Journal Pre-proof Foraminiferal biostratigraphy and paleobathymetry of the Maastrichtian – Paleocene succession at the north Farafra Oasis, Western Desert, Egypt Sherif M. El Baz PII:
S1464-343X(19)30400-5
DOI:
https://doi.org/10.1016/j.jafrearsci.2019.103745
Reference:
AES 103745
To appear in:
Journal of African Earth Sciences
Received Date: 6 October 2019 Revised Date:
5 November 2019
Accepted Date: 15 December 2019
Please cite this article as: El Baz, S.M., Foraminiferal biostratigraphy and paleobathymetry of the Maastrichtian – Paleocene succession at the north Farafra Oasis, Western Desert, Egypt, Journal of African Earth Sciences (2020), doi: https://doi.org/10.1016/j.jafrearsci.2019.103745. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2019 Published by Elsevier Ltd.
Foraminiferal Biostratigraphy and Paleobathymetry of the Maastrichtian – Paleocene succession at the north Farafra Oasis, Western Desert, Egypt
Sherif M. El Baz Damietta University, Faculty of Science, Geology Department, New Damietta, Egypt E-mail address:
[email protected]
Abstract: The Upper Cretaceous–Paleogene successions are well exposed at the Farafra Oasis, Western Desert, Egypt. The studied succession is distinguished into three formations arranged from base to top: Khoman (Maastrichtian), Dakhla and Tarawan (Paleocene). The identification of foraminiferal association yielded 55 species (28 planktonic and 27 benthonic). Most of them are considered as important biostratigraphical markers, especially in the Tethyan Realm. Based on planktonic foraminifera, nine biozones are differentiated, the Globotruncana aegyptiaca Zone, Gansserina gansseri Zone, Contusotruncana contusa Zone, Parasubbotina pseudobulloides Zone, Subbotina triloculinoides Zone, Praemurica uncinata Zone, Morozovella angulata-Igorina albeari, Igorina albeari - Globanomalina pseudomenardii, Globanomalina pseudomenardii- Acarinina subsphaerica Zone. The
Cretaceous / Paleogene
boundary (K/P) lies at the boundary between the
Khoman and Dakhla formations. The biostratigraphic framework points to the absence of the Abathomphalus mayaroensis Zone of Late Masstrichtian and Guembelitria cretacea (P0) and Parvularugoglobigerina eugubina (Pα) zones of Early Paleocene. Therefore, the K/P boundary starts with the sudden disappearance of all the Cretaceous genera such as Globotruncana, Globotruncanita, Hedbergella Archaeoglobigerina, Heterohelix, Gansserina and Contusotruncana, followed by the appearance of Danian species such as Parasubbotina pseudobulloides (Plummer), Subbotina triloculinoides (Plummer) and Praemurica uncinata (Bolli). An attempt to estimate the paleobathymetry is done based on the investigated foraminiferal assemblages. Key
words: Foraminifera; biostratigraphy; Late Cretaceous; Early
Paleogene; Western Desert; Egypt
1
1. Introduction
The Upper Cretaceous – Early Paleogene rocks of Egypt attracted the attention of several authors (e.g., Le Roy, 1953; Samir, 1998, 2002; Strougo and Hewaidy, 1999; Hewaidy and Strougo, 2001; Hewaidy et al. 2006; Haggag et al. 2010; Obaidalla et al. 2013; Khalil et al. 2016; Al-Kahtany, 2017; Faris et al. 2018).
Samir (1998) subdivided the Upper Cretaceous – Lower Teriary of the north Gunna section, Western Desert, into five formations arranged from the oldest to the youngest as follows, Khoman, Dakhla, Tarawan, Esna and Farafra. Also, the examination of Samir (2002) on the Upper Cretaceous – Paleocene of Gebel Samara section, Southwestern Sinai, recognized twelve foraminiferal biozones organized from the base to the top as follows: Gansserina gansseri (Ealy Maastrichtian),
Pseudotextularia
Racemiguembelina Maastrichtian),
fructicosa
intermedia –
(latest
Ealy
Abathymphalus
Pseudoguembelina
hariaensis
Maastrichtian),
mayaroensis (Late
(Late
Maastrichtian),
Pseudoguembelina palpebra (Late Maastrichtian), Plummerita hantkeninoides (latest Maastrichtian), Parvularugoglobigerina eugubina (earliest Paleocene), Parvularugoglobigerina eugubina – Praemurica uncinata (Early Paleocene), Praemurica uncinata – Morozovella angulata (latest Early Paleocene), Morozovella
angulata
–
Globanomalina
pseudomenardii
(earliest
Late
Paleocene), Globanomalina pseudomenardii (Late Paleocene) and Morozovella velascoensis (latest Late Paleocene).
The study of El-Azabi and Farouk (2011) on the the Maastrichtian-Ypresian succession at the Kharga Oasis, southern Western Desert, Egypt suggested 10 planktonic zones; CF8b and CF7 (the Early Maastrichtian), P2, P3, P4c and P5 (the Palaeocene) and E1, E2, E3 and E4 (Early Eocene).
Obaidalla et al. (2013) dealt with the lithostratigraphy and biostratigraphy of the Cretaceous / Paleogene successions at southwestern Sinai. They concluded that the K/P boundary lies at the Sudr / Dakhla formational boundary. 2
Khalil et al. (2016) subdivided the Upper Cretaceous - Lower Eocene outcrops at Gebel Atshan and Gebel Duwi, central Eastern Desert, into Dakhla, Tarawan, Esna and Thebes formations. They also identified thirty one planktonic foraminiferal species and forty five calcareous nannofossil. Based on planktonic foraminifera, AlKahtany (2017) distinguished seven biozones in the Maastrichtian-Paleocene succession at the north Farafra Oasis including, Rugoglobigerina hexacamerata, Gansserina gansseri, Contusotruncana contusa, Globanomalina compressa / Praemurica inconstans - Praemurica uncinata, Praemurica uncinata – Morozovella angulata, Morozovella angulata - Globanomalina pseudomenardii and Globanomalina pseudomenardii. The study of Faris et al. (2018) on the Late Cretaceous - Early Paleogene of the Western Desert recognized eleven planktonic foraminiferal and seven calcareous nannofossil zones.
