GEOCHEMISTRY ARTICLES - December 2015

GEOCHEMISTRY ARTICLES - December 2015

Organic Geochemistry 92 (2016) e34–e76 Contents lists available at ScienceDirect Organic Geochemistry journal homepage: www.elsevier.com/locate/orgg...

566KB Sizes 0 Downloads 106 Views

Organic Geochemistry 92 (2016) e34–e76

Contents lists available at ScienceDirect

Organic Geochemistry journal homepage: www.elsevier.com/locate/orggeochem

Geochemistry Articles - December 2015 Analytical Chemistry

Imaging mass spectrometry: Instrumentation, applications, and combination with other visualization techniques Bodzon-Kulakowska, A., Suder, P., 2016. Mass Spectrometry Reviews 35, 147–169. http://dx.doi.org/10.1002/mas.21468 A simple and easy approach to the derivatization of alcohols for study by soft ionization mass spectrometry methods Borisov, R.S., Polovkov, N.Y., Zhilyaev, D.I., Zaikin, V.G., 2015. Journal of Analytical Chemistry 70, 1542–1545. http://dx.doi.org/10.1134/S106193481513002X Polymer-coated micro-optofluidic ring resonator detector for a comprehensive two-dimensional gas chromatographic microsystem: lGC  lGC-lOFRR Collin, W.R., Scholten, K.W., Fan, X., Paul, D., Kurabayashi, K., Zellers, E.T., 2016. Analyst 141, 261–269. http://dx.doi.org/10.1039/C5AN01570G Electrospray ionization tandem mass spectrometry analysis of isopimarane diterpenes from Velloziaceae da Cunha Pinto, A., Vessecchi, R., da Silva, C.G., Amorim, A.C.L., dos Santos Júnior, H.M., Rezende, M.J.C., Gates, P.J., Rezende, C.M., Lopes, N.P., 2016. Rapid Communications in Mass Spectrometry 30, 61–68. http://dx.doi.org/10.1002/rcm.7411 Identification of double-bond positions in isomeric alkenones from a lacustrine haptophyte Dillon, J.T., Longo, W.M., Zhang, Y., Torozo, R., Huang, Y., 2016. Rapid Communications in Mass Spectrometry 30, 112–118. http://dx.doi.org/10.1002/rcm.7414 Advances in comprehensive two-dimensional gas chromatography (GCGC) Eiserbeck, C., Nelson, R.K., Reddy, C.M., Grice, K., 2015. In: Grice, K. (Ed.), Principles and Practice of Analytical Techniques in Geosciences. The Royal Society of Chemistry, pp. 324–365. http://dx.doi.org/10.1039/9781782625025-00324 Evaluation of scale-up from analytical to preparative supercritical fluid chromatography Enmark, M., Åsberg, D., Leek, H., Öhlén, K., Klarqvist, M., Samuelsson, J., Fornstedt, T., 2015. Journal of Chromatography A 1425, 280–286. http://www.sciencedirect.com/science/article/pii/S0021967315015903 Microscale sealed vessel pyrolysis Horsfield, B., Leistner, F., Hall, K., 2015. In: Grice, K. (Ed.), Principles and Practice of Analytical Techniques in Geosciences. The Royal Society of Chemistry, pp. 209–250. http://dx.doi.org/10.1039/9781782625025-00209 Electron-induced dissociation (EID) for structure characterization of glycerophosphatidylcholine: Determination of double-bond positions and localization of acyl chains Jones, J.W., Thompson, C.J., Carter, C.L., Kane, M.A., 2015. Journal of Mass Spectrometry 50, 1327–1339. http://dx.doi.org/10.1002/jms.3698 Nanoscale secondary ion mass spectrometry (nanoSIMS) as an analytical tool in the geosciences Kilburn, M.R., Wacey, D., 2015. In: Grice, K. (Ed.), Principles and Practice of Analytical Techniques in Geosciences. The Royal Society of Chemistry, pp. 1–34. http://dx.doi.org/10.1039/9781782625025-00001

http://dx.doi.org/10.1016/j.orggeochem.2015.12.012

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e35

From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter Koch, B.P., Dittmar, T., 2016. Rapid Communications in Mass Spectrometry 30, 250–250. http://dx.doi.org/10.1002/rcm.7433 Advances in fluorescence spectroscopy for petroleum geosciences Liu, K., Sherwood, N., Zhao, M., 2015. In: Grice, K. (Ed.), Principles and Practice of Analytical Techniques in Geosciences. The Royal Society of Chemistry, pp. 94–121. http://dx.doi.org/10.1039/9781782625025-00094 Exploitation of a microporous organic polymer as a stationary phase for capillary gas chromatography Lu, C., Liu, S., Xu, J., Ding, Y., Ouyang, G., 2016. Analytica Chimica Acta 902, 205–211. http://www.sciencedirect.com/science/article/pii/S0003267015013136 Quantification of nitrogen compounds in diesel fuel samples by comprehensive two-dimensional gas chromatography coupled with quadrupole mass spectrometry Maciel, G.P.S., Machado, M.E., da Cunha, M.E., Lazzari, E., da Silva, J.M., Jacques, R.A., Krause, L.C., Barros, J.A.S., Caramão, E.B., 2015. Journal of Separation Science 38, 4071–4077. http://dx.doi.org/10.1002/jssc.201500011 Gas chromatography-quadrupole time-of-flight mass spectrometry-based determination of isotopologue and tandem mass isotopomer fractions of primary metabolites for 13C-metabolic flux analysis Mairinger, T., Steiger, M., Nocon, J., Mattanovich, D., Koellensperger, G., Hann, S., 2015. Analytical Chemistry 87, 11792–11802. http://dx.doi.org/10.1021/acs.analchem.5b03173 Development and use of catalytic hydropyrolysis (HyPy) as an analytical tool for organic geochemical applications Meredith, W., Snape, C.E., Love, G.D., 2015 In: Grice, K. (Ed.), Principles and Practice of Analytical Techniques in Geosciences. The Royal Society of Chemistry, pp. 171–208. http://dx.doi.org/10.1039/9781782625025-00171 Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization Nascimento, P.C., Gobo, L.A., Bohrer, D., Carvalho, L.M., Cravo, M.C., Leite, L.F.M., 2015. Journal of Separation Science 38, 4055–4062. http://dx.doi.org/10.1002/jssc.201500893 Development and validation of a generic nontarget method based on liquid chromatography – high resolution mass spectrometry analysis for the evaluation of different wastewater treatment options Nürenberg, G., Schulz, M., Kunkel, U., Ternes, T.A., 2015. Journal of Chromatography A 1426, 77–90. http://www.sciencedirect.com/science/article/pii/S0021967315016222 The use of high-speed multicapillary column in comprehensive two-dimensional gas chromatography with flow modulation Patrushev, Y.V., Sidelnikov, V.N., 2015. Journal of Chromatography A 1426, 183–190. http://www.sciencedirect.com/science/article/pii/S0021967315016921 Opportunities and challenges in liquid cell electron microscopy Ross, F.M., 2015. Science (6267). http://www.sciencemag.org/content/350/6267/aaa9886.abstract Prioritizing unknown transformation products from biologically-treated wastewater using high-resolution mass spectrometry, multivariate statistics, and metabolic logic Schollée, J.E., Schymanski, E.L., Avak, S.E., Loos, M., Hollender, J., 2015. Analytical Chemistry 87, 12121–12129. http://dx.doi.org/10.1021/acs.analchem.5b02905 Gas chromatography coupled to atmospheric pressure chemical ionization FT-ICR mass spectrometry for improvement of data reliability Schwemer, T., Rüger, C.P., Sklorz, M., Zimmermann, R., 2015. Analytical Chemistry 87, 11957–11961. http://dx.doi.org/10.1021/acs.analchem.5b02114 Laser desorption sample transfer for gas chromatography/mass spectrometry Seneviratne, C.A., Ghorai, S., Murray, K.K., 2016. Rapid Communications in Mass Spectrometry 30, 89–94. http://dx.doi.org/10.1002/rcm.7419 Turnover rates in microorganisms by laser ablation electrospray ionization mass spectrometry and pulse-chase analysis Stopka, S.A., Mansour, T.R., Shrestha, B., Maréchal, É., Falconet, D., Vertes, A., 2016. Analytica Chimica Acta 902, 1–7. http://www.sciencedirect.com/science/article/pii/S0003267015010594

e36

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

Time-of-flight secondary ion mass spectrometry (TOF-SIMS): Principles and practice in the biogeosciences Thiel, V., Sjövall, P., 2015. In: Grice, K. (Ed.), Principles and Practice of Analytical Techniques in Geosciences. The Royal Society of Chemistry, pp. 122–170. http://dx.doi.org/10.1039/9781782625025-00122 Real time online correction of mass shifts and intensity fluctuations in extractive electrospray ionization mass spectrometry Tian, Y., Yu, M., Chen, J., Liu, C., Shi, J., Chen, H., Jiang, G., 2015. Analytical Chemistry 87, 11962–11966. http://dx.doi.org/10.1021/acs.analchem.5b04372 Application of acetone acetals as water scavengers and derivatization agents prior to the gas chromatographic analysis of polar residual solvents in aqueous samples van Boxtel, N., Wolfs, K., Van Schepdael, A., Adams, E., 2015. Journal of Chromatography A 1425, 62–72. http://www.sciencedirect.com/science/article/pii/S0021967315016313 A soft ionization method for semivolatile compounds Verenchikov, A.N., Kolosov, A.P., 2015. Journal of Analytical Chemistry 70, 1527–1532. http://dx.doi.org/10.1134/S1061934815130092 Molecular-shape selectivity by naphthalimido-modified silica stationary phases: Insight into the substituents effect of naphthalene on shape recognition and p–p interactions via electrostatic potential Yamada, Y., Ohyama, K., Onodera, G., Kuriyama, M., Kishikawa, N., Kuroda, N., 2015. Journal of Chromatography A 1425, 173–179. http://www.sciencedirect.com/science/article/pii/S0021967315016416 Combined urea-thin layer chromatography and silver nitrate-thin layer chromatography for micro separation and determination of hard-to-detect branched chain fatty acids in natural lipids Yan, Y., Wang, X., Liu, Y., Xiang, J., Wang, X., Zhang, H., Yao, Y., Liu, R., Zou, X., Huang, J., Jin, Q., 2015. Journal of Chromatography A 1425, 293–301. http://www.sciencedirect.com/science/article/pii/S0021967315016192 Single-particle time-of-flight mass spectrometry utilizing a femtosecond desorption and ionization laser Zawadowicz, M.A., Abdelmonem, A., Mohr, C., Saathoff, H., Froyd, K.D., Murphy, D.M., Leisner, T., Cziczo, D.J., 2015. Analytical Chemistry 87, 12221–12229. http://dx.doi.org/10.1021/acs.analchem.5b03158 Computer simulation and optimization for reversed-phase HPLC separation: A novel algorithm simulating and optimizing the non-linear and non-ideal separation process in analytical chromatography Zhang, Y., 2015. Chemometrics and Intelligent Laboratory Systems 149, Part B, 73–80. http://www.sciencedirect.com/science/article/pii/S016974391500266X Ambient mass spectrometry imaging with picosecond infrared laser ablation electrospray ionization (PIR-LAESI) Zou, J., Talbot, F., Tata, A., Ermini, L., Franjic, K., Ventura, M., Zheng, J., Ginsberg, H., Post, M., Ifa, D.R., Jaffray, D., Miller, R.J.D., Zarrine-Afsar, A., 2015. Analytical Chemistry 87, 12071–12079. http://dx.doi.org/10.1021/acs.analchem.5b02756 Development, optimization, validation and application of faster gas chromatography – flame ionization detector method for the analysis of total petroleum hydrocarbons in contaminated soils Zubair, A., Pappoe, M., James, L.A., Hawboldt, K., 2015. Journal of Chromatography A 1425, 240–248. http://www.sciencedirect.com/science/article/pii/S0021967315014466 Archaeological/Art Organic Chemistry

Identification and mode of formation of hopanoid nitriles in archaeological soils Adam, P., Schaeffer, P., Schmitt, G., Bailly, L., Courel, B., Fresnais, M., Fossurier, C., Rohmer, M., 2016. Organic Geochemistry 91, 100–108. http://www.sciencedirect.com/science/article/pii/S0146638015002156 Feeding Stonehenge: Cuisine and consumption at the Late Neolithic site of Durrington Walls Craig, O.E., Shillito, L.-M., Albarella, U., Viner-Daniels, S., Chan, B., Cleal, R., Ixer, R., Jay, M., Marshall, P., Simmons, E., Wright, E., Pearson, M.P., 2015. Antiquity 89, 1096–1109. http://dx.doi.org/10.15184/aqy.2015.110

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e37

Animal origin of 13th-century uterine vellum revealed using noninvasive peptide fingerprinting Fiddyment, S., Holsinger, B., Ruzzier, C., Devine, A., Binois, A., Albarella, U., Fischer, R., Nichols, E., Curtis, A., Cheese, E., Teasdale, M.D., Checkley-Scott, C., Milner, S.J., Rudy, K.M., Johnson, E.J., Vnoucˇek, J., Garrison, M., McGrory, S., Bradley, D.G., Collins, M.J., 2015. Proceedings of the National Academy of Sciences 112, 15066–15071. http://www.pnas.org/content/early/2015/11/18/1512264112.abstract The origins of inebriation: Archaeological evidence of the consumption of fermented beverages and drugs in prehistoric Eurasia Guerra-Doce, E., 2015. Journal of Archaeological Method and Theory 22, 751–782. http://dx.doi.org/10.1007/s10816-014-9205-z Retroviral DNA sequences as a means for determining ancient diets Rivera-Perez, J.I., Cano, R.J., Narganes-Storde, Y., Chanlatte-Baik, L., Toranzos, G.A., 2015. PLoS ONE 10, Article number e0144951. http://dx.doi.org/10.1371%2Fjournal.pone.0144951 Analysis and quantitation of volatile organic compounds emitted from plastics used in museum construction by evolved gas analysis–gas chromatography–mass spectrometry Samide, M.J., Smith, G.D., 2015. Journal of Chromatography A 1426, 201–208. http://www.sciencedirect.com/science/article/pii/S0021967315017100 Characterisation of oriental lacquers from Rhus succedanea and Melanorrhoea usitata using in situ pyrolysis/silylation-gas chromatography mass spectrometry Tamburini, D., Bonaduce, I., Colombini, M.P., 2015. Journal of Analytical and Applied Pyrolysis 116, 129–141. http://www.sciencedirect.com/science/article/pii/S0165237015302217 Characterization of Tang Dynasty lamp oil remains by using pyrolysis gas chromatography and mass spectrometry Wei, S., Li, Y., Ma, Q., Lou, S., Schreiner, M., 2015. Journal of Analytical and Applied Pyrolysis 116, 237–242. http://www.sciencedirect.com/science/article/pii/S0165237015301819 Astrobiology

Remote sensing of life: Polarimetric signatures of photosynthetic pigments as sensitive biomarkers Berdyugina, S.V., Kuhn, J.R., Harrington, D.M., Šantl-Temkiv, T., Messersmith, E.J., 2016. International Journal of Astrobiology 15, 45–56. http://dx.doi.org/10.1017/S1473550415000129 Simulating super earth atmospheres in the laboratory Claudi, R., Erculiani, M.S., Galletta, G., Billi, D., Pace, E., Schierano, D., Giro, E., D’Alessandro, M., 2016. International Journal of Astrobiology 15, 35–44. http://dx.doi.org/10.1017/S1473550415000117 Pressurized Martian-like pure CO2 atmosphere supports strong growth of cyanobacteria, and causes significant changes in their metabolism Murukesan, G., Leino, H., Mäenpää, P., Ståhle, K., Raksajit, W., Lehto, H., Allahverdiyeva-Rinne, Y., Lehto, K., 2016. Origins of Life and Evolution of Biospheres 46, 119–131. http://dx.doi.org/10.1007/s11084-015-9458-x Isolation of radiation-resistant bacteria from Mars analog Antarctic Dry Valleys by preselection, and the correlation between radiation and desiccation resistance Musilova, M., Wright, G., Ward, J.M., Dartnell, L.R., 2015. Astrobiology 15, 1076–1090. http://dx.doi.org/10.1089/ast.2014.1278 Survival of Antarctic cryptoendolithic fungi in simulated Martian conditions on board the International Space Station Onofri, S., de Vera, J.-P., Zucconi, L., Selbmann, L., Scalzi, G., Venkateswaran, K.J., Rabbow, E., de la Torre, R., Horneck, G., 2015. Astrobiology 15, 1052–1059. http://dx.doi.org/10.1089/ast.2015.1324 Sustainable life support on Mars – the potential roles of cyanobacteria Verseux, C., Baqué, M., Lehto, K., de Vera, J.-P.P., Rothschild, L.J., Billi, D., 2016. International Journal of Astrobiology 15, 65–92. http://dx.doi.org/10.1017/S147355041500021X On the detection of carbon monoxide as an anti-biosignature in exoplanetary atmospheres Wang, Y., Tian, F., Li, T., Hu, Y., 2016. Icarus 266, 15–23. http://www.sciencedirect.com/science/article/pii/S0019103515005205

e38

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

Biosignatures for astrobiology Westall, F., Cockell, C.S., 2016. Origins of Life and Evolution of Biospheres 46, 105–106. http://dx.doi.org/10.1007/s11084-015-9459-9 Biochemistry

The siderophore metabolome of Azotobacter vinelandii Baars, O., Zhang, X., Morel, F.M.M., Seyedsayamdost, M.R., 2016. Applied and Environmental Microbiology 82, 27–39. http://aem.asm.org/content/82/1/27.abstract Novel tri- and tetra-unsaturated highly branched isoprenoid (HBI) alkenes from the marine diatom Pleurosigma intermedium Brown, T.A., Belt, S.T., 2016. Organic Geochemistry 91, 120–122. http://www.sciencedirect.com/science/article/pii/S0146638015002120 Complete nitrification by Nitrospira bacteria Daims, H., Lebedeva, E.V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R.H., von Bergen, M., Rattei, T., Bendinger, B., Nielsen, P.H., Wagner, M., 2015. Nature 528, 504–509. http://dx.doi.org/10.1038/nature16461 Sulfate to go Fritz, G., Kroneck, P.M.H., 2015. Science 350, 1476–1477. http://www.sciencemag.org/content/350/6267/1476.short Mono-, di- and trimethylated homologues of isoprenoid tetraether lipid cores in archaea and environmental samples: Mass spectrometric identification and significance Knappy, C., Barillà, D., Chong, J., Hodgson, D., Morgan, H., Suleman, M., Tan, C., Yao, P., Keely, B., 2015. Journal of Mass Spectrometry 50, 1420–1432. http://dx.doi.org/10.1002/jms.3709 The bioenergetic costs of a gene Lynch, M., Marinov, G.K., 2015. Proceedings of the National Academy of Sciences 112, 15690–15695. http://www.pnas.org/content/112/51/15690.abstract How bacteria use Type IV pili machinery on surfaces Maier, B., Wong, G.C.L., 2015. Trends in Microbiology 23, 775–788. http://www.sciencedirect.com/science/article/pii/S0966842X15002048 Isolation and characterization of bacterium producing lipid from short-chain fatty acids Okamura, Y., Nakai, S., Ohkawachi, M., Suemitsu, M., Takahashi, H., Aki, T., Matsumura, Y., Tajima, T., Nakashimada, Y., Matsumoto, M., 2016. Bioresource Technology 201, 215–221. http://www.sciencedirect.com/science/article/pii/S0960852415015667 A protein trisulfide couples dissimilatory sulfate reduction to energy conservation Santos, A.A., Venceslau, S.S., Grein, F., Leavitt, W.D., Dahl, C., Johnston, D.T., Pereira, I.A.C., 2015. Science 350, 1541–1545. http://www.sciencemag.org/content/350/6267/1541.abstract Horizontal DNA transfer from bacteria to eukaryotes and a lesson from experimental transfers Suzuki, K., Moriguchi, K., Yamamoto, S., 2015. Research in Microbiology 166, 753–763. http://www.sciencedirect.com/science/article/pii/S0923250815001308 Complete nitrification by a single microorganism van Kessel, M.A.H.J., Speth, D.R., Albertsen, M., Nielsen, P.H., Op den Camp, H.J.M., Kartal, B., Jetten, M.S.M., Lücker, S., 2015. Nature 528, 555–559. http://dx.doi.org/10.1038/nature16459 Insights into the life of an oxygenic phototroph Whitman, W.B., 2015. Proceedings of the National Academy of Sciences 112, 14747–14748. http://www.pnas.org/content/112/48/14747.short

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e39

Biodegradation

Phenol biodegradation by halophilic archaea Acikgoz, E., Ozcan, B., 2016. International Biodeterioration & Biodegradation 107, 140–146. http://www.sciencedirect.com/science/article/pii/S0964830515301384 Bioaccessible porosity in soil aggregates and implications for biodegradation of high molecular weight petroleum compounds Akbari, A., Ghoshal, S., 2015. Environmental Science & Technology 49, 14368–14375. http://dx.doi.org/10.1021/acs.est.5b03618 Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi Aranda, E., 2016. Current Opinion in Biotechnology 38, 1–8. http://www.sciencedirect.com/science/article/pii/S0958166915001652 Biotransformation of cyclohexane and related alicyclic hydrocarbons by Candida maltosa and Trichosporon species Dallinger, A., Duldhardt, I., Kabisch, J., Schlüter, R., Schauer, F., 2016. International Biodeterioration & Biodegradation 107, 132–139. http://www.sciencedirect.com/science/article/pii/S0964830515301372 Commentary: Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3 Rahman, P.K.S.M., Sekhon Randhawa, K.K., 2015. Frontiers in Microbiology 6, 1557. doi: 10.3389/fmicb.2015.01557. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01557/full Biodegradation of different petroleum hydrocarbons by free and immobilized microbial consortia Shen, T., Pi, Y., Bao, M., Xu, N., Li, Y., Lu, J., 2015. Environmental Science: Processes & Impacts 17, 2022–2033. http://dx.doi.org/10.1039/C5EM00318K Degradation of oil by fungi isolated from Gulf of Mexico beaches Simister, R.L., Poutasse, C.M., Thurston, A.M., Reeve, J.L., Baker, M.C., White, H.K., 2015. Marine Pollution Bulletin 100, 327–333. http://www.sciencedirect.com/science/article/pii/S0025326X15005330 Anaerobic degradation of alcohol ethoxylates and polyethylene glycols in marine sediments Traverso-Soto, J.M., Rojas-Ojeda, P., Sanz, J.L., González-Mazo, E., Lara-Martín, P.A., 2016. Science of The Total Environment 544, 118–124. http://www.sciencedirect.com/science/article/pii/S0048969715311219 Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: A meta-analysis Vonk, J.E., Tank, S.E., Mann, P.J., Spencer, R.G.M., Treat, C.C., Striegl, R.G., Abbott, B.W., Wickland, K.P., 2015. Biogeosciences 12, 6915–6930. http://www.biogeosciences.net/12/6915/2015/ Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil Wu, M., Dick, W.A., Li, W., Wang, X., Yang, Q., Wang, T., Xu, L., Zhang, M., Chen, L., 2016. International Biodeterioration & Biodegradation 107, 158–164. http://www.sciencedirect.com/science/article/pii/S0964830515301414 Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: A review Xue, J., Yu, Y., Bai, Y., Wang, L., Wu, Y., 2015. Current Microbiology 71, 220–228. http://dx.doi.org/10.1007/s00284-015-0825-7 Biodegradation pathways/genomics

