Non-Classical Logics, Model Theory and Computability, A.I. Arruda, N.C.A. da Costa and R. Chuaqui (eds.) 0 North-Holland Publishing Company, 1977
FORMALIZINGMULTIPLE by
F.
G.
LOCATION
ASENJO
0, PURPOSE, Whitehead c r i t i c i z e d t h e concept o f s i m p l e l o c a t i o n as
insufficiently
descriptive o f the spacial relationships o f actual e n t i t i e s i n the physical w o r l d (see Whitehead 1967,chapters I I I a n d I V , s p e c i a l l y p a g e 6 5 ) . T h e concept o f f i e l d o f f o r c e s p r o v i d e s a good example o f t h e k i n d o f f o r m a l u b i q u i t y which r e a l i t y e x h i b i t s and which s i m p l e l o c a t i o n cannot convey. E n t i t i e s i n a f i e l d e x e r t t h e i r dynamic i n f l u e n c e t h r o u g h o u t t h a t f i e l d and a r e i n turn i n f l u e n c e d by a l l t h e f i e l d ' s o t h e r e n t i t i e s as w e l l as by i t s general d i s t r i b u t i o n o f f o r c e s . Because space i s t h o u g h t t o b e a s i n g l e a n d u n i f o r m d e p o s i t o r y o f p h y s i c a l e n t i t i e s , t h i s p l u r a l i t y o f dynamic e f f e c t s i s u s u a l l y d e s c r i b e d as b e i n g m e r e l y p a r t o f t h e general phenomenon o f a c t i o n a t a
d i s t a n c e . A c t u a l l y , e n t i t i e s a r e n o t p l a c e d i n a n i n d i f f e r e n t space; i s a changing p r o p e r t y o f t h e dynamic c o n d i t i o n s o f a f i e l d , which i s
space spe-
c i a l l y e v i d e n t a t t h e m i c r o p h y s i c a l l e v e l . Every r e g i o n i n a f i e l d has what elsewhere we have c a l l e d mcLetipLe LocutLon (see Asenjo 1962), i.e.,
a real
and e f f i c i e n t e x t e n s i o n o f each r e g i o n i n t o and t h r o u g h o u t o t h e r r e g i o n s o f the field.
Such an
idea
o f m u l t i p l e l o c a t i o n provides us w i t h a
more c o n c r e t e conceptual approach t o t h e r e a l i t i e s o f t h e p h y s i c a l w o r l d .
No l o n g e r m u s t o n e t a k e r e f u g e i n t h e m y s t e r i o u s a c t i o n a t a d i s tance;
instead,
o n e c a n t h i n k o f e n t i t i e s as a c t i n g upon o n e a n o t h e r b y
v i r t u e o f t h e i r mutual c o e x t e n s i o n a l i t y . T h i s i d e a i s what
we s h a l l f o r -
m a l i z e here. The problems i n r e a l i z i n g t h i s p r o j e c t a r e a s f o l l o w s . Class i c a l s e t theory lends i t s e l f too n a t u r a l l y t o i n t e r p r e t a t i o n i n t e r m s o f s i m p l e l o c a t i o n . Elements i n a s e t a r e c l e a r l y d i s t i n g u i s h e d f r o m o n e a n -
25
26
F. G . ASENJO
o t h e r and a l l a r e r e l a t e d e x t e r n a l l y t o t h e s e t t h a t g a t h e r s them
together
t h r o u g h membership-a r e l a t i o n s h i p t h a t u n a v o i d a b l y performs a r a d i c a l s e l e c t i o n f r o m t h e e l e m e n t s ' many p r o p e r t i e s . I t i s a p p r o p r i a t e t o c o l l e c t b e r s i n t o a s e t , say, b u t one cannot c o l l e c t t h e e n t i t i e s o f
a
num-
physical
f i e l d i n t o a s e t without doing violence t o the wealth o f concrete r e l a t i o n s h i p s t h a t t h o s e e n t i t i e s have between one a n o t h e r . C u r r e n t p o i n t s e t
to-
p o l o g y i s o f no h e l p , e i t h e r , because i t i s a f o r m o f a p p l i e d s e t t h e o r y . W e need t o be a b l e t o f o r m a l l y p l a c e one s i m p l e l o c a t i o n i n t o a n o t h e r ; t h a t i s ,
U 2 as
we want t o f o r m a l i z e t h e f a c t t h a t s i m p l e l o c a t i o n V l has l o c a t i o n
w e l l , t h a t a p o i n t l o c a t e d a t V l a l s o moves i n t o t h e l o c a t i o n V 2 - a l t h o u g h not necessarily vice versa-just
as f o r c e s may be e i t h e r e x c l u s i v e l y o u t ~ O W L C M and
going o r exclusively ingoing i n a given r e l i o n ( t h e so-called
bi~bn)W . e s h a l l use t h e concept o f d i r e c t e d graph f o r t h i s purpose, v e r t i -
