A&. Space
Res. Voi.
Pergamon
18, No. 9110, pp. (9~10)11~9/10)58.1996 C~~n~~ 0 1?96 COSPAR Printed in Great ntmn. All n&s resewed 0273-l 177/??6 $15.00 + 0.00
PII: so273- 1177(9h)NK)S@-6
Chapter 1 IMPROVES OZONE REFERENCE MODELS FOR THE COSPAR INTERNATIONAL REFERENCE ATMOSPHERE: G. M. Keating,”
L. S. Chiou** and N. C. Hsu***
* George Wushington University, NASA Langley Resew-d Center, Hampton. VA 23681) USA. ** Science Applications international Corp., Hampton, VA 23666, U.S.A. *** Hughes ~nf(}r~ti~~n ~e~~o~i)~ Corp., Greenhelt, MD 20771, U.S.A.
1. INT~DUCTION This chapter represents an update to the ozone reference model provided in Chapter 15 of the COSPAR international Reference Atmosphere: 1986 Part II: Middle Atmosphere Models published in 1990 (11. Nimbus 7 Solar Backscatter Ultraviolet (SBUV), Reprocessed data from several satellite experiments: Applications Explorer Mission-2 Stratosphere Aerosol and Gas Experiment (SAGE), Solar Mesosphere Explorer UV Spectrometer (SME-UVS), and Solar Mesosphere Explorer 1.27 micron airglow (SME-IR), and nightside mesospheric data from the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) are used to generate improved tables of the monthly variations of ozone vertical structure as a function of latitude. These tables have also been extended from a pressure level of 20 mb to 70 mb. Reprocessed data from the Nimbus 7 Total Ozone Monitoring System (TOMS) (Version 6) are used to provide improved tables of total column ozone as a function of latitude and season. Changes in the ozone hole over 10 years are also provided, as well as estimates of global trends in ozone. Over the last 65 years, a number of measurements of ozone in the middle atmosphere have been obtained from the ground and from balloons, rockets, and satellites. Numerous modeis have been developed to summarize various portions of these measurements since detailed knowledge of the global distribution of ozone is important for studies of atmospheric circulation, dynamic processes, the radiation balance, and the photochemistry of the atmosphere. From the ground-based ozone network, the latitudinal-seasonal variations of total column ozone were summarized by Dutsch [2] and the longitudinal variations were included in a series of monthly atlases for the period 1957 to 1967 by London et al. [3]. Measurements of vertical structure obtained from balloonsondes and rocket data at midlatitudes in the No~hern Hemisphere were summarized in a 45 degree annual model generated by A. Krueger and Ft. Minzner contained in the United States Standard Atmosphere Supplements, 1976 f4j. Bojkov [5f generated models of ozone vertical structure related to total cofumn ozone amount based on Dobson data and early Umkehr measurements. Models relating the vertical structure of ozone to total ozone based on approximately 7000 balloonsondes and a number of rocketsondes were generated by Hilsenrath et al. [6] as a “first guess’ for the Nimbus 4 Backscattered Ultraviolet (BUV) ozone experiment retrievals of total ozone and vertical structure and for the early Nimbus 7 SBUVITOMS total ozone retrievals. Similar models, based on essentially the same data base, were generated by Mateer et al. [7] as a ‘first guess’ for inversion of ‘short’ Umkehr observations to determine vertical structure of ozone from the ground. The 22 vertical profiles in (71 were given as a function of latitude (low, mid and high) and totai column ozone, but not season, tncons~stencies between rocket and balloon data were handled differently by Mateer et al. [7] than by Hilsenrath et al. [6]. Bhartia et al. [B] have developed similar models using both ozonesonde and satellite data. Klenk et al. [Q] developed a model of ozone vertical structure based on Nimbus 4 BUV data at pressures less than 15.6 mb and on balloon data at lower altitudes. This model was used as a ‘first guess” for vertical structure retrievals from the Nimbus 7 Solar Backscattered Ultraviolet (SBUV) ozone experiment. The model consisted of a simple parametric representation of the annual end latitudinal variations of ozone as a function of pressure and assumed symmetry between the Northern and Southern Hemispheres. Also included in this model is (9/10)11
(9/10)12
Ci. M. Keating et al.
the ozone covariance matrix which describes the variance of ozone in individual atmospheric layers and ths covariances between adjacent layers. An ozone covariance matrix is also included in the models of Mateer et al. [7]. Dutsch [lo] compiled data on the ozone vertical structure distribution using chemical-type balloon soundings and early BUV results. A tabulation of monthly Nimbus 7 SBUV ozone profiles for the period November 1978 through October 1079 is provided by McPeters et al. [II] in IO0 latitude increments from 0.17 mb to the surface. Results are given in terms of column density and its standard deviation, volume mixing ratio and number density. Heath et al. [12] have generated a set of atlases of total ozone for the period April 1970 - December 1976 based on Nimbus 4 BUV data. Bowman and Krueger (131 have provided a climatology of total ozone from Nimbus 7 TOMS measurements. Tolson [14] has generated a ninth-order, ninth-degree spherical harmonic model to represent the monthly mean total columnar ozone field over the 7-year period of the Nimbus 4 BUV data set. Annual and semiannual components are determined for both latitudinal and longitudinal variations and the biennial and longer term variations are determined as function of latitude. Hasebe [15] has modeled the latitudinal and longitudinal variations in the total columnar ozone field over the 7-year period of the Nimbus 4 BUV data set using filtering techniques. Global mean total column ozone and its annual, semiannual, quasibiennial, and longer term components have been determined through spherical harmonic analysis [ 14,161.