Beyond Egypt, Youssef et al. (1983) dealt with the biostratigraphy of the Upper Cretaceous - Lower Tertiary sediments of Um Rijam area, Jordan. They established ten planktonic foraminiferal biozones arranged from the base to top as: Globorotalia gansseri - Rugoglobigerina hantkeninoides, Globogerina daubjergensis, Globorotalia uncinata uncinata - Globorotalia pusilla pusilla, Globorotalia pusilla pusilla Globorotalia
pseudomenardii,
Globorotalia
pseudomenardii
-
Globorotalia
velascoensis, Globorotalia rex - Globorotalia aragonensis, Globorotalia aragonensis and Globigerapsis kugleri.
In Tunisia Arenils et al. (2000) categorized the Upper Cretaceous - Lower Tertiary rocks of El Kef section into the following biozones: Abathomphalus mayaroensis Zone,
Plummerita
hantkeninoides
Zone,
Guembelitria
cretacea
Zone,
Parvularugoglobigerina eugubina Zone and Parasubbotina pseudobulloides Zone.
In Iraq, Hammoudi (2011) classified the Upper Cretaceous - Lower Tertiary succession in the Shaqlawa area into the following biozones: Gansserina gansseri Zone,
Abathomphalus
mayaroensis
Zone,
Guembelitria
cretacea
Zone,
Parvularugoglobigerina eugubina Zone, Parasubbotina pseudobulloides Zone and
3
Parasubbotina varianta Zone. Also, this study recorded the absence of the Plummerita hantkeninoides Zone within the Maastrichtian succession signifying a hiatus during the K/ P boundary.
In Iran, Beiranvand et al. (2014) identified four planktonic foraminiferal biozones through the K/P: Abathomphalus mayaroensis Zone, Guembelitria cretacea, Parvularugoglobigerina eugubina Zone and Parasubbotina pseudobulloides Zone.
In Turkey, Sarigül et al. (2017) studied the Maastrichtian-Thanetian planktonic foraminifera and recognized some biozones extending from the Maastrichtian Contusotruncana contusa Zone to the Thanetian Globanomalina pseudomenardii Zone.
The main goals of this work are to distinguish the lithostratigraphic units in the studied area, establish a biostratigraphic framework based on planktonic foraminifera and to determine their turnover during the K/P boundary. 2.Geologic setting The studied succession lies to the south of Ain Maqf section in Farafra Oasis, Western Desert, Egypt (Lat. 27º 13' N and Long. 28º 03' E) as clarified in Figure 1. Lithostratigraphically, the studied succession is subdivided into the following formations, arranged, from base to top, Khoman, Dakhla and Tarawan.
2.1. Khoman Formation The basal part of the succession is represented by the Khoman Formation that was firstly described by Norton (1967). It unconformably underlies the Dakhl Formation. It is up to 30 m thick and consists of snow white chalk (Fig. 2). The Khoman Formation is characterized by the abundance of the following planktonic foraminiferal species: Globotruncana aegyptiaca Nakkady, G. arca (Cushman), G. linneiana (ďOrbigny), G. mariei Banner and Blow, G. orientalis El- Naggar, G. rosetta (Carsey), Globotruncanita conica (White), G. stuartiformis (Dalbiez), Hedbergella holmdelensis (Olsson), Archaeoglobigerina cretacea (d'Orbigny), Heterohelix globulosa (Ehrenberg) and Gansserina gansseri (Bolli). 4
In Egypt, the Khoman Formation may be correlated to the Sudr Formation in Sinai, Duwi Formation in the Eastern Desert and Mawhoob Shale and Beris Mudstone members of the Dakhla Formation in Dakhla Oasis. The age of this rock unit is assigned to the Campanian-Maastrichtian based on calcareous nannofossil and planktonic foraminifera (Mahsoub et al. 2012), the Maastrichtian based on planktonic foraminifera (Abdel-Kireem and Samir, 1995; Al-Kahtany, 2017; and this study), the Maastrichtian-Danian based on planktonic foraminifera (Obaidalla and Kassab, 2000; Faris et al. 2018), the Maastrichtian-Danian based on calcareous nannofossil (Faris et al. 2018) and the Maastrichtian-Thanetian based on planktonic foraminifera (Orabi et al. 2018).
2.2. Dakhla Formation Dakhla Formation was originally described by Said (1961). It conformably underlies the Tarawan Formation and reaches to 24 m thick. It consists of chalky limestone, shale and marl. The Dakhla Formation is characterized by the abundance of Parasubbotina pseudobulloides (Plummer), Subbotina triloculinoides (Plummer) and Praemurica uncinata (Bolli). In Egypt, the term Dakhla Formation was stratigraphically used in the Western Desert, the Eastern Desert and Sinai. The age of this rock unit is assigned to the EarlyLate Paleocene based on planktonic foraminifera (Abdel-Kireem and Samir, 1995; Al-Kahtany, 2017; and this study), the Maastrichtian-Danian based on the planktonic foraminifera and calcareous nannofossils (Tantawy, 2001), the Late MaastrichtianMiddle Paleocene based on the planktonic foraminifera and calcareous nannofossils (Khalil et al. 2016), the Late Maastrichtian- Late Paleocene based on the planktonic foraminifera (Samir, 2002) and the Early Paleocene based on the planktonic foraminifera (Farouk et al. 2019).
2.3.Tarawan Formation
This rock unit was firstly introduced by Awad and Ghobrial (1965). It attains a thickness of 9 m and consists of chalky limestone. Finally, the Tarawan Formation is characterized by the abundance of the following planktonic foraminiferal species: 5
Morozovella angulata (White), M. conicotruncata (Subbotina), Globanomalina pseudomenardii (Bolli) Igorina albeari (Cushman and Bermudez) and Acarinina subsphaerica (Subbotina). In Egypt, the Tarawan Formation was stratigraphically used in the Western Desert, the Eastern Desert and Sinai. The age of this rock unit is assigned to the Late Paleocene based on planktonic foraminifera (Abdel-Kireem and Samir, 1995; AlKahtany, 2017; Farouk et al. 2019 and this study) and calcareous nannofossils (Faris, 2018).
3. Material and methods
Thirty samples were collected from the studied succession. About 80 g from each sample were soaked with 5% H2O2 solution, washed over a 63 µm mesh sieve and then dried and sieved into fractions greater than 250, 125 and 63 µm, respectively. About 50 g of washed residue from each sample was studied under a binocular microscope. The foraminifera were picked onto faunal slides. Tests of foraminifera show moderate to good preservation. Some selected planktnic foraminiferal species were illustrated in plate 1. All the figured specimens are housed at the Museum of the Geology Department, Damietta University.
