Organic Geochemistry 89–90 (2015) e1–e23
Contents lists available at ScienceDirect
Organic Geochemistry journal homepage: www.elsevier.com/locate/orggeochem
Geochemistry Articles – September 2015 Analytical Chemistry Chemometric-based determination of polycyclic aromatic hydrocarbons in aqueous samples using ultrasound-assisted emulsification microextraction combined to gas chromatography–mass spectrometry Ahmadvand, M., Sereshti, H., Parastar, H., 2015. Journal of Chromatography A 1413, 117–126. http://www.sciencedirect.com/science/article/pii/S0021967315011759 Recent advances in capillary microextraction Bagheri, H., Piri-Moghadam, H., 2015. TrAC Trends in Analytical Chemistry 73, 64–80. http://www.sciencedirect.com/science/article/pii/S0165993615002009 Structure determination of natural products by mass spectrometry Biemann, K., 2015. Annual Review of Analytical Chemistry 8, 1–19. http://dx.doi.org/10.1146/annurev-anchem-071114-040110 Flow field thermal gradient gas chromatography Boeker, P., Leppert, J., 2015. Analytical Chemistry 87, 9033–9041. http://dx.doi.org/10.1021/acs.analchem.5b02227 Real-time sample analysis using a sampling probe and miniature mass spectrometer Chen, C.-H., Lin, Z., Tian, R., Shi, R., Cooks, R.G., Ouyang, Z., 2015. Analytical Chemistry 87, 8867–8873. http://dx.doi.org/10.1021/acs.analchem.5b01943 Development of an accurate and high-throughput methodology for structural comprehension of chlorophylls derivatives. (II) Dephytylated derivatives Chen, K., Ríos, J.J., Roca, M., Pérez-Gálvez, A., 2015. Journal of Chromatography A 1412, 90–99. http://www.sciencedirect.com/science/article/pii/S0021967315011383 On the fine isotopic distribution and limits to resolution in mass spectrometry Dittwald, P., Valkenborg, D., Claesen, J., Rockwood, A.L., Gambin, A., 2015. Journal of The American Society for Mass Spectrometry 26, 1732–1745. http://dx.doi.org/10.1007/s13361-015-1180-4 Evolution of Orbitrap mass spectrometry instrumentation Eliuk, S., Makarov, A., 2015. Annual Review of Analytical Chemistry 8, 61–80. http://dx.doi.org/10.1146/annurev-anchem-071114-040325 Optically heated ultra-fast-cycling gas chromatography module for separation of direct sampling and online monitoring applications Fischer, M., Wohlfahrt, S., Varga, J., Matuschek, G., Saraji-Bozorgzad, M.R., Denner, T., Walte, A., Zimmermann, R., 2015. Analytical Chemistry 87, 8634–8639. http://dx.doi.org/10.1021/acs.analchem.5b01879 Characterization and classification of stationary phases in HPLC and SFC – a review Galea, C., Mangelings, D., Vander Heyden, Y., 2015. Analytica Chimica Acta 886, 1–15. http://www.sciencedirect.com/science/article/pii/S0003267015004742 Recent progress in the fundamental understanding of hydrophilic interaction chromatography (HILIC) Guo, Y., 2015. Analyst 140, 6452–6466. http://dx.doi.org/10.1039/C5AN00670H http://dx.doi.org/10.1016/j.orggeochem.2015.09.004
e2
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
Thin layer chromatography coupled with electrospray ionization mass spectrometry for direct analysis of raw samples Hu, B., Xin, G.-z., So, P.-K., Yao, Z.-P., 2015. Journal of Chromatography A 1415, 155–160. http://www.sciencedirect.com/science/article/pii/S0021967315012364 Direct ionization methods in mass spectrometry: An overview Klampfl, C.W., Himmelsbach, M., 2015. Analytica Chimica Acta 890, 44–59. http://www.sciencedirect.com/science/article/pii/S0003267015008582 Direct infusion electrospray ionization–ion mobility–mass spectrometry for comparative profiling of fatty acids based on stable isotope labeling Leng, J., Guan, Q., Sun, T., Wang, H., Cui, J., Liu, Q., Zhang, Z., Zhang, M., Guo, Y., 2015. Analytica Chimica Acta 887, 148–154. http://www.sciencedirect.com/science/article/pii/S0003267015008302 A comparison of one-dimensional and microscale two-dimensional liquid chromatographic approaches coupled to high resolution mass spectrometry for the analysis of complex samples Leonhardt, J., Teutenberg, T., Tuerk, J., Schlusener, M.P., Ternes, T.A., Schmidt, T.C., 2015. Analytical Methods 7, 7697–7706. http://dx.doi.org/10.1039/C5AY01143D Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): Review Li, D.-X., Gan, L., Bronja, A., Schmitz, O.J., 2015. Analytica Chimica Acta 891, 43–61. http://www.sciencedirect.com/science/article/pii/S0003267015008971 Separation of C5–C7 hydrocarbon components on Al2O3 capillary column and its application Li, J., Jiang, L., Liu, J., Wang, C., 2015. Chinese Journal of Chromatography 33, 1009–1014. http://www.chrom-china.com/EN/abstract/abstract13952.shtml# Recent advances in quantitative LA–ICP–MS analysis: Challenges and solutions in the life sciences and environmental chemistry Limbeck, A., Galler, P., Bonta, M., Bauer, G., Nischkauer, W., Vanhaecke, F., 2015. Analytical and Bioanalytical Chemistry 407, 6593–6617. http://dx.doi.org/10.1007/s00216-015-8858-0 Ionization mechanism of matrix-assisted laser desorption/ionization Lu, I.C., Lee, C., Lee, Y.-T., Ni, C.-K., 2015. Annual Review of Analytical Chemistry 8, 21–39. http://dx.doi.org/10.1146/annurev-anchem-071114-040315 Rapid sequential separation of sedimentary lipid biomarkers via selective accelerated solvent extraction Magill, C.R., Denis, E.H., Freeman, K.H., 2015. Organic Geochemistry 88, 29–34. http://www.sciencedirect.com/science/article/pii/S0146638015001515 Assessment of the orthogonality in two-dimensional separation systems using criteria defined by the maximal information coefficient Mani-Varnosfaderani, A., Ghaemmaghami, M., 2015. Journal of Chromatography A 1415, 108–114. http://www.sciencedirect.com/science/article/pii/S0021967315012303 Determination of Ni and V in crude oil samples encapsulated in Zr xerogels by laser-induced breakdown spectroscopy Martínez, M., Lobinski, R., Bouyssiere, B., Piscitelli, V., Chirinos, J., Caetano, M., 2015. Energy & Fuels 29, 5573–5577. http://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b00960 Modern Techniques and Solvents for the Extraction of Microbial Oils Meullemiestre, A., Breil, C., Abert-Vian, M., Chemat, F., 2015. Modern Techniques and Solvents for the Extraction of Microbial Oils. Springer, 52 pp. http://www.springer.com/gp/book/9783319227160 Recent advances of in-tube solid-phase microextraction Moliner-Martinez, Y., Herráez-Hernández, R., Verdú-Andrés, J., Molins-Legua, C., Campíns-Falcó, P., 2015. TrAC Trends in Analytical Chemistry 71, 205–213. http://www.sciencedirect.com/science/article/pii/S0165993615001338 Elemental analysis of crude oils using microwave plasma atomic emission spectroscopy Nelson, J., Gilleland, G., Poirier, L., Leong, D., Hajdu, P., Lopez-Linares, F., 2015. Energy & Fuels 29, 5587–5594. http://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b01026
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
e3
Miniaturized solid-phase extraction techniques Płotka-Wasylka, J., Szczepan´ska, N., de la Guardia, M., Namies´nik, J., 2015. TrAC Trends in Analytical Chemistry 73, 19–38. http://www.sciencedirect.com/science/article/pii/S0165993615002010 Online comprehensive two-dimensional ion chromatography capillary electrophoresis Ranjbar, L., Gaudry, A.J., Breadmore, M.C., Shellie, R.A., 2015. Analytical Chemistry 87, 8673–8678. http://dx.doi.org/10.1021/acs.analchem.5b01130 Chromatographic methods for the isolation, separation and characterisation of dissolved organic matter Sandron, S., Rojas, A., Wilson, R., Davies, N.W., Haddad, P.R., Shellie, R.A., Nesterenko, P.N., Kelleher, B.P., Paull, B., 2015. Environmental Science: Processes & Impacts 17, 1531–1567. http://dx.doi.org/10.1039/C5EM00223K Evolution and status of preparative gas chromatography as a green sample-preparation technique Sciarrone, D., Pantò, S., Ragonese, C., Dugo, P., Mondello, L., 2015. TrAC Trends in Analytical Chemistry 71, 65–73. http://www.sciencedirect.com/science/article/pii/S0165993615001399 Investigating the trace polar species present in diesel using high-resolution mass spectrometry and selective ionization techniques Smit, E., Rüger, C.P., Sklorz, M., De Goede, S., Zimmermann, R., Rohwer, E.R., 2015. Energy & Fuels 29, 5554–5562. http://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b00831 A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis Souza-Silva, É.A., Jiang, R., Rodríguez-Lafuente, A., Gionfriddo, E., Pawliszyn, J., 2015. TrAC Trends in Analytical Chemistry 71, 224–235. http://www.sciencedirect.com/science/article/pii/S0165993615001624 Charge inversion of phospholipids by dimetal complexes for positive ion-mode electrospray ionization mass spectrometry analysis Svane, S., Gorshkov, V., Kjeldsen, F., 2015. Analytical Chemistry 87, 8732–8739. http://dx.doi.org/10.1021/acs.analchem.5b01536 The penetration of green sample-preparation techniques in comprehensive two-dimensional gas chromatography Tranchida, P.Q., Maimone, M., Purcaro, G., Dugo, P., Mondello, L., 2015. TrAC Trends in Analytical Chemistry 71, 74–84. http://www.sciencedirect.com/science/article/pii/S0165993615001351 1- and 2-photon ionization for online FAIMS-FTMS coupling allows new insights into the constitution of crude oils Vetere, A., Schrader, W., 2015. Analytical Chemistry 87, 8874–8879. http://dx.doi.org/10.1021/acs.analchem.5b01969 Enhanced metabolite profiling using a redesigned atmospheric pressure chemical ionization source for gas chromatography coupled to high-resolution time-of-flight mass spectrometry Wachsmuth, C.J., Hahn, T.A., Oefner, P.J., Dettmer, K., 2015. Analytical and Bioanalytical Chemistry 407, 6669–6680. http://dx.doi.org/10.1007/s00216-015-8824-x Modern NMR Approaches to the Structure Elucidation of Natural Products: Volume 1: Instrumentation and Software Williams, A., Martin, G., Rovnyak, D. (eds.), 2015. Royal Society of Chemistry, p. 329. http://pubs.rsc.org/en/content/ebook/978-1-84973-383-0#!divbookcontent Vacuum-assisted headspace solid phase microextraction of polycyclic aromatic hydrocarbons in solid samples Yiantzi, E., Kalogerakis, N., Psillakis, E., 2015. Analytica Chimica Acta 890, 108–116. http://www.sciencedirect.com/science/article/pii/S0003267015007989 Recent advances in hopanoids analysis: Quantification protocols overview, main research targets and selected problems of complex data exploration Zarzycki, P.K., Portka, J.K., 2015. The Journal of Steroid Biochemistry and Molecular Biology 153, 3–26. http://www.sciencedirect.com/science/article/pii/S0960076015001223 Archaeological/Art Organic Chemistry
Molecular evidence of use of hide glue in 4th millennium BC Europe Bleicher, N., Kelstrup, C., Olsen, J.V., Cappellini, E., 2015. Journal of Archaeological Science 63, 65–71. http://www.sciencedirect.com/science/article/pii/S0305440315002496
e4
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