Data on total ozone and its vertical structure have been obtained from a number of satellite experiments. Shown fn Table 1 (Krueger et al. [17]) is a tabulation of most satellite ozone experiments through 1978. Included are solar and stellar occultation, solar backscatter ultraviolet, and infrared types. Since then other satellites have been launched with ozone measurement capability including Applications Explorer 2 SAGE II [18,tQ], Dynamics Explorer 1 Spin Scan Ozone lmager (SOI) [20,21], Solar Mesosphere Explorer (UV and IR) [22], EXOS-C [23], instruments aboard the NOAA series of Research satellites (TOVS and SBUV 2) [24, 25, 261, instruments aboard the Upper Atmosphere Satellite (HALOE [27] MLS [28], CLAES [29] and ISAMS [30]), and SPOT III POAM II (311. With the wealth of recent satellite data allowing high precision determination of ozone variations with pressure, latitude, and time, it was decided to generate a model of ozone vertical structure based, not just on one satellite experiment, but on multiple data sets from satellites. This is the first time such models have been generated [32-351. Keating et al. developed models of this type for MAP Handbook, Volume 31 [36,37], for Part II of the COSPAR International Reference Atmosphere [l], and developed recent extensions [38,39]. The very good absolute accuracy of the individual data sets allowed the data to be directly combined to generate these models. The data used for generation of these models A brief discussion is provided of are from satellite measurements over the period 1978-1983. validation and error analyses of these data sets. Also, inconsistencies in data sets brought about by The models cover the pressure range from 70 to temporal variations or other factors are indicated. 0.003 mb (17 to 90 km). The dayside zonal models for pressures less than 0.5 mb are only provisional since there was limited longitudinal coverage at these levels. Models are also provided of ozone mixing ratio as a function of height (in km) using tne conversion from pressure to height given by Barnett and Corney 1401. The monthly standard deviation and interannual variations relative to zonal means are also provided. Monthly models of total column ozone and their characteristic variability as a function of latitude based on the first 4 years of Nimbus 7 measurements are also provided, models of the relation between vertical structure and total column ozone [7], and annual mean models including a midlatitude annual mean model of vertical structure similar to [4] are incorporated in this set of ozone reference atmospheres. Various systematic variations are discussed including the annual variations, semiannual diurnal variations, longitudinal variations, response to solar variations, quasibiennial oscillations, activity variations, response to volcanic aerosols, long-term trends, and the ozone hole. Considering the good agreement among satellite data sets from 1978-1983 (generally within 10% of the interim reference models below 0.5 mb) it is expected that the present tables will be useful for many applications. Indications of global changes since this period including changes in the ozone hole are also discussed.
2. SATELLITE DATA FOR REFERENCE MODELS The reference models provided ozone data from five satellite
here of monthly latitudfnal variations of vertical structure are based on experiments (see Table 2): Nimbus 7 Limb Infrared Monitor of the
(9/10)13
OzoneReferenceModels TABLE
1
Farly satellite experiments to measure ozone (from Krueger et a1.[17])
l-ml
occul
ta-
tion Solar
Stellar
Backscatter Uv Profile
17ON
Dec.
USAF 1962 Ariel 2
590.529.3 260 200-400
33°s-130s SOOS-SOoN
AE-5
255.5
SON
July 1962 Apr., by, Aug. 1364 WC. 1976
OAO-2
250
16'S_43oN
OAO-
258-343
12as-3%
USAF 1965
284
60°.+600~
USSR
225-301 250-330 175-310 110-340
~OCS-~O~N 60°S-60°N SO'S-8O"N %O'S-8O'N
255.5-305.8
80oS-80aN
255.5-305.8
20's_20°N
Echo
1
3
1966-1118 C!GO-4 Nimbus 4 b.u.v. AE-5 b.u.v. Nimbus 7 s.b.u.v. Total
Nimbus 4 b.u.v. AR-5 b.u.v. Nimbus 7
1960
Jan. 1970 Aug. 1971 July 1975
Venkateswaran al a1.[139) Rawcliffe et al. (1401 Niller and Stewart [lrll) Gueathar et al. I1421 Hays and Roble [143) Riegler et al. 11441 Rawcliffe and Elliott [14Sl Iozenas et al. I1461 Iomenas et al. it461 Elliott et al. I1471 Anderson et al. I1481
255.5-305.8 80°~-800~
Feb., Mar. 1965 AFr. 1965 June 1966 1966 Sap. 1967Jan. 1969 Apr. 1970Jul. 1977 NW. 1975apr. 1977 Nov. 1978
312.5-339.8
80%80°N
Apr. 1970-
Hateer et al. [lSl]
312.5-339.8
20'S_2OoN
312.5-339.8
global
Nov.l974Jul. 1977 NW. 1978
Heath et al. IlfO)
Heath et al. 1691 Frederick et al. [1491 Heath et al. [150]
C.0.lll.S.