Degradation of benzene by Pseudomonas veronii 1YdBTEX2 and 1YB2 is catalyzed by enzymes encoded in distinct catabolism gene clusters de Lima-Morales, D., Chaves-Moreno, D., Wos-Oxley, M.L., Jáuregui, R., Vilchez-Vargas, R., Pieper, D.H., 2016. Applied and Environmental Microbiology 82, 167–173. http://aem.asm.org/content/82/1/167.abstract Isolation and characterization of two novel halotolerant catechol 2,3-dioxygenases from a halophilic bacterial consortium Guo, G., Fang, T., Wang, C., Huang, Y., Tian, F., Cui, Q., Wang, H., 2015. Scientific Reports 5, Article number 17603. http://dx.doi.org/10.1038/srep17603

e40

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

Complete genome sequence of Chelatococcus sp. CO-6, a crude-oil-degrading bacterium Wang, Y., Cui, D., Li, A., Yang, J., Ma, F., 2016. Journal of Biotechnology 219, 20–21. http://www.sciencedirect.com/science/article/pii/S0168165615302182 Use of mass spectrometry for characterizing the growth of Pseudomonas bacteria bearing naphthalene degradation plasmids Zyakun, A.M., Kochetkov, V.V., Zakharchenko, V.N., Baskunov, B.P., Laurinavichius, K.S., Peshenko, V.P., Siunova, T.V., Anokhina, T.O., Boronin, A.M., 2015. Journal of Analytical Chemistry 70, 1569–1575. http://dx.doi.org/10.1134/S1061934815130122 Biogeochemistry

A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like archaea Arshad, A., Speth, D.R., De Graaf, R.M., Op den Camp, H.J.M., Jetten, M.S.M., Welte, C.U., 2015. Frontiers in Microbiology 6, 1423. doi: 10.3389/fmicb.2015.01423. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01423/abstract Anodes stimulate anaerobic toluene degradation via sulfur cycling in marine sediments Daghio, M., Vaiopoulou, E., Patil, S.A., Suárez-Suárez, A., Head, I.M., Franzetti, A., Rabaey, K., 2016. Applied and Environmental Microbiology 82, 297–307. http://aem.asm.org/content/82/1/297.abstract Omic approaches to microbial geochemistry Dick, G.J., Lam, P., 2015. Elements 11, 403–408. http://elements.geoscienceworld.org/content/11/6/403.abstract Geomicrobiology and microbial geochemistry Druschel, G.K., Kappler, A., 2015. Elements 11, 389–394. http://elements.geoscienceworld.org/content/11/6/389.abstract Networks of energetic and metabolic interactions define dynamics in microbial communities Embree, M., Liu, J.K., Al-Bassam, M.M., Zengler, K., 2015. Proceedings of the National Academy of Sciences 112, 15450–15455. http://www.pnas.org/content/112/50/15450.abstract Dominance of ‘Gallionella capsiferriformans’ and heavy metal association with Gallionella-like stalks in metal-rich pH 6 mine water discharge Fabisch, M., Freyer, G., Johnson, C.A., Büchel, G., Akob, D.M., Neu, T.R., Küsel, K., 2016. Geobiology 14, 68–90. http://dx.doi.org/10.1111/gbi.12162 Key factors influencing rates of heterotrophic sulfate reduction in active seafloor hydrothermal massive sulfide deposits Frank, K.L., Rogers, K.L., Rogers, D.R., Johnston, D.T., Girguis, P.R., 2015. Frontiers in Microbiology 6, 1449. doi: 10.3389/fmicb.2015.01449. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01449/abstract Methane emission in a specific riparian-zone sediment decreased with bioelectrochemical manipulation and corresponded to the microbial community dynamics Friedman, E.S., McPhillips, L.E., Werner, J.J., Poole, A.C., Ley, R., Walter, M.T., Angenent, L., 2015. Frontiers in Microbiology 6, 1523. doi: 10.3389/fmicb.2015.01523. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01523/abstract The role of gluconate production by Pseudomonas spp. in the mineralization and bioavailability of calcium–phytate to Nicotiana tabacum Giles, C.D., Hsu, P.-C., Richardson, A.E., Hurst, M.R.H., Hill, J.E., 2015. Canadian Journal of Microbiology 61, 885–897. http://dx.doi.org/10.1139/cjm-2015-0206 Cryptic cross-linkages among biogeochemical cycles: Novel insights from reactive intermediates Hansel, C.M., Ferdelman, T.G., Tebo, B.M., 2015. Elements 11, 409–414. http://elements.geoscienceworld.org/content/11/6/409.abstract Structural iron (II) of basaltic glass as an energy source for Zetaproteobacteria in an abyssal plain environment, off the Mid Atlantic Ridge Henri, P.A., Rommevaux-Jestin, C., Lesongeur, F., Mumford, A., Emerson, D., Godfroy, A., Menez, B., 2015. Frontiers in Microbiology 6, 1518. doi: 10.3389/fmicb.2015.01518. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01518/abstract

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e41

Ecophysiology of Zetaproteobacteria associated with shallow hydrothermal iron-oxyhydroxide deposits in Nagahama Bay of Satsuma Iwo-Jima, Japan Hoshino, T., Kuratomi, T., Morono, Y., Hori, T., Oiwane, H., Kiyokawa, S., Inagaki, F., 2015. Frontiers in Microbiology 6, 1554. doi: 10.3389/fmicb.2015.01554. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01554/abstract Impact of anaerobic oxidation of methane on geochemical cycle of redox-sensitive elements at cold seep sites of the northern South China Sea Hu, Y., Feng, D., Liang, Q., Zhen, X., Chen, L., Chen, D., 2015. Deep Sea Research Part II: Topical Studies in Oceanography 122, 84–94. http://www.sciencedirect.com/science/article/pii/S0967064515002143 Toxic metal resistance in biofilms: Diversity of microbial responses and their evolution Koechler, S., Farasin, J., Cleiss-Arnold, J., Arsène-Ploetze, F., 2015. Research in Microbiology 166, 764–773. http://www.sciencedirect.com/science/article/pii/S0923250815000601 Evidence for methane production by marine algae (Emiliana huxleyi) and its implication for the methane paradox in oxic waters Lenhart, K., Klintzsch, T., Langer, G., Nehrke, G., Bunge, M., Schnell, S., Keppler, F., 2015. Biogeosciences Discussions 12, 20323–20360. http://www.biogeosciences-discuss.net/12/20323/2015/ Microbial methane production associated with carbon steel corrosion in a Nigerian oil field Mand, J., Park, H.S., Okoro, C., Lomans, B.P., Smith, S., Chiejina, L., Voordouw, G., 2015. Frontiers in Microbiology 6, 1538. doi: 10.3389/fmicb.2015.01538. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01538/abstract Discovery of symbiotic nitrogen fixation and chemoautotrophy in cold-water corals Middelburg, J.J., Mueller, C.E., Veuger, B., Larsson, A.I., Form, A., van Oevelen, D., 2015. Scientific Reports 5, Article number 17962. http://dx.doi.org/10.1038/srep17962 Ordinary stoichiometry of extraordinary microorganisms Neveu, M., Poret-Peterson, A.T., Anbar, A.D., Elser, J.J., 2016. Geobiology 14, 33–53. http://dx.doi.org/10.1111/gbi.12153 Metalliferous biosignatures for deep subsurface microbial activity Parnell, J., Brolly, C., Spinks, S., Bowden, S., 2016. Origins of Life and Evolution of Biospheres 46, 107–118. http://dx.doi.org/10.1007/s11084-015-9466-x Phytoplankton versus macrophyte contribution to primary production and biogeochemical cycles of a coastal mesotidal system. A modelling approach Plus, M., Auby, I., Maurer, D., Trut, G., Del Amo, Y., Dumas, F., Thouvenin, B., 2015. Estuarine, Coastal and Shelf Science 165, 52–60. http://www.sciencedirect.com/science/article/pii/S0272771415300810 Bacterially-mediated weathering of crystalline and amorphous Cu-slags Potysz, A., Grybos, M., Kierczak, J., Guibaud, G., Lens, P.N.L., van Hullebusch, E.D., 2016. Applied Geochemistry 64, 92–106. http://www.sciencedirect.com/science/article/pii/S0883292715300160 Principles of geobiochemistry Shock, E.L., Boyd, E.S., 2015. Elements 11, 395–401. http://elements.geoscienceworld.org/content/11/6/395.abstract Emerging frontiers in geomicrobiology Templeton, A., Benzerara, K., 2015. Elements 11, 423–429. http://elements.geoscienceworld.org/content/11/6/423.abstract The mineralosphere concept: Mineralogical control of the distribution and function of mineral-associated bacterial communities Uroz, S., Kelly, L.C., Turpault, M.-P., Lepleux, C., Frey-Klett, P., 2015. Trends in Microbiology 23, 751-762. http://www.sciencedirect.com/science/article/pii/S0966842X15002309 Nitrogen cycling in the deep sedimentary biosphere: Nitrate isotopes in porewaters underlying the oligotrophic North Atlantic Wankel, S.D., Buchwald, C., Ziebis, W., Wenk, C.B., Lehmann, M.F., 2015. Biogeosciences 12, 7483–7502. http://www.biogeosciences.net/12/7483/2015/

e42

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

Sulfur biogeochemistry of an oil sands composite tailings deposit Warren, L.A., Kendra, K.E., Brady, A.L., Slater, G., 2015. Frontiers in Microbiology 6, 1533. doi: 10.3389/fmicb.2015.01533. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01533/abstract Microbially mediated reduction of Np(V) by a consortium of alkaline tolerant Fe(III)-reducing bacteria Williamson, A.J., Morris, K., Boothman, C., Dardenne, K., Law, G.T.W., Lloyd, J.R., 2015. Mineralogical Magazine 79, 1287–1295. http://minmag.geoscienceworld.org/content/79/6/1287.abstract Effects of calcium source on biochemical properties of microbial CaCO3 precipitation Xu, J., Du, Y., Jiang, Z., She, A., 2015. Frontiers in Microbiology 6, 1366. doi: 10.3389/fmicb.2015.01366. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01366/abstract Seasonal changes on microbial metabolism and biomass in the euphotic layer of Sicilian Channel Zaccone, R., Caruso, G., Leonardi, M., Maimone, G., Monticelli, L.S., Azzaro, M., Cuttitta, A., Patti, B., La Ferla, R., 2015. Marine Environmental Research 112, Part B, 20–32. http://www.sciencedirect.com/science/article/pii/S0141113615300143 Sulfur isotope values in the sulfidic Frasassi cave system, central Italy: A case study of a chemolithotrophic S-based ecosystem Zerkle, A.L., Jones, D.S., Farquhar, J., Macalady, J.L., 2016. Geochimica et Cosmochimica Acta 173, 373–386. http://www.sciencedirect.com/science/article/pii/S0016703715006407 Biomass/Biofuels

Review of recent reports on process technology for thermochemical conversion of whole algae to liquid fuels Elliott, D.C., 2016. Algal Research 13, 255–263. http://www.sciencedirect.com/science/article/pii/S221192641530117X Unveiling the chemical composition of sugar cane biocrudes by liquid chromatography–tandem mass spectrometry Garrett, R., Barros, T.G., de Souza, M.O., da Costa, B.M.C., Pereira, M.M., Miranda, L.S.M., 2015. Energy & Fuels 29, 8082–8087. http://dx.doi.org/10.1021/acs.energyfuels.5b02317 Evaluation of different solvent mixtures in esterifiable lipids extraction from microalgae Botryococcus braunii for biodiesel production Hidalgo, P., Ciudad, G., Navia, R., 2016. Bioresource Technology 201, 360–364. http://www.sciencedirect.com/science/article/pii/S0960852415015576 Lignocellulose pyrolysis with condensable volatiles quantification by thermogravimetric analysis—Thermal desorption/gas chromatography–mass spectrometry method Nsaful, F., Collard, F.-X., Carrier, M., Görgens, J.F., Knoetze, J.H., 2015. Journal of Analytical and Applied Pyrolysis 116, 86–95. http://www.sciencedirect.com/science/article/pii/S0165237015302345 Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach Suganya, T., Varman, M., Masjuki, H.H., Renganathan, S., 2016. Renewable and Sustainable Energy Reviews 55, 909–941. http://www.sciencedirect.com/science/article/pii/S1364032115012782 Element and chemical compounds transfer in bio-crude from hydrothermal liquefaction of microalgae Tang, X., Zhang, C., Li, Z., Yang, X., 2016. Bioresource Technology 202, 8–14. http://www.sciencedirect.com/science/article/pii/S0960852415016090 Chemical structure evolution of char during the pyrolysis of cellulose Xin, S., Yang, H., Chen, Y., Yang, M., Chen, L., Wang, X., Chen, H., 2015. Journal of Analytical and Applied Pyrolysis 116, 263–271. http://www.sciencedirect.com/science/article/pii/S0165237015301777 Carbon Cycle

Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink Anderegg, W.R.L., Ballantyne, A.P., Smith, W.K., Majkut, J., Rabin, S., Beaulieu, C., Birdsey, R., Dunne, J.P., Houghton, R.A., Myneni, R.B., Pan, Y., Sarmiento, J.L., Serota, N., Shevliakova, E., Tans, P., Pacala, S.W., 2015. Proceedings of the National Academy of Sciences 112, 15591-15596. http://www.pnas.org/content/112/51/15591.abstract

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e43

Modern to millennium-old greenhouse gases emitted from ponds and lakes of the eastern Canadian Arctic (Bylot Island, Nunavut) Bouchard, F., Laurion, I., Pre˙skienis, V., Fortier, D., Xu, X., Whiticar, M.J., 2015. Biogeosciences 12, 7279–7298. http://www.biogeosciences.net/12/7279/2015/ Degradation in carbon stocks near tropical forest edges Chaplin-Kramer, R., Ramler, I., Sharp, R., Haddad, N.M., Gerber, J.S., West, P.C., Mandle, L., Engstrom, P., Baccini, A., Sim, S., Mueller, C., King, H., 2015. Nature Communications 6, Article number 10158. http://dx.doi.org/10.1038/ncomms10158 Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: 14C characteristics of sedimentary carbon components and their environmental controls Feng, X., Gustafsson, Ö., Holmes, R.M., Vonk, J.E., van Dongen, B.E., Semiletov, I.P., Dudarev, O.V., Yunker, M.B., Macdonald, R.W., Wacker, L., Montluçon, D.B., Eglinton, T.I., 2015. Global Biogeochemical Cycles 29, 1855–1873. http://dx.doi.org/10.1002/2015GB005204 Terrestrial pyrogenic carbon export to fluvial ecosystems: Lessons learned from the White Nile watershed of East Africa Güereña, D.T., Lehmann, J., Walter, T., Enders, A., Neufeldt, H., Odiwour, H., Biwott, H., Recha, J., Shepherd, K., Barrios, E., Wurster, C., 2015. Global Biogeochemical Cycles 29, 1911–1928. http://dx.doi.org/10.1002/2015GB005095 New insights into the organic carbon export in the Mediterranean Sea from 3-D modeling Guyennon, A., Baklouti, M., Diaz, F., Palmieri, J., Beuvier, J., Lebaupin-Brossier, C., Arsouze, T., Béranger, K., Dutay, J.C., Moutin, T., 2015. Biogeosciences 12, 7025–7046. http://www.biogeosciences.net/12/7025/2015/ Large increases in carbon burial in northern lakes during the Anthropocene Heathcote, A.J., Anderson, N.J., Prairie, Y.T., Engstrom, D.R., del Giorgio, P.A., 2015. Nature Communications 6, Article number 10016. http://dx.doi.org/10.1038/ncomms10016 Annual water, sediment, nutrient, and organic carbon fluxes in river basins: A global meta-analysis as a function of scale Mutema, M., Chaplot, V., Jewitt, G., Chivenge, P., Blöschl, G., 2015. Water Resources Research 51, 8949–8972. http://dx.doi.org/10.1002/2014WR016668 Sources and sinks of methane and nitrous oxide in the subtropical Brisbane River estuary, south east Queensland, Australia Sturm, K., Grinham, A., Werner, U., Yuan, Z., 2016. Estuarine, Coastal and Shelf Science 168, 10–21. http://www.sciencedirect.com/science/article/pii/S0272771415301268 Carbon export from fringing saltmarsh shoreline erosion overwhelms carbon storage across a critical width threshold Theuerkauf, E.J., Stephens, J.D., Ridge, J.T., Fodrie, F.J., Rodriguez, A.B., 2015. Estuarine, Coastal and Shelf Science 164, 367–378. http://www.sciencedirect.com/science/article/pii/S0272771415300585 Pathways and transformations of dissolved methane and dissolved inorganic carbon in Arctic tundra watersheds: Evidence from analysis of stable isotopes Throckmorton, H.M., Heikoop, J.M., Newman, B.D., Altmann, G.L., Conrad, M.S., Muss, J.D., Perkins, G.B., Smith, L.J., Torn, M.S., Wullschleger, S.D., Wilson, C.J., 2015. Global Biogeochemical Cycles 29, 1893–1910. http://dx.doi.org/10.1002/2014GB005044 Carbon Sequestration

Identification of oil reservoirs suitable for CO2-EOR and CO2 storage (CCUS) using reserves databases, with application to Alberta, Canada Bachu, S., 2016. International Journal of Greenhouse Gas Control 44, 152–165. http://www.sciencedirect.com/science/article/pii/S1750583615301286 The role of host rock properties in determining potential CO2 migration pathways Cao, P., Karpyn, Z.T., Li, L., 2016. International Journal of Greenhouse Gas Control 45, 18–26. http://www.sciencedirect.com/science/article/pii/S1750583615301481 Supercritical CO2 and brine displacement in geological carbon sequestration: Micromodel and pore network simulation studies Cao, S.C., Dai, S., Jung, J., 2016. International Journal of Greenhouse Gas Control 44, 104–114. http://www.sciencedirect.com/science/article/pii/S1750583615301420

e44

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

Analysis of a time dependent injection strategy to accelerate the residual trapping of sequestered CO2 in the geologic subsurface Huber, E.J., Stroock, A.D., Koch, D.L., 2016. International Journal of Greenhouse Gas Control 44, 185–198. http://www.sciencedirect.com/science/article/pii/S1750583615301419 CO2 wettability of caprocks: Implications for structural storage capacity and containment security Iglauer, S., Al-Yaseri, A.Z., Rezaee, R., Lebedev, M., 2015. Geophysical Research Letters 42, 9279–9284. http://dx.doi.org/10.1002/2015GL065787 Mineral dissolution and precipitation during CO2 injection at the Frio-I Brine Pilot: Geochemical modeling and uncertainty analysis Ilgen, A.G., Cygan, R.T., 2016. International Journal of Greenhouse Gas Control 44, 166–174. http://www.sciencedirect.com/science/article/pii/S1750583615301377 Data-driven proxy at hydraulic fracture cluster level: A technique for efficient CO2-enhanced gas recovery and storage assessment in shale reservoir Kalantari-Dahaghi, A., Mohaghegh, S., Esmaili, S., 2015. Journal of Natural Gas Science and Engineering 27, Part 2, 515–530. http://www.sciencedirect.com/science/article/pii/S1875510015300020 An integrated site characterization-to-optimization study for commercial-scale carbon dioxide storage Li, S., Akbarabadi, M., Zhang, Y., Piri, M., 2016. International Journal of Greenhouse Gas Control 44, 74–87. http://www.sciencedirect.com/science/article/pii/S1750583615300906 A screening criterion for selection of suitable CO2 storage sites Raza, A., Rezaee, R., Gholami, R., Bing, C.H., Nagarajan, R., Hamid, M.A., 2016. Journal of Natural Gas Science and Engineering 28, 317–327. http://www.sciencedirect.com/science/article/pii/S1875510015302936 A fully coupled thermal-hydrological-mechanical-chemical model for CO2 geological sequestration Zhang, R., Yin, X., Winterfeld, P.H., Wu, Y.-S., 2016. Journal of Natural Gas Science and Engineering 28, 280–304. http://www.sciencedirect.com/science/article/pii/S1875510015302778 Benchmark modeling of the Sleipner CO2 plume: Calibration to seismic data for the uppermost layer and model sensitivity analysis Zhu, C., Zhang, G., Lu, P., Meng, L., Ji, X., 2015. International Journal of Greenhouse Gas Control 43, 233–246. http://www.sciencedirect.com/science/article/pii/S1750583614003958 Coal/Peat/Lignite Geochemistry

Generation and accumulation characteristics of mixed coalbed methane controlled by tectonic evolution in Liulin CBM field, eastern Ordos Basin, China Bao, Y., Wei, C., Neupane, B., 2016. Journal of Natural Gas Science and Engineering 28, 262–270. http://www.sciencedirect.com/science/article/pii/S1875510015302730 Total gas-in-place, gas composition and reservoir properties of coal of the Mannville coal measures, central Alberta Bustin, A.M.M., Bustin, R.M., 2016. International Journal of Coal Geology 153, 127–143. http://www.sciencedirect.com/science/article/pii/S016651621530080X An assessment of the chemical characteristics of early diagenetic processes in a geologically well-defined brown coal basin Devic´, G., 2015. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37, 2559–2566. http://dx.doi.org/10.1080/15567036.2012.724147 Characteristics of pores and methane adsorption of low-rank coal in China Jian, K., Fu, X., Ding, Y., Wang, H., Li, T., 2015. Journal of Natural Gas Science and Engineering 27, Part 1, 207–218. http://www.sciencedirect.com/science/article/pii/S1875510015301177 Pore structure and compressibility of coal matrix with elevated temperatures by mercury intrusion porosimetry Li, Z., Liu, D., Cai, Y., Yao, Y., Wang, H., 2015. Energy, Exploration & Exploitation 33, 809–826. http://dx.doi.org/10.1260/0144-5987.33.6.809 Raman spectroscopy of dispersed vitrinite — Methodical aspects and correlation with reflectance Lünsdorf, N.K., 2016. International Journal of Coal Geology 153, 75–86. http://www.sciencedirect.com/science/article/pii/S0166516215300793