Ritual drinks in the pre-Hispanic US Southwest and Mexican Northwest Crown, P.L., Gu, J., Hurst, W.J., Ward, T.J., Bravenec, A.D., Ali, S., Kebert, L., Berch, M., Redman, E., Lyons, P.D., Merewether, J., Phillips, D.A., Reed, L.S., Woodson, K., 2015. Proceedings of the National Academy of Sciences 112, 11436–11442. http://www.pnas.org/content/112/37/11436.abstract Compound-specific amino acid isotopic proxies for detecting freshwater resource consumption Webb, E.C., Honch, N.V., Dunn, P.J.H., Eriksson, G., Lidén, K., Evershed, R.P., 2015. Journal of Archaeological Science 63, 104–114. http://www.sciencedirect.com/science/article/pii/S0305440315002381 Astrobiology
Tidal heating of Earth-like exoplanets around M stars: Thermal, magnetic, and orbital evolutions Driscoll, P.E., Barnes, R., 2015. Astrobiology 15, 739–760. http://dx.doi.org/10.1089/ast.2015.1325 In situ search for extraterrestrial life: A microbial fuel cell–based sensor for the detection of photosynthetic metabolism Figueredo, F., Cortón, E., Abrevaya, X.C., 2015. Astrobiology 15, 717–727. http://dx.doi.org/10.1089/ast.2015.1288 ^ sample and the search for advanced extraterrestrial civilisations Application of the mid-IR radio correlation to the G Garrett, M.A., 2015. Astronomy & Astrophysics 581, Article Number: L5 http://www.aanda.org/articles/aa/abs/2015/09/aa26687-15/aa26687-15.html Challenges analyzing gypsum on Mars by Raman spectroscopy Marshall, C.P., Olcott Marshall, A., 2015. Astrobiology 15, 761–769. http://dx.doi.org/10.1089/ast.2015.1334 News Feature: Secret life McKee, M., 2015. Proceedings of the National Academy of Sciences 112, 11141–11143. http://www.pnas.org/content/112/36/11141.short Titania may produce abiotic oxygen atmospheres on habitable exoplanets Narita, N., Enomoto, T., Masaoka, S., Kusakabe, N., 2015. Scientific Reports 5, Article number: 13977. http://dx.doi.org/10.1038/srep13977 Biomarker analysis of samples visually identified as microbial in the Eocene Green River Formation: An analogue for Mars Olcott Marshall, A., Cestari, N.A., 2015. Astrobiology 15, 770–775. http://dx.doi.org/10.1089/ast.2015.1339 On the possibility of habitable Trojan planets in binary star systems Schwarz, R., Funk, B., Bazsó, Á., 2015. Origins of Life and Evolution of Biospheres 45, 469–477. http://dx.doi.org/10.1007/s11084-015-9449-y Biochemistry
Involvement of a eukaryotic-like ubiquitin-related modifier in the proteasome pathway of the archaeon Sulfolobus acidocaldarius Anjum, R.S., Bray, S.M., Blackwood, J.K., Kilkenny, M.L., Coelho, M.A., Foster, B.M., Li, S., Howard, J.A., Pellegrini, L., Albers, S.-V., Deery, M.J., Robinson, N.P., 2015. Nature Communications 6, Article number 8163. http://dx.doi.org/10.1038/ncomms9163 Rerouting cellular electron flux to increase the rate of biological methane production Catlett, J.L., Ortiz, A.M., Buan, N.R., 2015. Applied and Environmental Microbiology 81, 6528–6537. http://aem.asm.org/content/81/19/6528.abstract Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide Hutchins, D.A., Walworth, N.G., Webb, E.A., Saito, M.A., Moran, D., McIlvin, M.R., Gale, J., Fu, F.-X., 2015. Nature Communications 6, Article number 8155. http://dx.doi.org/10.1038/ncomms9155
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
e5
Biodegradation
The role of paraffin oil on the interaction between denitrifying anaerobic methane oxidation and Anammox processes Fu, L., Ding, Z.-W., Ding, J., Zhang, F., Zeng, R.J., 2015. Applied Microbiology and Biotechnology 99, 7925–7936. http://dx.doi.org/10.1007/s00253-015-6670-6 Biodegradation of animal fats and vegetable oils by Rhodococcus erythropolis PR4 Kis, Á., Laczi, K., Zsíros, S., Rákhely, G., Perei, K., 2015. International Biodeterioration & Biodegradation 105, 114–119. http://www.sciencedirect.com/science/article/pii/S0964830515300706 Carbon isotopic fractionation during biodegradation of phthalate esters in anoxic condition Liu, H., Wu, Z., Huang, X., Yarnes, C., Li, M., Tong, L., 2015. Chemosphere 138, 1021–1027. http://www.sciencedirect.com/science/article/pii/S0045653514015057 Degradation of polycyclic aromatic hydrocarbons (pyrene and fluoranthene) by bacterial consortium isolated from contaminated road side soil and soil termite fungal comb Mohd Radzi, N.-A.-S., Tay, K.-S., Abu Bakar, N.-K., Uche Emenike, C., Krishnan, S., Shahul Hamid, F., Abas, M.-R., 2015. Environmental Earth Sciences 74, 5383–5391. http://dx.doi.org/10.1007/s12665-015-4552-y Identification of ester metabolites from petroleum hydrocarbon biodegradation in groundwater using GCGC–TOFMS O’Reilly, K.T., Mohler, R.E., Zemo, D.A., Ahn, S., Tiwary, A.K., Magaw, R.I., Espino Devine, C., Synowiec, K.A., 2015. Environmental Toxicology and Chemistry 34, 1959–1961. http://dx.doi.org/10.1002/etc.3022 Roles of thermophiles and fungi in bitumen degradation in mostly cold oil sands outcrops Wong, M.-L., An, D., Caffrey, S.M., Soh, J., Dong, X., Sensen, C.W., Oldenburg, T.B.P., Larter, S.R., Voordouw, G., 2015. Applied and Environmental Microbiology 81, 6825–6838. http://aem.asm.org/content/81/19/6825.abstract Biodegradation pathways/genomics Enzymes of the benzoyl-coenzyme A degradation pathway in the hyperthermophilic archaeon Ferroglobus placidus Schmid, G., René, S.B., Boll, M., 2015. Environmental Microbiology 17, 3289–3300. http://dx.doi.org/10.1111/1462-2920.12785 Biogeochemistry
Evidences for bioprecipitation of pedogenic calcite by calcifying bacteria from three different soils of L’Aquila Basin (Abruzzi, central Italy) Cacchio, P., Ercole, C., Lepidi, A., 2015. Geomicrobiology Journal 32, 701–711. http://dx.doi.org/10.1080/01490451.2014.1001095 Formation of filamentous Mn oxide particles by the alphaproteobacterium Bosea sp. strain BIWAKO-01 Furuta, S., Ikegaya, H., Hashimoto, H., Ichise, S., Kohno, T., Miyata, N., Takada, J., 2014. Geomicrobiology Journal 32, 666–676. http://dx.doi.org/10.1080/01490451.2014.982837 Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones Glass, J.B., Kretz, C.B., Ganesh, S., Ranjan, P., Seston, S.L., Buck, K.N., Landing, W.M., Morton, P.L., Moffett, J.W., Giovannoni, S.J., Vergin, K.L., Stewart, F.J., 2015. Frontiers in Microbiology 6, 998. doi: 10.3389/fmicb.2015.00998. http://journal.frontiersin.org/article/10.3389/fmicb.2015.00998/abstract From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources Ishii, T., Kawaichi, S., Nakagawa, H., Hashimoto, K., Nakamura, R., 2015. Frontiers in Microbiology 6, 994. doi: 10.3389/fmicb.2015.00994. http://journal.frontiersin.org/article/10.3389/fmicb.2015.00994/abstract In situ detection of subsurface biofilm using low-field NMR: A field study Kirkland, C.M., Herrling, M.P., Hiebert, R., Bender, A.T., Grunewald, E., Walsh, D.O., Codd, S.L., 2015. Environmental Science & Technology 49, 11045–11052. http://dx.doi.org/10.1021/acs.est.5b02690
e6
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs Klatt, J.M., Haas, S., Yilmaz, P., de Beer, D., Polerecky, L., 2015. Environmental Microbiology 17, 3301–3313. http://dx.doi.org/10.1111/1462-2920.12791 Nitrate and ammonia as nitrogen sources for deep subsurface microorganisms Kutvonen, H., Rajala, P., Carpén, L., Bomberg, M., 2015. Frontiers in Microbiology 6, 1079. doi: 10.3389/fmicb.2015.01079. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01079/abstract Iron encrustations on filamentous algae colonized by Gallionella-related bacteria in a metal-polluted freshwater stream Mori, J.F., Neu, T.R., Lu, S., Händel, M., Totsche, K.U., Küsel, K., 2015. Biogeosciences 12, 5277–5289. http://www.biogeosciences.net/12/5277/2015/ Nucleation of Fe-rich phosphates and carbonates on microbial cells and exopolymeric substances Sánchez-Román, M., Puente-Sánchez, F., Parro, V., Amils, R., 2015. Frontiers in Microbiology 6, 1024. doi: 10.3389/fmicb.2015.01024. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01024/abstract Potential for impact glass to preserve microbial metabolism Sapers, H.M., Banerjee, N.R., Osinski, G.R., 2015. Earth and Planetary Science Letters 430, 95–104. http://www.sciencedirect.com/science/article/pii/S0012821X15005312 Antarctic microbial mats: A modern analog for Archean lacustrine oxygen oases Sumner, D.Y., Hawes, I., Mackey, T.J., Jungblut, A.D., Doran, P.T., 2015. Geology 43, 887–890. http://geology.gsapubs.org/content/43/10/887.abstract Physiology, Fe(II) oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions Swanner, E.D., Wu, W., Hao, L., Wuestner, M., Obst, M., Moran, D.M., McIlvin, M., Saito, M., Kappler, A., 2015. Frontiers in Earth Science 3, 60. doi: 10.3389/feart.2015.00060. http://journal.frontiersin.org/article/10.3389/feart.2015.00060/abstract Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds Tuo, Y., Liu, G., Dong, B., Zhou, J., Wang, A., Wang, J., Jin, R., Lv, H., Dou, Z., Huang, W., 2015. Scientific Reports 5, Article number 13515. http://dx.doi.org/10.1038/srep13515 An RNA-sequencing study of the genes and metabolic pathways involved in Aspergillus niger weathering of potassium feldspar Wang, W., Lian, B., Pan, L., 2014. Geomicrobiology Journal 32, 689–700. http://dx.doi.org/10.1080/01490451.2014.991812 Perspective of harnessing energy from landfill leachate via microbial fuel cells: Novel biofuels and electrogenic physiologies Wu, D., Wang, T., Huang, X., Dolfing, J., Xie, B., 2015. Applied Microbiology and Biotechnology 99, 7827–7836. http://dx.doi.org/10.1007/s00253-015-6857-x Endogenously enhanced biosurfactant production promotes electricity generation from microbial fuel cells Zheng, T., Xu, Y.-S., Yong, X.-Y., Li, B., Yin, D., Cheng, Q.-W., Yuan, H.-R., Yong, Y.-C., 2015. Bioresource Technology 197, 416–421. http://www.sciencedirect.com/science/article/pii/S0960852415012511 Biomass/Biofuels
Natural products as biofuels and bio-based chemicals: Fatty acids and isoprenoids Beller, H.R., Lee, T.S., Katz, L., 2015. Natural Product Reports 32, 1508–1526. http://dx.doi.org/10.1039/C5NP00068H Bio-based production of monomers and polymers by metabolically engineered microorganisms Chung, H., Yang, J.E., Ha, J.Y., Chae, T.U., Shin, J.H., Gustavsson, M., Lee, S.Y., 2015. Current Opinion in Biotechnology 36, 73–84. http://www.sciencedirect.com/science/article/pii/S095816691500097X Mass spectrometry and nuclear magnetic resonance spectroscopy study of carbohydrate decomposition by hydrothermal liquefaction treatment: A modeling approach on bio-oil production from organic wastes Croce, A., Battistel, E., Chiaberge, S., Spera, S., Reale, S., De Angelis, F., 2015. Energy & Fuels 29, 5847–5856. http://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b01204
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
e7