ces r e p r e s e n t i n g prima f a c i e s i m p l e l o c a t i o n s , and d i r e c t e d edges, symbol+ i z e d by t h e n o t a t i o n u. u, , r e p r e s e n t i n g m u l t i p l e l o c a t i o n s - e x p l i c i t e l y ,
Ui
1 J
i s t h e i n i c i a l v e r t e x and 4
V j t h e t e r m i n a l one i n t h e l o c a t i o n
Vi
of
w i l l be c a l l e d an o u t g o i n g edge a t V ; , and j: an i n g o i n g one a t V j . Extremecases w i l l be ( i ) those i n which e v e r y b i l o c a >>t i o n UiUj i s symmetric ( t h a t i s , t h e e x i s t e n c e o f ViVj implies t h a t o f >i n t h e g r a p h ) . and ( i i ) those i n which edges a r e t o t a l l y absent, mulVjVi into U
ViVj
t i p l e l o c a t i o n t h e n b e i n g reduced t o s i m p l e l o c a t i o n ( p o i n t s becoming
v e r t i c e s o r sets o f v e r t i c e s without d i r e c t e d l i n k s ) . I n general,
mere
points
h e r e w i l l be graphs, f i n i t e o r i n f i n i t e , and t h e p a t t e r n o f d i r e c t e d
edges
of a g i v e n p o i n t w i l l r e p r e s e n t t h e network o f m u l t i p l e l o c a t i o n s i n t r i n s i c t o t h a t p o i n t . A p o i n t , then, w i l l have s t r u c t u r e , i t s v e r t i c e s and d i r e c t ed edges making up i t s i n t e r n a l c o n s t i t u t i o n . F u r t h e r , i t i s e s s e n t i a l
to
the notion o f multiple location that t h i s internal c o n s t i t u t i o n n o t
be
closed, b u t open t o enlargement and a d d i t i o n a l s t r u c t u r a l a r t i c u l a t i o n . T h i s r e q u i r e s t h a t p o i n t s n o t be s e a l e d elements t o be c o l l e c t e d ;
rather;
they
must be s e t s o f some k i n d t h a t can be i n c l u d e d , embedded i n o t h e r l a r g e r p o i n t s . P o i n t s a r e n o t t o be t a k e n as i r r e d u c i b l e members o f a s e t , immodif i a b l e t o p o l o g i c a l atoms i n a neighborhood, b u t as e n t i t i e s
at
the
same
l o g i c a l l e v e l as t h a t o f any s e t o r neighborhood which c o n t a i n s them.Indeed, h e r e p o i n t s w i l l themselves be s e t s o f a s p e c i a l k i n d , and i n t u r n a
topo-
l o g i c a l space w i l l sometimes be one o r more p o i n t among o t h e r s . From f o r m a l i z i n g m u l t i p l e l o c a t i o n i t f o l l o w s t h a t no f i g u r e h a s a s i n g l e geometric s t r u c t u r e
-
an " a b s o l u t e appearence", t o use a p a r a d o x i c a l
e x p r e s s i o n t h a t d e s c r i b e s o u r o r d i n a r y , n a i v e i d e a o f form. The t o p o l o g i c a l
27
F O R M A L I Z I N G M U L T I P L E LOCATION
a s p e c t o f a f i g u r e i s r e l a t i v e t o v a r i o u s p o i n t s o f view, a m a t t e r o f topol o g i c a l perspective; t h a t i s , considered from d i f f e r e n t v e r t i c e s
within
p o i n t i n a f i g u r e ( t h o u g h t o f as an assemblage o f v e r t i c e s ) , d i f f e r e n t
a
topo-
l o g i c a l c o n f i g u r a t i o n s d e s c r i b e t h a t same f i g u r e . F u r t h e r , t h e r e a r e v e r t i ces f r o m which t h e f i g u r e cannot be d e s c r i b e d by any t o p o l o g i c a l c o n f i g u r a t i o n ; a l s o , t h e r e a r e v e r t i c e s w i t h o u t neighborhoods, as w e l l as v e r t i c e s
A t o r u s i s n o t a t o r u s f r o m a l l v i e w p o i n t s . I f t h i s appears b e w i l d e r i n g a t
f r o m which no t o p o l o g y a t a l l can be b u i l t (see examples i n S e c t i o n 4 ) . f i r s t , l e t us s t o p t o t h i n k : Why s h o u l d a f i g u r e have a u n i q u e
topological
configuration? I n t h e physical world t h e singleness o f a f i g u r e ' s i s a macroscopic p r e c o n c e p t i o n , a m a t t e r o f choosing f r o m
a
topology
w e a l t h o f ap-
pearences whose p r i m a r y o r secondary c h a r a c t e r depends o n v i e w p o i n t . Indeed, i t i s t h e conclusions o f c u r r e n t ultramicroscopic physics t h a t
f o r c e us t o
acknowledge t h i s b a s i c p e r s p e c t i v i s m o f space as a r o u t i n e p r o p e r t y o f matter.
