Evidence for fischer's correlation functions in iron from critical neutron scattering

Evidence for fischer's correlation functions in iron from critical neutron scattering

Volume 26A, number 9 EVIDENCE PHYSICS LETTERS FOR FISHER'S CORRELATION FUNCTION FROM CRITICAL NEUTRON SCATTERING 25 March 1968 IN IRON D. BALLY,...

146KB Sizes 1 Downloads 11 Views

Volume 26A, number 9

EVIDENCE

PHYSICS LETTERS

FOR FISHER'S CORRELATION FUNCTION FROM CRITICAL NEUTRON SCATTERING

25 March 1968

IN IRON

D. BALLY, M. POPOVICI, M. TOTIA, B. GRABCEV ~and A. M. LUNGU Institute f o r Atomic Physics, Bucharest, Romania Received 13 February 1968

Temperature dependence of the critical small-angle scattering of 1.25 A neutrons in iron is found to indicate a small deviation of the asymptotic spin pair correlation function from the Ornstein-Zernike form, and to confirm Fisher's prediction concerning the character of this deviation.

The m e a s u r e m e n t s of the c r i t i c a l m a g n e t i c n e u t r o n s c a t t e r i n g in i r o n at t e m p e r a t u r e s above the C u r i e point TC [1-6] have been so far i n t e r p r e t e d m a i n l y in t e r m s of the O r n s t e i n - Z e r n i k e a s y m p t o t i c c o r r e l a t i o n function (in Van H o v e ' s notation [7]): ~(r) ~ r~ 2 exp ( - k l r ) / r .

(1)

S e v e r a l y e a r s ago, however, F i s h e r a r g u e d [8] that the p a i r c o r r e l a t i o n function at l a r g e d i s t a n c e s r in the v i c i n i t y of a second o r d e r phase t r a n s i t i o n point would r a t h e r have the a p p r o x i mate form: 7(r) ~ exp ( - k l r ) / r l + T l .

(2)

Since the expected value of 77 is l e s s than 0.1, the d i f f e r e n c e between (2) and (1) is difficult to put e x p e r i m e n t a l l y into evidence. A n a l y s i s of the c r i t i c a l n e u t r o n s c a t t e r i n g in t e r m s of the F i s h e r c o r r e l a t i o n function (2), p e r f o r m e d for i r o n [4] above the C u r i e t e m p e r a t u r e a s well as for E - b r a s s [9] n e a r the o r d e r i n g t e m p e r a t u r e showed that, b e c a u s e of the e x p e r i m e n t a l u n c e r t a i n t i e s , ~? cannot be d e t e r m i n e d f r o m the shape of the a n g u l a r d i s t r i b u t i o n s m e a s u r e d at fixed t e m p e r a t u r e s . However, f r o m the t e m p e r a t u r e dependence of the n e u t r o n s c a t t e r i n g it was p o s s i b l e to obtain i n d i c a t i o n s s a y ing that 7/is different f r o m zero in f l - b r a s s [10] and is v e r y likely to have a n o n - z e r o v a l u e in cobalt [11]. In o r d e r to s e a r c h for a p o s s i b l e n o n - z e r o v a l u e of 7/ in i r o n , the c r i t i c a l n e u t r o n s c a t t e r i n g at s m a l l e s t angles °(scattering v e c t o r s r a n g i n g f r o m 0.03 to 0.12 A- I ) was m e a s u r e d in a p r e v i o u s l y d e s c r i b e d s e t - u p [6] with an i m p r o v e d a n g u l a r r e s o l u t i o n . The t e m p e r a t u r e dependence of the i n v e r s e c o r r e l a t i o n r a n g e k 1 and of the 396

r e d u c e d s u s c e p t i b i l i t y Xo was deduced f r o m the c o r r e c t e d a n g u l a r d i s t r i b u t i o n s . The extraction of the data was p e r f o r m e d f i r s t through the u s u a l technique by u s i n g an O r n s t e i n Z e r n i k e function. The p a r a m e t e r s giving the b e s t l e a s t - s q u a r e fits of the data for 5° --< T - TC ~< 50 ° to the t h e o r e t i c a l l y expected power laws Xo ~ ( I - T C / T ) - T and k 1 = A ( T / T C - 1) v w e r e found to have the v a l u e s : ~ = 1.30±0.02; u = 0.67±0.015 a n d A = = (1.10+0.05)~, -1 ( O r n s t e i n Z e r n i k e c o r r e l a t i o n function). If the c o r r e l a t i o n function w e r e indeed of the O r n s t e i n Z e r n i k e f o r m , the equality ~ = 2u should be fulfilled. In fact, a s m a l l deviation f r o m this equality is observed. This deviation might be explained by a c o r r e l a t i o n function of the f o r m (2). Then, through the r e l a t i o n (2 - ~ ) v = ~ [8], the v a l u e ~? = 0.06 ±0.05 should be obtained. S t a r t i n g with this figure, we proceeded to the i n t e r p r e t a t i o n of the s a m e e x p e r i m e n t a l data by m e a n s of the F i s h e r and B u r f o r d f i r s t o r d e r a p p r o x i m a n t s [12]. This new a n a l y s i s of the data y i e l d the f i g u r e s : ~ = 1.344~:0.018; u = 0.697 ±0.014 and A = (1.18 ±0.05)A -1 ( F i s h e r c o r r e l a t i o n function). The v a l u e of 7/following f r o m t h e s e f i g u r e s i s ~? = 0.07±0.05. It is worth being pointed out that the n o n - z e r o v a l u e of 77 is able to explain, at l e a s t p a r t i a l l y , the e x p e r i m e n t a l l y o b s e r v e d too fast v a r i a t i o n with t e m p e r a t u r e of the i n t e r a c t i o n r a n g e r 1 in (1). More or l e s s m a r k e d deviations f r o m the t h e o r e t i c a l l y expected slow t e m p e r a t u r e dependence of r 1 (different t h e o r i e s give roughly the s a m e law r 2 ~ T - l ) , w e r e found in a l m o s t all m e a s u r e m e n t s and especially when s h o r t - w a v e length n e u t r o n s w e r e employed [1,2,5,6]. The open points in fig. 1, obtained by u s i n g an O r n s t e i n Z e r n i k e c o r r e l a t i o n function in the i n t e r -

