusion, the numerical dates of paleontological sites in Central Europe now available do not allow—with the exception of Bis´ nik Jaskinia and the Repolustho¨hle—a critical discussion of their faunal assemblages as to their ecological–climatic distribution. But even those two sites are not without contradicting faunal elements and it remains doubtful if they represent either Glacial or Interglacial faunas. The flowstone dating of the sites Grotte Scladina, Hunas, Herdengelho¨hle and Schwabenreith-Ho¨hle yielded plausible minimal ages for their faunal elements. At the Schwabenreith-Ho¨hle the cave bear bones are inbetween two dated flowstone layers. In this particular case the fauna between these dated layers represents a certain time range and a mixing with younger and older remains can be excluded. Some layers of the sites Grotte Scladina, Vindija and Krapina were dated with different dating method (230Th/U, ESR and TL) for comparison. In spite of all these problems, paleontological cave sites represent a rich archive that can contribute significantly to the reconstruction of the Middle and Upper Pleistocene paleoclimate of Central Europe, provided many additional dates can be obtained to verify results obtained from other terrestrial archives (Table 1). Acknowledgments The authors thank W. von Koenigswald, T. Litt, A. Mangini and M.A. Geyh and the anonymous reviewers for critical and helpful remarks on the manuscript. We thank S. Constantin for the invitation to the ‘‘Karst Record IV’’ congress and for contributing to this volume. References Bischoff, J., Rosenbauer, R.J., Moench, F., 1995. U-series age equations handicap uranium assimilation fossil bones. Radiochimica Acta 69, 127–135. Cordy, J.-M., 1992. Bio- et chronostratigraphie des de´pots quaternaires a` partir des micromammife`res. E´tudes et recherches archeologiques de l’Universite de Liege 27, 79–125. Debenham, N.C., 1998. Thermoluminescence dating of stalagmitic calcite from la Grotte Scladina at Sclayn (Namur). E´tudes et recherches arche´ologiques de l’Universite de Liege 79, 39–43.
103
Do¨ppes, D., Rabeder, G., 1997. (Eds.), Plioza¨ne und pleistoza¨ne Faunen O¨sterreichs. Mitteilungen der Kommission fu¨r Quarta¨rforschung der O¨sterreichischen Akademie der Wissenschaften 10, pp. 1–411. Draxler, I., Hille, P., Mais, K., Rabeder, G., Steffan, I., Wild, E., 1986. Pala¨ontologische Befunde, absolute Datierungen und pala¨oklimatologische Konsequenzen der Resultate aus der Ramesch-Knochenho¨hle. In: Hille, P., Rabeder, G. (Eds.), Die Ramesch-Knochenho¨hle im Toten Gebirge, 6. Mitteilungen der Kommission fu¨r Quarta¨rforschung der O¨sterreichischen Akademie der Wissenschaften, Wien, pp. 7–66. Edwards, R.L., Chen, J.H., Wasserburg, G.J., 1986/87. 