Advancing metabolic engineering through systems biology of industrial microorganisms Dai, Z., Nielsen, J., 2015. Current Opinion in Biotechnology 36, 8–15. http://www.sciencedirect.com/science/article/pii/S0958166915001056 Alkane production from biomass: Chemo-, bio- and integrated catalytic approaches Deneyer, A., Renders, T., Van Aelst, J., Van den Bosch, S., Gabriëls, D., Sels, B.F., 2015. Current Opinion in Chemical Biology 29, 40–48. http://www.sciencedirect.com/science/article/pii/S1367593115001015 Glucanocellulosic ethanol: The undiscovered biofuel potential in energy crops and marine biomass Falter, C., Zwikowics, C., Eggert, D., Blümke, A., Naumann, M., Wolff, K., Ellinger, D., Reimer, R., Voigt, C.A., 2015. Scientific Reports 5, Article number 13722. http://dx.doi.org/10.1038/srep13722 Better together: Engineering and application of microbial symbioses Hays, S.G., Patrick, W.G., Ziesack, M., Oxman, N., Silver, P.A., 2015. Current Opinion in Biotechnology 36, 40–49. http://www.sciencedirect.com/science/article/pii/S095816691500107X Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation-inducible promoter from Chlamydomonas reinhardtii Iwai, M., Hori, K., Sasaki-Sekimoto, Y., Shimojima, M., Ohta, H., 2015. Frontiers in Microbiology 6, 912. doi: 10.3389/fmicb.2015.00912. http://journal.frontiersin.org/article/10.3389/fmicb.2015.00912/abstract Engineering of oleaginous organisms for lipid production Levering, J., Broddrick, J., Zengler, K., 2015. Current Opinion in Biotechnology 36, 32–39. http://www.sciencedirect.com/science/article/pii/S0958166915001007 Biomass, lipid productivities and fatty acids composition of marine Nannochloropsis gaditana cultured in desalination concentrate Matos, Â.P., Feller, R., Moecke, E.H.S., Sant’Anna, E.S., 2015. Bioresource Technology 197, 48–55. http://www.sciencedirect.com/science/article/pii/S0960852415011475 Application of isotope labeling experiments and 13C flux analysis to enable rational pathway engineering McAtee, A.G., Jazmin, L.J., Young, J.D., 2015. Current Opinion in Biotechnology 36, 50–56. http://www.sciencedirect.com/science/article/pii/S0958166915001032 Biotechnological applications of extremophiles, extremozymes and extremolytes Raddadi, N., Cherif, A., Daffonchio, D., Neifar, M., Fava, F., 2015. Applied Microbiology and Biotechnology 99, 7907–7913. http://dx.doi.org/10.1007/s00253-015-6874-9 Bacterial cellulose biosynthesis: Diversity of operons, subunits, products, and functions Römling, U., Galperin, M.Y., 2015. Trends in Microbiology 23, 545–557. http://www.sciencedirect.com/science/article/pii/S0966842X15001201 Genetic manipulation of lignocellulosic biomass for bioenergy Wang, P., Dudareva, N., Morgan, J.A., Chapple, C., 2015. Current Opinion in Chemical Biology 29, 32–39. http://www.sciencedirect.com/science/article/pii/S136759311500099X Carbon Cycle
The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink Abelmann, A., Gersonde, R., Knorr, G., Zhang, X., Chapligin, B., Maier, E., Esper, O., Friedrichsen, H., Lohmann, G., Meyer, H., Tiedemann, R., 2015. Nature Communications 6, Article number 8136. http://dx.doi.org/10.1038/ncomms9136 The reinvigoration of the Southern Ocean carbon sink Landschützer, P., Gruber, N., Haumann, F.A., Rödenbeck, C., Bakker, D.C.E., van Heuven, S., Hoppema, M., Metzl, N., Sweeney, C., Takahashi, T., Tilbrook, B., Wanninkhof, R., 2015. Science 349, 1221–1224. http://www.sciencemag.org/content/349/6253/1221.abstract An increasing carbon sink? Mikaloff-Fletcher, S.E., 2015. Science 349, 1165. http://www.sciencemag.org/content/349/6253/1165.short
e8
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
Methane emissions from an alpine wetland on the Tibetan Plateau: Neglected but vital contribution of the nongrowing season Song, W., Wang, H., Wang, G., Chen, L., Jin, Z., Zhuang, Q., He, J.-S., 2015. Journal of Geophysical Research: Biogeosciences 120, 1475–1490. http://dx.doi.org/10.1002/2015JG003043 d13C-CH4 reveals CH4 variations over oceans from mid-latitudes to the Arctic Yu, J., Xie, Z., Sun, L., Kang, H., He, P., Xing, G., 2015. Scientific Reports 5, Article number 13760. http://dx.doi.org/10.1038/srep13760 Carbon Sequestration
Risk assessment-led characterisation of the SiteChar UK North Sea site for the geological storage of CO2 Akhurst, M., Hannis, S.D., Quinn, M.F., Shi, J.-Q., Koenen, M., Delprat-Jannaud, F., Lecomte, J.-C., Bossie-Codreanu, D., Nagy, S., Klimkowski, Ł., Gei, D., Pluymaekers, M., Long, D., 2015. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 70, 567–586. http://dx.doi.org/10.2516/ogst/2015013 Review of CO2 storage efficiency in deep saline aquifers Bachu, S., 2015. International Journal of Greenhouse Gas Control 40, 188–202. http://www.sciencedirect.com/science/article/pii/S1750583615000146 Dynamic fluid flow and geomechanical coupling to assess the CO2 storage integrity in faulted structures Baroni, A., Estublier, A., Vincké, O., Delprat-Jannaud, F., Nauroy, J.F., 2015. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 70, 729–751. http://dx.doi.org/10.2516/ogst/2015017 The importance of baseline surveys of near-surface gas geochemistry for CCS monitoring, as shown from onshore case studies in northern and southern Europe Beaubien, S.E., Ruggiero, L., Annunziatellis, A., Bigi, S., Ciotoli, G., Deiana, P., Graziani, S., Lombardi, S., Tartarello, M.C., 2015. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 70, 615–633. http://dx.doi.org/10.2516/ogst/2014009 Pore to core scale simulation of the mass transfer with mineral reaction in porous media Bekri, S., Renard, S., Delprat-Jannaud, F., 2015. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 70, 681–693. http://dx.doi.org/10.2516/ogst/2014046 CO2 migration and pressure evolution in deep saline aquifers Birkholzer, J.T., Oldenburg, C.M., Zhou, Q., 2015. International Journal of Greenhouse Gas Control 40, 203–220. http://www.sciencedirect.com/science/article/pii/S1750583615001140 The nanoscale basis of CO2 trapping for geologic storage Bourg, I.C., Beckingham, L.E., DePaolo, D.J., 2015. Environmental Science & Technology 49, 10265–10284. http://dx.doi.org/10.1021/acs.est.5b03003 CCS acceptability: Social site characterization and advancing awareness at prospective storage sites in Poland and Scotland Brunsting, S., Mastop, J., Kaiser, M., Zimmer, R., Shackley, S., Mabon, L., Howell, R., 2015. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 70, 767–784. http://dx.doi.org/10.2516/ogst/2014024 SiteChar – Methodology for a fit-for-purpose assessment of CO2 storage sites in Europe Delprat-Jannaud, F., Pearce, J., Akhurst, M., Nielsen, C.M., Neele, F., Lothe, A., Volpi, V., Brunsting, S., Vincké, O., 2015. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 70, 531–554. http://dx.doi.org/10.2516/ogst/2014059 Convective dissolution of CO2 in saline aquifers: Progress in modeling and experiments Emami-Meybodi, H., Hassanzadeh, H., Green, C.P., Ennis-King, J., 2015. International Journal of Greenhouse Gas Control 40, 238–266. http://www.sciencedirect.com/science/article/pii/S1750583615001450 Techno-economic assessment of four CO2 storage sites Gruson, J.-F., Serbutoviez, S., Delprat-Jannaud, F., Akhurst, M., Nielsen, C., Dalhoff, F., Bergmo, P., Bos, C., Volpi, V., Iacobellis, S., 2015. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 70, 753–766. http://dx.doi.org/10.2516/ogst/2014057
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
e9
Coupled hydro-mechanical simulations of CO2 storage supported by pressure management demonstrate synergy benefits from simultaneous formation fluid extraction Kempka, T., Nielsen, C.M., Frykman, P., Shi, J.-Q., Bacci, G., Dalhoff, F., 2015. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 70, 599–613. http://dx.doi.org/10.2516/ogst/2014029 Numerical simulations of enhanced gas recovery at the Załe˛cze gas field in Poland confirm high CO2 storage capacity and mechanical integrity Klimkowski, Ł., Nagy, S., Papiernik, B., Orlic, B., Kempka, T., 2015. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 70, 655–680. http://dx.doi.org/10.2516/ogst/2015012 Carbon capture and storage: Current perspectives, re-use activities, and future prospects in Turkey Kok, M.V., 2015. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37, 1979–1987. http://dx.doi.org/10.1080/15567036.2015.1027835 Capillary trapping for geologic carbon dioxide storage – From pore scale physics to field scale implications Krevor, S., Blunt, M.J., Benson, S.M., Pentland, C.H., Reynolds, C., Al-Menhali, A., Niu, B., 2015. International Journal of Greenhouse Gas Control 40, 221–237. http://www.sciencedirect.com/science/article/pii/S1750583615001486 Leakage pathway estimation using iTOUGH2 in a multiphase flow system for geologic CO2 storage Lee, S.J., McPherson, B.J., Vasquez, F.G., 2015. Environmental Earth Sciences 74, 5111–5128. http://dx.doi.org/10.1007/s12665-015-4523-3 Conformity assessment of monitoring and simulation of CO2 storage: A case study from the Ketzin pilot site Lüth, S., Ivanova, A., Kempka, T., 2015. International Journal of Greenhouse Gas Control 42, 329–339. http://www.sciencedirect.com/science/article/pii/S1750583615300505 CO2 storage feasibility: A workflow for site characterisation Nepveu, M., Neele, F., Delprat-Jannaud, F., Akhurst, M., Vincké, O., Volpi, V., Lothe, A., Brunsting, S., Pearce, J., Battani, A., Baroni, A., Garcia, B., Hofstee, C., Wollenweber, J., 2015. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 70, 555–566. http://dx.doi.org/10.2516/ogst/2014034 How to characterize a potential site for CO2 storage with sparse data coverage – a Danish onshore site case Nielsen, C.M., Frykman, P., Dalhoff, F., 2015. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 70, 587–598. http://dx.doi.org/10.2516/ogst/2015008 Structural and parametric models of the Załe˛cze and Zuchlów gas field region, Fore-Sudetic Monocline, Poland – an example of a general static modeling workflow in mature petroleum areas for CCS, EGR or EOR purposes Papiernik, B., Doligez, B., Klimkowski, Ł., 2015. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 70, 635–654. http://dx.doi.org/10.2516/ogst/2015009 Multi-scale stratigraphic forward modelling of the Surat Basin for geological storage of CO2 Ravestein, J.J., Griffiths, C.M., Dyt, C.P., Michael, K., 2015. Terra Nova 27, 346–355. http://dx.doi.org/10.1111/ter.12166 Evaluation and characterization of a potential CO2 storage site in the South Adriatic offshore Volpi, V., Forlin, E., Baroni, A., Estublier, A., Donda, F., Civile, D., Caffau, M., Kuczynsky, S., Vincké, O., Delprat-Jannaud, F., 2015. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 70, 695–712. http://dx.doi.org/10.2516/ogst/2015011 Southern Adriatic Sea as a potential area for CO2 geological storage Volpi, V., Forlin, F., Donda, F., Civile, D., Facchin, L., Sauli, S., Merson, Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 70, 713–728. http://dx.doi.org/10.2516/ogst/2014039
B.,
Sinza-Mendieta,
K.,
Shams,
A.,
2015.