micron 9.6
6S”~-90%
9.6
6S"S-9OoN
Infrared &&asion Profile
Nimbus 6 1.r.i.r. Nimbus 7 1.i.m.s
Total
Nimbus 3 9-10 i.t.i.s. tral Nimbus 4 9-10 i.r.i.s. tral Block 5 m.f.r. (4 flights) Tiroa N 9.71 h.i.r.8
TABLE 2
epeescan apececah
Jun.1975Jam.1976 oct:.l978Hay 1979
80°S-8O'N
Nimbus Project 1152.1531
Hanel et al. flS4)
global
Apr. 1970 Jan.1971 Nar.1977
global
Nov.1978
80%-80°N
Gille et al. [70]
Prabhakara et a1.f~) Lovill et al. IlSSJ
Satellite data used for improved CIRA ozone reference models INCORPOiWrED INSTRUMENT
INCORPORATED
PRESSURERANGE
TIMEMTERVAL
0.5 - 20 mb (day)
IV78
- s/79
0.05 - 03 nib (tight)
11/78
- S/79
0.S- 20mb
1179- 12/82
S - 70mb
z/79- 11/sr
SME WS
0.15-O.Smb
l/82- 12/83
SME IR
5.553* OSmb
If82- 12183
NIMBUS 7 UMS
NIMBUS
7 SRUV
AE - 2 SAGE
NIMRLIS7 TOMS
TOTAL
11/78- 10182
(9/10)14
1;. M. Keating ctoi.
Stratosphere (LIMS), Nimbus 7 Solar Backscatter Ultraaviolet (SBUV) experiment, Applications Explorer Mission-2 (AE-2) Stratospheric Aerosol and Gas Experiment (SAGE), Solar Mesosphere Explorer (SME) UV Spectrometer (SME-UVS), and Solar Mesosphere Explorer I.27 micron airglow (SME-IR). Other ozone data sets are included to define the nature of systematic variations other than the latitudinal-seasonal variation. The LIMS instrument, the stratosphere
a six-channel
and mesosphere
cryogenically
and X20,
HN03
cooled
radiometer
measured
and NO2 distributions
03 and temperature
in the stratosphere
in
from 84O N
to 64”s latitude from October 25, 1978 to May 28 1979 [41,42]. The LIMS ozone channel measures emission near 9.6 urn with a field of view at the limb of less than 3 km in the vertical and 18 km in the horizontal (perpendicular to the line of sight). Monthly zonal means of Kalman-filtered LIMS ozone values are incorporated in the model for the period November 1978 through May 1979 from 60’S to 80”N and from 20 mb to 0.5 mb. Non LTE effects become important on the dayside above these altitudes (431. Validation studies have been performed using balloon and rocket underflights Umkehr soundings and Dobson measurements 1441. Comparison with the correlative measurements shows mean differences of less than 10% at mid latitudes for balloon-borne sensors and less than 16% up to 0.3 mb for rocket data. The comparison with balloon measurements near 20 mb indicate LIMS data may be high by about 8% at low latitudes. At greater pressures there is evidence of a significant bias relative to balloon data in this region. Use of the LIMS data above 0.5 mb are limited in the present model to nightside measurements where they were not significantly affected by non LTE effects [37]. The nadir-viewing SBUV experiment measures the vertical structure of ozone from absorption of solar ultraviolet backscattered radiation between 250 and 340 nm. The resolution of the ozone measurements For these studies the first 4 years of SBUV data were employed (January is about 8 km in the vertical. 1979 - December 1982) using daily zonal averages every 10” in latitude over the illuminated portion of the Earth from 20 mb to 0.5 mb. Data contaminated by volcanic emissions after October 1980 (including El Chichon) have been removed [45]. Validation studies have been performed on the SBUV data employing balloon rocket and ground-based Umkehr measurements f48f. The precision of the SBUV measurements was found to be better than 8% for pressures between 1 and 64 mb. Constant biases of generally less than 10% between the SBUV results and the balloon and Umkehr results may be largely due to errors in ozone absorption crosssections assumed earlier. Ozone absorption cross sections incorporated recently by the International Ozone Commission of IAMAP are employed in the inversion of the data employed in the present models 147,481. An improved version of the SBUV data (Version 6) is incorporated here for generating tables [49,50]. The earlier Version 5 [45,51] was used in the earlier CIRA and MAP models. The SAGE instrument is a four-channel sun photometer which measured solar intensity at sunrise and sunset to derive ozone, aerosol, and NO, concentrations. Absorption of 0.6 micron solar radiation by ozone allowed determination of the vertical structure of ozone to be obtained up to 30 times per day from February 1979 until November 1981. After data processing the vertical resolution of the data was estimated to be 1 km up to approximately 40 km altitude and 5 km above 40 km. The horizontal resolution was estimated to be 200 to 300 km in the viewing direction and 200 km perpendicular to the field of view [52]. Monthly latitudinal coverage depends on the time of year and solar geometry, but can extend from 78’S to 78”N. However, on any particular day, the vertical structure is obtained at a discrete latitude for sunrises or sunsets. Comparisons were made between balloon measurements and SAGE profiles from 18 to 28 km, and average differences were found to be less than 10% [18,53]. Comparisons by McCormick et al. [18] with rocketsondes up to 60 km yielded average differences of less than 14%. An initial comparison between SAGE and SSUV in March-April 1979 indicated agreement to generally better than 15% between 5 and 30 mb [52]. A comparative study between the three data sets SBUV, SAGE, and LIMS for March 1979 has been performed by Fleig et al. [54,55]. The LlMSfSBUV comparisons are shown to be very good in the upper stratosphere, while the S%UV/SAGE comparisons are shown to be very good in the lower stratosphere. The algorithm originally used for SAGE data reduction has recently been improved and a new data user’s guide has recently been published [SS]. We incorporate here this recent version using only sunset data, and interpolating to the center of latitude-month bins as described in [38]. The SAGE data has also been extended from 20 mb to 70 mb.