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e45

A study of organic sulfur analysis in coal using non-destructive techniques Ma, X.M., Zhang, M.X., Min, F.F., 2015. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37, 2716–2723. http://dx.doi.org/10.1080/15567036.2012.736916 The effect of acid washing on the pyrolysis products derived from a vitrinite-rich bituminous coal Roets, L., Strydom, C.A., Bunt, J.R., Neomagus, H.W.J.P., van Niekerk, D., 2015. Journal of Analytical and Applied Pyrolysis 116, 142–151. http://www.sciencedirect.com/science/article/pii/S0165237015302175 Carbon dynamics in boreal peatlands of the Yenisey region, western Siberia Schulze, E.D., Lapshina, E., Filippov, I., Kuhlmann, I., Mollicone, D., 2015. Biogeosciences 12, 7057–7070. http://www.biogeosciences.net/12/7057/2015/ Development of a multiscale microbial kinetics coupled gas transport model for the simulation of biogenic coalbed methane production Senthamaraikkannan, G., Gates, I., Prasad, V., 2016. Fuel 167, 188–198. http://www.sciencedirect.com/science/article/pii/S0016236115011886 Coal resource potential of Afghanistan Wnuk, C., 2016. International Geology Review 58, 321–341. http://dx.doi.org/10.1080/00206814.2015.1071209 Porosity type analysis and permeability model for micro-trans-pores, meso-macro-pores and cleats of coal samples Zou, M., Wei, C., Huang, Z., Wei, S., 2015. Journal of Natural Gas Science and Engineering 27, 776–784. http://www.sciencedirect.com/science/article/pii/S1875510015301591 Cosmochemistry/Planetary Geochemistry

Weathering profiles in phosphorus-rich rocks at Gusev Crater, Mars, suggest dissolution of phosphate minerals into potentially habitable near-neutral waters Adcock, C.T., Hausrath, E.M., 2015. Astrobiology 15, 1060–1075. http://dx.doi.org/10.1089/ast.2015.1291 Planetary science: Mars on dry ice Dundas, C., 2016. Nature Geoscience 9, 10–11. http://dx.doi.org/10.1038/ngeo2625 A cometary origin for martian atmospheric methane Fries, M., Christou, A., Archer, D., Conrad, P., Cooke, W., Eigenbrode, J., ten Kate, I.L., Matney, M., Niles, P., Sykes, M., Steele, A., Treiman, A., 2016. Geochemical Perspectives Letters 2, 10–23. http://www.geochemicalperspectivesletters.org/article1602 On the plausibility of pseudosugar formation in cometary ices and oxygen-rich tholins Lavado, N., Ávalos, M., Babiano, R., Cintas, P., Light, M.E., Jiménez, J.L., Palacios, J.C., 2016. Origins of Life and Evolution of Biospheres 46, 31–49. http://dx.doi.org/10.1007/s11084-015-9456-z Ancient stardust in fine-grained chondrule dust rims from carbonaceous chondrites Leitner, J., Vollmer, C., Floss, C., Zipfel, J., Hoppe, P., 2016. Earth and Planetary Science Letters 434, 117–128. http://www.sciencedirect.com/science/article/pii/S0012821X15007323 Correlated compositional and mineralogical investigations at the Chang’e-3 landing site Ling, Z., Jolliff, B.L., Wang, A., Li, C., Liu, J., Zhang, J., Li, B., Sun, L., Chen, J., Xiao, L., Liu, J., Ren, X., Peng, W., Wang, H., Cui, X., He, Z., Wang, J., 2015. Nature Communications 6, Article number 8880. http://dx.doi.org/10.1038/ncomms9880 Polymer amide in the Allende and Murchison meteorites McGeoch, J.E.M., McGeoch, M.W., 2015. Meteoritics & Planetary Science 50, 1971–1983. http://dx.doi.org/10.1111/maps.12558 Formation of gullies on Mars by debris flows triggered by CO2 sublimation Pilorget, C., Forget, F., 2016. Nature Geoscience 9, 65–69. http://dx.doi.org/10.1038/ngeo2619

e46

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

Environmental Geochemistry

The effect of oil sands process-affected water and model naphthenic acids on photosynthesis and growth in Emiliania huxleyi and Chlorella vulgaris Beddow, J., Johnson, R.J., Lawson, T., Breckels, M.N., Webster, R.J., Smith, B.E., Rowland, S.J., Whitby, C., 2016. Chemosphere 145, 416–423. http://www.sciencedirect.com/science/article/pii/S0045653515303787 Bioremediation of oil polluted marine sediments: A bio-engineering treatment Cappello, S., Calogero, R., Santisi, S., Genovese, M., Denaro, R., Genovese, L., Giuliano, L., Mancini, G., Yakimov, M.M., 2015. International Microbiology 18, 127–134. http://dx.doi.org/10.2436/20.1501.01.242 Impact of temperature, pH, and salinity changes on the physico-chemical properties of model naphthenic acids Celsie, A., Parnis, J.M., Mackay, D., 2016. Chemosphere 146, 40–50. http://www.sciencedirect.com/science/article/pii/S0045653515304537 Advances in Biodegradation and Bioremediation of Industrial Waste Chandra, R., 2015. CRC Press 479 pp. https://www.crcpress.com/Advances-in-Biodegradation-and-Bioremediation-of-Industrial-Waste/Chandra/9781498700542 A semi-quantitative approach for the rapid screening and mass profiling of naphthenic acids directly in contaminated aqueous samples Duncan, K.D., Letourneau, D.R., Vandergrift, G.W., Jobst, K., Reiner, E., Gill, C.G., Krogh, E.T., 2016. Journal of Mass Spectrometry 51, 44–52. http://onlinelibrary.wiley.com/doi/10.1002/jms.3721/abstract Disposal in the unconventional oil and gas sector: Challenges and solutions Fennell, J., 2015. Environmental Geosciences 22, 127–138. http://eg.geoscienceworld.org/content/22/4/127.abstract Assessment of anthropogenic contamination with sterol markers in surface sediments of a tropical estuary (Itajaí-Açu, Brazil) Frena, M., Bataglion, G.A., Tonietto, A.E., Eberlin, M.N., Alexandre, M.R., Madureira, L.A.S., 2016. Science of The Total Environment 544, 432–438. http://www.sciencedirect.com/science/article/pii/S0048969715310901 Chemical dispersants can suppress the activity of natural oil-degrading microorganisms Kleindienst, S., Seidel, M., Ziervogel, K., Grim, S., Loftis, K., Harrison, S., Malkin, S.Y., Perkins, M.J., Field, J., Sogin, M.L., Dittmar, T., Passow, U., Medeiros, P.M., Joye, S.B., 2015. Proceedings of the National Academy of Sciences 112, 14900–14905. http://www.pnas.org/content/112/48/14900.abstract Equilibrium passive sampling as a tool to study polycyclic aromatic hydrocarbons in Baltic Sea sediment pore-water systems Lang, S.-C., Hursthouse, A., Mayer, P., Kötke, D., Hand, I., Schulz-Bull, D., Witt, G., 2015. Marine Pollution Bulletin 101, 296–303. http://www.sciencedirect.com/science/article/pii/S0025326X15301429 Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons Li, S., Pi, Y., Bao, M., Zhang, C., Zhao, D., Li, Y., Sun, P., Lu, J., 2015. Marine Pollution Bulletin 101, 219–225. http://www.sciencedirect.com/science/article/pii/S0025326X15300746 Presence of aliphatic and polycyclic aromatic hydrocarbons in near-surface sediments of an oil spill area in Bohai Sea Li, S., Zhang, S., Dong, H., Zhao, Q., Cao, C., 2015. Marine Pollution Bulletin 100, 169–175. http://www.sciencedirect.com/science/article/pii/S0025326X15300266 Sources and distribution of polycyclic aromatic hydrocarbons in a an urbanized tropical estuary and adjacent shelf, northeast of Brazil Maciel, D.C., de Souza, J.R.B., Taniguchi, S., Bícego, M.C., Zanardi-Lamardo, E., 2015. Marine Pollution Bulletin 101, 429–433. http://www.sciencedirect.com/science/article/pii/S0025326X15300667 From spill to sequestration: The molecular journey of contamination via comprehensive multiphase NMR Masoom, H., Courtier-Murias, D., Soong, R., Maas, W.E., Fey, M., Kumar, R., Monette, M., Stronks, H.J., Simpson, M.J., Simpson, A.J., 2015. Environmental Science & Technology 49, 13983–13991. http://dx.doi.org/10.1021/acs.est.5b03251

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e47

Assessment of the toxic potential of polycyclic aromatic hydrocarbons (PAHs) affecting Gulf menhaden (Brevoortia patronus) harvested from waters impacted by the BP Deepwater Horizon Spill Olson, G.M., Meyer, B.M., Portier, R.J., 2016. Chemosphere 145, 322–328. http://www.sciencedirect.com/science/article/pii/S0045653515304185 A case study on effects of oil spills and tar-ball pollution on beaches of Goa (India) Rekadwad, B.N., Khobragade, C.N., 2015. Marine Pollution Bulletin 100, 567–570. http://www.sciencedirect.com/science/article/pii/S0025326X15005238 Efficient dispersion of crude oil by blends of food-grade surfactants: Toward greener oil-spill treatments Riehm, D.A., Neilsen, J.E., Bothun, G.D., John, V.T., Raghavan, S.R., McCormick, A.V., 2015. Marine Pollution Bulletin 101, 92–97. http://www.sciencedirect.com/science/article/pii/S0025326X15301624 Spatial and temporal patterns in black carbon deposition to dated Fennoscandian Arctic lake sediments from 1830 to 2010 Ruppel, M.M., Gustafsson, Ö., Rose, N.L., Pesonen, A., Yang, H., Weckström, J., Palonen, V., Oinonen, M.J., Korhola, A., 2015. Environmental Science & Technology 49, 13954–13963. http://dx.doi.org/10.1021/acs.est.5b01779 Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota Santos, H.F., Duarte, G.A.S., Rachid, C.T.d.C., Chaloub, R.M., Calderon, E.N., Marangoni, L.F.d.B., Bianchini, A., Nudi, A.H., Carmo, F.L.d, van Elsas, J.D., Rosado, A.S., Castro, C.B.e., Peixoto, R.S., 2015. Scientific Reports 5, Article number 18268. http://dx.doi.org/10.1038/srep18268 Wastewater recycling and reuse trends in Pennsylvania shale gas wells Schmid, K., Yoxtheimer, D., 2015. Environmental Geosciences 22, 115–125. http://eg.geoscienceworld.org/content/22/4/115.abstract Long-term incubation reveals methanogenic biodegradation of C5 and C6 iso-alkanes in oil sands tailings Siddique, T., Mohamad Shahimin, M.F., Zamir, S., Semple, K., Li, C., Foght, J.M., 2015. Environmental Science & Technology 49, 14732–14739. http://dx.doi.org/10.1021/acs.est.5b04370 Studies on polycyclic aromatic hydrocarbons in surface sediments of Mithi River near Mumbai, India: Assessment of sources, toxicity risk and biological impact Singare, P.U., 2015. Marine Pollution Bulletin 101, 232–242. http://www.sciencedirect.com/science/article/pii/S0025326X15300722 Adventures in groundwater monitoring: Why has it been so difficult to obtain groundwater data near shale gas wells? Soeder, D.J., 2015. Environmental Geosciences 22, 139–148. http://eg.geoscienceworld.org/content/22/4/139.abstract The assessment of the spatial and seasonal variability of chromophoric dissolved organic matter in the southern Yellow Sea and the East China Sea Su, R., Bai, Y., Zhang, C., Shi, X., 2015. Marine Pollution Bulletin 100, 523–533. http://www.sciencedirect.com/science/article/pii/S0025326X15300217 Lessons learned while building the Deepwater Horizon Database: Toward improved data sharing in coastal science Thessen, A.E., McGinnis, S., North, E.W., 2016. Computers & Geosciences 87, 84–90. http://www.sciencedirect.com/science/article/pii/S009830041530090X Forensic investigation of aliphatic hydrocarbons in the sediments from selected mangrove ecosystems in the west coast of Peninsular Malaysia Vaezzadeh, V., Zakaria, M.P., Shau-Hwai, A.T., Ibrahim, Z.Z., Mustafa, S., Abootalebi-Jahromi, F., Masood, N., Magam, S.M., Alkhadher, S.A.A., 2015. Marine Pollution Bulletin 100, 311–320. http://www.sciencedirect.com/science/article/pii/S0025326X1500538X Impacts of Deepwater Horizon oil and associated dispersant on early development of the Eastern oyster Crassostrea virginica Vignier, J., Donaghy, L., Soudant, P., Chu, F.L.E., Morris, J.M., Carney, M.W., Lay, C., Krasnec, M., Robert, R., Volety, A.K., 2015. Marine Pollution Bulletin 100, 426–437. http://www.sciencedirect.com/science/article/pii/S0025326X15005159 Was the extreme and wide-spread marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event during the Deepwater Horizon blow-out unique? Vonk, S.M., Hollander, D.J., Murk, A.J., 2015. Marine Pollution Bulletin 100, 5–12. http://www.sciencedirect.com/science/article/pii/S0025326X15005275

e48

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

Non-target screening of organic pollutants in sediments and sludges using gas chromatography-mass spectrometry and automated mass spectral deconvolution Wang, G., Ma, H., Wang, L., Chen, J., Hou, X., 2015. Chinese Journal of Chromatography 33, 1294–1300. http://www.chrom-china.com/EN/abstract/abstract13997.shtml Determination of oxygen, nitrogen, and sulfur-containing polycyclic aromatic hydrocarbons (PAHs) in urban stream sediments Witter, A.E., Nguyen, M.H., 2016. Environmental Pollution 209, 186–196. http://www.sciencedirect.com/science/article/pii/S026974911530138X Reconciling divergent estimates of oil and gas methane emissions Zavala-Araiza, D., Lyon, D.R., Alvarez, R.A., Davis, K.J., Harriss, R., Herndon, S.C., Karion, A., Kort, E.A., Lamb, B.K., Lan, X., Marchese, A.J., Pacala, S.W., Robinson, A.L., Shepson, P.B., Sweeney, C., Talbot, R., Townsend-Small, A., Yacovitch, T.I., Zimmerle, D.J., Hamburg, S.P., 2015. Proceedings of the National Academy of Sciences 112, 15597–15602. http://www.pnas.org/content/112/51/15597.abstract The NET effect of dispersants — a critical review of testing and modelling of surface oil dispersion Zeinstra-Helfrich, M., Koops, W., Murk, A.J., 2015. Marine Pollution Bulletin 100, 102–111. http://www.sciencedirect.com/science/article/pii/S0025326X15300394 Simulation of scenarios of oil droplet formation from the Deepwater Horizon blowout Zhao, L., Boufadel, M.C., Adams, E., Socolofsky, S.A., King, T., Lee, K., Nedwed, T., 2015. Marine Pollution Bulletin 101, 304–319. http://www.sciencedirect.com/science/article/pii/S0025326X15301417 Evolution/Paleontology/Palynology

A new time tree reveals Earth history’s imprint on the evolution of modern birds Claramunt, S., Cracraft, J., 2015. Science Advances 1. Article number e1501005 http://advances.sciencemag.org/content/1/11/e1501005.abstract 3D chemical map and a theoretical life model for Neuropteris ovata var. simonii (index fossil, Asturian, Late Pennsylvanian, Canada) D’Angelo, J.A., Zodrow, E.L., 2016. International Journal of Coal Geology 153, 12–27. http://www.sciencedirect.com/science/article/pii/S0166516215300768 Nematophytes from the Lower Devonian of Podolia, Ukraine Filipiak, P., Szaniawski, H., 2016. Review of Palaeobotany and Palynology 224, Part 2, 109–120. http://www.sciencedirect.com/science/article/pii/S0034666715001748 Exceptional preservation of tiny embryos documents seed dormancy in early angiosperms Friis, E.M., Crane, P.R., Raunsgaard Pedersen, K., Stampanoni, M., Marone, F., 2015. Nature 528, 551–554. http://dx.doi.org/10.1038/nature16441 New data about anatomy, branching, and inferred growth patterns in the Early Devonian plant Armoricaphyton chateaupannense, Montjean-sur-Loire, France Gerrienne, P., Gensel, P.G., 2016. Review of Palaeobotany and Palynology 224, Part 1, 38–53. http://www.sciencedirect.com/science/article/pii/S0034666715001438 Ediacaran marine redox heterogeneity and early animal ecosystems Li, C., Planavsky, N.J., Shi, W., Zhang, Z., Zhou, C., Cheng, M., Tarhan, L.G., Luo, G., Xie, S., 2015. Scientific Reports 5, Article number 17097. http://dx.doi.org/10.1038/srep17097 Mandibular and dental characteristics of Late Triassic mammaliaform Haramiyavia and their ramifications for basal mammal evolution Luo, Z.-X., Gatesy, S.M., Jenkins, F.A., Amaral, W.W., Shubin, N.H., 2015. Proceedings of the National Academy of Sciences 112, E7101–E7109. http://www.pnas.org/content/early/2015/11/11/1519387112.abstract Growth architecture and microsporangiate strobilus of Sublepidodendron grabaui (Lycopsida) from the Late Devonian of south China Meng, M.-C., Liu, L., Wang, D.-M., Yao, J.-X., 2016. Review of Palaeobotany and Palynology 224, Part 1, 83–93. http://www.sciencedirect.com/science/article/pii/S0034666715001177 The terrestrialization process: A palaeobotanical and palynological perspective Meyer-Berthaud, B., Servais, T., Vecoli, M., Gerrienne, P., 2016. Review of Palaeobotany and Palynology 224, Part 1, 1–3. http://www.sciencedirect.com/science/article/pii/S0034666715001980

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e49

Evolution of habitat depth in the Jurassic–Cretaceous ammonoids Moriya, K., 2015. Proceedings of the National Academy of Sciences 112, 15540–15541. http://www.pnas.org/content/112/51/15540.short How complexity originates: The evolution of animal eyes Oakley, T.H., Speiser, D.I., 2015. Annual Review of Ecology, Evolution, and Systematics 46, 237–260. http://dx.doi.org/10.1146/annurev-ecolsys-110512-135907 Late Devonian plant communities of north Russia Orlova, O.A., Jurina, A.L., Snigirevsky, S.M., 2016. Review of Palaeobotany and Palynology 224, Part 1, 94–107. http://www.sciencedirect.com/science/article/pii/S0034666715001621 Genomic data do not support comb jellies as the sister group to all other animals Pisani, D., Pett, W., Dohrmann, M., Feuda, R., Rota-Stabelli, O., Philippe, H., Lartillot, N., Wörheide, G., 2015. Proceedings of the National Academy of Sciences 112, 15402–15407. http://www.pnas.org/content/early/2015/11/24/1518127112.abstract Cryptospores from the Katian (Upper Ordovician) of the Tungus Basin: The first evidence for early land plants from the Siberian paleocontinent Raevskaya, E., Dronov, A., Servais, T., Wellman, C.H., 2016. Review of Palaeobotany and Palynology 224, Part 1, 4–13. http://www.sciencedirect.com/science/article/pii/S0034666715001979 The palynological record across the Ordovician/Silurian boundary in the Cordillera Oriental, Central Andean Basin, northwestern Argentina Rubinstein, C.V., de la Puente, G.S., Delabroye, A., Astini, R.A., 2016. Review of Palaeobotany and Palynology 224, Part 1, 14–25. http://www.sciencedirect.com/science/article/pii/S0034666715001268 The impact of the ‘Terrestrialisation Process’ in the Late Palaeozoic: pCO2, pO2, and the ‘Phytoplankton Blackout’ Servais, T., Martin, R.E., Nützel, A., 2016. Review of Palaeobotany and Palynology 224, Part 1, 26–37. http://www.sciencedirect.com/science/article/pii/S0034666715001633 Anatomy of the Middle Devonian cladoxylopsid Panxia gabata Y. Wang et Berry from Yunnan Province, southwestern China Xue, J., Huang, P., Wang, D., Wang, Q., Hao, S., 2016. Review of Palaeobotany and Palynology 224, Part 1, 66–82. http://www.sciencedirect.com/science/article/pii/S0034666715000950 Evolution: Origins of Life/Microbial Genomics

The gene repertoire of animal stem cells Alié, A., Hayashi, T., Sugimura, I., Manuel, M., Sugano, W., Mano, A., Satoh, N., Agata, K., Funayama, N., 2015. Proceedings of the National Academy of Sciences 112, E7093–E7100. http://www.pnas.org/content/112/51/E7093.abstract The life story of hydrogen peroxide III: Chirality and physical effects at the dawn of life Ball, R., Brindley, J., 2016. Origins of Life and Evolution of Biospheres 46, 81–93. http://dx.doi.org/10.1007/s11084-015-9465-y Thiosulfate-hydrogen peroxide redox oscillator as pH driver for ribozyme activity in the RNA world Ball, R., Brindley, J., 2016. Origins of Life and Evolution of Biospheres 46, 133–147. http://dx.doi.org/10.1007/s11084-015-9448-z The activation of free dipeptides promoted by strong activating agents in water does not yield diketopiperazines Beaufils, D., Jepaul, S., Liu, Z., Boiteau, L., Pascal, R., 2016. Origins of Life and Evolution of Biospheres 46, 19–30. http://dx.doi.org/10.1007/s11084-015-9455-0 The role of autocatalysis on the chemical diversity of the prebiotic ocean of early Earth Canepa, C., 2016. International Journal of Astrobiology 15, 57–64. http://dx.doi.org/10.1017/S1473550415000099 A proposal of the proteome before the last universal common ancestor (LUCA) de Farias, S.T., Rêgo, T.G., José, M.V., 2016. International Journal of Astrobiology 15, 27–31. http://dx.doi.org/10.1017/S1473550415000464

e50

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

Hydrothermal conditions and the origin of cellular life Deamer, D.W., Georgiou, C.D., 2015. Astrobiology 15, 1091–1095. http://dx.doi.org/10.1089/ast.2015.1338 Origin of life: LUCA and extracellular membrane vesicles (EMVs) Gill, S., Forterre, P., 2016. International Journal of Astrobiology 15, 7–15. http://dx.doi.org/10.1017/S1473550415000282 Nucleoside phosphorylation by the mineral schreibersite Gull, M., Mojica, M.A., Fernández, F.M., Gaul, D.A., Orlando, T.M., Liotta, C.L., Pasek, M.A., 2015. Scientific Reports 5, Article number 17198. http://dx.doi.org/10.1038/srep17198 Evolvability is an evolved ability: The coding concept as the arch-unit of natural selection Jankovic´, S., C´irkovic´, M.M., 2016. Origins of Life and Evolution of Biospheres 46, 67–79. http://dx.doi.org/10.1007/s11084-015-9464-z The routes of emergence of life from LUCA during the RNA and viral world Jheeta, S., 2016. International Journal of Astrobiology 15, 1–1. http://dx.doi.org/10.1017/S1473550415000361 Predicting thermodynamic behaviors of non-protein amino acids as a function of temperature and pH Kitadai, N., 2016. Origins of Life and Evolution of Biospheres 46, 3–18. http://dx.doi.org/10.1007/s11084-015-9457-y Re-criticizing RNA-mediated cell evolution: A radical perspective Kotakis, C., 2016. International Journal of Astrobiology 15, 3–5. http://dx.doi.org/10.1017/S1473550415000191 A model of isotope separation in cells at the early stages of evolution Melkikh, A.V., Bokunyaeva, A.O., 2016. Origins of Life and Evolution of Biospheres 46, 95–104. http://dx.doi.org/10.1007/s11084-015-9463-0 History of the ribosome and the origin of translation Petrov, A.S., Gulen, B., Norris, A.M., Kovacs, N.A., Bernier, C.R., Lanier, K.A., Fox, G.E., Harvey, S.C., Wartell, R.M., Hud, N.V., Williams, L.D., 2015. Proceedings of the National Academy of Sciences 112, 15396–15401. http://www.pnas.org/content/112/50/15396.abstract Formamide reaction network in gas phase and solution via a unified theoretical approach: Toward a reconciliation of different prebiotic scenarios Pietrucci, F., Saitta, A.M., 2015. Proceedings of the National Academy of Sciences 112, 15030–15035. http://www.pnas.org/content/112/49/15030.abstract Origin of marine planktonic cyanobacteria Sánchez-Baracaldo, P., 2015. Scientific Reports 5, Article number 17418. http://dx.doi.org/10.1038/srep17418 A strategy for origins of life research Scharf, C., Virgo, N., Cleaves, H.J., Aono, M., Aubert-Kato, N., Aydinoglu, A., Barahona, A., Barge, L.M., Benner, S.A., Biehl, M., Brasser, R., Butch, C.J., Chandru, K., Cronin, L., Danielache, S., Fischer, J., Hernlund, J., Hut, P., Ikegami, T., Kimura, J., Kobayashi, K., Mariscal, C., McGlynn, S., Menard, B., Packard, N., Pascal, R., Pereto, J., Rajamani, S., Sinapayen, L., Smith, E., Switzer, C., Takai, K., Tian, F., Ueno, Y., Voytek, M., Witkowski, O., Yabuta, H., 2015. Astrobiology 15, 1031–1042. http://dx.doi.org/10.1089/ast.2015.1113 Possible role of Prussian blue nanoparticles in chemical evolution: Interaction with ribose nucleotides Sharma, R., Iqubal, M.A., Kamaluddin, 2016. International Journal of Astrobiology 15, 17–25. http://dx.doi.org/10.1017/S1473550415000348 Alpha-oxo acids assisted transformation of FeS to Fe3S4 at low temperature: Implications for abiotic, biotic, and prebiotic mineralization Wang, W., Song, Y., Wang, X., Yang, Y., Liu, X., 2015. Astrobiology 15, 1043–1051. http://dx.doi.org/10.1089/ast.2015.1373