Coal/Peat/Lignite Geochemistry
Ecological and biogeochemical change in an early Paleogene peat-forming environment: Linking biomarkers and palynology Inglis, G.N., Collinson, M.E., Riegel, W., Wilde, V., Robson, B.E., Lenz, O.K., Pancost, R.D., 2015. Palaeogeography, Palaeoclimatology, Palaeoecology 438, 245–255. http://www.sciencedirect.com/science/article/pii/S0031018215004265
e10
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
Fractal analysis of pore characteristics and their impacts on methane adsorption of coals from northern China Li, Z., Lin, B., Gao, Y., Cao, Z., Cheng, Y., Yu, J., 2015. International Journal of Oil, Gas and Coal Technology 10, 306–324. http://www.inderscience.com/info/inarticle.php?artid=71507 The characteristics of coal and oil shale in the coastal sea areas of Huangxian coalfield, eastern China Lv, D., Li, Z., Liu, H., Li, Y., Feng, T., Wang, D., Wang, P., Li, S., 2015. Oil Shale 32, 204–217. http://www.kirj.ee/26433/?tpl=1061&c_tpl=1064 Evidence for stratigraphically controlled paleogeotherms in the Illinois Basin based on vitrinite-reflectance analysis: Implications for interpreting coal-rank anomalies Mariño, J., Marshak, S., Mastalerz, M., 2015. American Association of Petroleum Geologist Bulletin 99, 1803–1825. http://archives.datapages.com/data/bulletns/2015/10oct/BLTN13001/BLTN13001.html Competitive sorption of CH4, CO2 and H2O on natural coals of different rank Merkel, A., Gensterblum, Y., Krooss, B.M., Amann, A., 2015. International Journal of Coal Geology 150–151, 181–192. http://www.sciencedirect.com/science/article/pii/S0166516215300525 Coalbed methane (CBM) exploration, reservoir characterisation, production, and modelling: A collection of published research (2009–2015) Pan, Z., Wood, D.A., 2015. Journal of Natural Gas Science and Engineering 26, 1472–1484. http://www.sciencedirect.com/science/article/pii/S1875510015002966 Environmentally sensitive major and trace elements in Indonesian coal and their geochemical significance Singh, A.L., Singh, P.K., Singh, M.P., Kumar, A., 2015. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37, 1836–1845. http://dx.doi.org/10.1080/15567036.2011.646109 Cosmochemistry/Planetary Geochemistry
Carbon sequestration on Mars Edwards, C.S., Ehlmann, B.L., 2015. Geology 43, 863–866. http://geology.gsapubs.org/content/43/10/863.abstract Widespread occurrence of (per)chlorate in the Solar System Jackson, W.A., Davila, A.F., Sears, D.W.G., Coates, J.D., McKay, C.P., Brundrett, M., Estrada, N., Böhlke, J.K., 2015. Earth and Planetary Science Letters 430, 470–476. http://www.sciencedirect.com/science/article/pii/S0012821X15005701 Evaluation of the Tenax trap in the sample analysis at Mars instrument suite on the Curiosity rover as a potential hydrocarbon source for chlorinated organics detected in Gale Crater Miller, K.E., Kotrc, B., Summons, R.E., Belmahdi, I., Buch, A., Eigenbrode, J.L., Freissinet, C., Glavin, D.P., Szopa, C., 2015. Journal of Geophysical Research: Planets 120, 2015JE004825. http://dx.doi.org/10.1002/2015JE004825 Enceladus’s measured physical libration requires a global subsurface ocean Thomas, P.C., Tajeddine, R., Tiscareno, M.S., Burns, J.A., Joseph, J., Loredo, T.J., Helfenstein, P., Porco, C., 2016. Icarus 264, 37–47. http://www.sciencedirect.com/science/article/pii/S0019103515003899 Environmental Geochemistry
Off-line-pyrolysis–gas chromatography–mass spectrometry analyses of drilling fluids and drill cuttings – Identification of potential environmental marker substances al Sandouk-Lincke, N.A., Schwarzbauer, J., Antic, V., Antic, M., Caase, J., Grünelt, S., Reßing, K., Littke, R., 2015. Organic Geochemistry 88, 17–28. http://www.sciencedirect.com/science/article/pii/S0146638015001564 Bio-physicochemical effects of gamma irradiation treatment for naphthenic acids in oil sands fluid fine tailings Boudens, R., Reid, T., VanMensel, D., Prakasan, S.M.R., Ciborowski, J.J.H., Weisener, C.G., 2016. Science of The Total Environment 539, 114–124. http://www.sciencedirect.com/science/article/pii/S0048969715306276
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
e11
Does methane pose significant health and public safety hazards?—A review Duncan, I.J., 2015. Environmental Geosciences 22, 85–96. http://eg.geoscienceworld.org/content/22/3/85.abstract Partitioning of organic matter in Boom Clay: Leachable vs mobile organic matter Durce, D., Bruggeman, C., Maes, N., Van Ravestyn, L., Brabants, G., 2015. Applied Geochemistry 63, 169–181. http://www.sciencedirect.com/science/article/pii/S0883292715300263 Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production Lavonen, E.E., Kothawala, D.N., Tranvik, L.J., Gonsior, M., Schmitt-Kopplin, P., Köhler, S.J., 2015. Water Research 85, 286–294. http://www.sciencedirect.com/science/article/pii/S0043135415301755 Use of the distributions of adamantane acids to profile short-term temporal and pond-scale spatial variations in the composition of oil sands process-affected waters Lengger, S.K., Scarlett, A.G., West, C.E., Frank, R.A., Hewitt, L.M., Milestone, C.B., Rowland, S.J., 2015. Environmental Science: Processes & Impacts 17, 1415–1423. http://dx.doi.org/10.1039/C5EM00287G Electro-assisted groundwater bioremediation: Fundamentals, challenges and future perspectives Li, W.-W., Yu, H.-Q., 2015. Bioresource Technology 196, 677–684. http://www.sciencedirect.com/science/article/pii/S0960852415010366 Methane emissions from United States natural gas gathering and processing Marchese, A.J., Vaughn, T.L., Zimmerle, D.J., Martinez, D.M., Williams, L.L., Robinson, A.L., Mitchell, A.L., Subramanian, R., Tkacik, D.S., Roscioli, J.R., Herndon, S.C., 2015. Environmental Science & Technology 49, 10718–10727. http://dx.doi.org/10.1021/acs.est.5b02275 Compound-specific isotope analysis of diesel fuels in a forensic investigation Muhammad, S.A., Frew, R.D., Hayman, A.R., 2015. Frontiers in Chemistry 3, 12. doi: 10.3389/fchem.2015.00012. http://journal.frontiersin.org/article/10.3389/fchem.2015.00012/abstract Bioremediation of coastal and marine pollution due to crude oil using a microorganism Bacillus subtilis Priya, N.S., Doble, M., Sangwai, J.S., 2015. Procedia Engineering 116, 213–220. http://www.sciencedirect.com/science/article/pii/S1877705815019396 The effects of biocide use on the microbiology and geochemistry of produced water in the Eagle Ford formation, Texas, U.S.A. Santillan, E.-F.U., Choi, W., Bennett, P.C., Diouma Leyris, J., 2015. Journal of Petroleum Science and Engineering 135, 1–9. http://www.sciencedirect.com/science/article/pii/S0920410515300747 Decrease in osmotically driven water flux and transport through mangrove roots after oil spills in the presence and absence of dispersants Tansel, B., Arreaza, A., Tansel, D.Z., Lee, M., 2015. Marine Pollution Bulletin 98, 34–39. http://www.sciencedirect.com/science/article/pii/S0025326X15004361 Occurrence of chiral organochlorine compounds in the environmental matrices from King George Island and Ardley Island, west Antarctica Wang, P., Zhang, Q., Li, Y., Zhu, C., Chen, Z., Zheng, S., Sun, H., Liang, Y., Jiang, G., 2015. Scientific Reports 5, Article No. 13913. http://dx.doi.org/10.1038/srep13913 Induced mobility of inorganic and organic solutes from black shales using water extraction: Implications for shale gas exploitation Wilke, F.D.H., Vieth-Hillebrand, A., Naumann, R., Erzinger, J., Horsfield, B., 2015. Applied Geochemistry 63, 158–168. http://www.sciencedirect.com/science/article/pii/S0883292715300135 Evolution/Paleontology/Palynology
Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica Barreda, V.D., Palazzesi, L., Tellería, M.C., Olivero, E.B., Raine, J.I., Forest, F., 2015. Proceedings of the National Academy of Sciences 112, 10989–10994. http://www.pnas.org/content/112/35/10989.abstract
e12
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
A moment from before 365 Ma frozen in time and space _ Błazejowski, B., Gieszcz, P., Brett, C.E., Binkowski, M., 2015. Scientific Reports 5, Article No. 14191. http://dx.doi.org/10.1038/srep14191 Are the large filamentous microfossils preserved in Messinian gypsum colorless sulfide-oxidizing bacteria? Dela Pierre, F., Natalicchio, M., Ferrando, S., Giustetto, R., Birgel, D., Carnevale, G., Gier, S., Lozar, F., Marabello, D., Peckmann, J., 2015. Geology 43, 855–858. http://geology.gsapubs.org/content/43/10/855.abstract The adaptive radiation of lichen-forming Teloschistaceae is associated with sunscreening pigments and a bark-to-rock substrate shift Gaya, E., Fernández-Brime, S., Vargas, R., Lachlan, R.F., Gueidan, C., Ramírez-Mejía, M., Lutzoni, F., 2015. Proceedings of the National Academy of Sciences 112, 11600–11605. http://www.pnas.org/content/112/37/11600.abstract Montsechia, an ancient aquatic angiosperm Gomez, B., Daviero-Gomez, V., Coiffard, C., Martín-Closas, C., Dilcher, D.L., 2015. Proceedings of the National Academy of Sciences 112, 10985–10988. http://www.pnas.org/content/112/35/10985.abstract Cerium anomaly at microscale in fossils Gueriau, P., Mocuta, C., Bertrand, L., 2015. Analytical Chemistry 87, 8827–8836. http://dx.doi.org/10.1021/acs.analchem.5b01820 Distribution of Cenozoic plant relicts in China explained by drought in dry season Huang, Y., Jacques, F.M.B., Su, T., Ferguson, D.K., Tang, H., Chen, W., Zhou, Z., 2015. Scientific Reports 5, Article No. 14212. http://dx.doi.org/10.1038/srep14212 Water from the rock: Ancient aquatic angiosperms flow from the fossil record Les, D.H., 2015. Proceedings of the National Academy of Sciences 112, 10825–10826. http://www.pnas.org/content/112/35/10825.short Tectonics, climate, and the rise and demise of continental aquatic species richness hotspots Neubauer, T.A., Harzhauser, M., Georgopoulou, E., Kroh, A., Mandic, O., 2015. Proceedings of the National Academy of Sciences 112, 11478–11483. http://www.pnas.org/content/112/37/11478.abstract How teeth got tough: Enamel’s evolutionary journey Perkins, S., 2015. Science 349, 1431. http://www.sciencemag.org/content/349/6255/1431.short Evolution: Origins of Life/Microbial Genomics