4. Biostratigraphy The identification of foraminiferal assemblage yieldes 55 species (28 planktonic and 27 benthonic) as shown in figures 2 and 3. Planktonic foraminifera are used to establish the biostratigraphy. The first and last appearance was utilized to determine the zonal boundaries. The zonal schemes of Caron (1985), Li and Keller (1998a, b) and Li et al. (1999) are used for the Masstrichtian rocks, while the zonal schemes of Berggren et al. (1995) and Berggren and Pearson (2005) are used for the Paleocene rocks. The documented foraminiferal biozones are correlated with their equivalents in Egypt and abroad. The biostratigraphic framework has been done as follows: 4.1. Globotruncana aegyptiaca Interval Zone = CF8b Zone of Li et al. (1999).
6
Definition: This zone is defined as the interval from the first occurrence of Globotruncana aegyptiaca Nakkady to the first occurrence of Gansserina gansseri (Bolli). Remarks: The first occurrence of Globotruncana aegyptiaca Nakkady is a controversial topic, where some authors preferred to lay it within the Late Campanian (Li et al. 1999), whereas the others considered it as a marker of the earliest Maastrichtian (Caron, 1985; Keller et al. 1995). Stratigraphic position: The lower part of the Khoman Formation. Characteristic assemblage: The most characteristic species are:
Globotruncana
arca (Cushman), G. linneiana (ďOrbigny), G. mariei Banner and Blow, G. orientalis El- Naggar, G. rosetta (Carsey), Globotruncanita conica (White), G. stuartiformis (Dalbiez),
Hedbergella
holmdelensis
(Olsson),
Archaeoglobigerina
cretacea
(d'Orbigny) and Heterohelix globulosa (Ehrenberg) as clarified in Figure. 2. Equivalents and age: This zone is probably equivalent to the Globotruncana aegyptiaca zone of Caron (1985), Samir (1998), Yildiz and Ozdemir (1999) and Darvishzad and Abdolalipour (2009), the Rugoglobigerina hexacamerata zones of Li et al. (1999) and Al-Kahtany (2017), and the Pseudoguembelina hariaensis Gansserina gansseri Zone of Faris et al. (2018). Therefore, this zone is assigned to the Early Maastrichtian.
4.2. Gansserina gansseri Interval Zone = CF7 zones of Li and Keller (1998 a, b) and Li et al. (1999). Definition: This zone is defined as the interval from the first occurrence of Gansserina gansseri (Bolli) to the first occurrence of Contusotruncana contusa (Cushman) Stratigraphic position: The middle part of the Khoman Formation. Characteristic species: The most characteristic species are: Globotruncana arca (Cushman), G. linneiana (ďOrbigny), G. mariei Banner and Blow, G. orientalis ElNaggar, G. rosetta (Carsey), Globotruncanita conica (White), Hedbergella holmdelensis (Olsson), Archaeoglobigerina cretacea (d'Orbigny) and Heterohelix globulosa (Ehrenberg) (Fig. 2). Equivalents and age: This zone is probably equivalent to the Gansserina gansseri zones of Sliter (1989), Nederbragt (1991), Abdel-Kireem and Samir (1995), Premoli 7
Silva and Sliter (1995), Hardenbolet al. (1998), Li and Keller (1998 a, b), Samir (1998), Li et al. (1999), Yildiz and Ozdemir (1999), El-Nady and Shahin (2001), Arz and Molina (2002), Premoli Silva and Verga (2004), Obaidalla (2005), Sari (2006), Darvishzad and Abdolalipour (2009), Mahsoub et al. (2012), Farouk (2014), ElYounsy et al. (2015), Tshakreen et al. (2017), Al-Kahtany (2017), Allameh et al. (2017) and Hewaidy et al. (2019), the Pseudoguembelina palpebra and Plummerita hantkeninoides zones of Faris et al. (2018). Thus, this zone is assigned to the Early Maastrichtian.
4.3. Contusotruncana contusa Interval Zone = CF6 Zone of Li and Keller (1998 a, b) Definition: This zone is defined as the interval from the first occurrence of Contusotruncana contusa (Cushman) to the unconformity between the Cretaceous and Paleogene which marks the top of this zone as shown in Figure 2. Stratigraphic position: The upper part of the Khoman Formation. Characteristic species: The most characteristic species are: Globotruncana arca (Cushman), Globotruncanita conica (White), Hedbergella holmdelensis (Olsson), Gansserina gansseri (Bolli) and Heterohelix globulosa (Ehrenberg) (Fig. 2). Equivalents and age: This zone is probably equivalent to the Contusotruncana contusa zones of Li and Keller (1998 a, b), Robaszynski (2000), Allameh et al. (2017), Al-Kahtany (2017) and Sarigul (2017). Thus, this zone is assigned to the late Early Maastrichtian. 4.4. Parasubbotina pseudobulloides Interval Zone = P1a SubZone of Berggren et al. (1995) and Berggren and Pearson (2005). Definition: This zone is defined as the interval from the first occurrence of Parasubbotina pseudobulloides (Plummer) to the first occurrence of Subbotina triloculinoides (Plummer). Stratigraphic position: The lower part of the Dakhla Formation. Characteristic assemblage: The most characteristic species are:
Parasubbotina
varianta (Subbotina), Praemurica trinidadensis (Bolli) and P. inconstans (Subbotina). Equivalents and age: This zone is probably equivalent to the Morozovella pseudobulloides zones of Caron (1985), Hewaidy (1987), and Hammoudi (2011), the lower part of Praemurica trinidadensis Zone of Abdel-Kireem and Samir (1995), and 8
the Parasubbotina pseudobulloides zones of Luciani (1997), Zaghbib-Turki et al. (2000), El-Nady and Shain (2001), Berggren and Pearson (2005), Obaidalla (2005), Gallala and Zaghbib-Turki (2010), Wade et al. (2011), Obaidalla et al. (2013), Beiranvand et al. (2014) and Khalil et al. (2016). Therefore, this zone is assigned to the Early Paleocene.