Volume 26A, n u m b e r 9

PHYSICS

LETTERS

25 M a r c h 1968

ment with theoretical expectations, when the n o n - z e r o v a l u e of 77 i s t a k e n i n t o a c c o u n t .

References 1. H.A. Gersch, C. G. Shull and M.K. Wilkinson, Phys. Rev. 103 (1956) 525. 2. R.D. Lowde, Rev. Mod. Phys. 30 (1958) 69. 3. M. E r i c s o n and B. J a c r o t , J. Phys. Chem. Solids 13 (1960) 235. 4. L. P a s s e l , K, Blinowski, T. Brun and P. Nielsen, Phys. Rev. 139 (1965) A1866. 5. S. Spooner and B. L. Averbach, Phys. Rev. 142 (1966) 291. 6. D. Bally, B. Grabcev, A.M. Lungu, M. Popovici and M. Totia, J. Phys. Chem. Solids 28 (1967) 1947. 7. L . V a n Hove, Phys. Rev. 95 (1954) 1374. 8. M. E. F i s h e r , J. Math. P h y s . 6 (1964) 944. 9. J. A l s - N i e l s e n and O. W. Dietrich, P h y s . Rev. 153 (1967) 706. 1O. O.W. Dietrich and J. A l s - N i e l s e n , Phys. Rev. 153 (1967) 711. 11. D. Bally, M. Popovici, M. Totia, B. Grabcey and A. M. Lungu, Phys. L e t t e r s 25A (1967) 595. 12. M.E. F i s h e r and R. J. Burford, Phys. Rev. i[56 (1967) 583.

~a9 .

I

as d

1

/0

i

i

20 30 40 Temperature T-Tc in °C

I

_

so

Fig. 1. T e m p e r a t u r e variation of r~, obtained by assuming ~7 = 0 (open circles) and ~7= 0.07 (filled .~ircles~, r e s p e c t i v e l y . The solid line is the dependence r I ~ T -±. p r e t a t i o n of o u r e x p e r i m e n t a l d a t a , g i v e a p i c t u r e of t h e s e d e v i a t i o n s . T h e b l a c k p o i n t s a r e d e d u c e d f r o m t h e s a m e e x p e r i m e n t a l d a t a by a s suming ~ = 0.07. It turns out that the temperature d e p e n d e n c e of r 1 c o m e s i n t o a r a t h e r f a i r a g r e e * * * * *

R 4 INVARIANTS

FOR

DOUBLY

EXCITED

STATES

OF

HELIUM

C. E . W U L F M A N *

Center f o r Theoretical Studies, Coral Gables, Florida, USA and Mathematical Institute, Oxford, UK Received 13 F e b r u a r y 1968

The group R4 p r o v i d e s two new i n v a r i a n t s that usefully label those helium m e t a s t a b l e s t a t e s in which, to f i r s t approximation, both e l e c t r o n s a r e in the second quantum level.

If A i and L i a r e t h e R u n g e - L e n t z a n d a n g u l a r mom_~,ntum v e c t o r s of e l e c t r o n i i n a n a t o m a n d A = Z-~Ai, L = ~ L i , t h e n t h e C a r t e s i a n c o m p o n e n t s of A a n d L o b e y t h e c o m m u t a t i o n r e l a t i o n s of t h e g e n e r a t o r s of R 4 [1]. O n e , t w o . . . m a n y electron functions can therefore be labeled by t h e e i g e n v a l u e s N 2 - 1 = 2 [ J a ( J a + 1) + J b ( J b + 1)] of t h e R 4 C a s i m i r o p e r a t o r A 2 + L 2, a n d b y t h e e i g e n v a l u e s [ J a ( J + 1) - "b(Jb + 1)] 2 of t h e R

q

rtic invari

nt

[2]. If we denote (ga -

irreducible

representations

of R 4 w i t h N = n,

Q : o [3]. B i e d e n h a r n ' s s t u d y of t h e r e d u c t i o n of r e p r e s e n t a t i o n s of R 4 × R 4 i n t o i r r e d u c i b l e r e p r e s e n t a t i o n s of R 4 s h o w s t h a t w e c a n w r i t e t w o - p a r t i c l e eigenstatesofA ~+L 2,A'L, L 2, L z a s [2]

LM

:

IVlP'OpO;POLM)

x ~ n , l , m , ( 1 ) ~Onlm(2 ) ;

×

( p = n - 1)

b y Q, t h e n h y d r o g e n a t o m s t a t e s ~ n l m b e l o n g t o * NSF Science Faculty Fellow f r o m U n i v e r s i t y of the Pacific, Stockton, California.

S t a t e s w i t h Q * 0 o c c u r i n p a i r s w i t h Q = ~:1QI. T h e s e m a y b e c o m b i n e d t o f o r m e i g e n s t a t e s of ( A . L) 2 w h i c h h a v e d e f i n i t e p a r i t y ~. W h e n n = n ' ,

397