OzoneReferenceModels
(9/10)15
Mesospheric ozone mixing ratios are available from two limb scanning experiments aboard the Solar Mesosphere Explorer (SME) spacecraft (which was launched 6 October 1981). The first of these, the SME-UVS is a two-channel Ebert-Fastie spectrometer. The instrument measures the Rayleigh scattering of solar photons at the earth’s limb at wavelengths of 265 nm and 296.4 nm from which the ozone profile is determined between 1.0 mb and 0.07 mb [57]. The field of view of the instrument is 3.5 km in the vertical by 35 km in the horizontal at the limb. Generally zonal means are not obtained. The primary orbits were over the longitude range from 4O*W to 100°W, and the local solar time of measurement at the equator is near 15 hours. An error analysis indicates total errors should range from 6% at 48 km to 15%, at 68 km (1.0 to 0.1 mb) [57,58]. The data chosen for the model are over the range 0.5 mb to 0.15 mb over the period January 1982 through December 1983. Over this pressure range the data are in fair accord with the SME-IR data. The SME-UV data used here represents an improved reprocessed product 1591 compared to the product used in the earlier MAP and CIRA models. The second SME experiment, SME-IR, is a near-infrared experiment that measures 1.27 micron airglow from which ozone densities from 50 to 90 km are deduced. The dayglow is principally associated with photodissociation of ozone [SO]. Monthly means from this experiment agree fairly well with the SME-UVS experiment and with Krueger and Minzner [4]. Thomas et al. [Sl] describe the error analysis of this experiment in some detail. Random errors are estimated to be less than 10% from 50 to 82 km and increase to 20% at 90 km, Systematic errors are estimated to be 15%, but could be as high as 50%. The data used for the model are monthly means over the range 0.5 mb to 0.003 mb and over the period January 1982 through December 1983. The local solar time of the measurements is again about 15 hours. Latitudinal coverage is consistent with the illuminated earth, and longitud~nai coverage is principally from 4O”W to 100DW. The SME-IR product used here represents an improved reprocessed product compared to that used in the earlier MAP and CIRA models [59]. Early reviews on mesospheric ozone are found in [62-661. Ozone measurements made in the Aladdin program [67] by several techniques on June 29-30, 1974, are in good agreement with SME measureAbove 75 km, Aladdin ozone is a factor of 2-3 lower than SME-IR. It is very ments below 70 km. possible that this is a real ozone variation [SS]. Other satellite instruments which have obtained measurements of the vertical structure of ozone prior to 1984 include the Nimbus 4 BUV experiment [69] and the Nimbus 6 Limb Radiance Inversion Radiometer (LRIR) 1701. Since the Nimbus 4 BUV experiment had probfems with a serious drift in bias, the Nimbus 7 SBUV data (Version 6) from 1979-82 were considered to be a better choice for the model. The Nimbus 7 LIMS is generally considered an improvement over the Nimbus 6 LRIR experiment and was therefore chosen for the model. The models of total column ozone given here are based on 4 years of Nimbus 7 TOMS measurements, The TOMS instrument is used to determine total column ozone by measuring backscattered solar ultraviolet radiation attenuated by ozone employing a simple monochrometer whose instantaneous field of view scans through the ~ubsatellite point and perpendicular to the orbital plane. Backscattered and direct solar radiation are sampled at six wavelengths from 312.5 nm to 380 nm. The resolution of ozone measurements is about 50 km in the horizontal. For these studies the first 4 years of TOMS data were employed ~November 1978 - October 1982) using daily zonal averages every 5” in latitude over the illuminated portion of the earth. Early comparisons of TOMS data with ground-based Dobson and M83 data have shown a retrieved precision of better than 2% and biases of 6% relative to the Dobson measurements [fl]. In the tables of this update of the ozone reference models we use TOMS Version 6 [72,73], which represents a reprocessed improved data product over Version 5 used in the earlier MAP and CIRA ozone reference models. The Version 6 values are adjusted by 4% to be more in accord with Dobson measurements. Global measurements of total ozone from backscattered ultraviolet measurements have also been obtained from the Nimbus 4 Backscattered Ultraviolet (BUV) and the Nimbus 7 SEUV experiments. The TOMS experiment, however, obtains more measurements per day than the other two and does not appear to have as serious drift problems as occurred on the Nimbus 4 BUV experiment. Infrared experiments which measure total column ozone from absorption of 9.6 micron radiation have included the Nimbus 4 Infrared Interferometer Spectrometer (IRIS), the DMSP Multifilter Radiometers (MFR), and the Tiros Operational Vertical Sounders (TOVS). A study of the relative biases between a limited amount of the TOMS, MFR, TOVS and SBUV total column ozone results was performed [74] showing excellent global average agreement between the TOMS and MFR (3%) but not as good agreement
(9/10)16
G. M.Ik&g
etai.