Chemical schemes for maintaining different compositions across a semi-permeable membrane with application to proto-cells Bigan, E., Steyaert, J.-M., Douady, S., 2015. Origins of Life and Evolution of Biospheres 45, 439–454. http://dx.doi.org/10.1007/s11084-015-9453-2 Provirophages in the Bigelowiella genome bear testimony to past encounters with giant viruses Blanc, G., Gallot-Lavallée, L., Maumus, F., 2015. Proceedings of the National Academy of Sciences 112, E5318–E5326. http://www.pnas.org/content/112/38/E5318.abstract Reply to Lane and Martin: Being and becoming eukaryotes Booth, A., Doolittle, W.F., 2015. Proceedings of the National Academy of Sciences 112, E4824. http://www.pnas.org/content/112/35/E4824.short Characterization of the adsorption of nucleic acid bases onto ferrihydrite via Fourier transform infrared and surface-enhanced Raman spectroscopy and X-ray diffractometry Canhisares-Filho, J.E., Carneiro, C.E.A., de Santana, H., Urbano, A., da Costa, A.C.S., Zaia, C.T.B.V., Zaia, D.A.M., 2015. Astrobiology 15, 728–738. http://dx.doi.org/10.1089/ast.2015.1309
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
e13
Nucleobase and amino acid formation through impacts of meteorites on the early ocean Furukawa, Y., Nakazawa, H., Sekine, T., Kobayashi, T., Kakegawa, T., 2015. Earth and Planetary Science Letters 429, 216–222. http://www.sciencedirect.com/science/article/pii/S0012821X15004926 Energetics of amino acid synthesis in alkaline hydrothermal environments Kitadai, N., 2015. Origins of Life and Evolution of Biospheres 45, 377–409. http://dx.doi.org/10.1007/s11084-015-9428-3 Eukaryotes really are special, and mitochondria are why Lane, N., Martin, W.F., 2015. Proceedings of the National Academy of Sciences 112, E4823. http://www.pnas.org/content/112/35/E4823.short Peptide bond formation in water mediated by carbon disulfide Leman, L.J., Huang, Z.-Z., Ghadiri, M.R., 2015. Astrobiology 15, 709–716. http://dx.doi.org/10.1089/ast.2015.1314 Affinity of smectite and divalent metal ions (Mg2+, Ca2+, Cu2+) with L-leucine: An experimental and theoretical approach relevant to astrobiology Pandey, P., Pant, C.K., Gururani, K., Arora, P., Pandey, N., Bhatt, P., Sharma, Y., Negi, J.S., Mehata, M.S., 2015. Origins of Life and Evolution of Biospheres 45, 411–426. http://dx.doi.org/10.1007/s11084-015-9437-2 Structures of archaeal DNA segregation machinery reveal bacterial and eukaryotic linkages Schumacher, M.A., Tonthat, N.K., Lee, J., Rodriguez-Castañeda, F.A., Chinnam, N.B., Kalliomaa-Sanford, A.K., Ng, I.W., Barge, M.T., Shaw, P.L.R., Barillà, D., 2015. Science 349, 1120–1124. http://www.sciencemag.org/content/349/6252/1120.abstract Abiogenic syntheses of lipoamino acids and lipopeptides and their prebiotic significance Sproul, G., 2015. Origins of Life and Evolution of Biospheres 45, 427–437. http://dx.doi.org/10.1007/s11084-015-9451-4 Density functional theory study of cyanoetheneselenol: A molecule of astrobiological interest Surajbali, P., Ramanah, D.K., Rhyman, L., Alswaidan, I.A., Fun, H.K., Somanah, R., Ramasami, P., 2015. Origins of Life and Evolution of Biospheres 45, 455–468. http://dx.doi.org/10.1007/s11084-015-9436-3 Mackinawite and greigite in ancient alkaline hydrothermal chimneys: Identifying potential key catalysts for emergent life White, L.M., Bhartia, R., Stucky, G.D., Kanik, I., Russell, M.J., 2015. Earth and Planetary Science Letters 430, 105–114. http://www.sciencedirect.com/science/article/pii/S0012821X15005336 Fluid Inclusions
Brillouin spectroscopy of fluid inclusions proposed as a paleothermometer for subsurface rocks Mekki-Azouzi, M.E., Tripathi, C.S.P., Pallares, G., Gardien, V., Caupin, F., 2015. Scientific Reports 5, Article number 13168. http://dx.doi.org/10.1038/srep13168 Geology
Astronomical calibration of the geological timescale: Closing the middle Eocene gap Westerhold, T., Röhl, U., Frederichs, T., Bohaty, S.M., Zachos, J.C., 2015. Climate of the Past 11, 1181–1195. http://www.clim-past.net/11/1181/2015/ Hydrates
Numerical simulation of gas production from hydrate-bearing sediments in the Shenhu area by depressurising: The effect of burden permeability Sun, J., Ning, F., Li, S., Zhang, K., Liu, T., Zhang, L., Jiang, G., Wu, N., 2015. Journal of Unconventional Oil and Gas Resources 12, 23–33. http://www.sciencedirect.com/science/article/pii/S2213397615000385
e14
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
Occurrence of biogenic gas in the permafrost of Mohe Basin and its implication for gas hydrate exploration in continental permafrost, China Zhao, X., Deng, J., Rao, Z., Wen, Z., Lu, C., Liu, C., 2015. Acta Petrolei Sinica 36, 954–965. http://www.syxb-cps.com.cn/EN/Y2015/V36/I8/954 Isotope Geochemistry
Sediment source attribution from multiple land use systems with CSIA Alewell, C., Birkholz, A., Meusburger, K., Schindler Wildhaber, Y., Mabit, L., 2015. Biogeosciences Discussions 12, 14245–14269. http://www.biogeosciences-discuss.net/12/14245/2015/ Different altitude effect of leaf wax n-alkane dD values in surface soils along two vapor transport pathways, southeastern Tibetan Plateau Bai, Y., Fang, X., Jia, G., Sun, J., Wen, R., Ye, Y., 2015. Geochimica et Cosmochimica Acta 170, 94–107. http://www.sciencedirect.com/science/article/pii/S0016703715005190 Effects of chemical preparation protocols on d13C values of plant fossil samples Barral, A., Lécuyer, C., Gomez, B., Fourel, F., Daviero-Gomez, V., 2015. Palaeogeography, Palaeoclimatology, Palaeoecology 438, 267–276. http://www.sciencedirect.com/science/article/pii/S0031018215004526 Carbon isotopic ratios of modern C3–C4 plants from the Gangetic Plain, India and its implications to paleovegetational reconstruction Basu, S., Agrawal, S., Sanyal, P., Mahato, P., Kumar, S., Sarkar, A., 2015. Palaeogeography, Palaeoclimatology, Palaeoecology 440, 22–32. http://www.sciencedirect.com/science/article/pii/S0031018215004484 Diagenesis of phosphatic hardgrounds in the Monterey Formation: A perspective from bulk and clumped isotope geochemistry Bradbury, H.J., Vandeginste, V., John, C.M., 2015. Geological Society of America Bulletin 127, 1453–1463. http://gsabulletin.gsapubs.org/content/127/9-10/1453.abstract Leaf wax composition and carbon isotopes vary among major conifer groups Diefendorf, A.F., Leslie, A.B., Wing, S.L., 2015. Geochimica et Cosmochimica Acta 170, 145–156. http://www.sciencedirect.com/science/article/pii/S0016703715005219 Control of ambient pH on growth and stable isotopes in phytoplanktonic calcifying algae Hermoso, M., 2015. Paleoceanography 30, 1100–1112. http://dx.doi.org/10.1002/2015PA002844 Environmental controls on leaf wax dD ratios in surface peats across the monsoonal region of China Huang, X., Xue, J., Wang, X., Meyers, P.A., 2015. Biogeosciences Discussions 12, 15157–15184. http://www.biogeosciences-discuss.net/12/15157/2015/ Crystallographic control on the boron isotope paleo-pH proxy Noireaux, J., Mavromatis, V., Gaillardet, J., Schott, J., Montouillout, V., Louvat, P., Rollion-Bard, C., Neuville, D.R., 2015. Earth and Planetary Science Letters 430, 398–407. http://www.sciencedirect.com/science/article/pii/S0012821X15005063 Compound-specific hydrogen isotope analysis of heteroatom-bearing compounds via gas chromatography–chromium-based high-temperature conversion (Cr/HTC)–isotope ratio mass spectrometry Renpenning, J., Kümmel, S., Hitzfeld, K.L., Schimmelmann, A., Gehre, M., 2015. Analytical Chemistry 87, 9443–9450. http://dx.doi.org/10.1021/acs.analchem.5b02475 Dinosterol dD values in stratified tropical lakes (Cameroon) are affected by eutrophication Schwab, V.F., Garcin, Y., Sachse, D., Todou, G., Séné, O., Onana, J.-M., Achoundong, G., Gleixner, G., 2015. Organic Geochemistry 88, 35–49. http://www.sciencedirect.com/science/article/pii/S0146638015001588 Microbiology/Extremophiles - Microbial Ecology
Viral assemblage composition in Yellowstone acidic hot springs assessed by network analysis Bolduc, B., Wirth, J.F., Mazurie, A., Young, M.J., 2015. ISME Journal 9, 2162–2177. http://dx.doi.org/10.1038/ismej.2015.28
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
e15
Abundant Atribacteria in deep marine sediment from the Adélie Basin, Antarctica Carr, S.A., Orcutt, B.N., Mandernack, K.W., Spear, J.R., 2015. Frontiers in Microbiology 6, 872. doi: 10.3389/fmicb.2015.00872. http://journal.frontiersin.org/article/10.3389/fmicb.2015.00872/abstract Multiple adaptations to polar and alpine environments within cyanobacteria: A phylogenomic and Bayesian approach Chrismas, N.A., Anesio, A., Sanchez-Baracaldo, P., 2015. Frontiers in Microbiology 6, 1070. doi: 10.3389/fmicb.2015.01070. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01070/abstract Bacterial populations (first record) at two shallow hydrothermal vents of the Mexican Pacific west coast Dávila-Ramos, S., Estradas-Romero, A., Prol-Ledesma, R.M., Juárez-López, K., 2014. Geomicrobiology Journal 32, 657–665. http://dx.doi.org/10.1080/01490451.2014.980526 In situ metabolism in halite endolithic microbial communities of the hyperarid Atacama Desert Davila, A.F., Hawes, I., García Araya, J., Gelsinger, D.R., DiRuggiero, J., Ascaso, C., Osano, A., Wierzchos, J., 2015. Frontiers in Microbiology 6, 1035. doi: 10.3389/fmicb.2015.01035. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01035/abstract Temperature and pressure adaptation of a sulfate reducer from the deep subsurface Fichtel, K., Logemann, J., Fichtel, J., Rullkötter, J., Cypionka, H., Engelen, B., 2015. Frontiers in Microbiology 6, 1078. doi: 10.3389/fmicb.2015.01078. