Commun Nonlinear Sci Numer Simulat 18 (2013) 2949–2959
Contents lists available at SciVerse ScienceDirect
Commun Nonlinear Sci Numer Simulat journal homepage: www.elsevier.com/locate/cnsns
Generalized double Casoratian solutions to the four-potential isospectral Ablowitz–Ladik equation Shouting Chen a,⇑, Jianbing Zhang b, Dengyuan Chen c a
School of Mathematics and Physical Sciences, Xuzhou Institute of Technology, Jiangsu 221008, China School of Mathematical Sciences, Jiangsu Normal University, Jiangsu 221116, China c Department of Mathematics, Shanghai University, Shanghai 200444, China b
a r t i c l e
i n f o
Article history: Received 18 February 2013 Received in revised form 22 April 2013 Accepted 22 April 2013 Available online 4 May 2013 Keywords: The four-potential isospectral Ablowitz– Ladik equation Wronskian technique Double Casoratian form
a b s t r a c t Generalized solutions in double Casoratian form of the four-potential isospectral Ablowitz– Ladik equation possessing bilinear form are derived through a matrix method for constructing double Casoratian entries. A novel class of explicit solutions, such as soliton, rational-like, Matveev, Complexiton and interaction solutions, are obtained by letting the general matrix be some special cases. Interestingly, a periodic solution is deduced from the Complexiton solution. Ó 2013 Elsevier B.V. All rights reserved.
1. Introduction As is well known, Wronskian technique is an important direct method of searching the soliton solutions to the nonlinear evolution equations [1,2]. Owing to its advantage of direct verification of solutions for soliton equations, Wronskian technique has received considerable attention to its applications and generalizations. As a generalization of Wronskian, the double Wronskian technique was proposed by Darboux in Ref. [3] and applied to constructing the double Wronskian solutions [4,5]. In terms of the technique, soliton solutions can be represented in (double) Wronski determinant form. Besides soliton solutions [6,7], many other exact solutions, such as rational solutions[8,9], Positon solutions [10,11], Complexitons[12], interaction solutions [13], and so forth, can be also expressed in (double) Wronskian form. In 1983, Nimmo and Freeman put forward the rational solutions in the Wronskian form for the KdV equation[8] under the basis of performing an appropriate limiting procedure on the soliton solutions proposed by Ablowitz and Satsuma[14]. In Refs. [9,15], Zhang derived the rational and mixed rational–soliton solutions to the Toda lattice and differential-difference KdV equation in the Casoratian (the discrete version of the Wronskian) form. As the generalization of the Wronskian technique, Chen et al. provided an arbitrary matrix equation satisfied by double Wronskian entries and derived a novel class of solutions of the second-order AKNS equation. By letting the spectral matrix be some special cases, the soliton solutions, rational solutions, Matveev solutions, Complexitons and interaction solutions were obtained [13]. This approach to construct double Wronskian solutions has been applied to some famous soliton equations, such as the general nonlinear Schrödinger equation with derivative [16], the Kadomtsev–Petviashvili equation [17], and so on. In this paper, we consider the generalized double Casoratian solutions of the first-order four-potential isospectral Ablowitz–Ladik (AL) equation. The paper is organized as follows. In Section 2, we derive the generalized double Casoratian ⇑ Corresponding author. Tel.: +86 13852487246. E-mail address:
[email protected] (S.t. Chen). 1007-5704/$ - see front matter Ó 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.cnsns.2013.04.024
2950
S.t. Chen et al. / Commun Nonlinear Sci Numer Simulat 18 (2013) 2949–2959
solution of the equation under a matrix equation satisfied by double Casoratian entries. In Section 3, soliton solutions and rational-like solutions in double Casoratian form are deduced by letting the general matrix be some special cases. In Section 4, we derive the Matveev solutions. In Section 5, we obtain a Complexiton solution and a periodic solution. In Section 6, we construct the interaction solutions. Finally, a conclusion is given. 2. The generalized double Casoratian solutions Let E be the shift operator defined as Ek v ðnÞ ¼ v ðn þ kÞ; k 2 Z. Usually for convenience, we write confusion. The first-order four-potential isospectral AL equation reads[18]
Q n;t ¼ ð1 Q n Rn ÞSn ;
Rn;t ¼ ð1 Q n Rn ÞT n1 ;
Sn;t ¼ ð1 Sn T n ÞQ nþ1 ;
T n;t ¼ ð1 Sn T n ÞRn ;
v ðnÞ ¼ v n
without any
ð2:1Þ
where the functions of variable n fQ n ; Rn ; Sn ; T n g are four potentials. Its Lax pairs are [19,18]
EUn ¼ U n Un ;
Un ¼
Un;t ¼ V n Un ;
Vn ¼
z 2 þ Sn R n
zQ n þ z1 Sn
zT n þ z1 Rn
z2 þ T n Q n
12 Q n T n1 þ 12 z2
!
Un ¼ !