between SBUV and MFR (5%) or between TOVS and MFR (7%), where in each case MFR gave a lower value for total ozone. Significant latitudinal biases relative to BUV data have been noted in the Nimbus 4 IRIS data [75,76].
3. MODELS OF TOTAL COLUMN OZONE
ANNUAL VARIATION OF TOTAL COLUMN OZONE ( DOBSON.UNITS ) (AdjustedNimbus 7 TOMS Version 6)
1
2
3
6 7 MONTH
5
4
8
9
10
11
12
Zonal mean of total column ozone (Dobson units) as a functior.of 1. laiitude and month. (adjusted Nimbus 7 TOMS-Version 6 data)
Fiaure
-Eq-&
J
F
,
,
,
,
,
,-
tI
A
R
J
J
A
S--- 0
N
f)
MONTH Figure 2.
Standard deviation (percent) from zonal mean of total column otor*e for period January 1979 through December 1979 (Nimbus 7 TOMS data). (from Keating et al. [l))
OzoneReferewe Models
(9/10)17
The monthly latitudinal models of total column ozone are based on the archived first 4 years of data (1 l/78-10/82) from the Nimbus 7 TOMS experiment. The total column ozone values tabulated here have been reduced 4% below the TOMS Version 6 172,731 archived data to be more in accord with Dobson measurement [71,77]. Differences between the TOMS and Dobson measurements apparently result partially from an offset in the wavelengths in the original TOMS calibration[77). Shown in Figure 1 is total column ozone in Dobson units (the Dobson unit is defined as lo-’ meters of ozone at 0°C and at standard sea level pressure) as a function of latitude and month. Note the high values in mid and high latitudes in spring in the Northern Hemisphere and at mid latitudes in local spring in the Southern Hemisphere. Also note the low values in September-October near 80’s. These low values reflect the early state of the ‘ozone hole’ in the Antarctic [78]. Much higher values of ozone were detected in the sprhgtime Antarctic at earlier times [78,79]. Shown in Figure 2 is the standard deviation in percent of individual ozone measurements relative to the ronal mean obtained each month for a l-year period (November 1978 - October 197Q)[lf. Minimum standard deviations occur at low latitudes while the maximum values occur near the ‘ozone hole.” A comparison of monthly ozone values from year to year over a 4-year period (November 1978 - September 1982) gives an approximate idea of patterns of interannual variability in total ozone. Shown in Figure 3 is the interannual variability expressed as standard deviation (in percent) relative to 4-year means as a function of latitude and month [l]. The variations are generally less than 4% (except near October, 80°S) and are strongly related to quasibiennial variations discussed briefly in the section “Other Ozone Variations”. The large variations in October, 80°S again reflect the Antarctic ozone hole. Shown in Table 3 is a tabulation of the latitudinal variation of total column ozone in Dobson units for each month based on the dayside Nimbus 7 TOMS Version 6 observations of ozone reduced by 4% over the 4-yearperiod 11178-10182. The spaces indicate times when monthly TOMS measurements were not available.