4.5. Subbotina triloculinoides Interval Zone = P1b Subzone of Berggren and Pearson (2005) Definition: This zone is defined as the interval from the first occurrence of Subbotina triloculinoides (Plummer) to the first occurrence of Praemurica uncinata (Bolli). Stratigraphic position: the middle part of the Dakhla Formation. Characteristic assemblage: The most characteristic species are:
Parasubbotina
pseudobulloides (Plummer), Praemurica inconstans (Subbotina), Subbotina trivialis (Subbotina) and S. velascoensis (Cushman). Equivalents and age: This zone is probably equivalent to the upper part of Praemurica trinidadensis Zone of Abdel-Kireem and Samir (1995) and the Subbotina triloculinoides zones of Berggren and Pearson (2005), Obaidalla (2005), Obaidalla et al. (2013), and Khalil et al. (2016). Therefore, this zone is assigned to the Early Paleocene. 4.6. Praemurica uncinata Interval Zone = P2 Zone of Berggren and Pearson (2005) Definition: This zone is defined as the interval from the first occurrence of Praemurica uncinata (Bolli) to the first occurrence of Morozovella angulata (White). Stratigraphic position: The upper part of the Dakhla Formation. Characteristic assemblage: The most characteristic species are:
Parasubbotina
pseudobulloides (Plummer), Praemurica inconstans (Subbotina), Subbotina trivialis (Subbotina) and S. velascoensis (Cushman). Equivalents and age: This zone is probably equivalent to the Praemurica uncinata zones of Shahin (1992), Abdel-Kireem and Samir (1995), Berggren and Pearson (2005), Wade et al. (2011), Obaidalla et al. (2013), El-Younsy et al. (2015), Hewaidy et al. (2017), Sarigül et al. (2017), Faris et al. (2018) and Orabi et al. (2018). Therefore, this zone is assigned to the late Early Paleocene.
9
4.7. Morozovella angulata - Igorina albeari = P3a zone of Berggren et al. (1995) Definition: This zone is defined as the interval from the first occurrence of Morozovella angulata (White) to the first occurrence of Igorina albeari (Cushman and Bermudez). Stratigraphic position: The most upper part of the Dakhla Formation. Characteristic assemblage: The most characteristic species are: Subbotina triloculinoides (Plummer), S. trivialis (Subbotina), S. velascoensis (Cushman), and Morozovella conicotruncata (Subbotina). Equivalents and age: This zone is equivalent to the Morozovella angulata Globanomalina pseudomenardii zones of Berggren et al. (1995) and Al-Kahtany (2017), and the Morozovella angulata zones of Berggren and Miller (1988), Arenillas and Molina (1997), Faris et al. (2018) and Orabi et al. (2018).. Therefore, this zone is assigned to the Late Paleocene.
4.8. Igorina albeari - Globanomalina pseudomenardii Interval Zone = P3b Zone of Berggren et al. (1995) Definition: This zone is defined as the interval from the first occurrence of Igorina albeari (Cushman and Bermudez) to the first occurrence of Globanomalina pseudomenardii (Bolli). Stratigraphic position: The lower part of the Tarawan Formation. Characteristic assemblage: The most characteristic species are: Morozovella conicotruncata (Subbotina), M. acuta (Toulmin), M. aequa (Cushman) and Subbotina velascoensis (Cushman). Equivalents and age: This zone is equivalent to the Planorotalites pusilla pusilla Zone of Caron (1985), the Igorina pusilla pusilla zones of Abdel-Kireem and Samir (1995), El-Nady and Shahin (2001), the Igorina albeari zones of Berggren and Pearson (2005), Khalil et al. (2016) and Faris et al. (2018). Therefore, this zone is assigned to the Late Paleocene.
4.9. Globanomalina pseudomenardii - Acarinina subsphaerica Interval Zone = P4a Zone of Berggren et al. (1995)
10
Definition: This zone is defined as the interval from the first occurrence of Globanomalina pseudomenardii (Bolli) to the first occurrence of Acarinina subsphaerica (Subbotina) Stratigraphic position: The upper part of the Tarawan Formation. Characteristic assemblage: The most characteristic species are: Morozovella conicotruncata (Subbotina), M. acuta (Toulmin), M. aequa (Cushman) and Subbotina velascoensis (Cushman). Equivalents and age: This zone is equivalent to the Acarinina subsphaerica zones of Berggren and Pearson (2005), Faris et al. (2018), the Planorotalites pseudomenardii of Abdel-Kireem and Samir (1995), Globanomalina pseudomenardii zones of ElNady and Shahin (2001), Khalil et al. (2016) and Al-Kahtany (2017), the Acarinina subsphaerica Zone of Wade (2011). Therefore, this zone is assigned to the Late Paleocene.
5. K / P boundary
The top of the Upper Cretaceous successions in many localities in Egypt is marked by a hiatus such as the Nile Valley (Said and Sabry, 1964), Red Sea coast (Issawi, 1972), Gulf of Suez (El-Shinnawi and Sultan, 1972a), Western Desert (AbdelKireem and Samir, 1995; El-Azabi and El-Araby, 2000; Tantawy et al. 2001; Obaidalla et al. 2006; Al-Kahtany, 2017), Sinai (Obaidalla et al. 2013), Eastern Desert (Khalil et al. 2016). On the contrary, Obaidalla (2005) recorded a complete boundary at Wadi Nukhul section, Sinai, Egypt. Outside Egypt, the analysis of planktonic foraminiferal biozones exposed complete successions through the K/P boundary at the El Kef section, Tunisia (Keller, 1988), the Erto section, Italy (Luciana, 1997), the Bidart section, France (Gallala and Zaghbib-Turki, 2010) and the Izeh section Iran (Beiranvand et al. 2014).
In the present study, the biostratigraphic framework points to the absence of the Abathomphalus mayaroensis Zone of Late Masstrichtian and Guembelitria cretacea (P0) and Parvularugoglobigerina eugubina (Pα) zones of Early Paleocene. Therefore, the examined Upper Cretaceous - Paleocene succession is marked by a hiatus. This unconformity may be related to the regressive phase that prevailed the 11
Farafra Oasis at the end of the Cretaceous (Hewaidy et al. 2017) or to the impacts of tectonic events (Syrian Arc System) during this interval (Obaidalla et al. 2006). Also, in Dakhla Oasis, the absence of planktonic foraminiferal zones CF2 to P1b was recorded by Tantawy et al. (2001). In addition, Al-Kahtany (2017) and Faris et al. (2018) documented the absence of the same zones in Farafra Oasis.