Q nz 1 Q T 2 n n1
T n1 z
;
12 z2
/1n /2n
;
ð2:2Þ
:
Through the dependent variable transformation[20]
Qn ¼
gn ; fn
Rn ¼
hn ; fn
Sn ¼
Gn ; Fn
Tn ¼
Hn ; Fn
ð2:3Þ
Eq. (2.1) can be transformed into the following bilinear form
Dt g n fn ¼ F n1 Gn ;
ð2:4aÞ
Dt hn fn ¼ F n Hn1 ;
ð2:4bÞ
Dt Gn F n ¼ fn g nþ1 ;
ð2:4cÞ
Dt Hn F n ¼ fnþ1 hn ;
ð2:4dÞ
fn2
g n hn ¼ F n F n1 ;
ð2:4eÞ
F 2n
Gn Hn ¼ fnþ1 fn ;
ð2:4fÞ
where D is the well-known Hirota bilinear operator defined by m n n 0 0 0 Dm t Dx f g ¼ ð@ t @ t Þ ð@ x @ x0 Þ f ðt; xÞ gðt ; x Þjt 0 ¼t;
x0 ¼x :
ð2:5Þ
Let us observe the matrix equations
EUn ¼ AUn ; E1 Wn ¼ AWn ; 1 1 Un;t ¼ EUn ; Wn;t ¼ E1 Wn ; 2 2
ð2:6aÞ ð2:6bÞ
where A ¼ ðaij Þ is an ðm þ p þ 2Þ ðm þ p þ 2Þ arbitrary invertible, real matrix independent of n and t and
Un ¼ ð/1n ; /2n ; . . . ; /mþpþ2;n ÞT ;
Wn ¼ ðw1n ; w2n ; . . . ; wmþpþ2;n ÞT :
ð2:7Þ
The double Casorati determinant is a discrete version of a double Wronskian defined as [21]
b b Casmþ1;pþ1 ðUn ; Wn Þ ¼ jUn ; EUn ; . . . ; Em Un ; Wn ; EWn ; . . . ; Ep Wn j ¼ j m; p j:
ð2:8Þ
kj and jel; b kj[9] Besides, we introduce the definitions of jel; e
kj ¼ jEUn ; E2 Un ; ; El Un ; EWn ; E2 Wn ; . . . ; Ek Wn j; jel; e
ð2:9aÞ
kj ¼ jEUn ; E2 Un ; ; El Un ; Wn ; EWn ; . . . ; Ek Wn j: jel; b
ð2:9bÞ
In order to obtain the generalized double Casoratian solution, we first give the following lemma. Lemma 1. Suppose that M is an N ðN 2Þ matrix and a; b; c; d are N-order column vectors, then
jM; a; bjjM; c; dj jM; a; cjjM; b; dj þ jM; a; djjM; b; cj ¼ 0: Applying the double Casoratian technique, we have the following theorem.
ð2:10Þ
S.t. Chen et al. / Commun Nonlinear Sci Numer Simulat 18 (2013) 2949–2959
2951
Theorem 1. Eq. (2.4) has the following double Casoratian solution
b b fn ¼ j m; p j;
g n ¼ j md þ 1; pd 1j;
hn ¼ j md 1; pd þ 1j;
1 p j; F n ¼ jAj2 j mg þ 1; b
12
Gn ¼ jAj j mg þ 2; pd 1j;
ð2:11Þ
12
e pd Hn ¼ jAj j m; þ 1j;
which entries satisfy (2.6).
Proof. A direct calculation yields 1 b 1; pd F n1 ¼ jAj2 j m; 1j;
p j: g nþ1 ¼ j mg þ 2; e
ð2:12Þ
Noting that the derivatives of /jn and wjn with respect to t are
/jn;t ¼
1 E/ ; 2 jn
1 wjn;t ¼ E1 wjn 2
ðj ¼ 1; 2; ; m þ p þ 2Þ:
ð2:13Þ
We have
1 1 b m þ 2; pd j m; 1j j md þ 1; 1; pg 1j; 2 2 1 1 b 1; e p j j m; p j; 1; m þ 1; b fn;t ¼ j md 2 2 1 1 Gn;t ¼ jAj2 j mg þ 1; m þ 3; pd 1j j mg þ 2; 1; pg 1j ; 2 1 12 e m þ 2; b p j j mg pj : þ 1; 1; e F n;t ¼ jAj j m; 2
g n;t ¼
ð2:14aÞ ð2:14bÞ ð2:14cÞ ð2:14dÞ
Substituting Eqs. (2.14) and (2.12) into (2.4a), (2.4c) and (2.4e) yield
1 1 b m þ 2; pd b b j m; p j j md pj 1j j md þ 1; 1; pg 1j j m; þ 1; pd 1j j md 1; m þ 1; b 2 2 1 d g d b 1; e b 1; p 1jj m þ 2; p 1j; p jÞ jAj j m; j m; 1 pj þ 1; m þ 3; pd 1j j mg þ 2; 1; pg 1j j mg þ 1; b Gn;t F n Gn F n;t fn g nþ1 ¼ jAj1 j mg 2 1 e m þ 2; b b b p j j mg p j j m; p jj mg p j; þ 2; pd 1j j m; þ 1; 1; e þ 2; e jAj1 j mg 2 2 1 2 d d d d g d b b b 1; p 1j: p j þ j m þ 1; p 1jj m 1; p þ 1j jAj j m þ 1; b p jj m; fn g n hn F n F n1 ¼ j m;
g n;t fn g n fn;t F n1 Gn ¼
ð2:15aÞ
ð2:15bÞ ð2:15cÞ
According to Lemma 1, Eqs. (2.15a) and (2.15b) can be transformed into