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01078/abstract Phylogenetic diversity of microbial communities associated with coalbed methane gas from eastern Ordos Basin, China Guo, H., Yu, Z., Zhang, H., 2015. International Journal of Coal Geology 150–151, 120–126. http://www.sciencedirect.com/science/article/pii/S0166516215300458 Aerobically respiring prokaryotic strains exhibit a broader temperature–pH–salinity space for cell division than anaerobically respiring and fermentative strains Harrison, J.P., Dobinson, L., Freeman, K., McKenzie, R., Wyllie, D., Nixon, S.L., Cockell, C.S., 2015. Interface 12, Article No. 20150658. http://rsif.royalsocietypublishing.org/content/12/110/20150658 Microbial abundance in lacustrine sediments: A case study from Lake Van, Turkey Kallmeyer, J., Grewe, S., Glombitza, C., Kitte, J.A., 2015. International Journal of Earth Sciences 104, 1667–1677. http://dx.doi.org/10.1007/s00531-015-1219-6 Endosymbionts escape dead hydrothermal vent tubeworms to enrich the free-living population Klose, J., Polz, M.F., Wagner, M., Schimak, M.P., Gollner, S., Bright, M., 2015. Proceedings of the National Academy of Sciences 112, 11300–11305. http://www.pnas.org/content/112/36/11300.abstract Life under extreme energy limitation: A synthesis of laboratory- and field-based investigations Lever, M.A., Rogers, K.L., Lloyd, K.G., Overmann, J., Schink, B., Thauer, R.K., Hoehler, T.M., Jørgensen, B.B., 2015. FEMS Microbiology Reviews 39, 688–728. http://femsre.oxfordjournals.org/content/39/5/688.abstract Biogeography and evolution of Thermococcus isolates from hydrothermal vent systems of the Pacific Price, M.T., Fullerton, H., Moyer, C.L., 2015. Frontiers in Microbiology 6, 968. doi: 10.3389/fmicb.2015.00968. http://journal.frontiersin.org/article/10.3389/fmicb.2015.00968/abstract Microbes in groundwater of a volcanic mountain, Mt. Fuji; 16S rDNA phylogenetic analysis as a possible indicator for the transport routes of groundwater Segawa, T., Sugiyama, A., Kinoshita, T., Sohrin, R., Nakano, T., Nagaosa, K., Greenidge, D., Kato, K., 2014. Geomicrobiology Journal 32, 677–688. http://dx.doi.org/10.1080/01490451.2014.991811 Halo(natrono)archaea isolated from hypersaline lakes utilize cellulose and chitin as growth substrates Sorokin, D.Y., Toshchakov, S.V., Kolganova, T.V., Kublanov, I.V., 2015. Frontiers in Microbiology 6, 942. doi: 10.3389/fmicb.2015.00942. http://journal.frontiersin.org/article/10.3389/fmicb.2015.00942/abstract Growth and activity of ANME clades with different sulfate and sulfide concentrations in presence of methane Timmers, P.H.A., Widjaja-Greefkes, H.C.A., Ramiro-Garcia, J., Plugge, C.M., Stams, A.J.M., 2015. Frontiers in Microbiology 6, 988. doi: 10.3389/fmicb.2015.00988. http://journal.frontiersin.org/article/10.3389/fmicb.2015.00988/abstract
e16
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
Paleoclimatology/Palaeoceanography
Stable isotope and calcareous nannofossil assemblage records for the Cicogna section: Toward a detailed template of late Paleocene and early Eocene global carbon cycle and nannoplankton evolution Agnini, C., Spofforth, D.J.A., Dickens, G.R., Rio, D., Pälike, H., Backman, J., Muttoni, G., Dallanave, E., 2015. Climate of the Past Discussions 11, 4329–4389. http://www.clim-past-discuss.net/11/4329/2015/ Large igneous provinces and organic carbon burial: Controls on global temperature and continental weathering during the Early Cretaceous Bodin, S., Meissner, P., Janssen, N.M.M., Steuber, T., Mutterlose, J., 2015. Global and Planetary Change 133, 238–253. http://www.sciencedirect.com/science/article/pii/S0921818115300205 Two contributors to the glacial CO2 decline Broecker, W.S., Yu, J., Putnam, A.E., 2015. Earth and Planetary Science Letters 429, 191–196. http://www.sciencedirect.com/science/article/pii/S0012821X1500446X Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma Cerling, T.E., Andanje, S.A., Blumenthal, S.A., Brown, F.H., Chritz, K.L., Harris, J.M., Hart, J.A., Kirera, F.M., Kaleme, P., Leakey, L.N., Leakey, M.G., Levin, N.E., Manthi, F.K., Passey, B.H., Uno, K.T., 2015. Proceedings of the National Academy of Sciences 112, 11467–11472. http://www.pnas.org/content/112/37/11467.abstract Synchronous centennial abrupt events in the ocean and atmosphere during the last deglaciation Chen, T., Robinson, L.F., Burke, A., Southon, J., Spooner, P., Morris, P.J., Ng, H.C., 2015. Science 349, 1537–1541. http://www.sciencemag.org/content/349/6255/1537.abstract d13Corg and n-alkane evidence for changing wetland conditions during a stable mid-late Holocene climate in the central Tibetan Plateau Cheung, M.-C., Zong, Y., Wang, N., Aitchison, J.C., Zheng, Z., 2015. Palaeogeography, Palaeoclimatology, Palaeoecology 438, 203–212. http://www.sciencedirect.com/science/article/pii/S0031018215004344 Evidence for weathering and volcanism during the PETM from Arctic Ocean and Peri-Tethys osmium isotope records Dickson, A.J., Cohen, A.S., Coe, A.L., Davies, M., Shcherbinina, E.A., Gavrilov, Y.O., 2015. Palaeogeography, Palaeoclimatology, Palaeoecology 438, 300–307. http://www.sciencedirect.com/science/article/pii/S0031018215004551 Global-mean marine d13C and its uncertainty in a glacial state estimate Gebbie, G., Peterson, C.D., Lisiecki, L.E., Spero, H.J., 2015. Quaternary Science Reviews 125, 144–159. http://www.sciencedirect.com/science/article/pii/S0277379115300779 Upper Kellwasser carbon isotope excursion pre-dates the F–F boundary in the Upper Devonian Lennard Shelf carbonate system, Canning Basin, Western Australia Hillbun, K., Playton, T.E., Tohver, E., Ratcliffe, K., Trinajstic, K., Roelofs, B., Caulfield-Kerney, S., Wray, D., Haines, P., Hocking, R., Katz, D., Montgomery, P., Ward, P., 2015. Palaeogeography, Palaeoclimatology, Palaeoecology 438, 180–190. http://www.sciencedirect.com/science/article/pii/S0031018215004022 The Late Pleistocene climatic optimum in the eastern Arctic region: Evidence from El’gygytgyn Lake Lozhkin, A.V., Anderson, P.M., Minyuk, P.S., Nedorubova, E.Y., Goryachev, N.A., 2015. Doklady Earth Sciences 463, 813–816. http://dx.doi.org/10.1134/S1028334X15080048 Episodes of intensified biological productivity in the subtropical Atlantic Ocean during the termination of the Middle Eocene Climatic Optimum (MECO) Moebius, I., Friedrich, O., Edgar, K.M., Sexton, P.F., 2015. Paleoceanography 30, 1041–1058. http://dx.doi.org/10.1002/2014PA002673 Climate changes since the mid-Holocene in the Middle Atlas, Morocco Nourelbait, M., Rhoujjati, A., Benkaddour, A., Carré, M., Eynaud, F., Martinez, P., Cheddadi, R., 2015. Climate of the Past Discussions 11, 4097–4121. http://www.clim-past-discuss.net/11/4097/2015/ Gradual onset and recovery of the Younger Dryas abrupt climate event in the tropics Partin, J.W., Quinn, T.M., Shen, C.C., Okumura, Y., Cardenas, M.B., Siringan, F.P., Banner, J.L., Lin, K., Hu, H.M., Taylor, F.W., 2015. Nature Communications 6, Article number 8061. http://dx.doi.org/10.1038/ncomms9061
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
e17
Confounding effects of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota Qin, W., Carlson, L.T., Armbrust, E.V., Devol, A.H., Moffett, J.W., Stahl, D.A., Ingalls, A.E., 2015. Proceedings of the National Academy of Sciences 112, 10979–10984. http://www.pnas.org/content/112/35/10979.abstract An 80 kyr-long continuous speleothem record from Dim Cave, SW Turkey with paleoclimatic implications for the eastern Mediterranean _ Ünal-Imer, E., Shulmeister, J., Zhao, J.-X., Tonguç Uysal, I., Feng, Y.-X., Duc Nguyen, A., Yüce, G., 2015. Scientific Reports 5, Article number 13560. http://dx.doi.org/10.1038/srep13560 A new approach for reconstructing Holocene temperatures from a multi-species long chain alkenone record from Lake Qinghai on the northeastern Tibetan Plateau Wang, Z., Liu, Z., Zhang, F., Fu, M., An, Z., 2015. Organic Geochemistry 88, 50–58. http://www.sciencedirect.com/science/article/pii/S0146638015001618 Peatland GDGT records of Holocene climatic and biogeochemical responses to the Asian Monsoon Zheng, Y., Li, Q., Wang, Z., Naafs, B.D.A., Yu, X., Pancost, R.D., 2015. Organic Geochemistry 87, 86–95. http://www.sciencedirect.com/science/article/pii/S0146638015001540 Paleoecology of Extinction Events
Asteroid impact vs. Deccan eruptions: The origin of low magnetic susceptibility beds below the Cretaceous–Paleogene boundary revisited Abrajevitch, A., Font, E., Florindo, F., Roberts, A.P., 2015. Earth and Planetary Science Letters 430, 209–223. http://www.sciencedirect.com/science/article/pii/S0012821X15005427 An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification Bond, D.P.G., Wignall, P.B., Joachimski, M.M., Sun, Y., Savov, I., Grasby, S.E., Beauchamp, B., Blomeier, D.P.G., 2015. Geological Society of America Bulletin 127, 1411–1421. http://gsabulletin.gsapubs.org/content/127/9-10/1411.abstract Is the vertebrate-defined Permian-Triassic boundary in the Karoo Basin, South Africa, the terrestrial expression of the end-Permian marine event? Gastaldo, R.A., Kamo, S.L., Neveling, J., Geissman, J.W., Bamford, M., Looy, C.V., 2015. Geology 43, 939–942. http://geology.gsapubs.org/content/43/10/939.abstract Petroleum Geochemistry
Crude oils and organic matter of late Devonian deposits of the Timan–Pechora Basin: Comparison by molecular and isotopic data Bushnev, D.A., Burdel’naya, N.S., 2015. Petroleum Chemistry 55, 522–529. http://dx.doi.org/10.1134/S0965544115070038 Oil origin and accumulation in the Paleozoic Chepaizi-Xinguang field, Junggar Basin, China Chen, Z., Cao, Y., Wang, X., Qiu, L., Tang, Y., Yuan, G., 2016. Journal of Asian Earth Sciences 115, 1–15. http://www.sciencedirect.com/science/article/pii/S1367912015300961 Ratios of low molecular weight alkylbenzenes (C0–C4) in Chinese crude oils as indicators of maturity and depositional environment Cheng, B., Wang, T., Huang, H., Wang, G., Simoneit, B.R.T., 2015. Organic Geochemistry 88, 78–90. http://www.sciencedirect.com/science/article/pii/S0146638015001734 Discussion on ‘‘The action of elemental sulfur plus water on 1-octene at low temperatures” by Said-Ahmad et al. (Organic Geochemistry 59, 82–86) Ding, K., Adam, P., 2015. Organic Geochemistry 87, 133–136. http://www.sciencedirect.com/science/article/pii/S014663801500131X A geological model for the origin of fluid compositional gradients in a large Saudi Arabian oilfield: An investigation by two-dimensional gas chromatography (GC GC) and asphaltene chemistry Forsythe, J.C., Pomerantz, A.E., Seifert, D.J., Wang, K., Chen, Y., Zuo, J.Y., Nelson, R.K., Reddy, C.M., Schimmelmann, A., Sauer, P., Peters, K.E., Mullins, O.C., 2015. Energy & Fuels 29, 5666–5680. http://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b01192
e18
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
Geochemical characteristics of crude oils from Ras Gharib oilfields in the central Gulf of Suez, Egypt Hammad, M.M., El Nady, M.M., Ramadan, F.S., Lotfy, N.M., 2015. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37, 2029–2038. http://dx.doi.org/10.1080/15567036.2012.717165 Pyrolytically derived polycyclic aromatic hydrocarbons in marine oils from the Tarim Basin, NW China Huang, H., Zhang, S., Su, J., 2015. Energy & Fuels 29, 5578–5586. http://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b01007 Reservoir geochemistry: Evaluation of thermal maturity from gasoline-range hydrocarbons Isaksen, G.H., 2015. Interpretation 3, SV1–SV7. http://library.seg.org/doi/abs/10.1190/INT-2014-0166.1 Novel saturated hexacyclic C34 and C35 hopanes in lacustrine oils and source rocks Nytoft, H.P., Ingermann Petersen, H., Bryld Wessel Fyhn, M., Nielsen, L.H., Hovikoski, J., Abatzis, I., 2015. Organic Geochemistry 87, 107–118. http://www.sciencedirect.com/science/article/pii/S0146638015001552 Precambrian Geochemistry