In this study, the K/P boundary is placed at the of the Contusotruncana contusa Zone and characterized by sudden changes (bioevents) in the planktonic foraminiferal assemblage (Fig. 4). The first bioevent is recorded at the upper part of the Khoman Formation and is represented by the disappearance of the following species Globotruncana aegyptiaca Nakkady, G. arca (Cushman), G. linneiana (ďOrbigny), G. mariei Banner and Blow, G. orientalis El- Naggar, G. rosetta (Carsey), Globotruncanita conica (White), G. stuartiformis (Dalbiez), Hedbergella holmdelensis (Olsson), Archaeoglobigerina cretacea (d'Orbigny), Heterohelix globulosa (Ehrenberg) and Gansserina gansseri (Bolli). The second bioevent is recorded in the base of Dakhla Formation and is represented by the first appearance of Danian genera, including Parasubbotina pseudobulloides (Plummer), Subbotina triloculinoides (Plummer) and Praemurica uncinata (Bolli). These bioevents were previously documented during the K/P boundary from many regions such as Tunisia (Keller, 1988), Libya (Tmalla, 1992), France (Haslet, 1994), Egypt (Samir, 1995), Italy (Luciani, 1997), Spain ( Kaiho and Lamolda, 1999), India (Keller, 2009), Iraq (Hammoudi, 2011), Iran (Beiranvand et al. 2014) and Turkey (Sarigül et al. 2017).
6. Paleobathymetry To estimate the paleobathymetry, some foraminiferal parameters (foraminiferal number,
richness,
P/B
ratios,
keeled
and
non-keeled
ratios
and
agglutinated/Calcareous ratio) are used. The foraminiferal richness increases from the shore to outer neritic depths and then decreases in deeper enviroments (e.g., Berger and Diester-Haas, 1988). The productivity of planktonic foraminifera increases in open pelagic water (e.g., Van der Zawaan et al. 1990). Therefore the P/B ratio can be utilized as a good indicator of relative paleobathymetric changes (e.g., Murray, 1976; Gibson, 1989). 12
As shown in Figure 5, Khoman Formation is characterized by a high foraminiferal number (70-1160), high richness (31), abundance of keeled planktonic foraminifera (40-80%), P/B ratios (40-88%) and lower values of agglutinated/Calcareous ratios (526%). Accordingly, the lower part of the Khoman Formation was deposited in the upper to middle bathyal environment, while the upper part was deposited under the outer neritic conditions (e.g., Hart, 1980). The presence of the following benthic genera Gaudrina, Bulimina, Cibicides and Cibicidoides supports this conclusion. In addition, the Dakhla Formation is characterized by a high foraminiferal number (570-1100), moderate richness (22), lower ratios of keeled planktonic foraminifera (010%), P/B ratios (40-85%) and lower values of agglutinated/Calcareous ratios (2028). Accordingly, the Dakhla Formation was deposited in an outer neritic environment (e.g., Hart, 1980; Samir, 2005). Moreover, the Tarawan Formation is characterized by a high foraminiferal number (880-1190), moderate richness (24), moderate ratios of keeled planktonic foraminifera (40-45%), high P/B ratios (70-90%) and lower values of agglutinated/Calcareous ratios (6-15%). Accordingly, the Dakhla Formation was deposited under the upper to middle bathyal conditions (e.g., Hart, 1980; Samir, 1995). The presence of the following benthic genera Gaudrina, Bulimina, Cibicides and Cibicidoides supports this conclusion.
7. Conclusions
The Upper Maastrichtian–Paleocene succession is classified into 8 planktonic foraminiferal zones. The Khoman Formation includes three biozones Globotruncana aegyptiaca Zone, Gansserina gansseri Zone and Contusotruncana contusa Zone. The Dakhla Formation includes the Parasubbotina pseudobulloides Zone, Subbotina triloculinoides Zone, Praemurica uncinata Zone, the Morozovella angulata – Igorina albeari Zone and the lowest part of the Igorina albeari - Globanomalina pseudomenardii Zone. The Tarawan Formation includes the upper part of the Igorina albeari - Globanomalina pseudomenardii Zone and Globanomalina pseudomenardii - Acarinina subsphaerica Zone. The K/P boundary is placed at the 13
top of the Contusotruncana contusa Zone. It is characterized by a sudden disappearance of all the recorded Cretaceous taxa, followed by the first appearance of Danian genera at the lower part of Dakhla Formation. The analyzed foraminiferal community indicates that the lower part of Khoman Formation was deposited in the upper to middle bathyal environment, where the upper part was deposited under the outer neritic conditions. Furthermore, the Dakhla Formation was deposited in an outer neritic environment. Finally, the Tarawan Formation was deposited under the upper to middle bathyal conditions.
Acknowledgements The author would like to thank the editor and the reviewers for their constructive and useful comments that helped to improve the manuscript.
References Abd El Kireem, M.R., Samir, A.M., 1995. Biostratigraphic implications of the Maastrichtian-Lower Eocene sequence at the North Gunna section, Farafra Oasis, Western Desert, Egypt. Marine Micropaleontology 26, 329–340 Al-Kahtany, K., 2017. Planktonic foraminiferal biostratigraphy of the MaastrichtianPaleocene succession at the north Farafra Oasis, Western Desert, Egypt. Arab. J. Geosci, 10: 334. Allameh, M., Nejad, R.R.Y., 2017. Late Cretaceous Biostratigraphy Planktonic Foraminifera of the Farokhi Formation, Iran. Open Journal of Geology 7, 320334. Arenillas, I., Arz, J.A., Molina, E., Dupuis, C., 2000. An independent test of planktonic foraminiferal turnover across the Cretaceous/Paleogene (K/P) boundary at El Kef, Tunisia: Catastrophic mass extincion and possible survivorship. Micropaleontology 46, 31–49. Arz, J.A., Molina, E., 2002. Bioestratigrafía y cronoestratigrafía con foraminíferos planctónicos del Campaniense superior y Maastrichtiense de latitudes templadas y subtropicales (España, Francia y Tunicia). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 224, 161-195
14
Awad, G.H., Ghobrial, M.G., 1965. Zonal stratigraphy of the Kharga Oasis. Ministry of Industry, General Egyptian Organisation for Geological Research and Mining, Geological Survey, Cairo 34, 77 pp. Beiranvand,
B.,
Zaghbib-Turki,
D.,
Ghasemi-Nejad,
E.,
2014.