1 b m þ 2; pd b b b 1; pd 1jj m; þ 1; pd 1jj md 1; m þ 1; b þ 1; e 1j j m; p j j md p j þ j md p jj m; 2 b 1; pd 1jj mg þ 2; pd 1j; ð2:16aÞ jAj1 j m; 1 1 g e m þ 2; b fn g nþ1 ¼ jAj j m þ 1; m þ 3; pd p j j mg pj 1jj mg þ 1; b þ 2; pd 1jj m; 2 b b þ j mg p jj mg p jj mg p j: ð2:16bÞ þ 2; e þ 1; 1; pd 1j j m; þ 2; e
g n;t fn g n fn;t F n1 Gn ¼ Gn;t F n Gn F n;t
From Eq. (2.6), we get
b b jAjj m; p j ¼ j mg þ 1; 1; pd 1j;
e m þ 2; 1; pd p j ¼ j m; jAjj md 1; m þ 1; b 1j;
ð2:17aÞ
þ 1; e þ 2; pd 1j; jAjj md p j ¼ j mg
e 1; b jAjj md 1; pd þ 1j ¼ j m; p j:
ð2:17bÞ
Applying the above conclusions, (2.16) and (2.15c) become 1 b m þ 2; pd e b g n;t fn g n fn;t F n1 Gn ¼ jAj1 j m; þ 2; 1; pd 1jj mg þ 1; 1; pd 1j j md þ 1; pd 1jj m;m 1j j mg þ 2; pd 1jj m;1; pd 1j ;ð2:18aÞ 2 1 e m þ 2; b Gn;t F n Gn F n;t fn g nþ1 ¼ jAj1 j mg ð2:18bÞ p j j mg p j j mg p jj mg þ 1; m þ 3; pd 1jj mg þ 1; b þ 2; pd 1jj m; þ 2; e þ 1; 1; pd 1j ; 2 b b e 1; b b 1; pd f 2 g hn F n F n1 ¼ jAj1 j m; þ 1; 1; pd 1j þ j md þ 1; pd 1jj m; þ 1; b 1j : ð2:18cÞ p jj mg p j j mg p jj m; n
n
Directly calculation shows that (2.18a)–(2.18c) are equal to zero. Thus the proofs of Eqs. (2.4a), (2.4c) and (2.4e) are completed. The other equations of (2.4) can be verified similarly. h Finally, the generalized double Casoratian solution of Eq. (2.1) can be expressed as
2952
S.t. Chen et al. / Commun Nonlinear Sci Numer Simulat 18 (2013) 2949–2959
j md j md þ 1; pd 1j 1; pd þ 1j ; Rn ¼ ; b b b b j m; j m; pj pj e pd þ 2; pd 1j þ 1j j mg j m; Sn ¼ ; Tn ¼ : g j m þ 1; b j mg pj pj þ 1; b
Qn ¼
ð2:19aÞ ð2:19bÞ
3. Soliton solutions and rational-like solutions From (2.6), we get the general solution 1
Un ¼ An e2At C;
1
Wn ¼ An e2At D;
ð3:1Þ
T
T
1B 2
where C ¼ ðc1 ; c2 ; ; cmþpþ2 Þ and D ¼ ðd1 ; d2 ; ; dmþpþ2 Þ are real constant vectors. Let A ¼ e , (3.1) can be rewritten as 1
1B
1
1
Un ¼ e2nBþ2e2 t C;
1
1B
Wn ¼ e2nB2e2 t D:
ð3:2Þ
Expanding (3.2) leads to
" # 1 1 X s X tr X r l nsl Un ¼ e C¼ Bs C; 2r r! s¼0 l¼0 2s l!ðs lÞ! r¼0 " # 1 r 1 X s 1B X t ð1Þr X r l nsl ð1Þsl s 12nB12e2 t B D: Wn ¼ e D¼ 2r r! s¼0 l¼0 2s l!ðs lÞ! r¼0 1 1nBþ1e2B t 2 2
ð3:3aÞ ð3:3bÞ
If
0
k1
B B B¼B B @
0
C C C; C A
k2 .. 0
1
.
ki – kj ði – jÞ;
ð3:4Þ
kmþpþ2
we can obtain soliton solutions of Eq. (2.1) [20], where 1
1
1k j
/jn ¼ e2kj nþ2e2 t cj ;
1
1
1k j
wjn ¼ e2kj n2e2 t dj :
ð3:5Þ
If
0
0
0
1
C B1 0 C B C B¼B ; . . C B . . A @ . . 0 1 0 ðmþpþ2Þðmþpþ2Þ
ð3:6Þ
it is obvious that Bmþpþ2 ¼ 0. Thus (3.3) can be truncated as
" # mþpþ1 1 s X tr X X r l nsl Bs C; Un ¼ 2r r! s¼0 l¼0 2s l!ðs lÞ! r¼0 " # mþpþ1 1 r s X t ð1Þr X X rl nsl ð1Þsl s Wn ¼ B D: 2r r! 2s l!ðs lÞ! r¼0 s¼0 l¼0
ð3:7aÞ ð3:7bÞ
The components of Un and Wn are
" # j1 1 X X tr nþr n2 þ 2rn þ r 2 r l nj1l ; c þ c þ c þ þ c 1 j j1 j2 j1 2 8 2r r! l!ðj 1 lÞ! r¼0 l¼0 2 " # j1 l j1l 1 r X X t ð1Þr n þ r n2 2rn þ r 2 rn ð1Þj1l wjn ¼ : dj þ dj1 þ dj2 þ þ d1 j1 2 8 2r r! l!ðj 1 lÞ! r¼0 l¼0 2
/jn ¼
Taking c1 ¼ d1 ¼ 1; ck ¼ dk ¼ 0ðk ¼ 2; 3; ; m þ p þ 2Þ, then (3.8) becomes
ð3:8aÞ ð3:8bÞ
S.t. Chen et al. / Commun Nonlinear Sci Numer Simulat 18 (2013) 2949–2959
# j1 1 X tr X r l nj1l /jn ¼ ; 2r r! l¼0 2j1 l!ðj 1 lÞ! r¼0 wjn ¼
j1 1 r X t ð1Þr X r l nj1l ð1Þj1l
2r r!
r¼0
2j1 l!ðj 1 lÞ!