238 U–234U–230Th–232Th systematic and the precise measurement of time over the past 5,00,000 years. Earth and Planetary Science Letters 81, 175–192. Eggins, S.M., Gru¨n, R., McCulloch, M.T., Pike, A.W.G., Chappell, J., Kinsley, L., Mortimer, G., Shelley, M., Murray-Wallace, C.V., Spo¨tl, C., Taylor, L., 2005. In situ U-series dating by laser-ablation multicollector ICPMS: new prospects for Quaternary geochronology. Quaternary Science Reviews 24, 2523–2538. Ellwood, B.B., Harrold, F.B., Benoist, F.L., Thacker, P., Otte, M., Bonjean, D., Long, G.J., Shahin, A.M., Hermann, R.P., Grandjean, F., 2004. Magnetic susceptibility applied as an age-depth-climate relative dating technique using sediments from Scladina Cave, a Late Pleistocene cave site in Belgium. Journal of Archaeological Science 31, 283–293. Frank, C., Rabeder, G., 1997a. Herdengelho¨hle. In: Do¨ppes, D., Rabeder, G. (Eds.), Plioza¨ne und Pleistoza¨ne Faunen O¨sterreichs, 10. Mitteilungen der Kommission fu¨r Quarta¨rforschung der O¨sterreichischen Akademie der Wissenschaften, Wien, pp. 181–185. Frank, C., Rabeder, G., 1997b. Schwabenreith-Ho¨hle. In: Do¨ppes, D., Rabeder, G. (Eds.), Plioza¨ne und Pleistoza¨ne Faunen O¨sterreichs, 10. Mitteilungen der Kommission fu¨r Quarta¨rforschung der O¨sterreichischen Akademie der Wissenschaften, Wien, pp. 227–231. Frisia, S., Bini, A., Quinif, Y., 1993. Morphologic, crystallographic and isotopic study of an ancient flowstone (Grotta di Conturines, Dolomites): implications for palaeoenvironmental reconstructions. Speleochronos 5, 3–18. Fu¨rnholzer, J., 1997. Repolustho¨hle (Kat.—Nr. 2837/1). Revision der Grabungen von 1947 bis 1955. Jubila¨umsfonds der O¨sterreichischen Nationalbank Projekt Nr. 5691, 64pp. Genty, D., Blamart, D., Ouhadi, R., Gilmour, M., Baker, A., Jouzel, J., Van-Exter, S., 2003. Precise dating of Dansgaard–Oeschger climate oscillations in Western Europe from stalagmite data. Nature 421, 833–837. Gewelt, M., Schwarcz, H.P., Szabo, B.J., 1992. Datations 230Th/234U et 14 C de concre´tions stalagmitiques. E´tudes et recherches archeologiques de l’Universite de Liege 27, 159–172. Geyh, M.A., 2005. Handbuch der Physikalischen und Chemischen Altersbestimmung. Wissenschaftliche Buchgesellschaft, Darmstadt, 211pp. Hercman, H., 2000. Reconstruction of paleoclimatic changes in Central Europe between 10 and 200 thousand years BP, based on analysis of growth frequency of speleothems. Studia Quaternaria 17, 35–70. Hoffmann, D., Mangini, A., 2003. A method for coupled ESR/U-series dating of teeth showing post-depositional U-loss. Quaternary Science Reviews 22, 1367–1372. Holzka¨mper, S., Spo¨tl, C., Mangini, A., 2005. High Alpine flowstone provides new insights in the timing and progression of OIS 7, 5 and 3. Earth Planetary and Science Letters 236, 751–764. Huxtable, J., Aitken, M.J., 1992. Thermoluminescence dating of burned flint and stalagmitic calcite. E´tudes et recherches arche´ologiques de l’Universite´ de Lie`ge 27, 175–178. Kempe, S., Rosendahl, W., Wiegand, B., Eisenhauer, A., 2002. New Speleothem Datation from Caves in Germany and their importance for the Middle- and Upper-Pleistocene Climate Reconstruction. Acta Geologica Polonica 52, 55–61. Koenigswald, W.v., 1973. Vera¨nderungen in der Kleinsa¨ugerfauna von Mitteleuropa zwischen Cromer und Eem (Pleistoza¨n). Eiszeitalter und Gegenwart 23/24, 159–167.