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e51

Fluid Inclusions

Threshold size for fluid inclusion decrepitation Campione, M., Malaspina, N., Frezzotti, M.L., 2015. Journal of Geophysical Research: Solid Earth 120, 7396–7402. http://dx.doi.org/10.1002/2015JB012086 Thermodynamic modeling of binary CH4–CO2 fluid inclusions Mao, S., Shi, L., Peng, Q., Lü, M., 2016. Applied Geochemistry 66, 65–72. http://www.sciencedirect.com/science/article/pii/S0883292715300810 Geology

The effect of a thiol-containing organic molecule on molybdenum adsorption onto pyrite Freund, C., Wishard, A., Brenner, R., Sobel, M., Mizelle, J., Kim, A., Meyer, D.A., Morford, J.L., 2016. Geochimica et Cosmochimica Acta 174, 222–235. http://www.sciencedirect.com/science/article/pii/S0016703715006481 Talc-dominated seafloor deposits reveal a new class of hydrothermal system Hodgkinson, M.R.S., Webber, A.P., Roberts, S., Mills, R.A., Connelly, D.P., Murton, B.J., 2015. Nature Communications 6, Article number 10150. http://dx.doi.org/10.1038/ncomms10150 Olivine versus peridotite during serpentinization: Gas formation Huang, R.F., Sun, W.D., Ding, X., Liu, J.Z., Peng, S.B., 2015. Science China Earth Sciences 58, 2165–2174. http://dx.doi.org/10.1007/s11430-015-5222-3 Basin deconstruction–construction: Seeking thermal–tectonic consistency through the integration of geochemical thermal indicators and seismic fault mechanical stratigraphy – Example from Faras Field, North Western Desert, Egypt Pigott, J.D., Abouelresh, M.O., 2016. Journal of African Earth Sciences 114, 110–124. http://www.sciencedirect.com/science/article/pii/S1464343X1530100X Enigmatic spheres from the Upper Triassic Lockatong Formation, Newark Basin of eastern Pennsylvania: Evidence for microbial activity in marginal-lacustrine strandline deposits Simpson, E.L., Fillmore, D.L., Szajna, M.J., Bogner, E., Malenda, M.G., Livingston, K.M., Hartline, B., 2015. Palaeobiodiversity and Palaeoenvironments 95, 521–529. http://dx.doi.org/10.1007/s12549-015-0207-y Hydrates

Gas hydrate dissociation prolongs acidification of the Anthropocene oceans Boudreau, B.P., Luo, Y., Meysman, F.J.R., Middelburg, J.J., Dickens, G.R., 2015. Geophysical Research Letters 42, 9337–9344. http://dx.doi.org/10.1002/2015GL065779 Effect of NaCl on methane hydrate formation and dissociation in porous media Chong, Z.R., Chan, A.H.M., Babu, P., Yang, M., Linga, P., 2015. Journal of Natural Gas Science and Engineering 27, Part 1, 178–189. http://www.sciencedirect.com/science/article/pii/S1875510015301207 Permeability and porosity of hydrate-bearing sediments in the northern Gulf of Mexico Daigle, H., Cook, A., Malinverno, A., 2015. Marine and Petroleum Geology 68, Part A, 551–564. http://www.sciencedirect.com/science/article/pii/S0264817215301069 Influence of hydrate saturation on methane hydrate dissociation by depressurization in conjunction with warm water stimulation in the silica sand reservoir Feng, J.-C., Wang, Y., Li, X.-S., Zhang, Y., 2015. Energy & Fuels 29, 7875–7884. http://dx.doi.org/10.1021/acs.energyfuels.5b01970 Analysis of bubble plume distributions to evaluate methane hydrate decomposition on the continental slope Johnson, H.P., Miller, U.K., Salmi, M.S., Solomon, E.A., 2015. Geochemistry, Geophysics, Geosystems 16, 3825–3839. http://dx.doi.org/10.1002/2015GC005955

e52

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

Methane hydrate formation and dissociation in the presence of silica sand and bentonite clay Kumar Saw, V., Udayabhanu, G., Mandal, A., Laik, S., 2015. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 70, 1087–1099. http://dx.doi.org/10.2516/ogst/2013200 Study of the effect of the degree of overcooling during the formation of hydrates of a methane-propane gas mixture on the equilibrium conditions of their decomposition Medvedev, V.I., Gushchin, P.A., Yakushev, V.S., Semenov, A.P., 2015. Chemistry and Technology of Fuels and Oils 51, 470–479. http://dx.doi.org/10.1007/s10553-015-0627-4 Initiation of gas-hydrate pockmark in deep-water Nigeria: Geo-mechanical analysis and modelling Riboulot, V., Sultan, N., Imbert, P., Ker, S., 2016. Earth and Planetary Science Letters 434, 252–263. http://www.sciencedirect.com/science/article/pii/S0012821X15007517 Isotope Geochemistry

A comparison of freeze-drying and oven-drying preparation methods for bulk and compound-specific carbon stable isotope analyses: Examples using the benthic macroinvertebrates Stenopsyche marmorata and Epeorus latifolium Akamatsu, F., Suzuki, Y., Kato, Y., Yoshimizu, C., Tayasu, I., 2016. Rapid Communications in Mass Spectrometry 30, 137–142. http://dx.doi.org/10.1002/rcm.7421 Contribution of NAD 2D-NMR in liquid crystals to the determination of hydrogen isotope profile of methyl groups in miliacin Berdagué, P., Lesot, P., Jacob, J., Terwilliger, V.J., Le Milbeau, C., 2016. Geochimica et Cosmochimica Acta 173, 337–351. http://www.sciencedirect.com/science/article/pii/S0016703715005864 Applications of liquid chromatography-isotope ratio mass spectrometry in geochemistry and archaeological science Blyth, A.J., Smith, C.I., 2015., In: Grice, K. (Ed.), Principles and Practice of Analytical Techniques in Geosciences. The Royal Society of Chemistry, pp. 313–323. http://dx.doi.org/10.1039/9781782625025-00313 Patterns of sulfur isotope fractionation during microbial sulfate reduction Bradley, A.S., Leavitt, W.D., Schmidt, M., Knoll, A.H., Girguis, P.R., Johnston, D.T., 2016. Geobiology 14, 91–101. http://dx.doi.org/10.1111/gbi.12149 Clumped isotope geochemistry Chivas, A.R., Dux, F.W., 2015. In: Grice, K. (Ed.), Principles and Practice of Analytical Techniques in Geosciences. The Royal Society of Chemistry, pp. 35–48. http://dx.doi.org/10.1039/9781782625025-00035 Radioactive carbon in environmental science Dodson, J., 2015. In: Grice, K. (Ed.), Principles and Practice of Analytical Techniques in Geosciences. The Royal Society of Chemistry, pp. 271–284. http://dx.doi.org/10.1039/9781782625025-00271 Detecting long-term metabolic shifts using isotopomers: CO2-driven suppression of photorespiration in C3 plants over the 20th century Ehlers, I., Augusti, A., Betson, T.R., Nilsson, M.B., Marshall, J.D., Schleucher, J., 2015. Proceedings of the National Academy of Sciences 112, 15585–15590. http://www.pnas.org/content/112/51/15585.abstract Nitrogen isotopic composition of organic matter from a 168 year-old coral skeleton: Implications for coastal nutrient cycling in the Great Barrier Reef Lagoon Erler, D.V., Wang, X.T., Sigman, D.M., Scheffers, S.R., Martínez-García, A., Haug, G.H., 2016. Earth and Planetary Science Letters 434, 161–170. http://www.sciencedirect.com/science/article/pii/S0012821X1500727X Development and initial biogeochemical applications of compound-specific sulfur isotope analysis Greenwood, P.F., Amrani, A., Sessions, A., Raven, M.R., Holman, A., Dror, G., Grice, K., McCulloch, M.T., Adkins, J.F., 2015. In: Grice, K. (Ed.), Principles and Practice of Analytical Techniques in Geosciences. The Royal Society of Chemistry, pp. 285–312. http://dx.doi.org/10.1039/9781782625025-00285 High-precision analysis of multiple sulfur isotopes using NanoSIMS Hauri, E.H., Papineau, D., Wang, J., Hillion, F., 2016. Chemical Geology 420, 148–161. http://www.sciencedirect.com/science/article/pii/S0009254115301042

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e53

High-precision MC-ICP-MS measurements of d11B: Matrix effects in direct injection and spray chamber sample introduction systems, Holcomb, M., Rankenburg, K., McCulloch, M., 2015. In: Grice, K. (Ed.), Principles and Practice of Analytical Techniques in Geosciences. The Royal Society of Chemistry, pp. 251–270. http://dx.doi.org/10.1039/9781782625025-00251 Carbonate ‘‘clumped” isotope signatures in aragonitic scleractinian and calcitic gorgonian deep-sea corals Kimball, J., Tripati, R.E., Dunbar, R., 2015. Biogeosciences Discussions 12, 19115–19165. http://www.biogeosciences-discuss.net/12/19115/2015/ Sulfur isotope effects of dissimilatory sulfite reductase Leavitt, W.D., Bradley, A.S., Santos, A.A., Pereira, I.A.C., Johnston, D.T., 2015. Frontiers in Microbiology 6, 1392. doi: 10.3389/ fmicb.2015.01392. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01392/abstract A novel methylation derivatization method for d18O analysis of individual carbohydrates by gas chromatography/pyrolysis–isotope ratio mass spectrometry Lehmann, M.M., Fischer, M., Blees, J., Zech, M., Siegwolf, R.T.W., Saurer, M., 2016. Rapid Communications in Mass Spectrometry 30, 221–229. http://dx.doi.org/10.1002/rcm.7431 Stable isotope study of a new chondrichthyan fauna (Kimmeridgian, Porrentruy, Swiss Jura): An unusual freshwater-influenced isotopic composition for the hybodont shark Asteracanthus Leuzinger, L., Kocsis, L., Billon-Bruyat, J.P., Spezzaferri, S., Vennemann, T., 2015. Biogeosciences 12, 6945–6954. http://www.biogeosciences.net/12/6945/2015/ Carbon stable isotope analysis of methylmercury toxin in biological materials by gas chromatography isotope ratio mass spectrometry Masbou, J., Point, D., Guillou, G., Sonke, J.E., Lebreton, B., Richard, P., 2015. Analytical Chemistry 87, 11732–11738. http://dx.doi.org/10.1021/acs.analchem.5b02918 Determining the D47 acid fractionation in dolomites Murray, S.T., Arienzo, M.M., Swart, P.K., 2016. Geochimica et Cosmochimica Acta 174, 42–53. http://www.sciencedirect.com/science/article/pii/S0016703715006419 Optimisation of solid-state urea clathrate formation as a chemical separation method coupled to compound-specific stable carbon isotope analysis Novák, M., Kirchkeszner, C., Palya, D., Bodai, Z., Nyiri, Z., Magyar, N., Kovács, J., Rikker, T., Eke, Z., 2015. International Journal of Environmental Analytical Chemistry 95, 1471–1488. http://dx.doi.org/10.1080/03067319.2015.1101644 Chromium-isotope signatures in scleractinian corals from the Rocas Atoll, Tropical South Atlantic Pereira, N.S., Voegelin, A.R., Paulukat, C., Sial, A.N., Ferreira, V.P., Frei, R., 2016. Geobiology 14, 54–67. http://dx.doi.org/10.1111/gbi.12155 The effects of PorapakTM trap temperature on d18O, d13C, and D47 values in preparing samples for clumped isotope analysis Petersen, S.V., Winkelstern, I.Z., Lohmann, K.C., Meyer, K.W., 2016. Rapid Communications in Mass Spectrometry 30, 199–208. http://dx.doi.org/10.1002/rcm.7438 Ammonite habitat revealed via isotopic composition and comparisons with co-occurring benthic and planktonic organisms Sessa, J.A., Larina, E., Knoll, K., Garb, M., Cochran, J.K., Huber, B.T., MacLeod, K.G., Landman, N.H., 2015. Proceedings of the National Academy of Sciences 112, 15568–15573. http://www.pnas.org/content/early/2015/11/11/1507554112.abstract An experiment to assess the effects of diatom dissolution on oxygen isotope ratios Smith, A.C., Leng, M.J., Swann, G.E.A., Barker, P.A., Mackay, A.W., Ryves, D.B., Sloane, H.J., Chenery, S.R.N., Hems, M., 2016. Rapid Communications in Mass Spectrometry 30, 293–300. http://dx.doi.org/10.1002/rcm.7446 Application of radiogenic isotopes in geosciences: Overview and perspectives Tessalina, S., Jourdan, F., Nunes, L., Kennedy, A., Denyszyn, S., Puchtel, I., Touboul, M., Creaser, R., Boyet, M., Belousova, E., Trinquier, A., 2015 In: Grice, K. (Ed.), Principles and Practice of Analytical Techniques in Geosciences. The Royal Society of Chemistry, pp. 49–93. http://dx.doi.org/10.1039/9781782625025-00049

e54

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

Formation and stability of 14C-containing organic compounds in alkaline iron-water systems: Preliminary assessment based on a literature survey and thermodynamic modelling Wieland, E., Hummel, W., 2015. Mineralogical Magazine 79, 1275–1286. http://minmag.geoscienceworld.org/content/79/6/1275.abstract Vanadium isotope measurement by MC-ICP-MS Wu, F., Qi, Y., Yu, H., Tian, S., Hou, Z., Huang, F., 2016. Chemical Geology 421, 17–25. http://www.sciencedirect.com/science/article/pii/S0009254115301182 Investigation of the controlled factors influencing carbon isotope composition of foxtail and common millet on the Chinese Loess Plateau Yang, Q., Li, X.Q., 2015. Science China Earth Sciences 58, 2296–2308. http://dx.doi.org/10.1007/s11430-015-5181-8 Microbiology/Extremophiles – Microbial Ecology

Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the eastern Lau Spreading Center Anantharaman, K., Breier, J.A., Dick, G.J., 2016. ISME Journal 10, 225–239. http://dx.doi.org/10.1038/ismej.2015.81 Enrichment and isolation of crude oil degrading bacteria from some mussels collected from the Persian Gulf Bayat, Z., Hassanshahian, M., Hesni, M.A., 2015. Marine Pollution Bulletin 101, 85–91. http://www.sciencedirect.com/science/article/pii/S0025326X15301715 Groundwater isolation governs chemistry and microbial community structure along hydrologic flowpaths Ben Maamar, S., Aquilina, L., Quaiser, A., Vergnaud-Ayraud, V., Michon-Coudouel, S., Labasque, T., Roques, C., Abbott, B.W., Dufresne, A., 2015. Frontiers in Microbiology 6, 1457. doi: 10.3389/fmicb.2015.01457. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01457/abstract Biodiversity, community structure and function of biofilms in stream ecosystems Besemer, K., 2015. Research in Microbiology 166, 774–781. http://www.sciencedirect.com/science/article/pii/S0923250815000819 Arctic soil microbial diversity in a changing world Blaud, A., Lerch, T.Z., Phoenix, G.K., Osborn, A.M., 2015. Research in Microbiology 166, 796–813. http://www.sciencedirect.com/science/article/pii/S0923250815001291 Some like it high! Phylogenetic diversity of high-elevation cyanobacterial community from biological soil crusts of western Himalaya ˇ eháková, K., Dolezˇal, J., 2016. Microbial Ecology 71, 113–123. Cˇapková, K., Hauer, T., R http://dx.doi.org/10.1007/s00248-015-0694-4 Stronger warming effects on microbial abundances in colder regions Chen, J., Luo, Y., Xia, J., Jiang, L., Zhou, X., Lu, M., Liang, J., Shi, Z., Shelton, S., Cao, J., 2015. Scientific Reports 5, Article number 18032. http://dx.doi.org/10.1038/srep18032 Rapid reactivation of cyanobacterial photosynthesis and migration upon rehydration of desiccated marine microbial mats Chennu, A., Grinham, A., Polerecky, L., De Beer, D., Al-Najjar, M.A.A., 2015. Frontiers in Microbiology 6, 1472. doi: 10.3389/fmicb.2015. 01472. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01472/abstract Continental smokers couple mantle degassing and distinctive microbiology within continents Crossey, L.J., Karlstrom, K.E., Schmandt, B., Crow, R.R., Colman, D.R., Cron, B., Takacs-Vesbach, C.D., Dahm, C.N., Northup, D.E., Hilton, D.R., Ricketts, J.W., Lowry, A.R., 2016. Earth and Planetary Science Letters 435, 22–30. http://www.sciencedirect.com/science/article/pii/S0012821X15007438 Capturing prokaryotic dark matter genomes Gasc, C., Ribière, C., Parisot, N., Beugnot, R., Defois, C., Petit-Biderre, C., Boucher, D., Peyretaillade, E., Peyret, P., 2015. Research in Microbiology 166, 814–830. http://www.sciencedirect.com/science/article/pii/S0923250815000984

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e55

Ubiquitous presence and novel diversity of anaerobic alkane degraders in cold marine sediments Gittel, A., Donhauser, J., Røy, H., Girguis, P.R., Jørgensen, B.B., Kjeldsen, K.U., 2015. Frontiers in Microbiology 6, 1414. doi: 10.3389/ fmicb.2015.01414. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01414/abstract Diverse bacterial groups contribute to the alkane degradation potential of chronically polluted subantarctic coastal sediments Guibert, L.M., Loviso, C.L., Borglin, S., Jansson, J.K., Dionisi, H.M., Lozada, M., 2016. Microbial Ecology 71, 100–112. http://dx.doi.org/10.1007/s00248-015-0698-0 Confluentimicrobium naphthalenivorans sp. nov., a naphthalene-degrading bacterium isolated from sea-tidal-flat sediment, and emended description of the genus Confluentimicrobium Park et al. 2015 Jeong, H.I., Jin, H.M., Jeon, C.O., 2015. International Journal of Systematic and Evolutionary Microbiology 65, 4191–4195. http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.000561 Alteromonas naphthalenivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from tidal-flat sediment Jin, H.M., Kim, K.H., Jeon, C.O., 2015. International Journal of Systematic and Evolutionary Microbiology 65, 4208–4214. http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.000563 Archaeal and bacterial communities across a chronosequence of drained lake basins in Arctic Alaska Kao-Kniffin, J., Woodcroft, B.J., Carver, S.M., Bockheim, J.G., Handelsman, J., Tyson, G.W., Hinkel, K.M., Mueller, C.W., 2015. Scientific Reports 5, Article number 18165. http://dx.doi.org/10.1038/srep18165 Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker Knief, C., 2015. Frontiers in Microbiology 6, 1346. doi: 10.3389/fmicb.2015.01346. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01346/abstract Microbiology: A division of labour combined Kuypers, M.M.M., 2015. Nature 528, 487–488. http://dx.doi.org/10.1038/528487a Shifts in bacterial community composition associated with increased carbon cycling in a mosaic of phytoplankton blooms Landa, M., Blain, S., Christaki, U., Monchy, S., Obernosterer, I., 2016. ISME Journal 10, 39–50. http://dx.doi.org/10.1038/ismej.2015.105 Ecological speciation in bacteria: Reverse ecology approaches reveal the adaptive part of bacterial cladogenesis Lassalle, F., Muller, D., Nesme, X., 2015. Research in Microbiology 166, 729–741. http://www.sciencedirect.com/science/article/pii/S0923250815001187 Microbial communities on seafloor basalts at Dorado Outcrop reflect level of alteration and highlight global lithic clades Lee, M.D., Walworth, N.G., Sylvan, J.B., Edwards, K.J., Orcutt, B.N., 2015. Frontiers in Microbiology 6, 1470. doi: 10.3389/fmicb.2015.01470. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01470/abstract The impact of temperature on microbial diversity and AOA activity in the Tengchong Geothermal Field, China Li, H., Yang, Q., Li, J., Gao, H., Li, P., Zhou, H., 2015. Scientific Reports 5, Article number 17056. http://dx.doi.org/10.1038/srep17056 Micro- and mesozooplankton community response to increasing CO2 levels in the Baltic Sea: Insights from a large-scale mesocosm experiment Lischka, S., Bach, L.T., Schulz, K.G., Riebesell, U., 2015. Biogeosciences Discussions 12, 20025–20070. http://www.biogeosciences-discuss.net/12/20025/2015/ Rarity in aquatic microbes: Placing protists on the map Logares, R., Mangot, J.-F., Massana, R., 2015. Research in Microbiology 166, 831–841. http://www.sciencedirect.com/science/article/pii/S0923250815001655 Hidden biosphere in an oxygen-deficient Atlantic open-ocean eddy: Future implications of ocean deoxygenation on primary production in the eastern tropical North Atlantic Löscher, C.R., Fischer, M.A., Neulinger, S.C., Fiedler, B., Philippi, M., Schütte, F., Singh, A., Hauss, H., Karstensen, J., Körtzinger, A., Künzel, S., Schmitz, R.A., 2015. Biogeosciences 12, 7467–7482. http://www.biogeosciences.net/12/7467/2015/