Integrated
biostratigraphy based on planktonic foraminifera and dinoflagellates across the Cretaceous/Paleogene (K/Pg) transition at the Izeh section (SW Iran). Comptes Rendus Palevol 13, 235–258. Berger, W.H., Diester-Haas, L., 1988. Paleoproductivity: the benthic/planktonic ratio in foraminifera as a productivity index. Marine Geology 81, 15 – 25. Berggren, W.A., Pearson, P.N., 2005. A revised tropical to subtropical Paleogene planktonic foraminiferal zonation. Journal of Foraminifer Research 35 (4), 279–298. Berggren, W.A., Kent, D.V., Swisher, C.C., Aubry, M.P., 1995. A revised Cenozoic geochronology and chronostratigraphy. In: Berggren, W.A., Kent, D.V., Hardenbol, J. (eds), Geochronology, time scales and global stratigraphic correlations: a unified temporal framework for a historical geology. SEPM, Special Publication 54, 129–213. Caron, M., 1985. Cretaceous planktonic foraminifera. In Plankton stratigraphy (eds Bolli, H. M., Saunders, J. B. & Perch-Nielsen, K.), pp. 17–86 (Cambridge University Press, Cambridge). Darvishzadeh, B., Abdolalipour, S., 2009. Campanian and Maastrichtian Biostratigraphy and Paleoenvironment in Jorband Section, North of Iran. Journal of Sciences 20, 23-39. El-Akkad, S., Issawi, B., 1963. Geology and iron ore deposits of the Bahariya Oasis. Geol. Surv. Egypt, Cairo, p. 300. Paper 18. El-Azabi, M.H., El-Araby, A., 2000.
Depositional cycles, an approach to the
sequence stratigraphy of the Dakhla Formation, west Dakhla-Farafra stretch, Western Desert, Egypt. J Afr Earth Sci 30, 971–996. El-Azabi, M.H., Farouk, S., 2011. High-resolution sequence stratigraphy of the Maastrichtian-Ypresian succession along the eastern scarp face of Kharga Oasis, southern Western Desert, Egypt. Sedimentology 58, 579–617. El-Nady, H., Shahin, A., 2001. Planktonic foraminiferal biostratigraphy and paleobathymetry of the Late Cretaceous – Early Tertiary succession at northeast Sinai, Egypt. Egyptian Journal of Paleontology 1, 193-227. 15
El Shinnawi, M.A., Sultan, I.Z., 1972. Biostratigraphy of some subsurface Upper Cretaceous sections in the Gulf of Suez area, Egypt. Proceedings of the Fifth African Colloquium on Micropaleontology, 225-261. El-Younsy, A.R.M , Obaidalla, N.A., Philobbos, E. R., Salman, A. M., 2015. Depositional environments and sequence stratigraphy of the CampanianEocene succession, Gabal Oweina area, Upper Egypt. Eighth International Conference on the geology of Africa, I-73- I-97, Assiut- Egypt. Faris, M., Obaidalla, N.A., Metwally, A.A., Salman, A.M., Zaky, A.S., 2018. Late Cretaceous–Early Paleogene tectonic events at Farafra-Abu Minqar Stretch, Western Desert, Egypt: results from calcareous plankton. Arabian Journal of Geosciences 11:429. Farouk, S. 2014. Maastrichtian carbon cycle changes and planktonic foraminiferal bioevents at Gebel Matulla, west-central Sinai, Egypt. Cretaceous Research, 50, 238–251. Farouk, S., Khalifa, M.A., Abu El-Hassanm M.M., Papazzoni, C.A., Frontalini, F., Coccioni, R., Zaky, A.S., 2019. Upper Paleocene to lower Eocene microfacies,biostratigraphy, and paleoenvironmental reconstruction in the northern Farafra Oasis, Western Desert (Egypt). Micropaleontology 65 (5), 381-406. Gallala, N., Zaghbib-Turki, D. 2010. High resolution biostratigraphy based on planktonic foraminifera across the Cretaceous–Paleogene transition at the Bidart section (SW France). Acta Geologica Polonica 60 (2), 243–255. Gibson, T.G., Planktonic benthonic foraminiferal ratios: Modern patterns and Tertiary applicability. Marine micropaleontology 15 (1-2), 29-52. Haggag, M., Strougo, A., Luterbacher, H., Wielandt, U., 2010. Paleocene-Early Eocene planktic foraminifera of the Farafra Oasis, Egypt. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen Band 256 Heft 2, 161 – 182. Hammoudi, R.A., 2011. High resolution biostratigraphy of the K/T boundary in the Higran section, Shaqlawa area, Northern Iraq. Iraqi National Journal of Earth Sciences 11 (1), 23-48. Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., de Graciansky, P.-C., Vail, P.R., 1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. SEPM Special Publication 60, 3–13. 16
Hart, M.B. 1980. A water depth model for the evolution of the planktonic foraminiferida. Nature 286, 252–254. Haslett, S.K., 1994. Planktonic foraminiferal biostratigraphy and paleoceanography of the Cretaceous–Tertiary boundary section at Bidart, South-west France. Cretaceous Research 15, 179–192. Hewaidy, A.A., 1987: Biostratigraphy and paleobathymetery of the Esna Shale in ElQusaima area, north Sinai, Egypt. M.E.R.C., Ain Shams Univ., Earth. Sci. Ser. 1, 180-206. Hewaidy,
A.A.,
Strougo,
A.,
2001. Maastrichtian-lower
Eocene
benthonic
foraminiferal distribution and paleoecology of three outcrop sections in Farafra. Egyptian Journal of Paleontology 1, 1-22. Hewaidy, A.A., El-Azabi, M.H., Farouk, S., 2006. Facies associations and sequence stratigraphy of the Upper Cretaceous - Lower Eocene succession in the Farafra Oasis, Western Desert, Egypt. 8th Conference on the Geology of the Arab World, pp. 54-84. Hewaidy, A.A., Farouk, S., EL-Balkiemy, A.F., 2017. Foraminiferal Biostratigraphy, Stages Boundaries and Paleoecology of the Uppermost Maastrichtian - Lower Eocene Succession at Esh El-Mellaha Area, North Eastern Desert, Egypt. Journal of American Science 13(5), 73-113. Hewaidy, A.A., Farouk, S., Mandur, M.M., El Agroudy, I., 2019. Planktonic foraminiferal and paleoenvironments of the Upper Campanian-Maastrichtian succession in Wadi Qena, Egypt. Egyptian Journal of Petroleum 28, 47-59. Issawi, B., 1972. Review of Upper Cretaceous-Lower Tertiary stratigraphy in central and southern Egypt. AAPG Bull 56 (8), 1448–1463. Kaiho, A., Lamolda, M.A., 1999. Catastrophic extinction of planktonic foraminifera at the Cretaceous-Tertiary boundary evidenced by stable isotopes and foraminiferal abundance at Caravaca, Spain. Geology 27 (4), 355-358. Khalil, H., Fathy, M.S., Abdeldayem, A.L., Ghobara, O.A., 2016. Stratigraical studies on the Upper Cretaceous - Lower Eocene rocks in Central Eastern Desert, Egypt. Delta J. Sci. 37,147-173. Keller, G., 1988. Extinction, Survivorship and Evolution of Planktonic Foraminifera across
the
Cretaceous/Tertiary
Micropaleontology 13, 239-263. 17
Boundaryat
E1
Kef,
Tunisia.