ARTICLE IN PRESS 104
D. Do¨ppes et al. / Quaternary International 187 (2008) 97–104
Koenigswald, W.v., 1992. Zur O¨kologie und Biostratigraphie der beiden pleistoza¨nen Faunen von Mauer bei Heidelberg. In: Beinhauer, K.W., Wagner, G.A., (Eds.), Schichten von Mauer—85 Jahre Homo erectus heidelbergensis, Braus Mannheim, pp. 101–110. Koenigswald, W.v., Heinrich, W.-D., 1996. Kurze Charakterisierung der Vera¨nderungen in der Sa¨ugerfauna des Jungquarta¨rs in Mitteleuropa. Tu¨binger Monographie zur Urgeschichte 11, 441pp. Koenigswald, W.v., Heinrich, W.-D., 1999. Mittelpleistoza¨ne Sa¨ugetierfaunen aus Mitteleuropa—der Versuch einer biostratigraphischen Zuordnung. Kaupia 9, 53–112. Leitner-Wild, E., Rabeder, G., Steffan, I., 1994. Determination of the evolutionary mode of Austrian alpine cave bears by uranium series dating. Historical Biology 7, 97–104. Malez, M., 1970. Die Ergebnisse der Revision der pleistoza¨nen Fauna aus Krapina. Krapina 1899–1969, 45–56. Malez, M., 1978. Stratigraphische, pala¨ofaunistische und pala¨olithische Verha¨ltnisse des Fundortes Krapina. Krapinski pracovjek I evolucija hominida, Rad Jugoslavenske akademije znanosti i umjetnosti, 61–102. Malez, M., Ullrich, H., 1982. Neuere pala¨oanthropologische Untersuchungen am Material aus der Ho¨hle Vindija (Kroatien, Jugoslawien). Palaeontologia Jugoslavica 29, 1–44. Miros"aw-Grabowska, J., 2002. Geological value of Bis´ nik Cave sediments (Cracow-Cz˛estochowa Upland). Acta. Geologica Polonica 52, 97–110. Mottl, M., Murban, K., 1955. Neue Grabungen in der Repolustho¨hle bei Peggau in der Steiermark. Mitteilungen des Museums fu¨r Bergbau, Geologie und Technik am Landesmuseum ‘Joanneum’ Graz 15, 77–87. Nelson, D.E., 1997. Radiocarbon dating of bone and charcoal from Divje babe I cave. In: Turk, I. (Ed.), Mousterian ‘‘bone flute’’ and other finds from Divje babe I cave site in Slovenia, vol. 2. Opera Instituti Archaeologici Sloveniae, Ljubljana, pp. 51–65. Nielbock, R., 1987. Holoza¨ne und jungpleistoza¨ne Wirbeltierfaunen der Einhornho¨hle/Harz. Thesis, Department of Geology, University of Technology Clausthal. Otte, M., Leotard, J.-M., Schneider, A.-M., Gautier, A., 1983. Fouilles aux grottes de Sclayn (Namur). Helinium 23, 112–142. Pacher, M., 2000. Taphonomische Untersuchungen der Ho¨hlenba¨renfundstellen in der Schwabenreith-Ho¨hle bei Lunz am See (Niedero¨sterreich). Beitra¨ge zur Pala¨ontologie 25, 11–85. Patou-Mathis, M., 1997. Analyse taphonomique et palethnographique du materiel osseux de Krapina (Croatie): nouvelles donne´es sur la faune et les restes humains. Pre´histoire europe´enne 10, 63–90. Patou-Mathis, M., 1998. Origine et histoire de l’assemblage osseux de la couche 5. Comparaison avec la couche 4 sus-jacente, non anthropique. In: Otte, M., Patou-Mathis, M., Bonjean, D. (Eds.), Recherches aux grottes de Sclayn, volume 2. L’arche´ologie. E´tudes et recherches arche´ologiques de l’Universite´ de Lie`ge 79, pp. 281–295. Pike, A.W.G., Hedges, R.E.M., Van Calsteren, P., 2002. U-series dating of bone using the diffusion–adsorption model. Geochimica et Cosmochimica Acta. 66, 4273–4286. Rabeder, G., 1991. Die Ho¨hlenba¨ren der Conturines. Athesia Verlag, Bozen, 124pp. Rabeder, G., Mais, K., 1985. Erste Grabungsergebnisse aus der Herdengelho¨hle bei Lunz am See (Niedero¨sterreich). Die Ho¨hle 36 (2), 35–41.
