Neutron critical scattering in iron with very high temperature stability

Neutron critical scattering in iron with very high temperature stability

Volume 29A, number 9 PHYSICS LETTERS 4. G. Busch and S. Yan, Phys. Kondens. Materie 1 (1963) 37. 5. G. Urbain and E. ~2}elacker Adv. Phys. 16 (1967...

115KB Sizes 3 Downloads 66 Views

Volume 29A, number 9

PHYSICS

LETTERS

4. G. Busch and S. Yan, Phys. Kondens. Materie 1 (1963) 37. 5. G. Urbain and E. ~2}elacker Adv. Phys. 16 (1967) 429. 6. G. Busch and Y. Ti~che, Phys. Kondens. Materie 1 (1963) 78. 7. J . E . Enderby and L. Walsh, Phil. Mag. 14 (1966) 991.

References 1. A.S. Epstein, H. Fritzsehe and K. Lark-Horovitz, Phys. Rev. 107 (1957) 412. 2. M. Cutler and C. E. Mallon, J. Chem. Phys. 37 (1962) 2 677. 3. J . N . Hodgson, Phil. Mag. 8 (1963) 735.

NEUTRON VERY

28 July 1969

CRITICAL SCATTERING HIGH TEMPERATURE

IN IRON STABILITY

WITH

R. C I S Z E W S K I

Warsaw Technical University, Institute of Physics, Warsaw, Poland and K. B L I N O W S K I

Institute of Nuclear Research, Warsaw, Poland Received 3 0 M a y 1969

Neutron small angle scattering for different temperatures with + O.lOC temperature stability has been determined, using neutrons of 1.14A wavelength. Predicted by J. Kocinski's theory some diffraction maxima were found. A c c o r d i n g to K o c i n s k i ' s t h e o r y [1] f o r c r i t i c a l m a g n e t i c s c a t t e r i n g of n e u t r o n s , c o n t r a r y to van H o v e ' s , d i f f r a c t i o n m i n i m a in the c r o s s - s e c t i o n should appear for angles

o. --.. ~o/R,

(t)

w h e r e n i s an i n t e g e r ; k t h e i n c i d e n t n e u t r o n wavelenght; R the correlation range defined as 1

R : a [ 4 ~ v { ( T o - T ) / T o } 2 ]-3

(2)

T O i s the t e m p e r a t u r e of t h e s a m p l e and T t e m p e r a t u r e of the f l u c t u a t i o n s . In a p r e v i o u s p a p e r [2] t h e f l u c t u a t i o n t e m p e r a t u r e in i r o n w a s found to b e a b o u t T c - 6°C a n d c o n s e q u e n t l y R ~ 30/~; at t h e c r i t i c a l point. F o r X u s e d in t h i s e x p e r i m e n t , i . e . , 1.14/~, t h e f i r s t m i n i m u m s h o u l d a p p e a r at 01 = 2 ° 1 0 ', t h e s e c o n d at 02 = 4o20 '. B e t w e e n t h e s e two minima there should exist the first maximum, i . e . , at 3o15'. T h e s m a l l a n g l e s c a t t e r i n g m e a s u r e m e n t s in iron have been performed using a double crystal n e u t r o n s p e c t r o m e t e r . In f r o n t of t h e n e u t r o n d e t e c t o r a S o l l e r c o l l i m a t o r w i t h 13 m i n of a r c horizontal angular divergency has been used. T h e s a m p l e t e m p e r a t u r e s t a b i l i t y h a s in g e n e r a l been kept with better than ± 0.1°C accuracy.

Fig. L Small-angle critical magnetic scattering of neutrons in iron. Sample temperature stability ~ O.l°C. The c i r c l e s c o v e r the statistical e r r o r of the counts. For sample temperature To = Tc a trace of the 2nd maximum can be observed.