l¼0
2953
ð3:9aÞ # ð3:9bÞ
:
Thus we can calculate several rational-like solutions with double Casoratian form of Eq. (2.1) from (2.19)). For example, for m ¼ p ¼ 0, we obtain
et et ; Rn ¼ ; 2n þ t 2n þ t t e et Sn ¼ ; Tn ¼ : 2n þ t þ 1 2n þ t þ 1
Qn ¼
ð3:10aÞ ð3:10bÞ
For m ¼ 1; p ¼ 0, we have
2et ð4n2 þ 4nt þ 2n þ t 2 þ 2tÞet ; R ¼ ; n 4n2 þ 4nt þ 2n þ t 2 4n2 þ 4nt þ 2n þ t2 2 t 2 2e ð4n þ 4nt þ 6n þ t þ 4t þ 2Þet Sn ¼ 2 ; Tn ¼ : 2 4n þ 4nt þ 6n þ t þ 2t þ 2 4n2 þ 4nt þ 6n þ t 2 þ 2t þ 2
Qn ¼
ð3:11aÞ ð3:11bÞ
For m ¼ 0; p ¼ 1, we get
ð4n2 þ 4nt þ 2n þ t 2 Þet 2et ; Rn ¼ 2 ; 2 2 4n þ 4nt þ 2n þ 2t þ t 4n þ 4nt þ 2n þ 2t þ t 2 ð4n2 þ 4nt þ 6n þ t2 þ 2t þ 2Þet 2et Sn ¼ ; Tn ¼ 2 : 2 2 4n þ 4nt þ 6n þ t þ 4t þ 2 4n þ 4nt þ 6n þ t2 þ 4t þ 2
Qn ¼
ð3:12aÞ ð3:12bÞ
Choosing m ¼ p ¼ 1 yields 1 f ¼ 768 ð16n4 þ 32n3 t þ 32n3 þ 24n2 t 2 þ 48n2 t þ 20n2 þ 8nt3 þ 24nt 2 þ 16nt þ 4n þ 6t2 þ 4t 3 þ t4 Þ; 1 ð8n3 þ 12n2 t þ 12n2 þ 6nt 2 þ 6nt þ 4n þ t 3 Þet ; g ¼ 384 1 ð8n3 þ 12n2 t þ 12n2 þ 6nt 2 þ 18nt þ 4n þ 6t þ 6t 2 þ t 3 Þet ; h ¼ 384 1
1 F ¼ 768 jAj2 ð16n4 þ 32n3 t þ 64n3 þ 24n2 t 2 þ 96n2 t þ 92n2 þ 8nt 3 þ 48nt2 þ 88nt þ 56n þ 24t 2
3
ð3:13Þ
4
þ24t þ 8t þ t þ 12Þ; 1
1 jAj2 ð8n3 þ 12n2 t þ 24n2 þ 6nt 2 þ 18nt þ 22n þ 6t þ 3t2 þ t 3 þ 6Þet ; G ¼ 384 1
1 H ¼ 384 jAj2 ð8n3 þ 12n2 t þ 24n2 þ 6nt2 þ 30nt þ 22n þ 18t þ 9t 2 þ t3 þ 6Þet :
Substituting (3.13) into (2.3), we can derive corresponding rational-like solution of Eq. (2.1). Besides, we can also work out the rational-like solutions under the conditions of ðm; pÞ ¼ ð2; 0Þ and ðm; pÞ ¼ ð0; 2Þ, respectively. These solutions can be verified by direct substitution to Eq. (2.1). 4. Matveev solutions Set B to be a ðm þ p þ 2Þ ðm þ p þ 2Þ Jordan matrix
0
Jðk1 Þ
B B B¼B B @
1
0
C C C; C A
Jðk2 Þ ..
.
0
ð4:1Þ
Jðks Þ
without loss of generality, we observe some Jordan block
1 k 0 C B1 k C B C JðkÞ ¼ B . . C B . . A @ . . 0
0
1
k
0 ¼ kIl þ Y l ;
0
0
C C C ; C A
B1 0 B Yl ¼ B .. .. B @ . .
ll
0
1
1
0
ð4:2Þ
ll
where Il denotes an l l unite matrix. Obviously,
J s ðkÞ ¼ ðkIl þ Y l Þs ¼
1 1 1 s Il þ Y l @ k þ Y 2l @ 2k þ þ Y jl @ jk þ þ Y sl @ sk k : 2! j! s!
ð4:3Þ
2954
S.t. Chen et al. / Commun Nonlinear Sci Numer Simulat 18 (2013) 2949–2959
Hence, for an arbitrary positive integers, we have
0 B B B B B TðkÞ ¼ B B B B B @
s
J s ðkÞ ¼ TðkÞk ;
1
0 1
@k 1 2 @ 2 k 1 3 @ 6 k
@k
1
1 2 @ 2 k
.
@k .. .
1 .. .
1 3 @ 6 k
1 2 @ 2 k
.. 1 @ l1 ðl1Þ! k
..
.
@k
1
1 C C C C C C : C C C C A
ð4:4Þ
ll
Substituting JðkÞ for matrix B in (3.3) yields 1
1k
1
Un ðkÞ ¼ TðkÞe2nkþ2e2 t C;
1
1
1k
Wn ðkÞ ¼ TðkÞe2nk2e2 t D;
ð4:5Þ
which components are
1 1 1 1 k /jn ðkÞ ¼ c1 @ j1 þ þ cj1 @ k þ cj e2nkþ2e2 t ; k ðj 1Þ! 1 1 1 1 k @ j1 þ þ dj1 @ k þ dj e2nk2e2 t wjn ðkÞ ¼ d1 k ðj 1Þ!