JFttAtlJJASOND
MONTH Figure 3. Interannual variability of total column ozone expressed as yearly standard deviation (percent) from I-year zonal means (Nimbus 7 TOMS data). (from Ibating et al. ill)
(9/10)18 TABLE
G. M. bating etnf. 3
Zonal mean total column ozone (Dobson units) Nimbus 7 TOMS (11/78-lo/821reduced.4%
Detj Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Ott
Nov
Dee
____ .____-_____________________--~~~~_-_~~~~____________________
446
466 464 457
452 449
396 400 406
360 359 362
321 321 323
292 293 298
258 270 287
285 263
1
.:
387
425 431
445 450
434 443
402 407
360 361
331 325
312 304
303 296
307 299
328 3;3
341 ::
384 386 381 367 344 312 ;05: 282 25N 261 20N 249 15N 243 ION 241 5N 242 0 245 249 254 1% 15s 259 20s 264 25s 269 30s 277 35s 285 40s 296 45s 309 SOS 324 55s 334 605 335 655 328 70s 320 75s 313 80s 308 85s 304
424 420 411 391 362 325 292 270 255 246 241 243 246 249 253 256 259 263 270 278 286 29s 306 316 319 316 306 295 287 279
437 427 413 394 368 336 306 283 267 257 251 250 251 252 254 256 258 262 268 275 280 287 296 304 308 307 301 293 277 269
424 414 402 385 362 337 314 296 280 269 261 256 254 253 253 254 257 263 270 275 281 289 298 307 312 310 300 283 266 -
400 396 388 375 353 332 314 300 285 274 266 259 255 253 252 253 258 264 272 282 294 303 310 316 317 ;;if
367 370 366 354 333 315 303 295 285 276 270 263 258 254 252 253 259 266 280 297 310 318 321 321 321 -
340 343 339 328 313 302 29s 289 283 278 274 268 263 258 255 256 262 272 286 305 321 331 334 331 326 318
-
-
-
320 32.3 319 311 302 295 290 285 280 278 275 272 268 263 260 261 268 280 298 318 334 344 347 344 331 310 292 282 -
310 311 306 300 292 286 281 277 274 274 272 270 268 266 265 268 277 290 306 326 342 356 365 366 350 316 281 260 251 240
311 310 303 294 283 275 271 267 263 262 261 260 260 261 263 269 279 291 306 325 343 359 374 386 384 358 321 286 262 246
326 321 314 301 286 273 265 261 256 254 253 252 2S2 256 262 269 277 288 300 312 324 339 355 371 380 376 363 344 334 330
351 349 343 330 311 289 270 258 250 246 245 245 247 251 257 264 270 278 287 297 308 322 336 348 354 355 353 346 342 339
85N 80N 75N 70N 65N 60N 55N SON 45N 4ON
4.MODELS OF OZONE VERTICAL STRUCTURE As described in Section 2 the vertical structure models of monthly latitudinal variations provided here are based on the combined SBUV, LIMS, SAGE, SME-UVS, and SME-IR data tabulated in Table 2. The 4year mean of the SBUV data over the interval 1179-12182 were given a weight of two due to the combination of extensive temporal and spatial coverage, while the other shorter data sets were each given a weight of one. Although there measurements Figure 4 is the 1981 [l]. Note each case from
is interannual variability, comparison of the SBUV data over the 4-year period of shows a remarkable similarity of structure from year to year. For example, shown in vertical structure at O”, 20°N, 40°N and 60°N for November of 1978, 1979, 1980 and how the O” and 20”N profiles come together near 4 mb. The 60°N profile changes in the lowest profile at 4 mb to the highest at 1.5 mb.
Shown in Figure 5 is the interannual variability of zonal mean ozone expressed as standard deviation (in percent) relative to the mean of nearly 4 years of SBUV data (I l/78-9/82)as a function of pressure and latitude for the months of November and July[l]. As indicated in the previous figure, the interannual variabili~ of zonai means in November was very low, generally less than 4%. In contrast, the month of July gave the largest variability over this 4-year period with the maximum variability occurring at high winter latitudes. The interannual variability appears to be strongly related to quasibiennial oscillations.
Kl 6 Pmvl
10
03 IPIW)
12
I6
I#
26
I?
c3 fPPr!v)
IO
I_““““’
Figure 4. Similarity of ozone vertical structure in November from year to year (Nimbus 7 SBW data). (from Keating et al. 111)
;
Q3.0 7.0
iFI g 5.0
2.0
1.5
I .a
.?