I , A SET THEORY BASED ON
THE
P~OTION
INCLUSION,
OF
1, INCLUSION, The p r i m i t i v e i d e a s a r e t h o s e o f s e t , i n c l u s i o n ,
and b i n a r y r e l a t i o n .
C a p i t a l l e t t e r s s t a n d f o r s e t s and t h e i n c l u s i o n r e l a t i o n i s denoted by S . I n a d d i t i o n we have an u n l i m i t e d number o f symbols f o r b i n a r y
( R , F,
6,
relations
g, ...). A l s o , l e t us assume t h e f o r m a l a r i t h m e t i c o f non-negative
integers, including ordinary induction. DEFINITION 1. AXIOM 1 .
(EQuLLL~Y.) X = Y
stands f o r ( Z ) ( Z S X :ZS Y ) .
( E x t e ~ b i ~ ~ & y . ) (X)(Y)(X=Y->(Z)(XE
Z E YC Z ) ) .
Def. 1 e s t a b l i s h e s t h a t equal s e t s a r e t h o s e h a v i n g t h e same s u b s e t s and no o t h e r s , whereas Ax. 1 determines f u r t h e r t h a t equal s e t s a r e subsets o f t h e same s e t s . Obviously, DEFINITION 2. AXIOM 2 .
X = X.
( P m p e h inclubion.)
(NuR b&.)
(3x)(Y)(Y$
X c Y
stands f o r
X= Y & X
X & (Z)(Z # X E X E Z)).
# Y
.
28
F. G . ASENJO
T h e r e e x i s t s a s e t w i t h o u t subsets which i s i n c l u d e d i n e v e r y o t h e r s e t
.
e x c e p t i t s e l f . By Def. 1 and Ax. 1, t h i s s e t i s u n i q u e sented by @
.
I t w i l l be r e p r e -
Since t h e axiom o f e x t e n s i o n a l i t y guarantees t h a t a s e t i s u n i q u e l y determined by i t s subsets, t h e (where
Y,
X,
Z,
... a r e
n o t a t i o n S = {X,
Y,
...I
Z,
i s then i n order
a l l t h e subsets o f S i n f i n i t e o r i n f i n i t e number).
O f course, f o r e v e r y s e t S # @ , S i t s e l f and @ a r e t o be l i s t e d b e t w e e n b r a c k e t s , and because [@I i s meaningless, so i s t h e e q u a t i o n S = { @ I F u r t h e r , i t i s never t h e case t h a t
X = {XI.
AXIOM 3. (Re.~.l?eXivLty,Antinymrn&y, ( X ) ( X # @ +X
(X)(Y)(Z)(X
GX) & (X)(Y)(X
C Y & Y
=z
---$
and Tnam.iAvLty a6 l n d w i o n . )
cY
AXIOM 4. ( S e p c v r a t i ~ ~ . )( X ) ( 3 Y ) [ Y (V)(Z)((Z where
EX & 0 ( Z )
->z
& Y E X > -
x
= Y) &
X CZ).
SV) > -
& ( Z ) ( Z E X & $ ( Z ) ->Z
E X
Y SV)]
&
EY)
,
@(Z) i s any w f f w i t h one f r e e v a r i a b l e . N o t i c e t h a t Y may a l s o con-
t a i n s e t s U such t h a t
1 0 ( U ) . Obviously, i f @ ( X ) , t h e n X i t s e l f s a t i s f i e s
Ax. 4. I f 1 0 ( X ) , Ax. 4 guarantees t h e e x i s t e n c e o f a l e a s t s e t i n c l u d e d i n X t h a t c o n t a i n s a l l subsets o f X w i t h t h e p r o p e r t y 0 ( p l u s any o t h e r
sets o f
x
w i t h o u t such p r o p e r t y b u t n o t s e p a r a b l e f r o m Y because o f
subtheir
b e i n g i n c l u d e d i n some subset Z o f X w i t h t h e p r o p e r t y 0). The n o t a t i o n Y = ( 2 : Z c X & @ ( Z ) > i s now j u s t i f i e d : Y i s t h e l e a s t subs e t o f X t h a t c o n t a i h s a l l t h e subsets o f X t h a t s a t i s f y
A X I O M 5 . (Expamian.) ( X ) ( ~ Y ) ( ~ Z ) ( cX Y
&
z
EY &
@(Z).
z$x
&
x $ z).