ð4:6aÞ ðj ¼ 1; 2; ; lÞ:
ð4:6bÞ
Particularly, let c1 ¼ d1 ¼ 1; cj ¼ dj ¼ 0 ðj ¼ 2; 3; . . . ; lÞ, (4.6) becomes 1 1 1nkþ1e2k t 2 2 @ j1 ; k e ðj 1Þ! 1 1 1 1 k wjn ðkÞ ¼ @ j1 e2nk2e2 t : ðj 1Þ! k
/jn ðkÞ ¼
ð4:7aÞ ð4:7bÞ
Thus, the Matveev solutions to Eq. (2.1) are worked out, where
Un ¼ ð/1n ðk1 Þ; . . . ; /l1 n ðk1 Þ; . . . ; /1n ðks Þ; . . . ; /ls n ðks ÞÞT ;
ð4:8aÞ
Wn ¼ ðw1n ðk1 Þ; . . . ; wl1 n ðk1 Þ; . . . ; w1n ðks Þ; . . . ; wls n ðks ÞÞT
ð4:8bÞ
ðl1 þ l2 þ þ ls ¼ m þ p þ 2Þ:
ð4:8cÞ
Setting
Un ¼ ð/1n ðkÞ; /2n ðkÞÞT ;
Wn ¼ ðw1n ðkÞ; w2n ðkÞÞT
ð4:9Þ
in (4.8), where /jn ðkÞ and wjn ðkÞ are defined by (4.7), we can derive the Matveev solution of Eq. (2.1) 1
Qn ¼ Rn ¼ Sn ¼ Tn ¼
e2k
1k
2n þ te 1 e2k
2n þ te ek
1k 2
1k 2
enkþe2 t ;
ð4:10aÞ
1k
enke2 t ;
ð4:10bÞ 1k
1k 2
2n þ 1 þ te ek
2n þ 1 þ te
enkþe2 t ;
ð4:10cÞ
1k
1k 2
enke2 t :
ð4:10dÞ
Now, let us take
Un ¼ ð/1n ðkÞ; /2n ðkÞ; /3n ðkÞÞT ;
Wn ¼ ðw1n ðkÞ; w2n ðkÞ; w2n ðkÞÞT :
ð4:11Þ
When choosing ðm; pÞ ¼ ð1; 0Þ, we get
Qn ¼ Rn ¼ Sn ¼
2ek
1k
enkþe2 t ;
1k 2
4n2 þ 2n þ 4nte þ t 2 ek 1 ð4n2 þ 2nÞek þ ð4nt þ 2tÞe2k þ t2 4n2
1k 2
þ 2n þ 4nte þ 3 2e2k
t 2 ek
ð4:12aÞ 1k
enke2 t ; 1k
1k 2
4n2 þ 6n þ 2 þ ð2t þ 4ntÞe þ
t2 ek
enkþe2 t ;
3
Tn ¼
1
ð4n2 þ 6n þ 2Þe2k þ ð4t þ 4ntÞek þ t2 e2k 4n2
ð4:12bÞ
1k 2
þ 6n þ 2 þ ð2t þ 4ntÞe þ
t 2 ek
ð4:12cÞ 1k
enke2 t :
ð4:12dÞ
S.t. Chen et al. / Commun Nonlinear Sci Numer Simulat 18 (2013) 2949–2959
2955
While ðm; pÞ ¼ ð0; 1Þ, we obtain 3
Qn ¼
ð4n2 þ 2nÞek þ 4nte2k þ t 2 e2k þ 2n þ
t2 ek
þ 2n þ
t2 ek
4n2
þ ð4nt þ 2tÞe
1k
2ek
Rn ¼
4n2
enkþe2 t ;
1k 2
1k
þ ð4nt þ 2tÞe
enke2 t ;
1k 2
3
ð4:13bÞ
5
ð4n2 þ 6n þ 2Þe2k þ ð2t þ 4ntÞe2k þ t2 e2k
Sn ¼
ð4:13aÞ
1k 2
4n2 þ 6n þ 2 þ ð4t þ 4ntÞe þ
t 2 ek
3
Tn ¼
2e2k 4n2
1k
enkþe2 t ; 1k
1k 2
t 2 ek
þ 6n þ 2 þ ð4t þ 4ntÞe þ
enke2 t :
ð4:13cÞ ð4:13dÞ
It is easy to verify that Eq. (2.1) admits the above Matveev solutions. 5. Complexiton solutions In order to construct complexitons from (3.2), let us begin to consider that B is a real Jordan matrix as follows:
0
J1
1
0
B B B¼B B @
C C C; C A
J2 ..
.
0
ð5:1Þ
Jh
where
0
Bi BI B 2 Ji ¼ B B @
0 Bi .. .. . .
0
I2
1 C C C; C A
Bi ¼
ai bi ; bi ai
ð5:2Þ
Bi
and ai ; bi ði ¼ 1; 2; . . . ; hÞ are real constants. We first observe the simplest case of B (dropping the subscript) when
B¼
a b 0 1 ¼ aI2 þ br2 ; r2 ¼ : b a 1 0
ð5:3Þ
Substituting (5.3) into (3.3) yields 1
1
1
1aI
Un ¼ e2naI2 e2nbr2 e2te2
Wn ¼ e
12naI2
12nb 2
e
r
e
1 2 e2br2
C;
ð5:4aÞ
1aI 1br 12te2 2 e2 2
D:
Expanding the above Un ; Wn and noticing
ð5:4bÞ
r ¼ I2 , we get 2 2
1 1 1 1 2a 1 1 1 Un ¼ e2na cos nb I2 þ sin nb r2 e2te ½cos ð2bÞI2 þsin ð2Þr2 C; 2 2 1 1 1 1 2a 1 1 1 Wn ¼ e2na cos nb I2 sin nb r2 e2te ½cos ð2bÞI2 þsin ð2Þr2 D: 2 2
ð5:5aÞ ð5:5bÞ
Next, setting B to be a Jordan block J i as follows:
B ¼ J i ¼ B0 þ Y 0 ; 0
Bi
B B B0 ¼ Ili Bi ¼ B B @
0
C C C C A
Bi ..
0 0 0 BI B 2 Y 0 ¼ Y li I 2 ¼ B B @ 0
. Bi 0
.
I2
1
0
;
ð5:6bÞ
:
ð5:6cÞ
2li 2li
C C C C A
0 ..
ð5:6aÞ
1
2li 2li
2956
S.t. Chen et al. / Commun Nonlinear Sci Numer Simulat 18 (2013) 2949–2959
where means direct product. Taking advantage of the equality B0 Y 0 ¼ Y 0 B0 , we have
1 1 Bs ¼ ðB0 þ Y 0 Þs ¼ I2li þ Y 0 @ ai þ þ Y 0j @ jai þ þ Y 0s @ sai B0s : j! s!