e56

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

An abyssal mobilome: Viruses, plasmids and vesicles from deep-sea hydrothermal vents Lossouarn, J., Dupont, S., Gorlas, A., Mercier, C., Bienvenu, N., Marguet, E., Forterre, P., Geslin, C., 2015. Research in Microbiology 166, 742–752. http://www.sciencedirect.com/science/article/pii/S0923250815000637 Snow and ice ecosystems: Not so extreme Maccario, L., Sanguino, L., Vogel, T.M., Larose, C., 2015. Research in Microbiology 166, 782–795. http://www.sciencedirect.com/science/article/pii/S0923250815001576 Carbon-fixation rates and associated microbial communities residing in arid and ephemerally wet Antarctic Dry Valley soils Niederberger, T., Sohm, J.A., Gunderson, T., Tirindelli, J., Capone, D.G., Carpenter, E.J., Cary, C.S., 2015. Frontiers in Microbiology 6, 1347. doi: 10.3389/fmicb.2015.01347. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01347/abstract Mycobiota of underground habitats: Case study of Harmanecká Cave in Slovakia ˇ ovská, Z., Tancˇinová, D., 2016. Microbial Ecology 71, 87–99. Ogórek, R., Višn http://dx.doi.org/10.1007/s00248-015-0686-4 Cellular maintenance processes that potentially underpin the survival of subseafloor fungi over geological timescales Orsi, W.D., Richards, T.A., Santoro, A.E., 2015. Estuarine, Coastal and Shelf Science 164, A1–A9. http://www.sciencedirect.com/science/article/pii/S0272771415001390 Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota Oton, E.V., Quince, C., Nicol, G.W., Prosser, J.I., Gubry-Rangin, C., 2016. ISME Journal 10, 85–96. http://dx.doi.org/10.1038/ismej.2015.101 Exploration of microbial diversity and community structure of Lonar Lake: The only hypersaline meteorite crater lake within basalt rock Paul, D., Kumbhare, S., Mhatre, S.M., Chowdhury, S.P., Shetty, S.A., Marrthe, N.P., Bhute, S., Shouche, Y.S., 2015. Frontiers in Microbiology 6, 1553. doi: 10.3389/fmicb.2015.01553. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01553/abstract Succession within the prokaryotic communities during the VAHINE mesocosms experiment in the New Caledonia lagoon Pfreundt, U., Van Wambeke, F., Bonnet, S., Hess, W.R., 2015. Biogeosciences Discussions 12, 20179–20222. http://www.biogeosciences-discuss.net/12/20179/2015/ Bacterial diversity in microbial mats and sediments from the Atacama Desert Rasuk, M.C., Fernández, A.B., Kurth, D., Contreras, M., Novoa, F., Poiré, D., Farías, M.E., 2016. Microbial Ecology 71, 44–56. http://dx.doi.org/10.1007/s00248-015-0649-9 Actinobacterial diversity in volcanic caves and associated geomicrobiological interactions Riquelme, C., Marshall Hathaway, J.J., Enes Dapkevicius, M.D.L., Miller, A.Z., Kooser, A., Northup, D.E., Jurdo, V., Fernandaz, O., Saiz-Jimenez, C., Cheeptham, N., 2015. Frontiers in Microbiology 6, 1342. doi: 10.3389/fmicb.2015.01342. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01342/abstract Bacterioplankton of the Kara Sea shelf Romanova, N.D., Sazhin, A.F., 2015. Oceanology 55, 858–862. http://dx.doi.org/10.1134/S000143701506017X Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics Ruvindy, R., White III, R.A., Neilan, B.A., Burns, B.P., 2016. ISME Journal 10, 183–196. http://dx.doi.org/10.1038/ismej.2015.87 The activated sludge ecosystem contains a core community of abundant organisms Saunders, A.M., Albertsen, M., Vollertsen, J., Nielsen, P.H., 2016. ISME Journal 10, 11–20. http://dx.doi.org/10.1038/ismej.2015.117 Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus and Geodermatophilus obscurus proteogenomes Sghaier, H., Hezbri, K., Ghodhbane-Gtari, F., Pujic, P., Sen, A., Daffonchio, D., Boudabous, A., Tisa, L.S., Klenk, H.-P., Armengaud, J., Normand, P., Gtari, M., 2016. ISME Journal 10, 21–29. http://dx.doi.org/10.1038/ismej.2015.108

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e57

Similar microbial communities found on two distant seafloor basalts Singer, E., Chong, L., Heidelberg, J., Edwards, K., 2015. Frontiers in Microbiology 6, 1409. doi: 10.3389/fmicb.2015.01409. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01409/abstract Genomic reconstruction of an uncultured hydrothermal vent gammaproteobacterial methanotroph (family Methylothermaceae) indicates multiple adaptations to oxygen limitation Skennerton, C.T., Ward, L.M., Michel, A., Metcalfe, K., Valiente, C., Mullin, S., Chan, K.Y., Gradinaru, V., Orphan, V.J., 2015. Frontiers in Microbiology 6, 1425. doi: 10.3389/fmicb.2015.01425. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01425/abstract Elemental sulfur and acetate can support life of a novel strictly anaerobic haloarchaeon Sorokin, D.Y., Kublanov, I.V., Gavrilov, S.N., Rojo, D., Roman, P., Golyshin, P.N., Slepak, V.Z., Smedile, F., Ferrer, M., Messina, E., La Cono, V., Yakimov, M.M., 2016. ISME Journal 10, 240–252. http://dx.doi.org/10.1038/ismej.2015.79 High diversity of anaerobic alkane-degrading microbial communities in marine seep sediments based on (1-methylalkyl)succinate synthase genes Stagars, M.H., Ruff, S.E., Amann, R., Knittel, K., 2015. Frontiers in Microbiology 6, 1511. doi: 10.3389/fmicb.2015.01511. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01511/abstract Novel barite chimneys at the Lokis Castle Vent Field shed light on key factors shaping microbial communities and functions in hydrothermal systems Steen, I.H., Dahle, H., Stokke, R., Roalkvam, I., Daae, F.-L., Rapp, H.-T., Pedersen, R.-B., Thorseth, I.H., 2015. Frontiers in Microbiology 6, 1510. doi: 10.3389/fmicb.2015.01510. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01510/abstract Microbes are trophic analogs of animals Steffan, S.A., Chikaraishi, Y., Currie, C.R., Horn, H., Gaines-Day, H.R., Pauli, J.N., Zalapa, J.E., Ohkouchi, N., 2015. Proceedings of the National Academy of Sciences 112, 15119–15124. http://www.pnas.org/content/112/49/15119.abstract Hydroxy fatty acids in fresh snow samples from northern Japan: Long-range atmospheric transport of Gram-negative bacteria by Asian winter monsoon Tyagi, P., Yamamoto, S., Kawamura, K., 2015. Biogeosciences 12, 7071–7080. http://www.biogeosciences.net/12/7071/2015/ Microbiome analysis across a natural copper gradient at a proposed northern Canadian mine site Van Rossum, T., Pylatuk, M., Osachoff, H., Griffiths, E., Lo, R., Quach, M., Lower, N., Palmer, R., Brinkman, F.S.L., Kennedy, C.J., 2015. Frontiers in Environmental Science 3, 84. doi: 10.3389/fenvs.2015.00084. http://journal.frontiersin.org/article/10.3389/fenvs.2015.00084/abstract Expansion of cultured bacterial diversity by large-scale dilution-to-extinction culturing from a single seawater sample Yang, S.-J., Kang, I., Cho, J.-C., 2016. Microbial Ecology 71, 29–43. http://dx.doi.org/10.1007/s00248-015-0695-3 Spatio-temporal variation of sediment methanotrophic microorganisms in a large eutrophic lake Yang, Y., Zhao, Q., Cui, Y., Wang, Y., Xie, S., Liu, Y., 2016. Microbial Ecology 71, 9–17. http://dx.doi.org/10.1007/s00248-015-0667-7 Bacterial diversity in submarine groundwater along the coasts of the Yellow Sea Ye, Q., Liu, J., Du, J., Zhang, J., 2015. Frontiers in Microbiology 6, 1519. doi: 10.3389/fmicb.2015.01519. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01519/abstract

e58

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

Paleoclimatology/Palaeoceanography

Stable (d13C and d15N) isotopes and magnetic susceptibility record of late Holocene climate change from a lake profile of the northeast Himalaya Agrawal, S., Srivastava, P., Sonam, Meena, N.K., Rai, S., Bhushan, R., Misra, D.K., Gupta, A.K., 2015. Journal of the Geological Society of India 86, 696–705. http://dx.doi.org/10.1007/s12594-015-0362-9 Early Cenomanian ‘‘hot greenhouse” revealed by oxygen isotope record of exceptionally well-preserved foraminifera from Tanzania Ando, A., Huber, B.T., MacLeod, K.G., Watkins, D.K., 2015. Paleoceanography 30, 1556–1572. http://dx.doi.org/10.1002/2015PA002854 Glacier response to North Atlantic climate variability during the Holocene Balascio, N.L., D’Andrea, W.J., Bradley, R.S., 2015. Climate of the Past 11, 1587–1598. http://www.clim-past.net/11/1587/2015/ Was millennial scale climate change during the Last Glacial triggered by explosive volcanism? Baldini, J.U.L., Brown, R.J., McElwaine, J.N., 2015. Scientific Reports 5, Article number 17442. http://dx.doi.org/10.1038/srep17442 Atlantic multi-decadal oscillation covaries with Agulhas leakage Biastoch, A., Durgadoo, J.V., Morrison, A.K., van Sebille, E., Weijer, W., Griffies, S.M., 2015. Nature Communications 6, Article number 10082. http://dx.doi.org/10.1038/ncomms10082 Holocene North Atlantic Overturning in an atmosphere-ocean-sea ice model compared to proxy-based reconstructions Blaschek, M., Renssen, H., Kissel, C., Thornalley, D., 2015. Paleoceanography 30, 1503–1524. http://dx.doi.org/10.1002/2015PA002828 Mg/Ca in fossil oyster shells as palaeotemperature proxy, an example from the Palaeogene of Central Asia Bougeois, L., de Rafélis, M., Reichart, G.-J., de Nooijer, L.J., Dupont-Nivet, G., 2016. Palaeogeography, Palaeoclimatology, Palaeoecology 441, Part 4, 611–626. http://www.sciencedirect.com/science/article/pii/S0031018215005623 Links between eastern equatorial Pacific stratification and atmospheric CO2 rise during the last deglaciation Bova, S.C., Herbert, T., Rosenthal, Y., Kalansky, J., Altabet, M., Chazen, C., Mojarro, A., Zech, J., 2015. Paleoceanography 30, 1407–1424. http://dx.doi.org/10.1002/2015PA002816 Central Mediterranean Mid-Pleistocene paleoclimatic variability and its association with global climate Capotondi, L., Girone, A., Lirer, F., Bergami, C., Verducci, M., Vallefuoco, M., Afferri, A., Ferraro, L., Pelosi, N., De Lange, G.J., 2016. Palaeogeography, Palaeoclimatology, Palaeoecology 442, 72–83. http://www.sciencedirect.com/science/article/pii/S0031018215006653 Characterization of micropyrite populations in low-grade metamorphic slate: A study using high-resolution X-ray tomography Cárdenes, V., Merinero, R., De Boever, W., Rubio-Ordóñez, Á., Dewanckele, J., Cnudde, J.-P., Boone, M., Van Hoorebeke, L., Cnudde, V., 2016. Palaeogeography, Palaeoclimatology, Palaeoecology 441, Part 4, 924–935. http://www.sciencedirect.com/science/article/pii/S0031018215006069 Mo marine geochemistry and reconstruction of ancient ocean redox states Cheng, M., Li, C., Zhou, L., Xie, S., 2015. Science China Earth Sciences 58, 2123–2133. http://dx.doi.org/10.1007/s11430-015-5177-4 Anomalous SST warming during MIS 13 in the Gulf of Lions (northwestern Mediterranean Sea) Cortina, A., Grimalt, J.O., Martrat, B., Rigual-Hernández, A., Sierro, F.J., Flores, J.A., 2016. Organic Geochemistry 92, 16–23. http://www.sciencedirect.com/science/article/pii/S0146638015002351 Constraining early to middle Eocene climate evolution of the southwest Pacific and Southern Ocean Dallanave, E., Bachtadse, V., Crouch, E.M., Tauxe, L., Shepherd, C.L., Morgans, H.E.G., Hollis, C.J., Hines, B.R., Sugisaki, S., 2016. Earth and Planetary Science Letters 433, 380–392. http://www.sciencedirect.com/science/article/pii/S0012821X15007086

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e59

Eocene benthic foraminiferal assemblages from central Anatolia (Turkey): Biostratigraphy, stable isotope data, paleoenvironmental and paleontological interpretations Dinçer, F., 2016. Journal of African Earth Sciences 114, 143–157. http://www.sciencedirect.com/science/article/pii/S1464343X15301187 Climate-vegetation modelling and fossil plant data suggest low atmospheric CO2 in the late Miocene Forrest, M., Eronen, J.T., Utescher, T., Knorr, G., Stepanek, C., Lohmann, G., Hickler, T., 2015. Climate of the Past 11, 1701–1732. http://www.clim-past.net/11/1701/2015/ Development of a regional glycerol dialkyl glycerol tetraether (GDGT)–temperature calibration for Antarctic and sub-Antarctic lakes Foster, L.C., Pearson, E.J., Juggins, S., Hodgson, D.A., Saunders, K.M., Verleyen, E., Roberts, S.J., 2016. Earth and Planetary Science Letters 433, 370–379. http://www.sciencedirect.com/science/article/pii/S0012821X15007220 Ocean warming, not acidification, controlled coccolithophore response during past greenhouse climate change Gibbs, S.J., Bown, P.R., Ridgwell, A., Young, J.R., Poulton, A.J., O’Dea, S.A., 2016. Geology 44, 59–62. http://geology.gsapubs.org/content/44/1/59.abstract The relative contribution of orbital forcing and greenhouse gases to the North American deglaciation Gregoire, L.J., Valdes, P.J., Payne, A.J., 2015. Geophysical Research Letters 42, 9970–9979. http://dx.doi.org/10.1002/2015GL066005 Comparison of eastern tropical Pacific TEX86 and Globigerinoides ruber Mg/Ca derived sea surface temperatures: Insights from the Holocene and Last Glacial Maximum Hertzberg, J.E., Schmidt, M.W., Bianchi, T.S., Smith, R.K., Shields, M.R., Marcantonio, F., 2016. Earth and Planetary Science Letters 434, 320–332. http://www.sciencedirect.com/science/article/pii/S0012821X15007542 Did high Neo-Tethys subduction rates contribute to early Cenozoic warming? Hoareau, G., Bomou, B., van Hinsbergen, D.J.J., Carry, N., Marquer, D., Donnadieu, Y., Le Hir, G., Vrielynck, B., Walter-Simonnet, A.V., 2015. Climate of the Past 11, 1751–1767. http://www.clim-past.net/11/1751/2015/ Fluctuations of the oxygen minimum zone at the end of Oceanic Anoxic Event 2 in the Gulf of Mexico and the response of ammonites Ifrim, C., 2015. Swiss Journal of Palaeontology 134, 217–225. http://dx.doi.org/10.1007/s13358-015-0089-7 Water isotope systematics: Improving our palaeoclimate interpretations Jones, M.D., Dee, S., Anderson, L., Baker, A., Bowen, G., Noone, D.C., 2016. Quaternary Science Reviews 131, Part B, 243–249. http://www.sciencedirect.com/science/article/pii/S0277379115003406 Development of a novel empirical framework for interpreting geological carbon isotope excursions, with implications for the rate of carbon injection across the PETM Kirtland Turner, S., Ridgwell, A., 2016. Earth and Planetary Science Letters 435, 1–13. http://www.sciencedirect.com/science/article/pii/S0012821X15007311 On the state dependency of the equilibrium climate sensitivity during the last 5 million years Köhler, P., de Boer, B., von der Heydt, A.S., Stap, L.B., van de Wal, R.S.W., 2015. Climate of the Past 11, 1801–1823. http://www.clim-past.net/11/1801/2015/ Jurassic climate mode governed by ocean gateway Korte, C., Hesselbo, S.P., Ullmann, C.V., Dietl, G., Ruhl, M., Schweigert, G., Thibault, N., 2015. Nature Communications 6, Article number 10015. http://dx.doi.org/10.1038/ncomms10015 Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry Lear, C.H., Coxall, H.K., Foster, G.L., Lunt, D.J., Mawbey, E.M., Rosenthal, Y., Sosdian, S.M., Thomas, E., Wilson, P.A., 2015. Paleoceanography 30, 1437–1454. http://dx.doi.org/10.1002/2015PA002833 Late Jurassic biogeochemical microenvironments associated with microbialite-coated unionids (Bivalvia), Asturias (N Spain) Lozano, R.P., Delvene, G., Piñuela, L., García-Ramos, J.C., 2016. Palaeogeography, Palaeoclimatology, Palaeoecology 443, 80–97. http://www.sciencedirect.com/science/article/pii/S0031018215006872

e60

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

Palaeogeographic controls on climate and proxy interpretation Lunt, D.J., Farnsworth, A., Loptson, C., Foster, G.L., Markwick, P., O’Brien, C.L., Pancost, R.D., Robinson, S.A., Wrobel, N., 2015. Climate of the Past Discussions 11, 5683–5725. http://www.clim-past-discuss.net/11/5683/2015/ Palaeoclimatic and site-specific conditions in the early Permian fossil forest of Chemnitz—Sedimentological, geochemical and palaeobotanical evidence Luthardt, L., Rößler, R., Schneider, J.W., 2016. Palaeogeography, Palaeoclimatology, Palaeoecology 441, Part 4, 627–652. http://www.sciencedirect.com/science/article/pii/S0031018215005775 Continuous 1.3-million-year record of East African hydroclimate, and implications for patterns of evolution and biodiversity Lyons, R.P., Scholz, C.A., Cohen, A.S., King, J.W., Brown, E.T., Ivory, S.J., Johnson, T.C., Deino, A.L., Reinthal, P.N., McGlue, M.M., Blome, M.W., 2015. Proceedings of the National Academy of Sciences 112, 15568–15573. http://www.pnas.org/content/112/51/15568.abstract Was atmospheric CO2 capped at 1000 ppm over the past 300 million years? McElwain, J.C., Montañez, I., White, J.D., Wilson, J.P., Yiotis, C., 2016. Palaeogeography, Palaeoclimatology, Palaeoecology 441, Part 4, 653–658. http://www.sciencedirect.com/science/article/pii/S0031018215005799 Palaeoenvironmental changes in the northwestern Tethys during the Late Campanian Radotruncana calcarata Zone: Implications from stable isotopes and geochemistry Neuhuber, S., Gier, S., Hohenegger, J., Wolfgring, E., Spötl, C., Strauss, P., Wagreich, M., 2016. Chemical Geology 420, 280–296. http://www.sciencedirect.com/science/article/pii/S0009254115301145 Climate variability and long-term expansion of peat lands in Arctic Norway during the late Pliocene (ODP Site 642, Norwegian Sea) Panitz, S., Salzmann, U., Risebrobakken, B., De Schepper, S., Pound, M.J., 2015. Climate of the Past Discussions 11, 5755–5798. http://www.clim-past-discuss.net/11/5755/2015/ Tropical North Atlantic subsurface warming events as a fingerprint for AMOC variability during Marine Isotope Stage 3 Parker, A.O., Schmidt, M.W., Chang, P., 2015. Paleoceanography 30, 1425–1436. http://dx.doi.org/10.1002/2015PA002832 Expansion and diversification of high-latitude radiolarian assemblages in the late Eocene linked to a cooling event in the southwest Pacific Pascher, K.M., Hollis, C.J., Bohaty, S.M., Cortese, G., McKay, R.M., Seebeck, H., Suzuki, N., Chiba, K., 2015. Climate of the Past 11, 1599–1620. http://www.clim-past.net/11/1599/2015/ The biotic crisis across the Oceanic Anoxic Event 2: Palaeoenvironmental inferences based on foraminifera and geochemical proxies from the South Iberian Palaeomargin Reolid, M., Sánchez-Quiñónez, C.A., Alegret, L., Molina, E., 2016. Cretaceous Research 60, 1–27. http://www.sciencedirect.com/science/article/pii/S0195667115300902 Cretaceous oceanic anoxic events (OAEs) recorded in the northern margin of Africa as possible oil and gas shale potential in Tunisia: An overview Soua, M., 2016. International Geology Review 58, 277–320. http://dx.doi.org/10.1080/00206814.2015.1065516 Carbon isotope ratios suggest no additional methane from boreal wetlands during the rapid Greenland Interstadial 21.2 Sperlich, P., Schaefer, H., Mikaloff Fletcher, S.E., Guillevic, M., Lassey, K., Sapart, C.J., Röckmann, T., Blunier, T., 2015. Global Biogeochemical Cycles 29, 1962–1976. http://dx.doi.org/10.1002/2014GB005007 New conodont d18O records of Silurian climate change: Implications for environmental and biological events Trotter, J.A., Williams, I.S., Barnes, C.R., Männik, P., Simpson, A., 2016. Palaeogeography, Palaeoclimatology, Palaeoecology 443, 34–48. http://www.sciencedirect.com/science/article/pii/S0031018215006677 Carbon isotope analyses reveal relatively high abundance of C4 grasses during early–middle Miocene in southwestern Europe Urban, M.A., Nelson, D.M., Jiménez-Moreno, G., Hu, F.S., 2016. Palaeogeography, Palaeoclimatology, Palaeoecology 443, 10–17. http://www.sciencedirect.com/science/article/pii/S0031018215006689 Deep circulation changes in the South Atlantic since the Last Glacial Maximum from Nd isotope and multi-proxy records Wei, R., Abouchami, W., Zahn, R., Masque, P., 2016. Earth and Planetary Science Letters 434, 18–29. http://www.sciencedirect.com/science/article/pii/S0012821X15006913