As a consequence o f t h i s axiom t h e r e i s no c l a s s o f a l l s e t s . there e x i s t s a t l e a s t a countable i n f i n i t y o f sets. I n f a c t , i n f i n i t y o f c o u n t a b l y i n f i n i t e sequences o f s e t s .
Also,
there i s
an
Ax. 5 c a n b e a p p l i e d suc-
c e s s i v e l y t o a s s e r t t h e e x i s t e n c e o f n e s t e d sequences o f d ' i s t i n c t s e t s , each properly included i n the following ones(chains),aswell
as t o a s s e t t h e ex-
i s t e n c e o f s e q u e n c e s o f s e t s t h a t a r e p a i r w i s e incomparable w i t h r e s p e c t t o i n c l u s i o n (antichains).These a r e t h e two extreme p o l e s i n t h e spectrum o f a l l t h e p o s s i b l e a r b i t r a r y sequences o f s e t s whose e x i s t e n c e d e r i v e s f r o m t h i s axiom. L e t
Expl(X,U) i n d i c a t e t h a t t h e s e t U i s o b t a i n e d by a p p l y i n g Ax. 5
t o X once, U b e i n g e i t h e r a s e t t h a t p r o p e r l y c o n t a i n s X o r a s e t incompable to X
. Let
Expk(X,U) i n d i c a t e t h a t U i s o b t a i n e d f r o m X a f t e r k a p p l i -
29
FORMALIZING MULTIPLE LOCATION
c a t i o n s o f Ax.5 (where k i s a non-negative i n t e g e r and Exp,,(X,Y)
denotes X
i t s e l f ) , and where t h e k s u c c e s s i v e c h o i c e s a r e made e i t h e r b y f o l l o w i n g some r e c u r s i v e schema o r a t random. (In&kLty).
AXIOM 6 .
(X)(3Y)(Z)(U)(X=
= Y)):
Expk+l(X,w
Y & (€xpk(X,Z) E Y >-
The i n f i n i t e s e t Y (denoted Exp ( X ) ) , whose e x i s t e n c e i s a s s e r t e d
by
t h i s a x i o m , c o l l e c t s a l l t h e s e t s o b t a i n a b l e by a f i n i t e number o f s e q u e n t i a l a p p l i c a t i o n s o f Ax. 5 t o a g i v e n s e t X. N o t i c e t h a t Exp ( X ) does n o t c o l l e c t a l l t h e s u p e r s e t s o f X, b u t a t most o n l y a c o u n t a b l e sequence o f them ( p l u s a l l t h e subsets o f each t e r m o f such sequence). Let
Seq ( X ) denote a p a r t i c u l a r i n f i n i t e sequence X,X1,X2,
o f s e t s o b t a i n e d by successive a p p l i c a t i o n s o f Ax.5 s e t X o f any such sequence,but
...
X,,...
($3 c o u l d b e t h e i n i t i a l
i t c o u l d n o t o c c u p y any o t h e r p l a c e i n t h e s e -
quence). L e t Seqk(X,U) i n d i c a t e
the
k - t h term o f s u c h s e q u e n c e
with
S e q o ( X , U ) = X.
AXIOM 7 .
(Union
06
a sequence) >-
Seqk+l
( X ) ( j Y ) ( Z ) ( U ) ( X 5 Y & (Seq,(X,Z) C Y
'
('9
*
O b v i o u s l y t h e u n i o n o f t h e terms o f a sequence (denoted U s e 4 ( X ) ) a subset o f
is
Exp ( X ) .
AXIOM 8 .
(Union).
AXIOM 9 .
(Iiit('h)eCfiuit)
(X)(Y)(3Z)(U)(U
S X V
c
Y
=
U S Z).
( X ) ( Y ) ( 3 Z ) ( U ) ( U C X & U S Y E U C 2).
Union and i n t e r s e c t i o n , which a r e u n i q u e l y determined, w i l l be denoted by X
u Y and X n Y , r e s p e c t i v e l y .
It i s c l e a r t h a t both operations are
a s s o c i a t i v e and s a t i s f y t h e d i s t r i b u t i v e laws.
2 ELEMENTHOODAND DEFINITION 3.
MEMBERSHIP I
(EYement) E
(X)
stands f o r
(X
# $3) I (Y)(Y # 0 >-
Y$XVY=X). Elements a r e nonempty s e t s w i t h o u t nonempty p r o p e r subsets. s e t i s n o t an element.
The n u l l
30
F. G. ASENJO
AXIOM 1 0 .
(RegLLeatLity)
(X)(X
# 0 ->(3Y)(Y
E X & E(Y)))
Every nonempty s e t c o n t a i n s a t l e a s t one element
(eventually itself
only).
AXIOM 1 1 .
(EYcme.nt expamion)
Y & Z r Y &
(X)(3Y)(3Z)(X=
z
$X &
E (Z)):
Hence, t h e r e i s no s e t o f a l l elements, and t h e r e i s a t l e a s t a c o u n t a b l e i n f i n i t y o f them.