Keller, G., Adatte, T., Bajpai, S., Mohabey, D.M., Widdowson, M., Khosla, A., Sharma, R., Khosla, S.C., Gertsch, B., Fleitmann, D., Sahni, A., 2009. K–T transition in Deccan Traps of central India marks major marine Seaway across India. Earth and Planetary Science Letters 282, 10–23. Keller, G., Li, L., MacLeod, N. 1995. The Cretaceous/Tertiary boundary stratotype section at El Kef, Tunisia: How catastrophic was the mass extinction? Paleogeography, Paleoclimatololgy, Paleoecology 119, 221–254. Le Roy, L.W., 1953. Biostratigraphy of the Maqfi section, Egypt. Geol. Soc. AMER Mem 54:58. Li, L., Keller, G., 1998a. Maastrichtian climate, productivity and faunal turnovers in planktonic foraminifera in South Atlantic DSDP sites 525 and 21. Marine Micropaleontology 33, 55–86. Li, L., Keller, G., 1998b. Maastrichtian diversification of planktonic foraminifera at El Kef and Elles, Tunisia. Eclogae Geologicae Helvetiae 91, 75–102. Li, L., Keller, G., Stinnesbeck, W., 1999. The Late Campanian and Maastrichtian in northwestern
Tunisia:
paleoenvironmental
inferences
from
lithology,
macrofauna and benthic foraminifera. Cretaceous Research 20, 231–252. Luciani, V., 1997. Planktonic foraminiferal turnover across the Cretaceous-Tertiary boundary in the Vajont Valley (Southern Alps, northern Italy). Cretaceous Research 18, 799-821. Mahsoub, M., Abul-Nasr, R., Boukhary, M., Abd El Aal, H., Faris, M., 2012. Bioand Sequence Stratigraphy of Upper Cretaceous – Palaeogene rocks, East Bahariya Concession, Western Desert, Egypt. Geologia Croatica 65 (2), 109– 138. Murray, J.W., 1976. A method of determining proximity of marginal seas to an ocean. Marine Geology 22 (2), 103-119. Norton, P. 1967: Rock-stratigraphic nomenclatures of the Western Desert, Egypt. Egyptian Petroleum Corporation, Cairo, 557 p. Obaidalla, N.A., 2005. Complete Cretaceous/Paleogene (K/P) boundary section at Wadi Nukhul southwestern Sinai, Egypt: inference from planktonic foraminiferal biostratigraphy. Rev Paleobiol 24, 201-224.
18
Obaidalla, N.A., Kassab, A., 2000. Biostratigraphy of the Khoman Formation, Bahariya Oasis, Western Desert, Egypt: an approach to the K/T boundary. Egypt J. Geol. 44, 443–453 Obaidalla, N.A., El Ayyat, A.M., Kassab, A., 2006. Biostratigraphical and sedimentological studies on the Upper Cretaceous/Paleogene sequence, Western Desert, Egypt. Assiut Univ J Geol 35,141–207. Premoli
Silva, I,
Sliter,
W.V.,
1995.
Cretaceous
planktonic
foraminiferal
biostratigraphy and evolutionary trends from the Bottaccione section, Gubbio, Italy. Paleontographia Italica 82, 1-89. Premoli Silva, I., Verga, D., 2004. Practical manual of Cretaceous planktonic foraminifera. International school on planktonic foraminifera, 3rd course: Cretaceous. Universities of Perugia and Milan, Tiporafia Pontefelcino, Perugia (Italy), 283. Robaszynski, F., Gonzalez Donoso, J.M., Linares, D., Amedro, F., Caron, M., Dupuis, C, Dhont, A.V., Gartner, S., 2000. Le Crétacé supérieur de la région de Kalâat Senan, Tunisie centrale. Litho-biostratigraphie intégrée : zones d’Ammonites, de Foraminifères planctoniques et de Nannofossiles du Turonien au Maastrichtien. B Cent Rech Expl 22, 359-490. Said, R., 1961. Tectonic framework of Egypt and its influence on the distribution of foraminifera. American Association of Petroleum Geologists Bulletin 45, 198218. Said, R., Sabry, H., 1964. Planktonic Foraminifera from the Type Location of Esna Shale in Egypt. MicroPaleontology 10, 375-395. Samir, A.M., 1998. Paleoenvironmental significance of the Upper Cretaceous – Lower Tertiary foraminifera of the North Gunna section, Farafra Oasis, Western Desert, Proc. Kon. Ned. Akad. V. Wetensch. 2, 109-126. Samir, A.M., 2002. Biostratigraphy and paleoenvironmental changes in the Upper Cretaceous – Early Paleogene deposits of Gebel Samra section, southwestern Sinai, Egypt. Egyptian Journal of Paleontology 2, 1-40. Sari, B. 2006. Upper Cretaceous planktonic foraminiferal biostratigraphy of the Bey Daglari autochthon in the Korkuteli area, western Taurides, Turkey. Journal of Foraminiferal Research 36 (3), 241-261. 19