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e61

Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene Yang, S., Ding, Z., Li, Y., Wang, X., Jiang, W., Huang, X., 2015. Proceedings of the National Academy of Sciences 112, 13178–13183. http://www.pnas.org/content/early/2015/10/06/1504688112.abstract Calcareous nannofossils and paleoenvironments of the Paleocene–Eocene thermal maximum (PETM) interval in central Egypt Youssef, M., 2016. Journal of African Earth Sciences 114, 203–219. http://www.sciencedirect.com/science/article/pii/S1464343X15301151 A new paleoclimate classification for deep time Zhang, L., Wang, C., Li, X., Cao, K., Song, Y., Hu, B., Lu, D., Wang, Q., Du, X., Cao, S., 2016. Palaeogeography, Palaeoclimatology, Palaeoecology 443, 98–106. http://www.sciencedirect.com/science/article/pii/S0031018215007117 Excluding the di-unsaturated alkenone in the UK 37 index strengthens temperature correlation for the common lacustrine and brackishwater haptophytes Zheng, Y., Huang, Y., Andersen, R.A., Amaral-Zettler, L.A., 2016. Geochimica et Cosmochimica Acta 175, 36–46. http://www.sciencedirect.com/science/article/pii/S0016703715006638 Paleoecology of Extinction Events

Incomplete Bayesian model rejects contradictory radiocarbon data for being contradictory Boslough, M., Nicoll, K., Daulton, T.L., Scott, A.C., Claeys, P., Gill, J.L., Marlon, J.R., Bartlein, P.J., 2015. Proceedings of the National Academy of Sciences 112, E6722. http://www.pnas.org/content/112/49/E6722.short Geochemical characterization of the Permian–Triassic transition at outcrop, central Saudi Arabia Eltom, H.A., Abdullatif, O.M., Babalola, L.O., Bashari, M.A., Yassin, M., Osman, M.S., Abdulraziq, A.M., 2016. Journal of Petroleum Geology 39, 95–113. http://dx.doi.org/10.1111/jpg.12630 Problematic dating of claimed Younger Dryas boundary impact proxies Holliday, V.T., 2015. Proceedings of the National Academy of Sciences 112, E6721. http://www.pnas.org/content/112/49/E6721.short Rarity in mass extinctions and the future of ecosystems Hull, P.M., Darroch, S.A.F., Erwin, D.H., 2015. Nature 528, 345–351. http://dx.doi.org/10.1038/nature16160 Reply to Holliday and Boslough et al.: Synchroneity of widespread Bayesian-modeled ages supports Younger Dryas impact hypothesis Kennett, J.P., Kennett, D.J., Culleton, B.J., Aura Tortosa, J.E., Bunch, T.E., Erlandson, J.M., Johnson, J.R., Jordá Pardo, J.F., LeCompte, M.A., Mahaney, W.C., Tankersley, K.B., Wittke, J.H., Wolbach, W.S., West, A., 2015. Proceedings of the National Academy of Sciences 112, E6723–E6724. http://www.pnas.org/content/112/49/E6723.short Gourds and squashes (Cucurbita spp.) adapted to megafaunal extinction and ecological anachronism through domestication Kistler, L., Newsom, L.A., Ryan, T.M., Clarke, A.C., Smith, B.D., Perry, G.H., 2015. Proceedings of the National Academy of Sciences 112, 15107–15112. http://www.pnas.org/content/112/49/15107.abstract Phylogenetic clustering of origination and extinction across the Late Ordovician mass extinction Krug, A.Z., Patzkowsky, M.E., 2015. PLoS ONE 10, Article number e0144354. http://dx.doi.org/10.1371%2Fjournal.pone.0144354 Madagascar’s climate at the K/P boundary and its impact on the island’s biotic suite Ohba, M., Samonds, K.E., LaFleur, M., Ali, J.R., Godfrey, L.R., 2016. Palaeogeography, Palaeoclimatology, Palaeoecology 441, Part 4, 688–695. http://www.sciencedirect.com/science/article/pii/S0031018215005908 Physils and organic matter-base palaeoenvironmental records of the K/Pg boundary transition from the late Cretaceous-early Palaeogene succession of the Um-Sohryngkew River section of Meghalaya, India Pal, S., Shrivastava, J.P., Mukhopadhyay, S.K., 2015. Chemie der Erde – Geochemistry 75, 445–463. http://www.sciencedirect.com/science/article/pii/S000928191530009X

e62

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

Microbialites in the shallow-water marine environments of the Holy Cross Mountains (Poland) in the aftermath of the Frasnian–Famennian biotic crisis Rakocin´ski, M., Racki, G., 2016. Global and Planetary Change 136, 30–40. http://www.sciencedirect.com/science/article/pii/S0921818115301387 Late Ordovician glaciation initiated by early land plant evolution and punctuated by greenhouse mass extinctions Retallack, G.J., 2015. The Journal of Geology 123, 509–538. http://www.jstor.org/stable/10.1086/683663 Sedimentary PGE signatures in the Late Triassic ejecta deposits from Japan: Implications for the identification of impactor Sato, H., Shirai, N., Ebihara, M., Onoue, T., Kiyokawa, S., 2016. Palaeogeography, Palaeoclimatology, Palaeoecology 442, 36–47. http://www.sciencedirect.com/science/article/pii/S0031018215006719 Selective environmental stress from sulphur emitted by continental flood basalt eruptions Schmidt, A., Skeffington, R.A., Thordarson, T., Self, S., Forster, P.M., Rap, A., Ridgwell, A., Fowler, D., Wilson, M., Mann, G.W., Wignall, P.B., Carslaw, K.S., 2016. Nature Geoscience 9, 77–82. http://dx.doi.org/10.1038/ngeo2588 Petroleum Geochemistry

Formation of magnetic minerals at hydrocarbon-generation conditions Abubakar, R., Muxworthy, A.R., Sephton, M.A., Southern, P., Watson, J.S., Fraser, A.J., Almeida, T.P., 2015. Marine and Petroleum Geology 68, Part A, 509–519. http://www.sciencedirect.com/science/article/pii/S0264817215301045 Geochemical investigation, oil–oil and oil–source rock correlation in the Dezful Embayment, Marun oilfield, Zagros, Iran Asadi Mehmandosti, E., Adabi, M.H., Bowden, S.A., Alizadeh, B., 2015. Marine and Petroleum Geology 68, Part A, 648–663. http://www.sciencedirect.com/science/article/pii/S0264817215000422 Synthesis of heavy hydrocarbons at the core-mantle boundary Belonoshko, A.B., Lukinov, T., Rosengren, A., Bryk, T., Litasov, K.D., 2015. Scientific Reports 5, Article number: 18382. http://dx.doi.org/10.1038/srep18382 Changes in concentration and distribution of biomarkers in biodegraded oils from Dongying Depression, China Chen, Z., Wang, T.G., Yan, D., 2015. Applied Biochemistry and Biotechnology 177, 713–731. http://dx.doi.org/10.1007/s12010-015-1775-z Integration of biodegradation and migration of hydrocarbons in a 2D petroleum systems model: Application to the Potiguar Basin, NE Brazil Ducros, M., Carpentier, B., Wolf, S., Cacas, M.C., 2016. Journal of Petroleum Geology 39, 61–78. http://dx.doi.org/10.1111/jpg.12628 Dibenzothiophenes and benzo[b]naphthothiophenes: Molecular markers for tracing oil filling pathways in the carbonate reservoir of the Tarim Basin, NW China Fang, R., Wang, T.G., Li, M., Xiao, Z., Zhang, B., Huang, S., Shi, S., Wang, D., Deng, W., 2016. Organic Geochemistry 91, 68–80. http://www.sciencedirect.com/science/article/pii/S0146638015002004 Three-dimensional hydrocarbon migration and accumulation modeling based on finite volume method Guo, Q., Chen, N., Xie, H., Wu, X., Liu, J., Zhao, X., Gao, R., Hu, J., 2015. Petroleum Exploration and Development 42, 893–903. http://www.sciencedirect.com/science/article/pii/S1876380415300884 Characteristics and origin of tuff-type tight oil in Jimusaer sag, Junggar Basin, NW China Jiang, Y., Liu, Y., Yang, Z., Nan, Y., Wang, R., Zhou, P., Yang, Y., Kou, J., Zhou, N., 2015. Petroleum Exploration and Development 42, 810–818. http://www.sciencedirect.com/science/article/pii/S187638041530077X Marine oil source of the Yingmaili oilfield in the Tarim Basin Li, S., Pang, X., Zhang, B., Sun, H., Sun, A., 2015. Marine and Petroleum Geology 68, Part A, 18–39. http://www.sciencedirect.com/science/article/pii/S0264817215300374

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e63

Petroleum source, maturity, alteration and mixing in the southwestern Barents Sea: New insights from geochemical and isotope data Murillo, W.A., Vieth-Hillebrand, A., Horsfield, B., Wilkes, H., 2016. Marine and Petroleum Geology 70, 119–143. http://www.sciencedirect.com/science/article/pii/S0264817215301331 Temporal changes of fault seal and early charge of the Maui Gas-condensate field, Taranaki Basin, New Zealand Reilly, C., Nicol, A., Walsh, J.J., Kroeger, K.F., 2016. Marine and Petroleum Geology 70, 237–250. http://www.sciencedirect.com/science/article/pii/S0264817215301410 The organic geochemistry of asphaltenes and occluded biomarkers Snowdon, L.R., Volkman, J.K., Zhang, Z., Tao, G., Liu, P., 2016. Organic Geochemistry 91, 3–15. http://www.sciencedirect.com/science/article/pii/S0146638015002016 Geochemistry and origin of heavy oil in Lower Cretaceous of Chagan Depression Wang, P., Liu, G.D., Cao, Z., Su, H., Niu, Z.C., Zhang, J.Y., Luo, W.B., 2015. Acta Sedimentologica Sinica 33, 1265–1274. http://www.cjxb.ac.cn/EN/abstract/abstract3609.shtml The genesis and prospecting significance of high-sulfur gas condensates in the deep dolomite reservoirs beneath gypsum rocks: A case study of the Cambrian reservoir in Tarim Basin Xiao, Z., Su, J., Yang, H., Wang, Y., Huang, S., Huang, L., Zhang, B., Weng, N., Lu, Y., Zhang, K., 2015. Petroleum Science and Technology 33, 1643–1652. http://dx.doi.org/10.1080/10916466.2015.1079537 Formation of low permeability reservoirs and gas accumulation process in the Daniudi Gas Field, northeast Ordos Basin, China Yang, Z., He, S., Guo, X., Li, Q., Chen, Z., Zhao, Y., 2016. Marine and Petroleum Geology 70, 222–236. http://www.sciencedirect.com/science/article/pii/S0264817215301227 Unmixing of mixed oil using chemometrics Zhan, Z.-W., Zou, Y.-R., Shi, J.-T., Sun, J.-N., Peng, P.a., 2016. Organic Geochemistry 92, 1–15. http://www.sciencedirect.com/science/article/pii/S0146638015002028 Genetic origin of sour gas condensates in the Paleozoic dolomite reservoirs of the Tazhong Uplift, Tarim Basin Zhang, S., Su, J., Huang, H., He, K., Wang, Y., Wang, H., Zhang, B., Wang, X., Hu, J., 2015. Marine and Petroleum Geology 68, Part A, 107–119. http://www.sciencedirect.com/science/article/pii/S0264817215300684 Re-exploration program for petroleum-rich sags and its significance in Bohai Bay Basin, East China Zhao, X., Wang, Q., Jin, F., Luo, N., Fan, B., Li, X., Qin, F., Zhang, H., 2015. Petroleum Exploration and Development 42, 790–801. http://www.sciencedirect.com/science/article/pii/S1876380415300756 Precambrian Geochemistry

Solid in Proterozoic dolomites, Taoudeni Basin, Mauritania Albert-Villanueva, E., Permanyer, A., Tritlla, J., Levresse, G., Salas, R., 2016. Journal of Petroleum Geology 39, 5–27. http://dx.doi.org/10.1111/jpg.12625 Arsenic stress after the Proterozoic glaciations Chi Fru, E., Arvestål, E., Callac, N., El Albani, A., Kilias, S., Argyraki, A., Jakobsson, M., 2015. Scientific Reports 5, Article number 17789. http://dx.doi.org/10.1038/srep17789 Arsenic-induced phosphate limitation under experimental Early Proterozoic oceanic conditions Chi Fru, E., Hemmingsson, C., Holm, M., Chiu, B., Iñiguez, E., 2016. Earth and Planetary Science Letters 434, 52–63. http://www.sciencedirect.com/science/article/pii/S0012821X15007074 The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation Daines, S.J., Lenton, T.M., 2016. Earth and Planetary Science Letters 434, 42–51. http://www.sciencedirect.com/science/article/pii/S0012821X15007256 Evidence for cavity-dwelling microbial life in 3.22 Ga tidal deposits Homann, M., Heubeck, C., Bontognali, T.R.R., Bouvier, A.-S., Baumgartner, L.P., Airo, A., 2016. Geology 44, 51–54. http://geology.gsapubs.org/content/44/1/51.abstract

e64

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

Estimates of atmospheric O2 in the Paleoproterozoic from paleosols Kanzaki, Y., Murakami, T., 2016. Geochimica et Cosmochimica Acta 174, 263–290. http://www.sciencedirect.com/science/article/pii/S0016703715006572 Tracing Earth’s O2 evolution using Zn/Fe ratios in marine carbonates Liu, X.M., Kah, L.C., Knoll, A.H., Cui, H., Kaufman, A.J., Shahar, A., Hazen, R.M., 2016. Geochemical Perspectives Letters 2, 24–34. http://www.geochemicalperspectivesletters.org/article1603 Emerging biogeochemical views of Earth’s ancient microbial worlds Lyons, T.W., Fike, D.A., Zerkle, A., 2015. Elements 11, 415–421. http://elements.geoscienceworld.org/content/11/6/415.abstract Commentary ‘‘Is the Neoproterozoic oxygen burst a supercontinent legacy?” Nedelec, A., Borisova, A.Y., 2015. Frontiers in Earth Science 3, 80. doi: 10.3389/feart.2015.00080. http://journal.frontiersin.org/article/10.3389/feart.2015.00080/full Nanoscale petrographic and geochemical insights on the origin of the Palaeoproterozoic stromatolitic phosphorites from Aravalli Supergroup, India Papineau, D., De Gregorio, B., Fearn, S., Kilcoyne, D., McMahon, G., Purohit, R., Fogel, M., 2016. Geobiology 14, 3–32. http://dx.doi.org/10.1111/gbi.12164 Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere Pogge von Strandmann, P.A.E., Stueken, E.E., Elliott, T., Poulton, S.W., Dehler, C.M., Canfield, D.E., Catling, D.C., 2015. Nature Communications 6, Article number 10157. http://dx.doi.org/10.1038/ncomms10157 Composition and genesis of the oldest (4.28 Ga) sediments on Earth Rosen, O.M., Abbyasov, A.A., Zlobin, V.L., 2015. Doklady Earth Sciences 465, 1117–1120. http://dx.doi.org/10.1134/S1028334X15110136 Free energy distribution and hydrothermal mineral precipitation in Hadean submarine alkaline vent systems: Importance of iron redox reactions under anoxic conditions Shibuya, T., Russell, M.J., Takai, K., 2016. Geochimica et Cosmochimica Acta 175, 1–19. http://www.sciencedirect.com/science/article/pii/S0016703715006560 A mineralogical, chemical and isotopic investigation of shales from the Barberton Greenstone Belt, South Africa, to constrain source materials and post-deposition evolution Toulkeridis, T., Clauer, N., Kröner, A., Todt, W., 2015. South African Journal of Geology 118, 389–410. http://sajg.geoscienceworld.org/content/118/4/389.abstract Recognition of a novel Precambrian petroleum system based on isotopic and biomarker evidence in Yangtze platform, south China Wang, G., Wang, T.G., Han, K., Wang, L., Shi, S., 2015. Marine and Petroleum Geology 68, Part A, 414–426. http://www.sciencedirect.com/science/article/pii/S026481721530091X Spurious thermoluminescence characteristics of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) and its implications for marine dissolved organic carbon reservoir Wang, H., Li, C., Hu, C., Xie, S., 2015. Journal of Earth Science 26, 883–892. http://dx.doi.org/10.1007/s12583-015-0650-3 Timescales of oxygenation following the evolution of oxygenic photosynthesis Ward, L.M., Kirschvink, J.L., Fischer, W.W., 2016. Origins of Life and Evolution of Biospheres 46, 51–65. http://dx.doi.org/10.1007/s11084-015-9460-3 Features and origin of natural gas in the Sinian–Cambrian of central Sichuan paleo-uplift, Sichuan Basin, SW China Wei, G., Xie, Z., Song, J., Yang, W., Wang, Z., Li, J., Wang, D., Li, Z., Xie, W., 2015. Petroleum Exploration and Development 42, 768–777. http://www.sciencedirect.com/science/article/pii/S1876380415300732

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e65

Production/Engineering Geochemistry

Deriving the molecular composition of vacuum distillates by integrating statistical modeling and detailed hydrocarbon characterization Alvarez-Majmutov, A., Gieleciak, R., Chen, J., 2015. Energy & Fuels 29, 7931–7940. http://dx.doi.org/10.1021/acs.energyfuels.5b02082 Prediction of the gas injection effect on the asphaltene phase envelope Bahrami, P., Kharrat, R., Mahdavi, S., Firoozinia, H., 2015. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 70, 1075–1086. http://dx.doi.org/10.2516/ogst/2014037 A comparative study of the chemical structure of asphaltenes from Algerian petroleum collected at different stages of extraction and processing Daaou, M., Larbi, A., Martínez-Haya, B., Rogalski, M., 2016. Journal of Petroleum Science and Engineering 138, 50–56. http://www.sciencedirect.com/science/article/pii/S0920410515302047 Structural study of asphaltenes from Iranian heavy crude oil Davarpanah, L., Vahabzadeh, F., Dermanaki, A., 2015. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 70, 1035–1049. http://dx.doi.org/10.2516/ogst/2012066 Formation of resins in used oils as a result of conformation-structure change of their hydrocarbons Dmitrieva, Z.T., 2015. Chemistry and Technology of Fuels and Oils 51, 464–469. http://dx.doi.org/10.1007/s10553-015-0626-5 Towards the development of bitumen carbonates: An integrated analysis of Grosmont steam pilots Ezeuko, C.C., Wang, J., Kallos, M.S., Gates, I.D., 2015. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 70, 983–1005. http://dx.doi.org/10.2516/ogst/2013111 Non-isothermal conversion of the Kashpir sulfur-rich oil shale in a supercritical water flow Fedyaeva, O.N., Antipenko, V.R., Dubov, D.Y., Kruglyakova, T.V., Vostrikov, A.A., 2016. The Journal of Supercritical Fluids 109, 157–165. http://www.sciencedirect.com/science/article/pii/S0896844615301935 Quantification of trace O-containing compounds in GTL process samples via Fischer–Tropsch reaction by comprehensive two-dimensional gas chromatography/mass spectrometry Fernandes, D.R., Pereira, V.B., Stelzer, K.T., Gomes, A.O., Aquino Neto, F.R., Azevedo, D.A., 2015. Talanta 144, 627–635. http://www.sciencedirect.com/science/article/pii/S003991401530062X Analysis and identification of oxygen compounds in Longkou shale oil and Shenmu coal tar Geng, C., Li, S., Ma, Y., Yue, C., He, J., Shang, W., 2015. Oil Shale 32, 322–333. http://www.kirj.ee/21477/?tpl=1061&c_tpl=1064 Estimation of the normal boiling point of organic compounds via a new group contribution method Ghasemitabar, H., Movagharnejad, K., 2016. Fluid Phase Equilibria 411, 13–23. http://www.sciencedirect.com/science/article/pii/S037838121530234X A study of crude oil fouling propensity Ho, T.C., 2016. International Journal of Heat and Mass Transfer 95, 62–68. http://www.sciencedirect.com/science/article/pii/S0017931015304853 Surface charge at the bitumen/water interface investigated by phase-sensitive sum frequency generation vibrational spectroscopy: Effects of pH, ions, and surfactants Hu, D., Chou, K.C., 2015. Energy & Fuels 29, 7885–7888. http://dx.doi.org/10.1021/acs.energyfuels.5b02011 Investigation of wax precipitation in crude oil: Experimental and modeling Jafari Behbahani, T., Beigi, A.A.M., Taheri, Z., Ghanbari, B., 2015. Petroleum 1, 223–230. http://www.sciencedirect.com/science/article/pii/S2405656115000371 Experimental study and mathematical modeling of asphaltene deposition mechanism in core samples Jafari Behbahani, T., Ghotbi, C., Taghikhani, V., Shahrabadi, A., 2015. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 70, 1051–1074. http://dx.doi.org/10.2516/ogst/2013128

e66

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

Effect of the temperature on the characteristics of retorting products obtained by Yaojie oil shale pyrolysis Lan, X., Luo, W., Song, Y., Zhou, J., Zhang, Q., 2015. Energy & Fuels 29, 7800–7806. http://dx.doi.org/10.1021/acs.energyfuels.5b01645 Effect of transition metal polymers with varying side alkyl chain on viscosity reduction of crude oil and aggregation behavior of asphaltene Li, J.-j., Wang, X., Tang, X.-d., Wang, F., Qing, D.-y., 2015. Energy & Fuels 29, 7771–7780. http://dx.doi.org/10.1021/acs.energyfuels.5b01013 Role of ethyl cellulose in bitumen extraction from oil sands ores using an aqueous–nonaqueous hybrid process Lin, F., He, L., Hou, J., Masliyah, J., Xu, Z., 2015. Energy & Fuels. http://dx.doi.org/10.1021/acs.energyfuels.5b01960 Influence of pyrite on hydrocarbon generation during pyrolysis of type-III kerogen Ma, X., Zheng, J., Zheng, G., Xu, W., Qian, Y., Xia, Y., Wang, Z., Wang, X., Ye, X., 2016. Fuel 167, 329–336. http://www.sciencedirect.com/science/article/pii/S0016236115012193 Experimental study of water-based nanofluid alternating gas injection as a novel enhanced oil-recovery method in oil-wet carbonate reservoirs Moradi, B., Pourafshary, P., Jalali, F., Mohammadi, M., Emadi, M.A., 2015. Journal of Natural Gas Science and Engineering 27, Part 1, 64–73. http://www.sciencedirect.com/science/article/pii/S1875510015300342 Conversion of acidic heavy resid to surfactant for separating water-oil emulsions and increasing oil production Movsum-zade, E.M., Nikitina, A.A., Belyaeva, A.S., Kunakova, R.V., 2015. Chemistry and Technology of Fuels and Oils 51, 493–500. http://dx.doi.org/10.1007/s10553-015-0630-9 Asphaltenes explained for the nonchemist Mullins, O.C., Pomerantz, A.E., Andrews, A.B., Zuo, J.Y., 2015. Petrophysics 56, 266–275. https://www.onepetro.org/download/journal-paper/SPWLA-2015-v56n3a3?id=journal-paper%2FSPWLA-2015-v56n3a3 Application of magnetic treatment to changing the composition and physicochemical properties of crude oil and petroleum products Musina, N.S., Maryutina, T.A., 2016. Journal of Analytical Chemistry 71, 27–34. http://dx.doi.org/10.1134/S1061934816010081 Molecular analysis of microbial community structures in Nigerian oil production and processing facilities in order to access souring corrosion and methanogenesis Okoro, C., Ekun, O.A., Nwume, M.I., Lin, J., 2016. Corrosion Science 103, 242–254. http://www.sciencedirect.com/science/article/pii/S0010938X15301669 An investigation into the electrical behavior of oil/water/reservoir rock interfaces: The implication for improvement in wettability prediction Sadeqi-Moqadam, M., Riahi, S., Bahramian, A., 2016. Colloids and Surfaces A: Physicochemical and Engineering Aspects 490, 268–282. http://www.sciencedirect.com/science/article/pii/S0927775715303642 Investigation of oil recovery and CO2 storage during secondary and tertiary injection of carbonated water in an Iranian carbonate oil reservoir Shakiba, M., Ayatollahi, S., Riazi, M., 2016. Journal of Petroleum Science and Engineering 137, 134–143. http://www.sciencedirect.com/science/article/pii/S0920410515301923 Potential to increase condensate oil production by huff-n-puff gas injection in a shale condensate reservoir Sheng, J.J., Mody, F., Griffith, P.J., Barnes, W.N., 2016. Journal of Natural Gas Science and Engineering 28, 46–51. http://www.sciencedirect.com/science/article/pii/S1875510015302717 Pyrolysis of Yaojie oil shale in a Sanjiang-type pilot-scale retort Shi, Y., Li, S., Ma, Y., Yue, C., Shang, W., Hu, H., He, J., 2015. Oil Shale 32, 368–375. http://www.kirj.ee/21446/?tpl=1061&c_tpl=1064 Oil/water nanoemulsions: Activity at the water–oil interface and evaluation on asphaltene aggregates Souza, V.B., Mansur, C.R.E., 2015. Energy & Fuels 29, 7855–7865. http://dx.doi.org/10.1021/acs.energyfuels.5b01996