AXIOM 1 2 .
(Paihing)
(X)(Y)(3Z)(E
u
v u
= X
= Y
( X ) & E ( Y ) ->
(U)(U 5
Z :
v u =@I).
There e x i s t s t h e s e t t h a t c o n t a i n s e x c l u s i v e l y a g i v e n p a i r o f e l e m e n t s ( p l u s 0). The b r a c k e t n o t a t i o n { x , y l i s now i n order;small elements, and
.
Ix.xl
letters indicate
{x,gl i s t h e u n i q u e s e t t h a t c o n t a i n s x, y , and 0.
DEFINITION 4.
1x1
is
S ( X ) stands f o r X U Y where Y i s any s e t such
(SucceAboh)
t h a t E ( Y ) and
Y
4 X.
The successor o f a s e t i s n o t u n i q u e l y determined, b u t by Ax. 11 Ax. 8, c o u n t a b l y i n f i n i t e sequences o f s e t s can be assumed t o e x i s t that, begining with a given set, every s e t t h a t follows i s the
and such
successor
o f t h e p r e c e d i n g one.
DEFINITION 5.
(Membetbkip) X E Y
X E Y & E (X)
stands f o r
Only elements a r e members.
THEOREM 1 . PROOF:
( X ) ( E(X) ->
X E X)
Since e v e r y s e t i s a subset o f i t s e l f , e v e r y element i s a member
of itself.
THEOREM 2. PROOF:
$'
X # Y ->X
e
Y & Y
X.
Antisymmetry o f i n c l u s i o n and Def. 3.
AXIOM 1 3 . where
E (X) & E (Y) &
(Compfiehenbion)
(3X)(Y)(Y € X
= @(Y)),
i s any w f f w i t h one f r e e v a r i a b l e . The axiom a s s e r t s t h e e x i s t e n c e
o f a s e t c o n t a i n i n g a l l t h e elements t h a t have t h e p r o p e r t y
@
.
31
FORMALIZING M U L T I P L E LOCATION
THEOREM 3 .
The n e t
06 aU
e l m e n t n X which ate not membenn
06
.thm&vhen
0 empty.
PROOF: T h e o . 1 f o r
X # pI, a n d t h e f a c t t h a t
3, CARTESIANPRODUCT, DEFINITION 6.
lE(@) b y D e f . 3 .
FUNCTIONS, CARDINALITY, ORDER,
(Cahtedian ptoduct)
Given a n y t w o
sets
A and 8,
t h e i r CatLtebian phoduct i s t h e b i n a r y r e l a t i o n d e f i n e d as f o l l o w s : ( A x B)(X,Y) 5 X C A & YE 23). ( C a r t e s i a n p r o d u c t s a r e n o t s e t s . ) 0 x 0 h o l d s f o r no p a i r o f s e t s ,
(0,pI)
included.
DEFINITION 7.
(Comhenpondenchen) Given a C a r t e s i a n p r o d u c t ( A x B), comhenpondence between A and B i s any b i n a r y r e l a t i o n R t h a t s a t i s f i e s R (X,Y) ->(A
a
x B)(X,Y).
DEFINITION 8. (FunCtion6) A 6unCtion o n A i n t o B i s a correspondence F between A and B such t h a t f o r each X E A t h e r e i s one and o n l y one Y 5 B such t h a t F ( X , Y ) . (X)(XCA
I n symbols:
((3Y)f(X,Y)
> -
Iff o r each Y E B
& ( Y ) ( Z ) ( F (X,Y)
& F(X,Z)+Y
= Z))).
f o r which t h e r e i s an X E A such t h a t F(X,Y)
there
i s o n l y one such X, t h e f u n c t i o n i s c a l l e d monomorphic. I f f o r e v e r y
Y EB
t h e r e i s a t l e a s t one X = A such t h a t f ( X , Y ) ,
the functionF i s calledsur-
j e c t i ve.
DEFINITION 9. n a l i t y (denoted
Two s e t s A and B have t h e same c a r d i -
(Catdinality)
IAI
= 181) i f t h e r e e x i s t s a mononiorphic a n d
surjective
f u n c t i o n on A i n t o B . I f t h e r e e x i s t s a monomorphic and s u r j e c t i v e
function
on A i n t o a subset o f 8, b u t n o t one o n 8 i n t o a s u b s e t o f A , t h e n A i s s a i d t o have l e s s e r c a r d i n a l i t y t h a n B ( d e n o t e d I A ( < 181). Obviously, f o r a l l X,
1x1 5 lusty AXIOM 14.
(XI1
5 IExp
(X)I.