.5
6. M. Keatingcral.
(9/10~0
so0 , .?OO-
,
,
,
,
,
JULY
NOVEMBER
L L
’
Ef ’ ’ ’ ’ L ’ ’ ( 20 ‘IO -YO -20 0 LRTITUDE f DEGI
60
60
-60
-60
-90
‘IO -20 0 20 LFlT I TUOE ( DEG)
60
60
Figure 5. Interannual variability of ozone vertical structure expressed as yearly standard deviation (percent) from d-year zonal means for the months of November and July (Nimbus 7 SBW data). (from Keating et al.[il) Figure 6 shows theaverage standard deviation (in percent) of the individual data points making up the monthly zonal means based on nearly 4 year6ofSBUV data (11/78-9182) [l], The standard deviations are shown as a function of latitude and pressure and appear considerably different from the interannual variability displayed in Figure 5. Minimum standard deviations occur near the equator and in the summer hemisphere. Standard deviations can exceed 15% at high latitudes and result from substantial longitudinal variations in ozone as well as changes in the zonal means during the month. The patterns for individual years look very similar to these 4-year mean patterns. In Figure 7 is shown an example of the agreement between the five data sets used to generate tabular models of the ozone vertical structure from 70 mb to 0.003 mb (17 to 90 km). Note that the mixing ratio is displayed on a log scale to allow accurate representation of the nearly two orders of magnitude variation over this altitude range. It should be recognized that each data set represents entirely different techniques of measuring the vertical structure of ozone. The agreement shown here is fairly r~resentative of other latitudes and months. Table 4 gives the monthly zonal mean ozone volume mixing ratios (ppmv) as a function of pressure and latitude up to 0.5 mb, and dayside means at available longitudes at lower pressure levels. An entry followed by A indicates only one data type was used. An entry followed by B indicates that the percent standard deviation from the model of weighted data types exceeded 10 percent. An entry not followed by a letter indicates standard deviations from the model of less than or equal to 10 percent. The dashed entry indicates zonal means were not available at that latitude and pressure. As may be noted, in most cases at altitudes below 0.5 mb the standard deviation from the model of weighted data types was less than or equal to IO percent. Considering the difference in techniques, this is noteworthy. The definition of symbols in the previous ozone vertical structure tables given in CIRA [I] were incorrect. In those tables bold typeface aotually indicates standard deviation s lo%, italics and underline indicates only one data type used, and non-bold indicates standard deviation > 10%. Shown in Figure 8 are the monthly ozone distributions given in the new Table 4. A comparison of the entries in Table 4 showsthenature of the annual and semiannual variations of The amplitudes of annual variations are generally highest at high ozone in the middle atmosphere. latitudes, and amplitudes are especially high near 15-5 mb, 2.0-0.5 mb, and above 0.03 mb. Amplitudes are high at low and mid latitudes near 0.1 mb. There is a sharp change of phase near 4 mb with maximum ozone values in summer below this altitude and maximum values in winter in the upper Figure 9 shows the ozone annual variation in percent of annual mean at 50°S and 50°N stratosphere. Notice the marked agreement in seasonal asymmetries at all levels over the entire range of altitudes. between the two hemispheres. These observed phases and amplitudes of the annual variation could A substantial semiannual variation occurs near the equator serve as a check of theoretical models. from 15 - 3 mb, but the largest semiannual variation occurs at mid and high latitudes above 0.03 mb [SO& and at high latitudes near 1 mb. Figure 10 shows the ozone semiannual variation in percent of the annual mean at 30°S and 30°N for the entire range of altitudes. The annual and semiannual components Note the symmetry in the low latitude semiannual variations in the were solved for simultaneously. two hemispheres and evidence of propagation from the mesosphere into the stratosphere.
(9/10)21
OzoneReferenceModels
Figure
6. Average monthly standard it3bbus 7 SBW data). (from Keating
deviation (percent) et al. [I])
from
zonal mean c~zone
I! IO. IL. 00
l.mm
rrxa
a
-00-0-w-a
0
eo w
l_RTlTm 1Em
(9/10)22
(.i. M.
Keating ci al.
I a.
. 1.
Figure 6 (continued)
OzoneReferenceModeis
(9/10)23
Tabulated in Table 5 are the monthly zonal mean ozone volume mixing ratios (ppmv) as a function of height (km) and latitude using the conversion from pressure to height given by Barnett and Corney [40]. The SME data is limited to the dayside mesosphere (approximateiy 3 pm). The LIMS ozone measurements in the dayside mssosphere are strongly affected by nonlocal thermodynamic equilibrium (non-LTE) effects (Solomon et al. [43]) and therefore are difficult to interpret. However, the LIMS nightside mesospheric measurements (approximately 10 pm) are essentiaky unaffected by non-LTE effects and are thus a good measure of ozone in the nightside mesosphere. Given in Table 6 are the monthly nightside (ascending) zonal means of Kaiman-filtered LIMS ozone volume mixing ratios (ppmv) [37] from the LIMS Map Archival Tape (LAMAT) interpolated to the standard levels in the ozone models. An asterick is placed after values where the error in zonal mean is estimated to exceed 20%. monthly values are shown between 0.5 mb and 0.05 mb (when avaiiabie) from 60% to 80°N. Values between50% and 60°N occur near 10 pm. At the highest latitudes, earlier local solar times occur.
MARCH
-50
LATITUDE=
.003 .005
.007 .oio .015 .020 .030
z z EI 2 8 C
SBUVOZONE
.050 .070 .lOO .150 .200 .300
SAGE OZONE
500 .700 1‘000 1.500 2.000 3.000 5.000 7.000 10.000 15.000 20.000 30.000
.l .I5 Figure 7. mean ozone
Comparison of volume mixing
.2
.3 .4
.6 .6 1. 1.52. 3. 4. 03 (PPW)
6. 8.10. 15.20.
measurements from five satellite ratios (ppmv) for March, 500s.