Palaeoclimate: Snowball climate conundrum Allen, P., 2015. Nature Geoscience 8, 668–669. http://dx.doi.org/10.1038/ngeo2504 Orbitally forced ice sheet fluctuations during the Marinoan Snowball Earth glaciation Benn, D.I., Le Hir, G., Bao, H., Donnadieu, Y., Dumas, C., Fleming, E.J., Hambrey, M.J., McMillan, E.A., Petronis, M.S., Ramstein, G., Stevenson, C.T.E., Wynn, P.M., Fairchild, I.J., 2015. Nature Geoscience 8, 704–707. http://dx.doi.org/10.1038/ngeo2502 Snowball cooling after algal rise Feulner, G., Hallmann, C., Kienert, H., 2015. Nature Geoscience 8, 659–662. http://dx.doi.org/10.1038/ngeo2523 Paleoproterozoic microbially induced sedimentary structures from lagoonal depositional settings in northern China Lan, Z., 2015. Sedimentary Geology 328, 87–95. http://www.sciencedirect.com/science/article/pii/S0037073815001736 Is the Neoproterozoic oxygen burst a supercontinent legacy? Macouin, M., Roques, D., Rousse, S., Ganne, J., Denele, Y., Trindade, R.Y., 2015. Frontiers in Earth Science 3, 44. doi: 10.3389/feart.2015.00044. http://journal.frontiersin.org/article/10.3389/feart.2015.00044/abstract 3806 Ma Isua rhyolites and dacites affected by low temperature Eoarchaean surficial alteration: Earth’s earliest weathering Nutman, A.P., Bennett, V.C., Chivas, A.R., Friend, C.R.L., Liu, X.-M., Dux, F.W., 2015. Precambrian Research 268, 323–338. http://www.sciencedirect.com/science/article/pii/S0301926815002454 The reliability of ~2.9 Ga old Witwatersrand banded iron formations (South Africa) as archives for Mesoarchean seawater: Evidence from REE and Nd isotope systematics Viehmann, S., Bau, M., Smith, A.J.B., Beukes, N.J., Dantas, E.L., Bühn, B., 2015. Journal of African Earth Sciences 111, 322–334. http://www.sciencedirect.com/science/article/pii/S1464343X15300467 Pervasive remagnetization of detrital zircon host rocks in the Jack Hills, Western Australia and implications for records of the early geodynamo Weiss, B.P., Maloof, A.C., Tailby, N., Ramezani, J., Fu, R.R., Hanus, V., Trail, D., Watson, E.B., Harrison, T.M., Bowring, S.A., Kirschvink, J.L., Swanson-Hysell, N.L., Coe, R.S., 2015. Earth and Planetary Science Letters 430, 115–128. http://www.sciencedirect.com/science/article/pii/S0012821X15005105 Production/Engineering Geochemistry
Multi-stage hydraulic fracturing and radio-frequency electromagnetic radiation for heavy-oil production Davletbaev, A.Y., Kovaleva, L.A., Nasyrov, N.M., Babadagli, T., 2015. Journal of Unconventional Oil and Gas Resources 12, 15–22. http://www.sciencedirect.com/science/article/pii/S2213397615000373
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
e19
Structural characterization of large polycyclic aromatic hydrocarbons. Part 1: The case of coal tar pitch and naphthalene-derived pitch Gargiulo, V., Apicella, B., Alfè, M., Russo, C., Stanzione, F., Tregrossi, A., Amoresano, A., Millan, M., Ciajolo, A., 2015. Energy & Fuels 29, 5714–5722. http://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b01327 Modeling of asphaltene aggregates structure and deposition Gmachowski, L., Paczuski, M., 2015. Colloids and Surfaces A: Physicochemical and Engineering Aspects 484, 402–407. http://www.sciencedirect.com/science/article/pii/S0927775715301643 A review of biolubricants in drilling fluids: Recent research, performance, and applications Kania, D., Yunus, R., Omar, R., Abdul Rashid, S., Mohamad Jan, B., 2015. Journal of Petroleum Science and Engineering 135, 177–184. http://www.sciencedirect.com/science/article/pii/S0920410515301169 Asphaltene aggregation behavior in bromobenzene determined by small-angle X-ray scattering Morimoto, M., Imamura, H., Shibuta, S., Morita, T., Nishikawa, K., Yamamoto, H., Tanaka, R., Takanohashi, T., 2015. Energy & Fuels 29, 5737–5743. http://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b01491 Effect of asphaltene aggregation on rheological properties of diluted Athabasca bitumen Mozaffari, S., Tchoukov, P., Atias, J., Czarnecki, J., Nazemifard, N., 2015. Energy & Fuels 29, 5595–5599. http://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b00918 Mixed interfaces of asphaltenes and model demulsifiers, Part III: Study of desorption mechanisms at liquid/liquid interfaces Pradilla, D., Simon, S., Sjöblom, J., 2015. Energy & Fuels 29, 5507–5518. http://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b01302 Effects of native and non-native resins on asphaltene deposition and the change of surface topography at different pressures: An experimental investigation Soorghali, F., Zolghadr, A., Ayatollahi, S., 2015. Energy & Fuels 29, 5487–5494. http://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b00366 The dynamic Flory-Huggins-Zuo equation of state Wang, K., Zuo, J.Y., Chen, Y., Mullins, O.C., 2015. Energy 91, 430–440. http://www.sciencedirect.com/science/article/pii/S0360544215011391 Molecular characterization of large polycyclic aromatic hydrocarbons in solid petroleum pitch and coal tar pitch by high resolution MALDI ToF MS and insights from ion mobility separation Zhang, W., Andersson, J.T., Räder, H.J., Müllen, K., 2015. Carbon 95, 672–680. http://www.sciencedirect.com/science/article/pii/S0008622315301731 Recent Sediments/Hydrosphere
Organic carbon in water, particulate matter, and upper layer of bottom sediments of the central part of the Kara Sea Belyaev, N.A., Ponyaev, M.S., Kiriutin, A.M., 2015. Oceanology 55, 508–520. http://dx.doi.org/10.1134/S0001437015040013 Precise indices based on n-alkane distribution for quantifying sources of sedimentary organic matter in coastal systems Chevalier, N., Savoye, N., Dubois, S., Lama, M.L., David, V., Lecroart, P., le Ménach, K., Budzinski, H., 2015. Organic Geochemistry 88, 69–77. http://www.sciencedirect.com/science/article/pii/S0146638015001485 Evaluation of the influence of abiotic and biotic factors on primary production in the Kara Sea in autumn Demidov, A.B., Mosharov, S.A., Makkaveev, P.N., 2015. Oceanology 55, 535–546. http://dx.doi.org/10.1134/S0001437015040037 Biogeochemical and suspended sediment responses to permafrost degradation in stream banks in Taylor Valley, Antarctica Gooseff, M.N., Van Horn, D., Sudman, Z., McKnight, D.M., Welch, K.A., Lyons, W.B., 2015. Biogeosciences Discussions 12, 14773–14796. http://www.biogeosciences-discuss.net/12/14773/2015/ Variability in dissolved organic matter optical properties in surface waters in the Amerasian Basin Gueguen, C., Itoh, M., Kikuchi, T., Eert, J., Williams, W.J., 2015. Frontiers in Marine Science 2, 78. doi: 10.3389/fmars.2015.00078. http://journal.frontiersin.org/article/10.3389/fmars.2015.00078/abstract
e20
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
Methane-derived carbon flow through microbial communities in arctic lake sediments He, R., Wooller, M.J., Pohlman, J.W., Tiedje, J.M., Leigh, M.B., 2015. Environmental Microbiology 17, 3233–3250. http://dx.doi.org/10.1111/1462-2920.12773 Extraordinary slow degradation of dissolved organic carbon (DOC) in a cold marginal sea Kim, T.-H., Kim, G., Lee, S.-A., Dittmar, T., 2015. Scientific Reports 5, Article No. 13808. http://dx.doi.org/10.1038/srep13808 The relative influence of land cover, hydrology, and in-stream processing on the composition of dissolved organic matter in boreal streams Kothawala, D.N., Ji, X., Laudon, H., Ågren, A.M., Futter, M.N., Köhler, S.J., Tranvik, L.J., 2015. Journal of Geophysical Research: Biogeosciences 120, 1491–1505. http://dx.doi.org/10.1002/2015JG002946 Dissolved organic matter in newly formed sea ice and surface seawater Longnecker, K., 2015. Geochimica et Cosmochimica Acta 171, 39–49. http://www.sciencedirect.com/science/article/pii/S0016703715005086 Microbial methanogenesis in the sulfate-reducing zone of surface sediments traversing the Peruvian margin Maltby, J., Sommer, S., Dale, A.W., Treude, T., 2015. Biogeosciences Discussions 12, 14869–14910. http://www.biogeosciences-discuss.net/12/14869/2015/ Assessing the importance of terrestrial organic carbon in the Chukchi and Beaufort seas Morris, D.J., O’Connell, M.T., Macko, S.A., 2015. Estuarine, Coastal and Shelf Science 164, 28–38. http://www.sciencedirect.com/science/article/pii/S0272771415002206 Variability of concentration and composition of hydrocarbons in frontal zones of the Kara Sea Nemirovskaya, I.A., 2015. Oceanology 55, 497–507. http://dx.doi.org/10.1134/S0001437015040128 Methane and microbial dynamics in the Gulf of Mexico water column Rakowski, C., Magen, C., Bosman, S., Gillies, L., Rogers, K., Chanton, J., Mason, O.U., 2015. Frontiers in Marine Science 2, 69. doi: 10.3389/fmars.2015.00069. http://journal.frontiersin.org/article/10.3389/fmars.2015.00069/abstract Fate and source distribution of organic constituents in a river-dominated tropical estuary Salas, P.M., Sujatha, C.H., Ratheesh Kumar, C.S., 2015. Journal of Earth System Science 124, 1265–1279. http://dx.doi.org/10.1007/s12040-015-0598-1 Benthic-pelagic coupling of nutrients and dissolved organic matter composition in an intertidal sandy beach Seidel, M., Beck, M., Greskowiak, J., Riedel, T., Waska, H., Suryaputra, I.G.N.A., Schnetger, B., Niggemann, J., Simond, M., Dittmar, T., 2015. Marine Chemistry 176, 150–163. http://www.sciencedirect.com/science/article/pii/S0304420315300372 Organic matter characterization and distribution in sediments of the terminal lobes of the Congo deep-sea fan: Evidence for the direct influence of the Congo River Stetten, E., Baudin, F., Reyss, J.-L., Martinez, P., Charlier, K., Schnyder, J., Rabouille, C., Dennielou, B., Coston-Guarini, J., Pruski, A., 2015. Marine Geology 369, 182–195. http://www.sciencedirect.com/science/article/pii/S0025322715300256 Depth-dependent photodegradation of marine dissolved organic matter Timko, S.A., Maydanov, A., Pittelli, S.L., Conte, M.H., Cooper, W.J., Koch, B.P., Schmitt-Kopplin, P., Gonsior, M., 2015. Frontiers in Marine Science 2, 66. doi: 10.3389/fmars.2015.00066. http://journal.frontiersin.org/article/10.3389/fmars.2015.00066/abstract Variability in photosynthetic production of dissolved and particulate organic carbon in the North Pacific Subtropical Gyre Viviani, D.A., Karl, D.M., Church, M.J., 2015. Frontiers in Marine Science 2, 73. doi: 10.3389/fmars.2015.00073. http://journal.frontiersin.org/article/10.3389/fmars.2015.00073/abstract Sources of organic matter in sediments of the Colville River delta, Alaska: A multi-proxy approach Zhang, X., Bianchi, T.S., Allison, M.A., 2015. Organic Geochemistry 87, 96–106. http://www.sciencedirect.com/science/article/pii/S0146638015001345