(ToaM otdeh)
&
( X ) ( 3 R ) ( ( Y ) ( Y C-X ->R(Y,Y)
( Y ) ( Z ) ( Y C X & Z C X +(R
(Y,Z)
& R(Z,Y)
( Y ) ( Z ) ( U ) ( Y C - X & Z C X & U =X->(R(Y,Z) (Y)(Z)(Y E X & Z
=X
->
Every s e t can be t o t a l l y ordered.
R(Y,Z)
V R(Z,Y))).
->Y
= Z))
&
& R(Z,U) -+R(Y,U))
&
32
F.
G. ASENJO
11, THE TOPOLOGYOF MULTIPLE 4
0
A
LOCATION,
GRAPH TOPOLOGY I
Henceforward, t h e n o t i o n s o f s e t , element, i n c l u s i o n , and sequence a r e those p r e s e n t e d i n P a r t I.A t o p o l o g i c a l space helative .to a uehtex V s h a l l be a d i r e c t e d graph X V
, t h e p r o d u c t graph o f a l l t h e graphs l a b e l e d p o i n t s and a sequence TV o f
r e l a t i v e t o V ( n o t e v e r y subgraph o f Xy i s a V - p o i n t ) , subsets o f XV
, called
neighborhoods, t h a t s a t i s f y
the definition
axioms g i v e n below. Graphs a r e a r r a y s o f v e r t i c e s (elements)
and
and
directed
w?
edges ( i n t r o d u c e d i n t h e usual way, though n o t as a C a n t o r i a n o r d e r e d p a i r o f elements, b u t as elements themselves t h a t a r e symbolized ). It i s understood t h a t e v e r y graph t h a t c o n t a i n s >V i and V j , a l t h o u g h n o t n e c e s s a r i l y V . V . which o f i t s subsets a r e V-points.
J 1
ViVj
as an e l e m e n t a l s o c o n t a i n s
. Given X V ,
it i s
determined
I t i s assumed, f u r t h e r , t h a t i t i s always
p o s s i b l e t o a s c e r t a i n f o r a g i v e n v e r t e x i n a g i v e n subgraph w h e t h e r t h e number o f o u t g o i n g s edges i s g r e a t e r , equal, o r l e s s t h e n t h e number o f i n g o i n g edges ( o r whether t h o s e two numbers a r e incomparable).
Note t h a t , i n
accordance w i t h P a r t I, a s e t o f graphs i s t h e i r own p r o d u c t graph,
which
i n c l u d e s a l l t h e new graphs t h a t can be formed w i t h t h e a s s o r t e d v e r t i c e s and edges o f t h e g i v e n graphs. The t o p o l o g i c a l space XV s h a l l be, t h e n , b o t h a d i r e c t e d graph and a set,. t r u e a l s o o f p o i n t s and neighborhoods. D E F I N I T I O N 1 . G i v e n a v e r t e x W i n XV. a n e i g h b o h h o o d o f W
(denoted
N v ( W ) ) i s any p o i n t o r p r o d u c t graph o f p o i n t s o f X V t h a t
( i ) c o n t a i n s lo,
edges o f W i n
N v ( W ) i s greater
and such t h a t
(ii)t h e number o f o u t g o i n g
t h a n o r equal t o t h e number o f i t s i n g o i n g edges. (Note t h a t j u s t as n e i t h e r t h e subgraph
nor thesupergraph o f a p o i n t
a r e n e c e s s a r i l y p o i n t s , n e i t h e r a r e t h e subgraph
n o r t h e supergraph
of
a
neighborhood n e c e s s a r i l y neighborhoods.) L e t TV be a sequence whose terms a r e a l l neighborhoods and such t h a t e v e r y neighborhoods o f XV i s a subset o f a t e r m o f T V
. Since the
nance o f o u t g o i n g edges i s , p r e s e r v e d by f i n i t e o r i n f i n i t e unions, i s t e n c e o f TV f o l l o w s . TV i s c a l l e d a Ropology r e l a t i v e t o lowing are s a t i s f i e d . AXIOM 1 .
XV i s a .term o f TV
V
predomit h e ex-
i f the
fol-
z
33
FORMAL I I NG MULT I PLE LOCAT I ON
AXIOM 2. Given two neighborhoods Nv(W) and N;(W), t h e i r i n t e r s e c t i o n i s also a
.
V-neighborhood o f W
L e t us l o o k a t two v e r y s i m p l e examples g i v e n h e r e m e r e l y t o add
some
w,
m:
i n t u i t i v e i n t e r p r e t a t i o n t o t h e p r e v i o u s concepts. Consider t h e g r a p h X , > composed o f t h e v e r t i c e s V1, V 2 , V 3 , and t h e edges V3V2: and >L e t t h e p o i n t s of Xul be V1;V2.; V1V2 ( i . e . , t h e subgraph composed o f t h r e e >elements V1, V 2 , V I V , > ) ; and V3V2 L e t t h e p o i n t s o f Xy2 be V3; and -> >>V3V1 F i n a l l y , l e t t h e p o i n t s o f Xy3 be V 1 ; V 2 ; V 1 V 2 ; VjV2;and The
VIVl;
.
w;.