ð5:7Þ
Making use of the following formula
@ ai Bhi ¼ @ ai ðai I2 þ bi r2 Þh ¼ hðai I2 þ bi r2 Þh1
ðh ¼ 1; 2; 3; Þ;
ð5:8Þ
we can transform (5.7) into
0
Bs ¼ Tð@ ai ÞB0s ;
B B B B Tð@ ai Þ ¼ B B B B @
I2
0
I2 @ ai
I2
1 I @2 2 2 ai
I 2 @ ai
I2
.. .
..
..
1 I @ l1 ðl1Þ! 2 ai
.
..
.
1 I @2 2 2 ai
.
I 2 @ ai
I2
1 C C C C C C C C A
ð5:9Þ
:
2l2l
Substituting (5.9) into (3.3) yields
1 0 1 1 0 1 B 1 1 Bi /jn ðai Þ ¼ Tð@ ai Þe2nB þ2e2 t C ¼ Tð@ ai Þ Ili e2nBi þ2e2 t C;
ð5:10Þ
which can be rewritten as
/jn ðai Þ ¼
1 1 1 1 1nB þ1e2Bi t 1 1 Bi 1 1 Bi 2 i 2 @ j1 c1 þ þ @ ai e2nBi þ2e2 t cj1 þ e2nBi þ2e2 t cj ; ai e ðj 1Þ!
ð5:11Þ
where
T /jn ðai Þ ¼ /jn;1 ðai Þ; /jn;2 ðai Þ ;
cj ¼ ðcj1 ; cj2 ÞT :
ð5:12Þ
Similarly, we work out
wjn ðai Þ ¼
1 1 1 1 1 1 Bi 1 1 Bi 1 1 Bi @ j1 e2nBi 2e2 t d1 þ þ @ ai e2nBi 2e2 t dj1 þ e2nBi 2e2 t dj ; ðj 1Þ! ai
ð5:13Þ
where
T wjn ðai Þ ¼ wjn;1 ðai Þ; wjn;2 ðai Þ ;
dj ¼ ðcj1 ; dj2 ÞT :
ð5:14Þ
By virtue of (5.5), (5.11) and (5.13) can be reduced to /jn ðai Þ ¼
wjn ðai Þ ¼
/jn;1 ðai Þ /jn;2 ðai Þ
wjn;1 ðai Þ wjn;2 ðai Þ
!
2 0 13 1 1 cs1 cos 12 nbi þ 2t e2ai sin 12 bi cs2 sin 12 nbi þ 2t e2ai sin 12 bi 1a 1 C7 js 6 12nai þ12e2 i cos ð12bi Þt B ¼ @ 4e @ A5; 1 1 ðj sÞ! ai c sin 1 nb þ t e2ai sin 1 b þ c cos 1 nb þ t e2ai sin 1 b s¼1 j X
s1
!
i
2
s2
2 i
2
i
2
2 0 13 1 1 ds1 cos 12 nbi þ 2t e2ai sinð12 bi Þ þ ds2 sin 12 nbi þ 2t e2ai sinð12 bi Þ 1a 1 1 1 1 i 6 B C7 A5: ¼ @ js 4e2nai 2e2 cosð2bi Þt @ 1 1 ðj sÞ! ai d sin 1 nb þ t e2ai sinð1 b Þ þ d cos 1 nb þ t e2ai sinð1 b Þ s¼1 j X
s1
2
i
2
2 i
s2
2
i
ð5:15aÞ
2 i
2
2
ð5:15bÞ
2 i
Then we derive the complexiton solutions of Eq. (2.4) in double Casorati determinant form (2.11), where Un and Wn satisfy
T
Un ¼ /T1n ða1 Þ; . . . ; /Tl1 n ða1 Þ; /T1n ða2 Þ; . . . ; /Tl2 n ða2 Þ; . . . ; /T1n ðah Þ; . . . ; /Tlh n ðah Þ ;
T Wn ¼ wT1n ða1 Þ; . . . ; wTl1 n ða1 Þ; wT1n ða2 Þ; . . . ; wTl2 n ða2 Þ; . . . ; wT1n ðah Þ; . . . ; wTlh n ðah Þ ;
ð5:16aÞ ð5:16bÞ
l1 þ l2 þ þ lh ¼ m þ p þ 2: m Otherwise, according to the equality of @ ai Bm i ¼ r2 @ bi Bi , we can get the similar conclusions for the complexitons by substituting @ ai for @ bi in (5.15). 1 1 For example, taking m ¼ p ¼ 0; c11 ¼ d11 ¼ 1; c12 ¼ d12 ¼ 0, n ¼ 12 na þ 12 e2a cosð12 bÞt, g ¼ 12 nb þ 12 e2a sinð12 bÞt (dropping the subscript) and
Un ¼ ðen cosg; en singÞT ;
Wn ¼ ðen cosg; en singÞT ;
we work out the complexiton solution of Eq. (2.1) as follows:
ð5:17Þ
S.t. Chen et al. / Commun Nonlinear Sci Numer Simulat 18 (2013) 2949–2959
sin
1 b 2
1
a ðnþ1Þaþe2 cos ð12bÞt ; 1 e 2 sin nb þ e sin 2 b t 1a sin 12 b 1 1 eðnþ2Þae2 cos ð2bÞt ; Rn ¼ 1a 1 sin nb þ e2 sinð2 bÞt 1a sin 12 b 1 eðnþ1Þaþe2 cos ð2bÞt ; Sn ¼ 1 a 1 1 2 sin n þ 2 b þ e sin 2 b t 1a sin 12 b 1 eðnþ1Þae2 cos ð2bÞt : Tn ¼ 1 sin n þ 12 b þ e2a sin 12 b t
Qn ¼
2957
ð5:18aÞ
1a 2
ð5:18bÞ
ð5:18cÞ
ð5:18dÞ
When sinð12 bÞ ¼ 1, i.e., cosð12 bÞ ¼ 0, (5.18) is the periodic solution about t to Eq. (2.1) 1
Sn ¼
1
eðnþ2Þa ; 1 sin nb þ e2a t
Rn ¼
eðnþ2Þa ; 1 sin nb þ e2a t
ð5:19aÞ
eðnþ1Þa ; 1 cos nb þ e2a t
Tn ¼
eðnþ1Þa : 1 cos nb þ e2a t
ð5:19bÞ
Qn ¼
6. Interaction solutions In order to obtain more exact solutions in the double Casoratian form of Eq. (2.1), we set B as the paradiagonal matrix constituting of the matrices (3.6) ðBr Þ, (4.1) ðBm Þ and (5.1) ðBc Þ
0 B B¼@
Br
0 Bm
0
1 C A;
ð6:1Þ
Bc
then Un and Wn defined as (2.6) are described by
Un ¼ ðUTnr ; UTnm ; UTnc ÞT ;
Wn ¼ ðWTnr ; WTnm ; WTnc ÞT ;