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e67

Investigation of relationships between petroleum properties and their impact on crude oil compatibility Stratiev, D., Shishkova, I., Nedelchev, A., Kirilov, K., Nikolaychuk, E., Ivanov, A., Sharafutdinov, I., Veli, A., Mitkova, M., Tsaneva, T., Petkova, N., Sharpe, R., Yordanov, D., Belchev, Z., Nenov, S., Rudnev, N., Atanassova, V., Sotirova, E., Sotirov, S., Atanassov, K., 2015. Energy & Fuels 29, 7836–7854. http://dx.doi.org/10.1021/acs.energyfuels.5b01822 Control of microbial sulfide production with biocides and nitrate in oil reservoir simulating bioreactors Xue, Y., Voordouw, G., 2015. Frontiers in Microbiology 6, 1387. doi: 10.3389/fmicb.2015.01387. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01387/abstract A micro-CT study of changes in the internal structure of Daqing and Yan’an oil shales at high temperatures Zhao, J., Yang, D., Kang, Z., Feng, Z., 2015. Oil Shale 32, 357–367. http://www.kirj.ee/21456/?tpl=1061&c_tpl=1064 Structural characteristics of asphaltenes derived from condensation of maltenes in supercritical water Zhu, D.-Q., Liu, Q.-K., Tan, X.-C., Yang, J.-Y., Yuan, P.-Q., Cheng, Z.-M., Yuan, W.-K., 2015. Energy & Fuels 29, 7807–7815. http://dx.doi.org/10.1021/acs.energyfuels.5b01664 The numerical simulation of thermal recovery based on hydraulic fracture heating technology in shale gas reservoir Zhu, G.-p., Yao, J., Sun, H., Zhang, M., Xie, M.-j., Sun, Z.-x., Lu, T., 2016. Journal of Natural Gas Science and Engineering 28, 305–316. http://www.sciencedirect.com/science/article/pii/S1875510015302912 High-pressure microscopic investigation on the oil recovery mechanism by in situ biogases in petroleum reservoirs Zhu, W.Y., Zhao, J.X., Han, H.Y., Sun, G.Z., Song, Z.Y., 2015. Energy & Fuels 29, 7866–7874. http://dx.doi.org/10.1021/acs.energyfuels.5b01906 Recent Sediments/Hydrosphere

Tracking ultrasonically structural changes of natural aquatic organic carbon: Chemical fractionation and spectroscopic approaches Al-Juboori, R.A., Yusaf, T., Aravinthan, V., Bowtell, L., 2016. Chemosphere 145, 231–248. http://www.sciencedirect.com/science/article/pii/S0045653515304100 Microbially-mediated fluorescent organic matter transformations in the deep ocean. Do the chemical precursors matter? Aparicio, F.L., Nieto-Cid, M., Borrull, E., Romero, E., Stedmon, C.A., Sala, M.M., Gasol, J.M., Ríos, A.F., Marrasé, C., 2015. Frontiers in Marine Science 2, 106. doi: 10.3389/fmars.2015.00106. http://journal.frontiersin.org/article/10.3389/fmars.2015.00106/abstract Fate and behaviour of marine organic matter during burial of anoxic sediments: Testing CH2O as generalized input parameter in reaction transport models Arning, E.T., van Berk, W., Schulz, H.-M., 2016. Marine Chemistry 178, 8–21. http://www.sciencedirect.com/science/article/pii/S0304420315300621 Glycerol monoalkanediol diethers: A novel series of archaeal lipids detected in hydrothermal environments Bauersachs, T., Schwark, L., 2016. Rapid Communications in Mass Spectrometry 30, 54–60. http://dx.doi.org/10.1002/rcm.7417 Geochemical constraints on the distribution and rates of debromination in the deep subseafloor biosphere Berg, R.D., Solomon, E.A., 2016. Geochimica et Cosmochimica Acta 174, 30–41. http://www.sciencedirect.com/science/article/pii/S001670371500633X Historical records of organic matter supply and degradation status in the East Siberian Sea Bröder, L., Tesi, T., Andersson, A., Eglinton, T.I., Semiletov, I.P., Dudarev, O.V., Roos, P., Gustafsson, Ö., 2016. Organic Geochemistry 91, 16–30. http://www.sciencedirect.com/science/article/pii/S0146638015001941 Abundance, stable isotopic composition, and export fluxes of DOC, POC, and DIC from the Lower Mississippi River during 2006–2008 Cai, Y., Guo, L., Wang, X., Aiken, G., 2015. Journal of Geophysical Research: Biogeosciences 120, 2273–2288. http://dx.doi.org/10.1002/2015JG003139 Distribution and characterization of organic matter using lipid biomarkers: A case study in a pristine tropical bay in NE Brazil Carreira, R.S., Cordeiro, L.G.M.S., Bernardes, M.C., Hatje, V., 2016. Estuarine, Coastal and Shelf Science 168, 1–9. http://www.sciencedirect.com/science/article/pii/S0272771415301311

e68

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

Sources, behaviors and degradation of dissolved organic matter in the East China Sea Chen, Y., Yang, G.-P., Liu, L., Zhang, P.-Y., Leng, W.-S., 2016. Journal of Marine Systems 155, 84–97. http://www.sciencedirect.com/science/article/pii/S0924796315002055 Bacteriohopanepolyol distribution in Yenisei River and Kara Sea suspended particulate matter and sediments traces terrigenous organic matter input De Jonge, C., Talbot, H.M., Bischoff, J., Stadnitskaia, A., Cherkashov, G., Sinninghe Damsté, J.S., 2016. Geochimica et Cosmochimica Acta 174, 85–101. http://www.sciencedirect.com/science/article/pii/S0016703715006389 Relationship of polycyclic aromatic hydrocarbons with algae-derived organic matter in sediment cores from a subtropical region Duan, D., Huang, Y., Cheng, H., Ran, Y., 2015. Journal of Geophysical Research: Biogeosciences 120, 2243–2255. http://dx.doi.org/10.1002/2015JG003097 Dynamics of dissolved organic carbon and total dissolved nitrogen in Maryland’s coastal bays Duan, S., Chen, N., Kaushal, S.S., Chigbu, P., Ishaque, A., May, E., Oseji, O.F., 2015. Estuarine, Coastal and Shelf Science 164, 451–462. http://www.sciencedirect.com/science/article/pii/S0272771415300615 Oxidation products of betulin: New tracers of abiotic degradation of higher plant material in the environment Galeron, M.-A., Volkman, J.K., Rontani, J.-F., 2016. Organic Geochemistry 91, 31–42. http://www.sciencedirect.com/science/article/pii/S0146638015001965 Impact of forest harvesting on water quality and fluorescence characteristics of dissolved organic matter in eastern Canadian Boreal Shield lakes in summer Glaz, P., Gagné, J.P., Archambault, P., Sirois, P., Nozais, C., 2015. Biogeosciences 12, 6999–7011. http://www.biogeosciences.net/12/6999/2015/ Organic carbon concentrations and transport in small mountain rivers, Panama Goldsmith, S.T., Berry Lyons, W., Harmon, R.S., Harmon, B.A., Carey, A.E., McElwee, G.T., 2015. Applied Geochemistry 63, 540–549. http://www.sciencedirect.com/science/article/pii/S0883292715000980 Hydrochemistry and biogeochemistry of tropical small mountain rivers Goldsmith, S.T., Moyer, R.P., Harmon, R.J., 2015. Applied Geochemistry 63, 453–455. http://www.sciencedirect.com/science/article/pii/S0883292715002000 From fresh to marine waters: Characterization and fate of dissolved organic matter in the Lena River delta region, Siberia Gonçalves-Araujo, R., Stedmon, C.A., Heim, B., Dubinenkov, I., Kraberg, A., Moiseev, D., Bracher, A., 2015. Frontiers in Marine Science 2, 108. doi: 10.3389/fmars.2015.00108. http://journal.frontiersin.org/article/10.3389/fmars.2015.00108/abstract Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions Hawkes, J.A., Hansen, C.T., Goldhammer, T., Bach, W., Dittmar, T., 2016. Geochimica et Cosmochimica Acta 175, 68–85. http://www.sciencedirect.com/science/article/pii/S001670371500664X Coupling effects of abiotic and biotic factors on molecular composition of dissolved organic matter in a freshwater wetland He, W., Choi, I., Lee, J.-J., Hur, J., 2016. Science of The Total Environment 544, 525–534. http://www.sciencedirect.com/science/article/pii/S0048969715311657 Seasonal variability in concentrations and fluxes of glycerol dialkyl glycerol tetraethers in Huguangyan Maar Lake, SE China: Implications for the applicability of the MBT–CBT paleotemperature proxy in lacustrine settings Hu, J., Zhou, H., Peng, P.a., Spiro, B., 2016. Chemical Geology 420, 200–212. http://www.sciencedirect.com/science/article/pii/S0009254115301029 Recent organic carbon sequestration in the shelf sediments of the Bohai Sea and Yellow Sea, China Hu, L., Shi, X., Bai, Y., Qiao, S., Li, L., Yu, Y., Yang, G., Ma, D., Guo, Z., 2016. Journal of Marine Systems 155, 50–58. http://www.sciencedirect.com/science/article/pii/S0924796315001852 Chlorophyll a in suspended particulate matter of the Caspian Sea as an indicator of biogenic sedimentation conditions Kravchishina, M.D., Klyuvitkin, A.A., Pautova, L.A., Politova, N.V., Lein, A.Y., Lisitzin, A.P., 2015. Doklady Earth Sciences 465, 1200–1205. http://dx.doi.org/10.1134/S1028334X15110173

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e69

Biogeochemical consequences of vertical and lateral transport of particulate organic matter in the southern North Sea: A multiproxy approach Le Guitton, M., Soetaert, K., Sinninghe Damsté, J.S., Middelburg, J.J., 2015. Estuarine, Coastal and Shelf Science 165, 117–127. http://www.sciencedirect.com/science/article/pii/S0272771415300883 Elevated microbial CO2 production and fixation in the oxic/anoxic interface of estuarine water columns during seasonal anoxia Lee, D.Y., Owens, M.S., Crump, B.C., Cornwell, J.C., 2015. Estuarine, Coastal and Shelf Science 164, 65–76. http://www.sciencedirect.com/science/article/pii/S0272771415300226 Distribution and sources of organic matter in surface sediments of Bohai Sea near the Yellow River Estuary, China Liu, D., Li, X., Emeis, K.-C., Wang, Y., Richard, P., 2015. Estuarine, Coastal and Shelf Science 165, 128–136. http://www.sciencedirect.com/science/article/pii/S0272771415300858 Variation of dissolved organic carbon transported by two Chinese rivers: The Changjiang River and Yellow River Liu, D., Pan, D., Bai, Y., He, X., Wang, D., Zhang, L., 2015. Marine Pollution Bulletin 100, 60–69. http://www.sciencedirect.com/science/article/pii/S0025326X15300448 Assessing the potential impacts of declining Arctic sea ice cover on the photochemical degradation of dissolved organic matter in the Chukchi and Beaufort Seas Logvinova, C.L., Frey, K.E., Mann, P.J., Stubbins, A., Spencer, R.G.M., 2015. Journal of Geophysical Research: Biogeosciences 120, 2326–2344. http://dx.doi.org/10.1002/2015JG003052 The effect of temperature on organic carbon degradation in marine sediments Malinverno, A., Martinez, E.A., 2015. Scientific Reports 5, Article number 17861. http://dx.doi.org/10.1038/srep17861 Carbon transport in rivers of southwest Haiti McGillis, W.R., Hsueh, D.Y., Zheng, Y., Markowitz, M., Gibson, R., Bolduc, G., Fevrin, F.J., Thys, J.E., Noel, W., Paine, J.K., Wang, Z.A., Hoering, K., Hakimdavar, R., Culligan, P.J., 2015. Applied Geochemistry 63, 563–572. http://www.sciencedirect.com/science/article/pii/S088329271530038X Critical shear stress for mass erosion of organic-rich fine sediments Mehta, A.J., Hwang, K.-N., Khare, Y.P., 2015. Estuarine, Coastal and Shelf Science 165, 97–103. http://www.sciencedirect.com/science/article/pii/S0272771415300755 Assessing the importance of terrestrial organic carbon in the Chukchi and Beaufort seas Morris, D.J., O’Connell, M.T., Macko, S.A., 2015. Estuarine, Coastal and Shelf Science 164, 28–38. http://www.sciencedirect.com/science/article/pii/S0272771415002206 Abundance, distribution, and fluxes of dissolved organic carbon (DOC) in four small sub-tropical rivers of the Tampa Bay Estuary (Florida, USA) Moyer, R.P., Powell, C.E., Gordon, D.J., Long, J.S., Bliss, C.M., 2015. Applied Geochemistry 63, 550–562. http://www.sciencedirect.com/science/article/pii/S0883292715001171 Optical signatures of dissolved organic matter transformation in the global ocean Nelson, N.B., Gauglitz, J.M., 2015. Frontiers in Marine Science 2, 118. doi: 10.3389/fmars.2015.00118. http://journal.frontiersin.org/article/10.3389/fmars.2015.00118/abstract Composition and sources of sedimentary organic matter in the deep eastern Mediterranean Sea Pedrosa-Pàmies, R., Parinos, C., Sanchez-Vidal, A., Gogou, A., Calafat, A., Canals, M., Bouloubassi, I., Lampadariou, N., 2015. Biogeosciences 12, 7379–7402. http://www.biogeosciences.net/12/7379/2015/ Organic matter pools, C turnover and meiofaunal biodiversity in the sediments of the western Spitsbergen deep continental margin, Svalbard Archipelago Pusceddu, A., Carugati, L., Gambi, C., Mienert, J., Petani, B., Sanchez-Vidal, A., Canals, M., Heussner, S., Danovaro, R., 2016. Deep Sea Research Part I: Oceanographic Research Papers 107, 48–58. http://www.sciencedirect.com/science/article/pii/S0967063715300212 Environmental controls on long-chain alkenone occurrence and compositional patterns in lacustrine sediments, northwestern China Song, M., Zhou, A., He, Y., Zhao, C., Wu, J., Zhao, Y., Liu, W., Liu, Z., 2016. Organic Geochemistry 91, 43–53. http://www.sciencedirect.com/science/article/pii/S0146638015001953

e70

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

Studies on hydroxyl radical formation and correlated photoflocculation process using degraded wood leachate as a CDOM source Sun, L., Mopper, K., 2015. Frontiers in Marine Science 2, 117. doi: 10.3389/fmars.2015.00117. http://journal.frontiersin.org/article/10.3389/fmars.2015.00117/abstract High proline content of bacteria-sized particles in the western North Pacific and its potential as a new biogeochemical indicator of organic matter diagenesis Takasu, H., Nagata, T., 2015. Frontiers in Marine Science 2, 110. doi: 10.3389/fmars.2015.00110. http://journal.frontiersin.org/article/10.3389/fmars.2015.00110/abstract Decadal carbon discharge by a mountain stream is dominated by coarse organic matter Turowski, J.M., Hilton, R.G., Sparkes, R., 2016. Geology 44, 27–30. http://geology.gsapubs.org/content/44/1/27.abstract Linking the molecular signature of heteroatomic dissolved organic matter to watershed characteristics in world rivers Wagner, S., Riedel, T., Niggemann, J., Vähätalo, A.V., Dittmar, T., Jaffé, R., 2015. Environmental Science & Technology 49, 13798–13806. http://dx.doi.org/10.1021/acs.est.5b00525 Distribution and source of 1-O-monoalkyl glycerol ethers in the Yellow River and Bohai Sea Wang, Y., Xu, Y., 2016. Organic Geochemistry 91, 81–88. http://www.sciencedirect.com/science/article/pii/S0146638015002144 Methanogenesis in sediments of an intertidal sand flat in the Wadden Sea Wu, C.S., Røy, H., de Beer, D., 2015. Estuarine, Coastal and Shelf Science 164, 39–45. http://www.sciencedirect.com/science/article/pii/S0272771415300093 Dissolved organic carbon in the South China Sea and its exchange with the western Pacific Ocean Wu, K., Dai, M., Chen, J., Meng, F., Li, X., Liu, Z., Du, C., Gan, J., 2015. Deep Sea Research Part II: Topical Studies in Oceanography 122, 41–51. http://www.sciencedirect.com/science/article/pii/S0967064515002155 Depth-dependent variations of sedimentary dissolved organic matter composition in a eutrophic lake: Implications for lake restoration Xu, H., Guo, L., Jiang, H., 2016. Chemosphere 145, 551–559. http://www.sciencedirect.com/science/article/pii/S0045653515301028 Sedimentary archaeal amoA gene abundance reflects historic nutrient level and salinity fluctuations in Qinghai Lake, Tibetan Plateau Yang, J., Jiang, H., Dong, H., Hou, W., Li, G., Wu, G., 2015. Scientific Reports 5, Article number 18071. http://dx.doi.org/10.1038/srep18071 Mixing behavior and bioavailability of dissolved organic matter in two contrasting subterranean estuaries as revealed by fluorescence spectroscopy and parallel factor analysis Yang, L., Chen, C.-T.A., Hong, H., Chang, Y.-C., Lui, H.-K., 2015. Estuarine, Coastal and Shelf Science 166, Part B, 161–169. http://www.sciencedirect.com/science/article/pii/S0272771414003205 Seepage-Remote Detection

Iron biomineralization controls on geophysical signatures of hydrocarbon contaminated sediments Atekwana, E.A., Abdel Aal, G.A., 2015. Journal of Earth Science 26, 835–843. http://dx.doi.org/10.1007/s12583-015-0611-2 Atmospheric remote sensing constraints on direct sea-air methane flux from the 22/4b North Sea massive blowout bubble plume Gerilowski, K., Krings, T., Hartmann, J., Buchwitz, M., Sachs, T., Erzinger, J., Burrows, J.P., Bovensmann, H., 2015. Marine and Petroleum Geology 68, Part B, 824–835. http://www.sciencedirect.com/science/article/pii/S0264817215300325 Methane seepage intensities traced by biomarker patterns in authigenic carbonates from the South China Sea Guan, H., Feng, D., Wu, N., Chen, D., 2016. Organic Geochemistry 91, 109–119. http://www.sciencedirect.com/science/article/pii/S014663801500203X Large methane emissions from a subarctic lake during spring thaw: Mechanisms and landscape significance Jammet, M., Crill, P., Dengel, S., Friborg, T., 2015. Journal of Geophysical Research: Biogeosciences 120, 2289–2305. http://dx.doi.org/10.1002/2015JG003137

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e71

The significance of the 22/4b blow-out site methane emissions in the context of the North Sea Judd, A., 2015. Marine and Petroleum Geology 68, Part B, 836–847. http://www.sciencedirect.com/science/article/pii/S0264817215300520 Seabed bubble flux estimation by calibrated video survey for a large blowout seep in the North Sea Leifer, I., 2015. Marine and Petroleum Geology 68, Part B, 743–752. http://www.sciencedirect.com/science/article/pii/S0264817215300829 The UK22/4b blowout 20 years on: Investigations of continuing methane emissions from sub-seabed to the atmosphere in a North Sea context Leifer, I., Judd, A., 2015. Marine and Petroleum Geology 68, Part B, 706–717. http://www.sciencedirect.com/science/article/pii/S026481721500255X The fate of bubbles in a large, intense bubble megaplume for stratified and unstratified water: Numerical simulations of 22/4b expedition field data Leifer, I., Solomon, E., Schneider von Deimling, J., Rehder, G., Coffin, R., Linke, P., 2015. Marine and Petroleum Geology 68, Part B, 806–823. http://www.sciencedirect.com/science/article/pii/S0264817215300465 A review of oceanographic and meteorological controls on the North Sea circulation and hydrodynamics with a view to the fate of North Sea methane from well site 22/4b and other seabed sources Nauw, J., de Haas, H., Rehder, G., 2015. Marine and Petroleum Geology 68, Part B, 861–882. http://www.sciencedirect.com/science/article/pii/S0264817215300593 Bubble momentum plume as a possible mechanism for an early breakdown of the seasonal stratification in the northern North Sea Nauw, J., Linke, P., Leifer, I., 2015. Marine and Petroleum Geology 68, Part B, 789–805. http://www.sciencedirect.com/science/article/pii/S026481721500152X Ongoing methane discharge at well site 22/4b (North Sea) and discovery of a spiral vortex bubble plume motion Schneider von Deimling, J., Linke, P., Schmidt, M., Rehder, G., 2015. Marine and Petroleum Geology 68, Part B, 718–730. http://www.sciencedirect.com/science/article/pii/S0264817215300477 Continuous inline mapping of a dissolved methane plume at a blowout site in the central North Sea UK using a membrane inlet mass spectrometer – Water column stratification impedes immediate methane release into the atmosphere Sommer, S., Schmidt, M., Linke, P., 2015. Marine and Petroleum Geology 68, Part B, 766–775. http://www.sciencedirect.com/science/article/pii/S0264817215300726 Quantification of methane emissions at abandoned gas wells in the central North Sea Vielstädte, L., Karstens, J., Haeckel, M., Schmidt, M., Linke, P., Reimann, S., Liebetrau, V., McGinnis, D.F., Wallmann, K., 2015. Marine and Petroleum Geology 68, Part B, 848–860. http://www.sciencedirect.com/science/article/pii/S0264817215300519 Characteristics of authigenic pyrite and its sulfur isotopes influenced by methane seep at Core A, Site 79 of the middle Okinawa Trough Wang, M., Cai, F., Li, Q., Liang, J., Yan, G., Dong, G., Wang, F., Shao, H., Hu, G., 2015. Science China Earth Sciences 58, 2145–2153. http://dx.doi.org/10.1007/s11430-015-5196-1 Tracing the composition, fluid source and formation conditions of the methane-derived authigenic carbonates in the Gulf of Cadiz with rare earth elements and stable isotopes Wang, S., Magalhães, V.H., Pinheiro, L.M., Liu, J., Yan, W., 2015. Marine and Petroleum Geology 68, Part A, 192–205. http://www.sciencedirect.com/science/article/pii/S026481721530074X Long-term acoustic monitoring at North Sea well site 22/4b Wiggins, S.M., Leifer, I., Linke, P., Hildebrand, J.A., 2015. Marine and Petroleum Geology 68, Part B, 776–788. http://www.sciencedirect.com/science/article/pii/S0264817215000380 Response of anaerobic methanotrophs and benthic foraminifera to 20 years of methane emission from a gas blowout in the North Sea Wilfert, P., Krause, S., Liebetrau, V., Schönfeld, J., Haeckel, M., Linke, P., Treude, T., 2015. Marine and Petroleum Geology 68, Part B, 731–742. http://www.sciencedirect.com/science/article/pii/S0264817215300337 Megaplume bubble process visualization by 3D multibeam sonar mapping Wilson, D.S., Leifer, I., Maillard, E., 2015. Marine and Petroleum Geology 68, Part B, 753–765. http://www.sciencedirect.com/science/article/pii/S0264817215300283

e72

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

Transport of dissolved gas and its ecological impact after a gas release from deepwater Wimalaratne, M.R., Yapa, P.D., Nakata, K., Premathilake, L.T., 2015. Marine Pollution Bulletin 100, 279–288. http://www.sciencedirect.com/science/article/pii/S0025326X15300047 Source Rocks/Ancient Sediments-Environments