F o l l o w i n g K o c i n s k i ' s c a l c u l a t i o n s one can e s t i m a t e t h e i n t e n s i t y c h a n g e due to the t e m p e r a t u r e d e v i a t i o n . When t h e s a m p l e t e m p e r a t u r e f o r T o = T c d e c r e a s e s a b o u t 0 . 2 5 o c the i n t e n s i t y in t h e p e a k w i l l d e c r e a s e ~ 10%. In o t h e r 8 r e g i o n s w h e r e t h e p e a k d o e s not a p p e a r the i n t e n s i t y i s much less sensitive for the same temperature instability. 513

Volume 29A, number 9

PHYSICS

LETTERS

F o r t h e s e e x p e r i m e n t a l c o n d i t i o n s t h e 1st maximum appeared for a different angle value t h a n t h e one m e n t i o n e d a b o v e ( s e e fig. 1) w h i c h gives a new value for the fluctuation temperature, n a m e l y T = T c - 10oC. T h e f a c t t h a t none of K o c i n s k i ' s m i n i m a h a s b e e n o b s e r v e d can b e e x p l a i n e d by t h e a s s u m p t i o n that the differential cross-section for neutron c r i t i c a l s c a t t e r i n g i s a s u m of two t e r m s , t h e f i r s t one g i v e n by van H o v e and t h e s e c o n d one by K o c i n s k i , i . e . [3]. R Cl ~ 1 +'C2 f s i n ~ r l s i n ~ 2 r l dr. (3) ~ 0

28 July 1969

After performing some theoretical calculations a r e p o r t g i v i n g f u l l i n t e r p r e t a t i o n of t h e s e and other experimental results will be published.

References 1. J.Kocinski, Aeta Phys. Polon. 30 (1966) 591. 2. K. Blinowski and R. Ciszewski, Phys. Letters 28A (1968) 389. 3. J. Kocinski and K. Wentowska, Acta Phys. Poton., to be published.

+~2

* * * * *

BULK ARRAYS

MEAN F I E L D F L U C T U A T I O N S IN R E S I S T A N C E OF OF S U P E R C O N D U C T I N G POINT CONTACTS ABOVE Tc T. D. CLARK*

Philips Research Laboratories, Eindhoven, Netherlands and D. I t T I L L E Y

Physics Department, Unive~'sity of Essex, Colchester, Essex, UK Received 30 May 1969

The resistance of ball a r r a y s increases according to the "bulk n Curie-Weiss law. We attribute the inc r e a s e to fluctuations in the contact regions.

A b o v e T c t h e r e s i s t a n c e of a d i s o r d e r e d superconducting region should satisfy R / ( R N - R ) = A -1 [(T - T c ) / T c ] n with n = 1 f o r a t h i n f i l m , a n d n = ½ f o r a b u l k r e g i o n [1]. We b e l i e v e we h a v e o b s e r v e d t h e b u l k b e h a v i o u r , 1 n = ~, in p o i n t c o n t a c t a r r a y s . Fig. 1 s h o w s t h e top of t h e r e s i s t i v e t r a n s i t i o n of a c y l i n d r i c a l a r r a y of 1 0 0 ~ m tin b a l l s , l e n g t h 5 m m and c r o s s s e c t i o n 4 m m . B e l o w 3.7OK a " p h a s e s l i p " t a i l ~ lOK in width i s s e e n (2) and f o r T << T c a w e l l d e f i n e d s u p e r c u r r e n t d e v e l o p e d . ( 4 7 ~ A at 1.57OK). T h e e x p e r i m e n t a l p o i n t s up to t h e i n f l e x i o n at a b o u t 6 . 5 ° K in fig. 1 fit t h e " b u l k " C u r i e - W e i s s law. F i g . 2 s h o w s ~ / ( R N - R ) ] 2 p l o t t e d v e r s u s T. T h e d a t a a r e p l o t t e d l o g a r i t h m i c a l l y in fig. 3. T h e p o i n t s b e l o w 3 . 8 4 ° K in fig. 3 r i s e a b o v e t h e * Permanent address: Mullard Research Laboratories, Salfords, Redhill, Surrey, UK. 514

950

R~

~45

~O@

OBSBOeI~Oe

lO ~

BeeOg

Q

°e go

935

4:0

~o

e:o

7;0

~.o

9o 3-.K 15o

Fig. I. Resistancefrom Tc to onset of phononlimited

resistance.