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
e21
Photomineralization and photomethanification of dissolved organic matter in Saguenay River surface water Zhang, Y., Xie, H., 2015. Biogeosciences Discussions 12, 14303–14341. http://www.biogeosciences-discuss.net/12/14303/2015/ Particulate organic matter composition and organic carbon flux in Arctic valley glaciers: Examples from the Bayelva River and adjacent Kongsfjorden Zhu, Z.Y., Wu, Y., Liu, S.M., Wenger, F., Hu, J., Zhang, J., Zhang, R.F., 2015. Biogeosciences Discussions 12, 15655–15685. http://www.biogeosciences-discuss.net/12/15655/2015/ Seepage-Remote Detection
Chemistry of groundwater from mud volcanoes in parts of Upper Benue Trough, northeastern Nigeria Musa, O.K., Kurowska, E.E.A., Schoeneich, K., Alagbe, S.A., 2015. Environmental Earth Sciences 74, 4897–4906. http://dx.doi.org/10.1007/s12665-015-4500-x Methane release from pingo-like features across the South Kara Sea shelf, an area of thawing offshore permafrost Serov, P., Portnov, A., Mienert, J., Semenov, P., Ilatovskaya, P., 2015. Journal of Geophysical Research: Earth Surface 120, 1515–1529. http://dx.doi.org/10.1002/2015JF003467 A deep-sea, high-speed, stereoscopic imaging system for in situ measurement of natural seep bubble and droplet characteristics Wang, B., Socolofsky, S.A., 2015. Deep Sea Research Part I: Oceanographic Research Papers 104, 134–148. http://www.sciencedirect.com/science/article/pii/S0967063715001363 Source Rocks/Ancient Sediments-Environments
Geochemical characterisation and organic matter enrichment of Upper Cretaceous Gongila shales from Chad (Bornu) Basin, northeastern Nigeria: Bioproductivity versus anoxia conditions Adegoke, A.K., Abdullah, W.H., Hakimi, M.H., Sarki Yandoka, B.M., 2015. Journal of Petroleum Science and Engineering 135, 73–87. http://www.sciencedirect.com/science/article/pii/S0920410515300838 Source rock potential of lignite and interbedded coaly shale of the Ogwashi–Asaba Formation, Anambra basin as determined by sequential hydrous pyrolysis Akande, S.O., Lewan, M.D., Egenhoff, S., Adekeye, O., Ojo, O.J., Peterhansel, A., 2015. International Journal of Coal Geology 150–151, 224–237. http://www.sciencedirect.com/science/article/pii/S0166516215300513 Microwave-assisted solvent extraction of shale oil from Jordanian oil shale Al-Gharabli, S.I., Azzam, M.O.J., Al-Addous, M., 2015. Oil Shale 32, 240–251. http://www.kirj.ee/26419/?tpl=1061&c_tpl=1064 Organism–sediment interactions in shale-hydrocarbon reservoir facies — Three-dimensional reconstruction of complex ichnofabric geometries and pore-networks Bednarz, M., McIlroy, D., 2015. International Journal of Coal Geology 150–151, 238–251. http://www.sciencedirect.com/science/article/pii/S0166516215300483 Geochemistry of dispersed organic matter in gold-ore deposits of black shale formations Budyak, A.E., Goryachev, N.A., Razvozzhaeva, E.A., Spiridonov, A.M., Sotskaya, O.T., Bryukhanova, N.N., 2015. Doklady Earth Sciences 463, 847–850. http://dx.doi.org/10.1134/S1028334X15080188 Genetic types of marine source rock in Meso-Cenozoic continental margin basins Dai, N., Zhong, N., Deng, Y., Li, W., Kang, H., 2015. Acta Petrolei Sinica 36, 940–953. http://www.syxb-cps.com.cn/EN/Y2015/V36/I8/940 Palaeo-environment, diagenesis and characteristics of Permian black shales in the lower Karoo Supergroup flanking the Cape Fold Belt near Jansenville, eastern Cape, South Africa: Implications for the shale gas potential of the Karoo Basin Geel, C., De Wit, M., Booth, P., Schulz, H.-M., Horsfield, B., 2015. South African Journal of Geology 118, 249–274. http://sajg.geoscienceworld.org/content/118/3/249.abstract Black shales – from coolhouse to greenhouse (early Aptian) Giorgioni, M., Keller, C.E., Weissert, H., Hochuli, P.A., Bernasconi, S.M., 2015. Cretaceous Research 56, 716–731. http://www.sciencedirect.com/science/article/pii/S0195667114002274
e22
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
Petrographic insights of organic matter conversion of Raniganj Basin shales, India Hazra, B., Varma, A.K., Bandopadhyay, A.K., Mendhe, V.A., Singh, B.D., Saxena, V.K., Samad, S.K., Mishra, D.K., 2015. International Journal of Coal Geology 150–151, 193–209. http://www.sciencedirect.com/science/article/pii/S0166516215300471 High-resolution geochemical evidence for oxic bottom waters in three Cambrian Burgess Shale-type deposits Kloss, T.J., Dornbos, S.Q., Chen, J.-Y., McHenry, L.J., Marenco, P.J., 2015. Palaeogeography, Palaeoclimatology, Palaeoecology 440, 90–95. http://www.sciencedirect.com/science/article/pii/S0031018215004848 Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter? Löhr, S.C., Baruch, E.T., Hall, P.A., Kennedy, M.J., 2015. Organic Geochemistry 87, 119–132. http://www.sciencedirect.com/science/article/pii/S0146638015001527 Adsorption of methane, carbon dioxide and their binary mixtures on Jurassic shale from the Qaidam Basin in China Luo, X., Wang, S., Wang, Z., Jing, Z., Lv, M., Zhai, Z., Han, T., 2015. International Journal of Coal Geology 150–151, 210–223. http://www.sciencedirect.com/science/article/pii/S0166516215300501 Theoretical modeling of rhenium isotope fractionation, natural variations across a black shale weathering profile, and potential as a paleoredox proxy Miller, C.A., Peucker-Ehrenbrink, B., Schauble, E.A., 2015. Earth and Planetary Science Letters 430, 339–348. http://www.sciencedirect.com/science/article/pii/S0012821X15005282 The main control factors of shale oil enrichment in Jiyang depression Ning, F., 2015. Acta Petrolei Sinica 36, 905–914. http://www.syxb-cps.com.cn/EN/Y2015/V36/I8/905 Organic matter accumulation mechanisms of shale series in He-third member of Eocene Hetaoyuan Formation, Biyang Depression, eastern China Shang, F., Liu, Z.J., Xie, X.N., Chen, H., 2015. Petroleum Science and Technology 33, 1434–1442. http://dx.doi.org/10.1080/10916466.2015.1075037 Shale oil potential and thermal maturity of the Lower Toarcian Posidonia Shale in NW Europe Song, J., Littke, R., Weniger, P., Ostertag-Henning, C., Nelskamp, S., 2015. International Journal of Coal Geology 150–151, 127–153. http://www.sciencedirect.com/science/article/pii/S0166516215300446 Hydrocarbon potential of Middle Eocene carbonates, Sirt Basin, Libya Swei, G.H., Tucker, M.E., 2015. Journal of African Earth Sciences 111, 363–374. http://www.sciencedirect.com/science/article/pii/S1464343X15300169 Characteristics of solid residue, expelled and retained hydrocarbons of lacustrine marlstone based on semi-closed system hydrous pyrolysis: Implications for tight oil exploration Tang, X., Zhang, J., Jiang, Z., Zhao, X., Liu, K., Zhang, R., Xiong, J., Du, K., Huang, Z., 2015. Fuel 162, 186–193. http://www.sciencedirect.com/science/article/pii/S0016236115008996 Extraction of oil from Jordanian Attarat oil shale Tiikma, L., Johannes, I., Luik, H., Lepp, A., Sharayeva, G., 2015. Oil Shale 32, 218–239. http://www.kirj.ee/26425/?tpl=1061&c_tpl=1064 Using electrofacies cluster analysis to evaluate shale-gas potential: Carynginia Formation, Perth Basin, Western Australia Torghabeh, A.K., Rezaee, R., Moussavi-Harami, R., Pimentel, N., 2015. International Journal of Oil, Gas and Coal Technology 10, 250–271. http://www.inderscience.com/info/inarticle.php?artid=71525 Shale sequence stratigraphy of Wufeng-Longmaxi Formation in southern Sichuan and their control on reservoirs Wang, T., Yang, K., Xiong, L., Shi, H., Zhang, Q., Wei, L., He, X., 2015. Acta Petrolei Sinica 36, 915–925. http://www.syxb-cps.com.cn/EN/Y2015/V36/I8/915 Micro/nano-pore network analysis of gas flow in shale matrix Zhang, P., Hu, L., Meegoda, J.N., Gao, S., 2015. Scientific Reports 5, Article number 13501. http://dx.doi.org/10.1038/srep13501 Reservoir characteristics and controlling factors of shale gas in Jiaoshiba area, Sichuan Basin Zhang, X., Shi, W., Xu, Q., Wang, R., Xu, Z., Wang, J., Wang, C., Yuan, Q., 2015. Acta Petrolei Sinica 36, 926–939. http://www.syxb-cps.com.cn/EN/Y2015/V36/I8/926
Geochemistry Articles / Organic Geochemistry 89–90 (2015) e1–e23
e23
Predicted bulk composition of petroleum generated by Lower Cretaceous Wealden black shales, Lower Saxony Basin, Germany Ziegs, V., Mahlstedt, N., Bruns, B., Horsfield, B., 2015. International Journal of Earth Sciences 104, 1605–1621. http://dx.doi.org/10.1007/s00531-014-1081-y Do shale pore throats have a threshold diameter for oil storage? Zou, C., Jin, X., Zhu, R., Gong, G., Sun, L., Dai, J., Meng, D., Wang, X., Li, J., Wu, S., Liu, X., Wu, J., Jiang, L., 2015. Scientific Reports 5, Article number 13619. http://dx.doi.org/10.1038/srep13619 Soil Geochemistry
Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette Nowak, M.E., Beulig, F., von Fischer, J., Muhr, J., Küsel, K., Trumbore, S.E., 2015. Biogeosciences Discussions 12, 14555–14592. http://www.biogeosciences-discuss.net/12/14555/2015/ Determining soil sources by organic matter EPR fingerprints in two modern speleothems Perrette, Y., Poulenard, J., Protière, M., Fanget, B., Lombard, C., Miège, C., Quiers, M., Nafferchoux, E., Pépin-Donat, B., 2015. Organic Geochemistry 88, 59–68. http://www.sciencedirect.com/science/article/pii/S0146638015001606 Evidence of old soil carbon in grass biosilica particles Reyerson, P.E., Alexandre, A., Harutyunyan, A., Corbineau, R., Martinez De La Torre, H.A., Badeck, F., Cattivelli, L., Santos, G.M., 2015. Biogeosciences Discussions 12, 15369–15410. http://www.biogeosciences-discuss.net/12/15369/2015/ Fate of soil organic carbon and polycyclic aromatic hydrocarbons in a vineyard soil treated with biochar Rombolà, A.G., Meredith, W., Snape, C.E., Baronti, S., Genesio, L., Vaccari, F.P., Miglietta, F., Fabbri, D., 2015. Environmental Science & Technology 49, 11037–11044. http://dx.doi.org/10.1021/acs.est.5b02562 Accumulation of organic C components in soil and aggregates Yu, H., Ding, W., Chen, Z., Zhang, H., Luo, J., Bolan, N., 2015. Scientific Reports 5, Article No. 13804. http://dx.doi.org/10.1038/srep13804 Expanded compilations of references with abstracts in Microsoft Word and ISI EndNote formats are available at: http://eaog.org/?cat=16 Compiled by Clifford C. Walters