ð6:2Þ
where
EUnz ¼ Az Unz ; E1 Wnz ¼ Az Wnz ; 1 1 Unz;t ¼ EUnz ; Wnz;t ¼ E1 Wnz ; 2 2
ð6:3aÞ z ¼ r; m; c:
ð6:3bÞ
Obviously, the double Casorati determinant (2.11) constructed by (6.2) is a solution to Eq. (2.4) and it is called the interaction solution. Choosing
Un ¼ ð/1;nr ; /2;nr ; Unm ÞT ;
Wn ¼ ðw1;nr ; w2;nr ; Wnm ÞT
ð6:4Þ
and ðm; pÞ ¼ ð1; 0Þ, we derive 1
Qn ¼
ekþt 2e2kþt þ et 1k
1
ð2n þ t þ 1Þ þ ð2n þ tÞe2k þ etnke2
1k
1k
Rn ¼
ð2n þ t þ 1Þenke2 t þ ð2n þ tÞenke2 1k 2
ð2n þ t þ 1Þ þ ð2n þ tÞe þ e 3
Sn ¼
t12k
ð6:5bÞ
;
1
1k
1
ð2n þ t þ 1Þek ð2n þ t þ 2Þe2k þ etnke2 1k
e2kt þ ð2n þ t þ 1Þenke2
t12k
ð6:5cÞ
; t 1k
ð2n þ t þ 2Þenke2 1k 2
1k tnke2 t
ð2n þ t þ 1Þek ð2n þ t þ 2Þe þ e When ðm; pÞ ¼ ð0; 1Þ, we get
þ et
1k tnke2 t
e2kþt 2ekþt þ e2kþt 1
Tn ¼
ð6:5aÞ
; t
t
:
ð6:5dÞ
2958
S.t. Chen et al. / Commun Nonlinear Sci Numer Simulat 18 (2013) 2949–2959 1k
1k
Qn ¼
ð2n þ t þ 1Þenkþe2 t þ ð2n þ tÞenkþe2 12k
ð2n þ t þ 1Þ ð2n þ tÞe
tþ12k
þ et
1k nkþe2 tt
ð6:6aÞ
;
e
1
ekt 2e2kt þ et
Rn ¼
1k
Sn ¼
1k
1
ð2n þ t þ 1Þ ð2n þ tÞe2k enkþe2 ð2n þ t þ 1Þenkþe2
tþ12k
1k
1
ð2n þ t þ 2Þenkþe2 t þ et2k 1k
1
ð2n þ t þ 1Þek þ ð2n þ t þ 2Þe2k enkþe2 3
Tn ¼
ð6:6bÞ
; tt
;
ð6:6cÞ
tt
1
e2kt 2ekt þ e2kt 1
1k
ð2n þ t þ 1Þek þ ð2n þ t þ 2Þe2k enkþe2
:
ð6:6dÞ
tt
Taking
Un ¼ ð/1;nr ; /2;nr ; /1;nm ; /2;nm ÞT ;
Wn ¼ ðw1;nr ; w2;nr ; w1;nm ; w2;nm ÞT
ð6:7Þ
and ðm; pÞ ¼ ð2; 0Þ, we derive 1k 1k 1k 1 1 1 1 3 1 1 1 3 1 1 fn ¼ ð2n þ tÞenkþe2 tþ2k þ ð2n þ t þ 1Þenkþe2 tþk ð2n þ t þ 2Þenkþe2 tþ2k e2kþt t ðn t þ 1Þekþt þ ð4n t þ 2Þe2kþt net ; 4 2 4 4 2 4 2 1k 1k 1k 1k 1k 1 3 1 5 3 1 g n ¼ enkþe2 tþ2kþt enkþe2 tþ2kþt þ enkþe2 tþ2kþt enkþe2 tþkþt þ enkþe2 tþ2kþt ; 4 2 4 1k 1k 1 1 1 1 1 1 1 1 1 hn ¼ enkþe2 tþ2kt þ enke2 t2kþt ð2nt þ t2 þ tÞek ð4n2 2nt þ 4n 2t2 t þ 1Þe2k ð4n2 þ 2nt þ 4n þ t þ 1Þe2k 4 4 4 4 4 1 þ ð8n2 þ 2nt þ 8n t 2 þ tÞ;ð6:8cÞ 4
1k 1k 1k 1 1 1 1 1 1 5 3 3 F n ¼ jAj2 ð2n þ t þ 1Þenkþe2 tþ2k þ ð2n þ t þ 2Þenkþe2 tþ2k ð2n þ t þ 3Þenkþe2 tþ2k e2kþt t ð2n 2t þ 3Þe2kþt 4 2 4 4 4 1 1 1 þ ð4n t þ 4Þekþt ð2n þ 1Þe2kþt ; 4 4 1k 1k 1k 1k 1k 1 1 3 1 7 5 3 Gn ¼ jAj2 enkþe2 tþ2kþt enkþe2 tþ3kþt þ enkþe2 tþ2kþt enkþe2 tþ2kþt þ enkþe2 tþ2kþt ; 4 2 4 1 1 nke12k t1kþt 1 1 3k 12 1 nkþe2k tþ3kt 2 2 2 e þ e ð2nt þ t þ 2tÞe2 ð2n2 nt þ 4n t2 t þ 2Þek Hn ¼ jAj 4 4 4 2 1 1 1k 2 2 2 þ ð8n þ 2nt þ 16n t þ 2t þ 6Þe2 ð2n þ nt þ 4n þ t þ 2Þ : 4 2
ð6:8aÞ ð6:8bÞ
ð6:8dÞ ð6:8eÞ
ð6:8fÞ
Substituting (6.8) into (2.3), we obtain the interaction solution of Eq. (2.1) between the rational-like and the Matveev solutions. Besides, we can also work out the interaction solution under the conditions of ðm; pÞ ¼ ð1; 1Þ and ðm; pÞ ¼ ð0; 2Þ. Similarly, we can also deduce the interaction solutions between the rational-like cases and complexiton cases or the Matveev cases and complexiton cases. 7. Conclusions In this paper, we have expressed a matrix equation satisfied by double Casoratian entries for the first-order four-potential isospectral AL equation. Through the Casoratian technique we get the generalized double Casoratian solutions. By expanding the general solutions of Un and Wn as the series of the arbitrary matrix B, we have constructed the soliton solutions and rational-like solutions through letting B be a triangular matrix and Jordan matrix with zero on the main diagonal. Furthermore, taking B be some other special matrices, such as Jordan matrices and combination of different Jordan form