Petroleum potential and kinetic models for hydrocarbon generation from the Upper Cretaceous to Paleogene Latrobe Group coals and shales in the Gippsland Basin, Australia Abbassi, S., Edwards, D.S., George, S.C., Volk, H., Mahlstedt, N., di Primio, R., Horsfield, B., 2016. Organic Geochemistry 91, 54–67. http://www.sciencedirect.com/science/article/pii/S0146638015001977 Sequence stratigraphy and its application in marine shale gas exploration: A case study of the Lower Silurian Longmaxi Formation in the Jiaoshiba shale gas field and its adjacent area in southeast Sichuan Basin, SW China Chen, L., Lu, Y., Jiang, S., Li, J., Guo, T., Luo, C., Xing, F., 2015. Journal of Natural Gas Science and Engineering 27, Part 2, 410–423. http://www.sciencedirect.com/science/article/pii/S1875510015301517 Geochemical evidence (C and Sr isotopes) for methane seeps as ammonite habitats in the Late Cretaceous (Campanian) Western Interior Seaway Cochran, J.K., Landman, N.H., Larson, N., Meehan, K.C., Garb, M., Brezina, J., 2015. Swiss Journal of Palaeontology 134, 153–165. http://dx.doi.org/10.1007/s13358-015-0087-9 Impact of thermal maturation on nano-scale elastic properties of organic matter in shales Emmanuel, S., Eliyahu, M., Day-Stirrat, R.J., Hofmann, R., Macaulay, C.I., 2016. Marine and Petroleum Geology 70, 175–184. http://www.sciencedirect.com/science/article/pii/S0264817215301495 Full field reservoir modeling of shale assets using advanced data-driven analytics Esmaili, S., Mohaghegh, S.D., 2016. Geoscience Frontiers 7, 11–20. http://www.sciencedirect.com/science/article/pii/S1674987114001649 Effect of chain length and pore accessibility on alkane adsorption in kerogen Falk, K., Pellenq, R., Ulm, F.J., Coasne, B., 2015. Energy & Fuels 29, 7889–7896. http://dx.doi.org/10.1021/acs.energyfuels.5b02015 Differences in bitumen and kerogen-bound fatty acid fractions during diagenesis and early catagenesis in a maturity series of New Zealand coals Glombitza, C., Mangelsdorf, K., Horsfield, B., 2016. International Journal of Coal Geology 153, 28–36. http://www.sciencedirect.com/science/article/pii/S0166516215300781 The Barnett Shale: Compositional fractionation associated with intraformational petroleum migration, retention, and expulsion Han, Y., Mahlstedt, N., Horsfield, B., 2015. AAPG Bulletin 99, 2173–2202. http://aapgbull.geoscienceworld.org/content/99/12/2173.abstract Logging identification and characteristic analysis of marine–continental transitional organic-rich shale in the CarboniferousPermian strata, Bohai Bay Basin He, J., Ding, W., Zhang, J., Li, A., Zhao, W., Dai, P., 2016. Marine and Petroleum Geology 70, 273–293. http://www.sciencedirect.com/science/article/pii/S0264817215301549 Prediction of source rock characteristics of hydrocarbon gases in the Camurlu Field (south eastern Turkey) by isotopic modeling _ 2015. Arabian Journal for Science and Engineering 40, 1887–1895. Hosßgörmez, H., Soylu, C., Bahtiyar, I., http://dx.doi.org/10.1007/s13369-014-1507-7 Extraction of hydrocarbons from high-maturity Marcellus shale using supercritical carbon dioxide Jarboe, P.J., Candela, P.A., Zhu, W., Kaufman, A.J., 2015. Energy & Fuels 29, 7897–7909. http://dx.doi.org/10.1021/acs.energyfuels.5b02059 Estimation of marine shale methane adsorption capacity based on experimental investigations of Lower Silurian Longmaxi Formation in the Upper Yangtze Platform, south China Ji, W., Song, Y., Jiang, Z., Chen, L., Li, Z., Yang, X., Meng, M., 2015. Marine and Petroleum Geology 68, Part A, 94–106. http://www.sciencedirect.com/science/article/pii/S0264817215300647

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e73

Hydrocarbon evaporative loss from shale core samples as revealed by Rock-Eval and thermal desorption-gas chromatography analysis: Its geochemical and geological implications Jiang, C., Chen, Z., Mort, A., Milovic, M., Robinson, R., Stewart, R., Lavoie, D., 2016. Marine and Petroleum Geology 70, 294–303. http://www.sciencedirect.com/science/article/pii/S0264817215301434 Effects of organic and mineral matter on reservoir quality in a Middle Triassic mudstone in the Canadian Arctic Kondla, D., Sanei, H., Clarkson, C.R., Ardakani, O.H., Wang, X., Jiang, C., 2016. International Journal of Coal Geology 153, 112–126. http://www.sciencedirect.com/science/article/pii/S0166516215300811 Significance of sedimentary organic matter input for shale gas generation potential of Mississippian mudstones, Widmerpool Gulf, UK Könitzer, S.F., Stephenson, M.H., Davies, S.J., Vane, C.H., Leng, M.J., 2016. Review of Palaeobotany and Palynology 224, Part 2, 146–168. http://www.sciencedirect.com/science/article/pii/S0034666715001906 Hydrocarbon potential of the Zechstein Main Dolomite (Upper Permian) in western Poland: Relation to organic matter and facies characteristics Kosakowski, P., Krajewski, M., 2015. Marine and Petroleum Geology 68, Part A, 675–694. http://www.sciencedirect.com/science/article/pii/S0264817215001208 Pyritization induced by anaerobic oxidation of methane (AOM) – An example from the Upper Devonian shale succession, western New York, USA Lash, G.G., 2015. Marine and Petroleum Geology 68, Part A, 520–535. http://www.sciencedirect.com/science/article/pii/S0264817215301033 Investigation of pore structure and fractal characteristics of organic-rich shale reservoirs: A case study of Lower Cambrian Qiongzhusi formation in Malong block of eastern Yunnan Province, south China Li, A., Ding, W., He, J., Dai, P., Yin, S., Xie, F., 2016. Marine and Petroleum Geology 70, 46–57. http://www.sciencedirect.com/science/article/pii/S0264817215301288 Origin of adamantanes and diamantanes in marine source rock Li, Y., Chen, Y., Xiong, Y., Wang, X., Fang, C., Zhang, L., Li, J., 2015. Energy & Fuels 29, 8188–8194. http://dx.doi.org/10.1021/acs.energyfuels.5b01993 An investigation of the fractal characteristics of the Upper Ordovician Wufeng Formation shale using nitrogen adsorption analysis Liang, L., Xiong, J., Liu, X., 2015. Journal of Natural Gas Science and Engineering 27, Part 2, 402–409. http://www.sciencedirect.com/science/article/pii/S1875510015300445 Using light hydrocarbons to identify the depositional environment of source rocks in the Ordos Basin, central China Liu, D., Yu, C., Huang, S., Fang, C., Feng, Z., Kong, Q., 2015. Energy, Exploration & Exploitation 33, 869–890. http://dx.doi.org/10.1260/0144-5987.33.6.869 Graptolite-derived organic matter in the Wufeng–Longmaxi Formations (Upper Ordovician–Lower Silurian) of southeastern Chongqing, China: Implications for gas shale evaluation Luo, Q., Zhong, N., Dai, N., Zhang, W., 2016. International Journal of Coal Geology 153, 87–98. http://www.sciencedirect.com/science/article/pii/S0166516215300835 On the damage constitutive model for hydrated shale using CT scanning technology Ma, T., Yang, C., Chen, P., Wang, X., Guo, Y., 2016. Journal of Natural Gas Science and Engineering 28, 204–214. http://www.sciencedirect.com/science/article/pii/S1875510015302663 Geochemical characterisation of Tithonian–Berriasian Chia Gara organic-rich rocks in northern Iraq with an emphasis on organic matter enrichment and the relationship to the bioproductivity and anoxia conditions Mohialdeen, I.M.J., Hakimi, M.H., 2016. Journal of Asian Earth Sciences 116, 181–197. http://www.sciencedirect.com/science/article/pii/S1367912015301334 Fractal behavior of total organic carbon in shale-gas reservoirs with an example from the Barnett Shale, Texas, USA Ouadfeul, S.-A., Aliouane, L., 2015. The Leading Edge 34, 1494–1497. http://tle.geoscienceworld.org/content/34/12/1494.abstract An ATR-FTIR procedure for quantitative analysis of mineral constituents and kerogen in oil shale Palayangoda, S.S., Nguyen, Q.P., 2015. Oil Shale 32, 344–356. http://www.kirj.ee/21463/?tpl=1061&c_tpl=1064

e74

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

Early Eocene carbonaceous shales of Tadkeshwar Formation, Cambay basin, Gujarat, India: Geochemical implications, petrogenesis and tectonics Pundaree, N., Krishna, A.K., Subramanyam, K.S.V., Sawant, S.S., Kavitha, S., Kalpana, M.S., Patil, D.J., Dayal, A.M., 2015. Marine and Petroleum Geology 68, Part A, 258–268. http://www.sciencedirect.com/science/article/pii/S0264817215300787 Hydrocarbon potential and depositional environments of Oligo-Miocene rocks in the eastern Carpathians (Vrancea Nappe, Romania) Sachsenhofer, R.F., Hentschke, J., Bechtel, A., Coric, S., Gratzer, R., Gross, D., Horsfield, B., Rachetti, A., Soliman, A., 2015. Marine and Petroleum Geology 68, Part A, 269–290. http://www.sciencedirect.com/science/article/pii/S0264817215300842 Sensitivity of P- and S-impedance to the presence of kerogen in the Eagle Ford Shale Sayers, C.M., Fisher, K., Walsh, J.J., 2015. The Leading Edge 34, 1482–1486. http://tle.geoscienceworld.org/content/34/12/1482.abstract The effect of dolerite intrusions on the hydrocarbon potential of the Lower Permian Whitehill Formation (Karoo Supergroup) in South Africa and southern Namibia: A preliminary study Smithard, T., Bordy, E.M., Reid, D., 2015. South African Journal of Geology 118, 489–510. http://sajg.geoscienceworld.org/content/118/4/489.abstract Nanoscale pore characteristics of the Lower Cambrian Niutitang Formation Shale: A case study from Well Yuke #1 in the southeast of Chongqing, China Sun, M., Yu, B., Hu, Q., Chen, S., Xia, W., Ye, R., 2016. International Journal of Coal Geology 154–155, 16–29. http://www.sciencedirect.com/science/article/pii/S0166516215300847 Sweet spot identification in underexplored shales using multidisciplinary reservoir characterization and key performance indicators: Example of the Posidonia Shale Formation in the Netherlands Ter Heege, J., Zijp, M., Nelskamp, S., Douma, L., Verreussel, R., Ten Veen, J., de Bruin, G., Peters, R., 2015. Journal of Natural Gas Science and Engineering 27, Part 2, 558–577. http://www.sciencedirect.com/science/article/pii/S1875510015300974 Organic geochemical characterization and shale gas potential of the Permian Barren Measures Formation, West Bokaro sub-basin, eastern India Tewari, A., Dutta, S., Sarkar, T., 2016. Journal of Petroleum Geology 39, 49–60. http://dx.doi.org/10.1111/jpg.12627 Experimental investigation of the pore structure characteristics of the Garau gas shale formation in the Lurestan Basin, Iran Vafaie, A., Habibnia, B., Moallemi, S.A., 2015. Journal of Natural Gas Science and Engineering 27, Part 2, 432–442. http://www.sciencedirect.com/science/article/pii/S1875510015002838 Enhanced recovery of crude oil from shale formations by gas injection in zipper-fractured horizontal wells Wan, T., Sheng, J.J., 2015. Petroleum Science and Technology 33, 1605–1610. http://dx.doi.org/10.1080/10916466.2015.1079536 Organic shale micropore and mesopore structure characterization by ultra-low pressure N2 physisorption: Experimental procedure and interpretation model Wang, G., Ju, Y., 2015. Journal of Natural Gas Science and Engineering 27, Part 2, 452–465. http://www.sciencedirect.com/science/article/pii/S1875510015300731 Revised models for determining TOC in shale play: Example from Devonian Duvernay Shale, Western Canada Sedimentary Basin Wang, P., Chen, Z., Pang, X., Hu, K., Sun, M., Chen, X., 2016. Marine and Petroleum Geology 70, 304–319. http://www.sciencedirect.com/science/article/pii/S0264817215301458 Analysis of developmental characteristics and dominant factors of fractures in Lower Cambrian marine shale reservoirs: A case study of Niutitang formation in Cen’gong block, southern China Wang, R., Ding, W., Zhang, Y., Wang, Z., Wang, X., He, J., Zeng, W., Dai, P., 2016. Journal of Petroleum Science and Engineering 138, 31–49. http://www.sciencedirect.com/science/article/pii/S0920410515302138 Molecular dynamics simulation of liquid alkane occurrence state in pores and slits of shale organic matter Wang, S., Feng, Q., Zha, M., Lu, S., Qin, Y., Xia, T., Zhang, C., 2015. Petroleum Exploration and Development 42, 844–851. http://www.sciencedirect.com/science/article/pii/S1876380415300811

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

e75

Permeability of high-Kn real gas flow in shale and production prediction by pore-scale modeling Wang, Z., Guo, Y., Wang, M., 2016. Journal of Natural Gas Science and Engineering 28, 328–337. http://www.sciencedirect.com/science/article/pii/S1875510015302894 Bitterfeld amber is not Baltic amber: Three geochemical tests and further constraints on the botanical affinities of succinite Wolfe, A.P., McKellar, R.C., Tappert, R., Sodhi, R.N.S., Muehlenbachs, K., 2016. Review of Palaeobotany and Palynology 225, 21–32. http://www.sciencedirect.com/science/article/pii/S003466671500216X Paleoenvironment characteristics and hydrocarbon potential of the Lower Miocene bituminous shales in Sivas Basin (central Anatolia, Turkey) Yalcın Erik, N., 2015. Arabian Journal of Geosciences 9, 1–15. http://dx.doi.org/10.1007/s12517-015-2063-5 Geochemical and geological characteristics of the Lower Cambrian shales in the middle–upper Yangtze area of south China and their implication for the shale gas exploration Yan, J.-F., Men, Y.-P., Sun, Y.-Y., Yu, Q., Liu, W., Zhang, H.-Q., Liu, J., Kang, J.-W., Zhang, S.-N., Bai, H.-H., Zheng, X., 2016. Marine and Petroleum Geology 70, 1–13. http://www.sciencedirect.com/science/article/pii/S0264817215301343 Pore structure of Cambrian shales from the Sichuan Basin in China and implications to gas storage Yang, F., Ning, Z., Wang, Q., Liu, H., 2016. Marine and Petroleum Geology 70, 14–26. http://www.sciencedirect.com/science/article/pii/S0264817215301252 Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry Yang, R., He, S., Yi, J., Hu, Q., 2016. Marine and Petroleum Geology 70, 27–45. http://www.sciencedirect.com/science/article/pii/S0264817215301422 Analysis and evaluation of different measuring methods for shale porosity Yang, W., Xue, L.H., Tang, J., Lv, C.F., Xu, Y., Yang, S., Chen, G.J., 2015. Acta Sedimentologica Sinica 33, 1258–1264. http://www.cjxb.ac.cn/EN/abstract/abstract3608.shtml Lithofacies and cyclicity of the Lower Cambrian Niutitang shale in the Mayang Basin of western Hunan, south China Yang, X., Fan, T., Wu, Y., 2016. Journal of Natural Gas Science and Engineering 28, 74–86. http://www.sciencedirect.com/science/article/pii/S1875510015302535 Characterization of the pore system in an over-mature marine shale reservoir: A case study of a successful shale gas well in southern Sichuan Basin, China Yang, Y., Wu, K., Zhang, T., Xue, M., 2015. Petroleum 1, 173–186. http://www.sciencedirect.com/science/article/pii/S2405656115000425 New pore space characterization method of shale matrix formation by considering organic and inorganic pores Yang, Y., Yao, J., Wang, C., Gao, Y., Zhang, Q., An, S., Song, W., 2015. Journal of Natural Gas Science and Engineering 27, Part 2, 496–503. http://www.sciencedirect.com/science/article/pii/S187551001530086X Paleo-marine environments of the Early Cambrian Yangtze Platform Zhang, J., Fan, T., Algeo, T.J., Li, Y., Zhang, J., 2016. Palaeogeography, Palaeoclimatology, Palaeoecology 443, 66–79. http://www.sciencedirect.com/science/article/pii/S0031018215006999 Stepwise pyrolysis of the kerogen from the Huadian oil shale, NE China: Algaenan-derived hydrocarbons and mid-chain ketones Zhang, Z., Volkman, J.K., Xie, X., Snowdon, L.R., 2016. Organic Geochemistry 91, 89–99. http://www.sciencedirect.com/science/article/pii/S0146638015002132 Shale gas in China: Characteristics, challenges and prospects (I) Zou, C., Dong, D., Wang, Y., Li, X., Huang, J., Wang, S., Guan, Q., Zhang, C., Wang, H., Liu, H., Bai, W., Liang, F., Lin, W., Zhao, Q., Liu, D., Yang, Z., Liang, P., Sun, S., Qiu, Z., 2015. Petroleum Exploration and Development 42, 753–767. http://www.sciencedirect.com/science/article/pii/S1876380415300720

e76

Geochemistry Articles / Organic Geochemistry 92 (2016) e34–e76

Soil Geochemistry

Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils Craine, J.M., Brookshire, E.N.J., Cramer, M.D., Hasselquist, N., Koba, K., Marin-Spiotta, E., Wang, L., 2015. Plant and Soil 396, 1–26. http://dx.doi.org/10.1007/s11104-015-2542-1 Direct incorporation of fatty acids into microbial phospholipids in soils: Position-specific labeling tells the story Dippold, M.A., Kuzyakov, Y., 2016. Geochimica et Cosmochimica Acta 174, 211–221. http://www.sciencedirect.com/science/article/pii/S0016703715006547 European scale analysis of phospholipid fatty acid composition of soils to establish operating ranges Francisco, R., Stone, D., Creamer, R.E., Sousa, J.P., Morais, P.V., 2016. Applied Soil Ecology 97, 49–60. http://www.sciencedirect.com/science/article/pii/S0929139315300809 Pathways of anaerobic organic matter decomposition in tundra soils from Barrow, Alaska Herndon, E.M., Mann, B.F., Roy Chowdhury, T., Yang, Z., Wullschleger, S.D., Graham, D., Liang, L., Gu, B., 2015. Journal of Geophysical Research: Biogeosciences 120, 2345–2359. http://dx.doi.org/10.1002/2015JG003147 Geochemical drivers of organic matter decomposition in arctic tundra soils Herndon, E.M., Yang, Z., Bargar, J., Janot, N., Regier, T.Z., Graham, D.E., Wullschleger, S.D., Gu, B., Liang, L., 2015. Biogeochemistry 126, 397–414. http://dx.doi.org/10.1007/s10533-015-0165-5 The contentious nature of soil organic matter Lehmann, J., Kleber, M., 2015. Nature 528, 60–68. http://www.nature.com/nature/journal/v528/n7580/full/nature16069.html Black carbon aerosol dynamics and isotopic composition in Alaska linked with boreal fire emissions and depth of burn in organic soils Mouteva, G.O., Czimczik, C.I., Fahrni, S.M., Wiggins, E.B., Rogers, B.M., Veraverbeke, S., Xu, X., Santos, G.M., Henderson, J., Miller, C.E., Randerson, J.T., 2015. Global Biogeochemical Cycles 29, 1977–2000. http://dx.doi.org/10.1002/2015GB005247 Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette Nowak, M.E., Beulig, F., von Fischer, J., Muhr, J., Küsel, K., Trumbore, S.E., 2015. Biogeosciences 12, 7169–7183. http://www.biogeosciences.net/12/7169/2015/ Lipid, sterol and saccharide sources and dynamics in surface soils during an annual cycle in a temperate climate region Rushdi, A.I., Oros, D.R., Al-Mutlaq, K.F., He, D., Medeiros, P.M., Simoneit, B.R.T., 2016. Applied Geochemistry 66, 1–13. http://www.sciencedirect.com/science/article/pii/S0883292715300731 Sample storage-induced changes in the quantity and quality of soil labile organic carbon Sun, S.-Q., Cai, H.-Y., Chang, S.X., Bhatti, J.S., 2015. Scientific Reports 5, Article number 17496. http://dx.doi.org/10.1038/srep17496 Expanded compilations of references with abstracts in Microsoft Word and ISI EndNote formats are available at: http://eaog.org/?cat=16 Compiled by Clifford C. Walters