.
n e i g h b o r h o o d s i n X V ( t h e p r o d u c t graph o f i t s p o i n t s ) a r e t h e following. 1 Neighborhoods o f V 2 : V 2 ; V 2 , V1: V1; Vlr V2; and V1V2> >V3V2;,U3, v2, >-v1v2. These e i g h t n e i g h V1. Neighborhoods o f V 3 : v3u;; vl,
.
Neighborhoods o f
borhoods c o n s t i t u t e a t o p o l o g y f o r t h e space Xyl
. The
a t o p o l o g y , a l t h o u g h V 2 has no neighborhoods. Xu3 space. L e t us now c o n s i d e r t h e graph v e r t i c e s and o f a l l t h e edges
is
space Xy2 a l s o has a not
a
toPological
X , composed o f a l l p o s i t i v e i n t e g e r s as
k , k+m>
f o r a l l p o s i t i v e i n t e g e r s k, m 2 1.
F o r each v e r t e x k , l e t t h e p o i n t s o f xk be t h e edges
k,k+m> f o r
e v e r y m > 1.
Only k has neighborhoods i n Xk, b u t t h e s e f o r m a t o p o l o g y f o r xk.
5 , CLOSURE,
D E R I V E D SET, BOUNDARY,
DEFINITION 2 . Given a V - p o i n t p and a neighborhood N V ( W ) , N ~ ( W ) i s c a l l e d a V-neighborhood o f P i f f P E NV(W) . DEFINITION 3. L e t
X Y be a t o p o l o g i c a l space and S a subset o f X y ,
p o i n t P i s s a i d t o be a L i m i t point o f S i f f e v e r y
a
V-
V - n e i g h b o r h o o d o f P con-
t a i n s a t l e a s t one v e r t e x W o f S n o t i n P.
DEFINITION 4. The p r o d u c t graph o f a l l c a l l e d t h e dekiwed beX o f S,
DEFINITION 5. A s e t
S E Xu
c a l l e d d o h e d . We s h a l l c a l l
l i m i t points o f a set
S EXv
is
denoted S ' .
S
u
t h a t contains a l l i t s l i m i t S' =
s t h e d o b w r e o f S.
DEFINITION 6. T h e boundafiy o f a s e t
points i s
S s X ~(denoted B d ( S ) )
i s the
p r o d u c t graph o f t h o s e p o i n t s common t o t h e c l o s u r e o f S and t h e c l o s u r e o f
34
F . G . ASENJO
XV --S,
t h e l a t t e r b e i n g t h e graph spanned by a l l v e r t i c e s and edges n o t i n
S ( n o t e t h a t a l t h o u g h S and X V - S
have no edges i n common, t h e y can have
some v e r t i c e s i n common).
DEFINITION 7. The i n t e t L i o h o f a s e t
is S
S =Xu
-
Bd(S)
Obviously, i f S 1 c S 2 , t h e n S; ES;. Hence, i f Sl a n d S2 a r e b o t h c l o s e d (and t h e r e f o r e S ' c S and S; c S,), t h e n (S1n S,)'=S; and (S1f l S2)l 1- 1 c S; . B u t e v e r y l i m i t p o i n t o f S 1 n S 2 i s a l s o a l i m i t p o i n t o f S1 as w e l l as a l i m i t p o i n t o f S 2 , t h e r e f o r e (S1 n S 2 ) ' s S; Il S;. We t h e n have t h e following. The intemec-tion
THEOREM 1 .
(thehc6ote Rhc boundatry
06
6, HOMEOMORPHISM,
05
a A&
a 6 i n i t e sequence
c l o s e d h e h h closed
CONNECTEDNESS, COMPACTNESS
DEFINITION 8. Given two t o p o l o g i c a l spaces X
06
.LA c t o s e d ) .
X V and Xw f r o m t h e same graph
( o r X V and Yw f r o m d i f f e r e n t graphs X and Y ) , a f u n c t i o n 6 : X V 3 X w ( o r
6:XV > -
Yw r e s p e c t i v e l y ) which maps v e r t i c e s i n t o v e r t i c e s , and edges i n t o
edges o f c o r r e s p o n d i n g v e r t i c e s i n a d i r e c t i o n - p r e s e r v i n g manner ( i . e . , w i t h >each edge V1V2 mapped i n t o t h e edge d(Vl)d(V2<) i s s a i d t o be continu-
ow a t a v e r t e x V O 6-'(NM(6(VO)))
= XV i f f f o r
every
W-neighborhood Nw(6(V0)) of
o f a l l v e r t i c e s and edges whose image under continuous i f
~(VO),
i s a V-neighborhood o f V o , where 6 - l ( N w ( 6 ( V 0 ) ) ) i s t h e graph
6
6
i s Nw(d(Vo)).