Sarigul, V., Hakyemez, A., Tuysuz, O., Can genc, Ş., Yilmaz, Đ.O., Ozcan, E., 2017. Maastrichtian-Thanetian planktonic foraminiferal biostratigraphy and remarks on the K-Pg boundary in the southern Kocaeli Peninsula (NW Turkey). Turkish Journal of Earth Sciences 26, 1-29. Sliter, W.V., 1989. Biostratigraphic zonation for Cretaceous planktonic foraminifers examined in thin section. Journal of Foraminiferal Research 19, 1–19. Strougo, A., Hewaidy, A.A., 1999. The Paleocene - Eocene boundary in Le Roy΄s Maqfi section, Farafra Oasis. The First Conference on the Geology of Africa, Nov. 23-25, pp. 17-23, Assiut - Egypt. Tmalla, A.F.A., 1992. Stratigraphic position of the Cretaceous- Tertiary boundary in the northern Sirt Basin, Libya. Marine and Petroleum Geology 9, 542-552. Tantawy A.A., Keller, G., Adatte, T., Stinnesbeck, W., Kassab, A., Schulte, P., 2001. Maastrichtian to Paleocene depositional environment of the Dakhla Formation, Western Desert, Egypt: sedimentology, mineralogy, and integrated micro- and macrofossil biostratigraphies. Cretaceous Research 22, 795–827. Tshakreen, S.O., Gasiński, M.A., Machaniec, E., Mącznik, A., 2017. Campanian– Maastrichtian foraminiferal stratigraphy and palaeoenvironment of the lower Tar Member in the Wadi Tar section, western Sirte Basin (Libya). Annales Societatis Geologorum Poloniae 87, 349–362. Van der Zwaan, G.J., Jorissen, F.J., De Stigter, H.C., 1990. The depth dependency of planktonic/benthic foraminiferal ratios: Constraints and applications. Marine Geology 95 (1), 1-16. Wade, B.S., Pearson, P.N, Berggren W.A., Pälike H., 2011. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth-Science Reviews 104, 111-142. Yildiz, A., Ozdemir, Z., 1999. Biostratigraphic and Isotopic Data on the Coreklik Member of the Hekimhan Formation (Campanian-Maastrichtian) of SE Turkey and Palaeoenvironmental Significance. Cretaceous Research 20, 107117. Youssef, M.I., Bassiouni, M.A., Abdelmalik, W.M., Boukhary, M.A., Abdallah, G.F., 1983. Biostratigraphy of the Upper Cretaceous – Lower Tertiary rocks of
20
south Jordan based on planktonic foraminifera. Qatar Univ. Sci. Bull. 3, 233 – 278. Zaghbib-Turki, D., Karoui-Yaakoub, N., Belayouni, H., Rocchia, R., Robin, E., 2000. Enregistrement des évènements remarquables de la limite Crétacé-Tertiaire dans la coupe d’Ellès (Tunisie). Comptes rendus de l’Académie des sciences, 331, 141–149.
List of Figures Fig.1. Location map of the study area (modified after Al-Kahtany, 2017). Fig.2. Lithostratigraphy and range charts of the identified planktonic foraminifera. Fig.3. Range charts of the identified benthonic foraminifera. Fig.4. Maastrichtian-Paleocene planktonic foraminiferal biozones used in this study. Fig.5. Foraminiferal parameters with the proposed paleobathymetry in the studied succession at the north Farafra Oasis. Plate 1 The scale bar =100 µm. 1- Globotruncana aegyptiaca Nakkady, Khoman Formation. 2- Contusotruncana contusa (Cushman), Khoman Formation. 3- Gansserina gansseri (Bolli), Khoman Formation. 4- Heterohelix globulosa (Ehrenberg), Khoman Formation. 5- Subbotina triloculinoides (Plummer), Dakhla Formation. 6- Parasubbotina pseudbulloides Plummer, Dakhla Formation. 7- Praemurica uncinata (Bolli), Dakhla Formation. 8- Morozovella angulata (White), Tarawan Formation. 9- Globanomalina pseudomenardii (Bolli), Tarawan Formation. 10- Acarinina subsphaerica (Subbotina), Tarawan Formation. List of Tables Table 1: Correlation of the documented foraminiferal biozones with their equivalents in- and outside Egypt.
21
Keller et al., 1995; Li & Keller, 1998; Berggren & Pearson, 2005
M. velascoensis
Planorotalites pseudomenardii
Haggag et al. 2010
Wade et al. 2011
M. velascoensis P5
M. velascoensis P5
M. velascoensis P5
Ac. soldadoensis Gl. Pseudomenardii P4c
Ac. soldadoensis Gl. Pseudomenardii P4c
Ac. soldadoensis Gl. Pseudomenardii P4c
Selandian
Ac. Subsphaerica P4b Planorotalites pusilla pusilla
Gl. pseudomenardii P. variospira P4a I. albeari P3b
Danian
M. angulata
I. pusilla P3a
M. uncinata
P2
M. trindadensis
P1c
P1b M. pseudobulloides P1a Pα G. eugubina
Late Early
Maastrichtian
A. mayaroensis
Gansserina gansseri
P0
P. uncinata G. compressa P. inconstans S. triloculinioid es P. pseudobulloid es P. eugubina G. conusa G. cretacea
Ac. Subsphaerica P4b Gl. pseudomenardii P. variospira P4a
Not studied Igorina albeari Gl. pseudomenardii
I. albeari P3b
M. angulataI. albeari
I. pusilla P3a P2
P. uncinata
P. uncinata
P1c
P. inconstans
P. inconstans
P1b
S. triloculinioides
S. triloculinioides
P1a
P. pseudobulloides
P. pseudobulloides
Pα
P. eugubina
P. eugubina
G. cretacea
G. cretacea
P0
P. hantkeninoides CF1
P. palpebral CF2 Pseudoguembelina hariaensis CF3 Racemiguembelina fructicosa CF4 Pseudotextairia intermedia CF5 Rosita contusa CF6 Gansserina gansseri CF7 Rug. hexacamerata CF8a
Gl. pseudomenardii Ac. subsphaerica
Gl. pseudomenardii P. variospira P4a
Hiatus
Not studied
Present study
Not studied
Ac. Subsphaerica P4b
Morozovella angulata P. uncinata
Obaidalla, 2013
A. mayaroensis
Thanetian
Age
Caron, 1985; Toumarkine & Luterbacher, 1985
P. hantkeninoides
P. uncinata S. triloculinioides
P. pseudobulloides
Hiatus
P. palpebra
Not studied
Contusotruncana contusa Not studied Gansserina gansseri
Globotruncana aegyptiaca
Highlights
• Maastrichtian– Paleocene succession exposed in Western Desert. • Biostratigraphic zonations based on planktic foraminifera. • Bioevents during the K/P boundary.
Disclosure of interest The author declares that he has no competing interest.