matrices with respect to rational cases, Matveev cases and Complexiton cases, we have derived the Matveev, Complexiton and interaction solutions, respectively. It is interesting that under the condition sin 12 b ¼ 1, the complexiton solution (5.18) is reduced to a periodic solution about t. Acknowledgments The authors are very grateful to Professor D.J. Zhang and Professor R.G. Zhou for their ardent guidance and help. This project is supported by the National Natural Science Foundation of China (Grant Nos. 11071157, 11101350, 11271168), the National Natural Science Foundation of the colleges and universities of Jiangsu Province (Grant No. 11KJB110016), School Foundation of Xuzhou Institute of Technology (Grant No. XKY 2011204) and PAPD of Jiangsu Higher Education Institutions. References [1] Freeman NC, Nimmo JJC. Soliton solutions of the KdV and KP equations: the Wronskian technique. Phys Lett A 1983;95:1–3. [2] Nimmo JJC. Soliton solutions of three differential-difference equations in Wronskian form. Phys Lett A 1983;99:281–6.
S.t. Chen et al. / Commun Nonlinear Sci Numer Simulat 18 (2013) 2949–2959 [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21]
2959
Darboux G. Lecons surla théorie générale des surfaces, third ed., vol. II. New York: Chelsea Pub. Co.; 1972. Nimmo JJC, Freeman NC. A bilinear Bäcklund transformation for the nonlinear Schrödinger equation. Phys Lett A 1983;99:279–81. Liu QM. Double Wronskian solutions of the AKNS and the classical Boussinesq hierarchies. J Phys Soc Jpn 1990;59:3520–7. Wadati M, Sanuki H, Konno K. Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws. Prog Theor Phys 1975;53:419–36. Satsuma J. A wronskian representation of n-soliton solutions of nonlinear evolution equations. J Phys Soc Jpn 1979;46:359–60. Nimmo JJC, Freeman NC. Rational solutions of the KdV equation in Wronskian form. Phys Lett A 1983;96:443–6. Wu H, Zhang DJ. Mixed rational-soliton solutions of two differential-difference equations in Casorati determinant form. J Phys A: Gen Math 2003;36:4867–73. Matveev VB. Generalized Wronskian formula for solutions of the KdV equations: first applications. Phys Lett A 1992;166:205–8. Matveev VB. Positon–positon and soliton–positon collisions: KdV case. Phys Lett A 1992;166:209–12. Ma WX. Complexiton solution to the KdV equation. Phys Lett A 2002;301:35–44. Chen DY, Zhang DJ, Bi JB. New double Wronskian solutions of the AKNS equation. Sci China, Ser A 2008;51(1):55–69. Ablowitz MJ, Satsuma J. Solitons and rational solutions of non-linear evolution equations. J Math Phys 1978;19:2180–6. Zhang DJ. Notes on solutions in Wronskian form to soliton equations: KdV-type, 2006. arXiv:mlin.SI/0603008vi. Zhai W, Chen DY. Rational solutions of the general nonlinear Schrödinger equation with derivative. Phys Lett A 2008;372:4217–21. Yao YQ, Zhang DJ, Chen DY. The double Wronskian solutions to the Kadomtset–Petviashvili equation. Mod Phys Lett B 2008;22:621–41. Zhang DJ, Chen ST. Symmetries for the Ablowitz–Ladik hierarchy:I. Four-potential case. Stud Appl Math 2010;125:393–418. Ablowitz MJ, Ladik JF. Nonlinear differential-difference equations. J Math Phys 1975;16:598–603. Chen ST, Zhu XM, Li Q, Chen DY. N-Soliton solutions for the four-potential isospectral Ablowitz–Ladik equation. Chin Phys Lett 2011;28(6):060202. Gegenhasi, Hu XB, Levi D. On a discrete Davey–Stewartson system. Inv Probl 2006;22:1677–88.