6
i s s a i d t o be
i s c o n t i n u o u s a t each v e r t e x o f XV.
DEFINITION 9. Two t o p o l o g i c a l spaces a r e s a i d t o be h o m e o m o t p h i c i f f t h e r e e x i s t i n v e r s e f u n c t i o n s 6:XV ->Xw g:Yw ->Xv
r e s p e c t i v e l y ) such t h a t
6
( o r 6:XV ->
Yw) and g:Xw ->XV(or
and g a r e c o n t i n u o u s ;
6
andg arethen
c a l l ed h a m e o m o ~ p ~ ~ .
DEFINITION 10. Two nonempty s e t s S1 and s a i d t o be nepcmzted i f f S1 ,n S 2 = S1 n S' 2
S2 o f a t o p o l o g i c a l space XV a r e =
S'1 n S2
=
@
.
DEFINITION 11. A s e t which i s n o t t h e u n i o n o f two separated s e t s i s c a l l ed
connected.
35
FORMALIZING MULTIPLE LOCATION
A cloned b e t S 0 connected 4 6 6 .it 0 not t h e u n i o n nonempty d i b j o . i n t cloned nu%.
THEOREM 2 .
PROOF: Assume S = A U 8 where A and 8 a r e nonempty =
0 and A
fl 8' = A
n
S fl 8' 5 A f l 8 =
0
two
and d i s j o i n t c l o s e d
A ' fl S E A and 8' n S C 8. Then A' il 8 = A ' ll S
s e t s . We have
06
. Therefore, A
and 6
8 5 A fl 8
are
sepa-
r a t e d and S i s n o t connected. I f S i s n o t connected, t h e n S = A u 8 where A and 8 a r e separated sets. Then A' fl S = A ' fl ( A U 8 ) = ( A '
n
A ) U (A'
n B)
= A ' fl A
5 A , which means
t h a t A i s c l o s e d . S i m i l a r l y , so i s 8. THEOREM 3 . The cConme
06 a connected b e t
S 0 connected.
PROOF: By c o n t r a d i c t i o n : assume S n o t connected. Since nonempty subsets o f separated s e t s a r e c o r r e s p o n d i n g l y separated, i t i s easy t o show t h a t
then
S c o u l d n o t be connected ( a g a i n s t t h e premise o f t h e theorem).
COROLLARY 4 .
mted
he%%0
A connected b e t t h a t 0 contained in t h e u n i o n contained i n one 06 t h e .two b u % .
06
.two bepa-
C E F I N I T I O N 1 2 . A s e t S i s compact i f f i t i s f i n i t e (composed of a f i n i t e number o f v e r t i c e s and edges) o r i f e v e r y i n f i n i t e s u b s e t o f S has a
non-
empty d e r i v e d s e t . THEOREM 5 . I h e nubnet
a 6.inite numbeh
06
06 a compact net 0 compact. Fuhthet, t h e
compact
PROOF: L e t S = S1 U S
befi
*...u Sn
union
06
0 compact. be t h e u n i o n of n c0mpac.t s e t s . I f T i s an
i n f i n i t e subset o f S, t h e n a t l e a s t one of t h e s e t s T n S j i s i n f i n i t e . S i n c e T
n Si C_Sj , and
Si i s compact, T possesses a t l e a s t one l i m i t p o i n t .
(NOTE: As t h e s e d e f i n i t i o n s and theorems demonstrate, general t o p o l o gy can be c o n s t r u c t e d w i t h o u t e x c e s s i v e d i f f e r e n c e s o n a s e t t h e o r y based on i n c l u s i o n ; t h i s shows t h a t membership i s n o t i n i t s e l f an i n d i s p e n s a b l e r e l a t i o n s h i p f o r t o p o l o g y . Furthermore,to base t o p o l o g y on i n c l u s i o n a l s o i n d i c a t e s a way i n which t o make t o p o l o g i c a l n o t i o n s p l a y a b a s i c graph t h e o r y - g e n e r a l
t o p o l o g y and graph t h e o r y b e i n g d i s c i p l i n e s
f a r have v e r y l i t t l e t o do w i t h one a n o t h e r . )
role in t h a t so
F . G . ASENJO
36
REFERENCES
I
Asenjo, F. G. 1962, El Todo y las Partes, E d i t o r i a l Tecnos, Madrid. Whitehead, A. N. 1967, Science and the Modern World, T h e F r e e P r e s s ,
New Y o r k .
Department o f M a t h e m a t i c s University of Pittsburgh P i t t s b u r y h , Pennsylvania, U.S.A.