Rabeder, G., Temmel, H.J., 1997. Repolustho¨hle. In: Do¨ppes, D., Rabeder, G. (Eds.), Plioza¨ne und pleistoza¨ne Faunen O¨sterreichs, 10. Mitteilungen der Kommission fu¨r Quarta¨rforschung der O¨sterreichischen Akademie der Wissenschaften, Wien, pp. 181–185. Rink, W.J., 1997. Electron spin resonance (ESR) dating and ESR applications in Quaternary science and archaeometry. Radiation Measurements 27, 975–1025. Rink, W.J., Schwarcz, H.P., Smith, F.H., Radovcic, J., 1995. ESR ages for Krapina hominids. Nature 378, 24. Rink, W.J., Schwarcz, H.P., Valoch, K., Seitl, L., Stringer, C.B., 1996. ESR dating of Micoquian industry and Neanderthal remains at Kulna cave, Czech Republic. Journal of Archaeological Science 23 (6), 889–901. Rosendahl, W., Kaulich, B., Reisch, L., Ambros, D., 2005. Hunas cave: 50 ky (OIS 5b–OIS 3) climate and environment history in Southern Germany. In:DEKLIM/PAGES Conference Mainz: ‘‘Climate Change at the very end of a warm stage’’ Abstract Volume, pp. 190–191. Rosendahl, W., Wiegend, B., Kaulich, B., Reisch, L., 2006. Zur Altersstellung der mittelpala¨olithischen Ho¨hlenfundstelle Hunas/Ldkr. Nu¨rnberger Land—Ergebnisse und Interpretationen alter und neuer Sinterdatierungen. Germania 84, 1. Halbband, pp. 1–18. Simonet, P., 1992. Les associations des grands mammife`res. E´tudes et recherches arche´ologiques de l’Universite´ de Lie`ge 27, 127–151. Turk, I., Dirjec, J., Strmole, D., Kranjc, A., Car, J., 1989. Stratigraphy of Divje babe I. Results of the excavations 1980–1986. Razprave, Slovenska Akademija Znanosti in Umetnosti, Razred za Naravoslovne Vede, Classis 4, 30, 161pp. Turk, I., Skaberne, D., Blackwell, B.A.B., Dirjec, J., 2001. Morphometric and chronostratigraphic sedimentary analyses and palaeoclimatic interpretations for the profile at Divje babe I, Slovenija. Archeoloski vestnik 52, 221–247 (in Slovenian, summary in English). Turk, I., Skaberne, D., Blackwell, B.A.B., Dirjec, J., 2002. Assessing humidity in Upper Pleistocene karst environment palaeoclimates and palaeomicroenvironments at the cave Divje babe I, Slovenija. Acta carsologica 31, 139–175 (in Slovenian, summary in English). Valoch, K., 1988. Die Erforschung der Kulna-Ho¨hle 1961–1976. Anthropos 24, 204. Valoch, K., Pelisek, J., Musil, R., Kovanda, J., Opravil, P.E., 1969. Die Erforschung der Kulna- Ho¨hle bei Sloup im Ma¨hrischen Karst (Tschechoslowakei). Quarta¨r 20, 1–45. Wild, E.M., Steffan, I., Rabeder, G., 1988. Uranium-series dating of fossil bones. Progress R eport Institut fu¨r Radiumforschung und Kernphysik Wien 53, 53–56. Wild, E.M., Paunovic, M., Rabeder, G., Steffan, I., Steiner, P., 2001. Age determination of fossil bones from the Vindija Neanderthal site in Croatia. Radiocarbon 43 (2B), 1021–1028. Winograd, I.J., Coplen, T.B., Landwehr, J.M., Riggs, A.C., Ludwig, K.R., Szabo, B.J., Kolesar, P.T., Revesz, K.M., 1992. Continuous 5,00,000-year climate record from vein calcite in Devils Hole, Nevada. Science 258, 255–260. Withalm, G., 1995. Vergleichend ro¨ntgenologisch-methodische Untersuchungen an den Tibien von Ursus spelaeus und Ursus arctos. Unpublished Diploma Thesis, University Vienna, 30pp.