experiments
of
zonal
P (mb)
:E% g:m&
1s.aoo
:.:i: 7:ooo 10.000
G: 1.500 2.000
Z:%
:::ki 0.200
::i% 0.020 0.030 0.050 0.070
0.007
0.001 0.005
p Imb)
-50
0.33h 0.2Oh 0.12h 0.101
:.:: 3:53 :‘i: 7134 7.70 7.49
::i 3.33
::z: 6.67 6.76 6.37
vi x 1.52 1:64
0.13h 0.12h 0.201 0.19h 0.29h 0.28h 0.44h 0.43h 0.66 0.67
0.29h 0.17h O.llh O.llh
0.4bh 0.49h
0.71A
-60
0.6111
0.81 1.09 1.50
k:E 0.65
-SO
:.::i 1:63h ::::::
4.18h
5.17 4.57 5:31
;:g
"6.X p:El :.:t
6.41
:::: :::: 3.71 4.71 ::i:
1.63 1.74
::::i 0.46h 0.66 0.83 1.13
i::::
-70
-40
1.04
-40
7.99
0.64h
-20
8.83
:::::
:.:: 4:52h
i::: 8.74
::::
:-‘0: 4:13
1.30 1.66
-30
-10
4.3Jh
0.65h 0.39h 0.31A 0.31h 0.22h 0.14h 0.12h 0.17h 0.24A
1.72h 1.46A 0.69A 0.52h
4.30h
-20
0.33h 0.30h 0.27h 0.19h 0.13h O.llh 0.17h 0.2Sh 0.3BA 0.64 o.e4 1.17 1.73 2.24 2.99 4.23 5.44 7.41 9.15 9.65 9.61 8.35 7.02 4.17A 1.62h 0.56h
-10
0.49A 0.4Bh
:G 1.78h 0:98h 0.70h
6.43
;:::
i:::
6.82
::ii
-30
4.02 5.1b
:*:::: 0:lfA 0.12A
0:33A
x;:
10
0.47h 0.3Oh 0.29A 0.29h 0.22A O.lSh 0.12h 0.17A 0.25A 0.36A 0.658 0.84 1.17 1.73 2.23 3.00 4.30 5.53 7.39 8.63 8.87 8.60 7.76 6.59 4.04h 1.42h 0.56h
;:t: 9.41 9.43 8.14 6.78 4.22A 4.09A 1.3OA 1.42A 0.4&A 0.54A
0.69h 0.4OA 0.32h 0.32A 0.23h 0.16h 0.12h 0.17h 0.23A
1atpe
0.82 1.148 1.71 2.23 3.00 4.27 5.49 7.43 8.86 9.38 9.51 8.28 6.90 4.06h l.blA 0.57h
0.63
0.49h 0.32h 0.291 0.28h 0.2Oh O.llh 0.12h 0.17h 0.24A 0.37A
latkcude10
:.:::: o:7en
:*:: 6:sl
It*:: 2:9a
20
:*t: S:64
:::;
20
4115h 2.b4h 1.30h
z.;:
2:33
0.59h 0.38h 0.28h 0.26h 0.27h 0.22h 0.15h 0.20h 0.31h 0.4s.h 0.66 0.87 ;.;:
30
JO
fx
x::
b:24 6.02
x
3::t
II% 0:34h
0:22A 0.25A
Xiz
50
50
1.92h 2:43h
4:9er 3.26h
i.2;
2149
0.87 :.g
0.66
0.63h 0.38h 0.25~ 0.2lA 0.2% 0.25h 0.19h 0.2lh 0.32h 0.49h
40
40
entry followed by A: only 1 data set used in average, entry followed by B: standard deviation of data types > lO%, entry not followed by letter: standard deviation S 10%)
-60
-60
0.76h
::;: x :% 3:21h 4.15h 4:4Oh 2.92h 2.73h 2.91h 2.Olh 1.70h 2.20h
ii::::
-70
60 0.71h 0.39h 0.19h
6.03
2.02
60
70
5.60
6.04
:::Zi
I$::
:.i:
::::
0.69h 0.86h 1.20h 2.19
if::;:
Lx%
:::;i 0.15h 0.21).
0.7011 0.35h
6.07A 5.72h 5.3Oh
80
l.s?/.. 2.:!%A 2.9”A 3 75A 4.14~ 5.O<,;, 5.3lh 5.27A .l.‘lh I.d?,h 4.14t. _ ”
” _ _ _ _ _ _
_ _ _ _ _ _
1.&h 2.3bA 3.04h 3.9llA 4.65~ 5.34A 5.55A 5.37A S.Olh 4.62h 4.34h -
8n
70
Monthly zonal mean ozone mixing ratios (ppmv) as function of pressure and latitude
-80
TABLE 4
-70
-80
0.23A 0.32A 0.45A 0.63A 0.77 1.02 F
O.llA O.llA 0.12A 0.15A
0.69A 0.29A
-60
2131 :.::
2:45A g.;;;
-60 0.79A
5.86 4.;; 6:41 5.87 5.36 4.92 4.61
-
6.07A 2.;;;
5:65A 5.20A 4.76A 4.31A 4.06A
:c*
5170 4.97 4.50 3.14A
-70
-
417611 4.26A 4.03A -
5:93A 5176 6.3311 6.80 ;.fMf t&:4"
O.llA 0.22A 0.32A 0.48A 0.656 0.86 :.g
0.13A 0.23A 0.32A 0.45A 0.64 0.85 ;.F&
0.19A 0.15A 0.17A 0.12A 0.14A O.llA O.lOA
0.44A 0.61A 0.18A 0.25A 0.13A 0.17A
-80
TAMJZ 4 (continued)
-so
0.69A 0.35A 0.24A 0.22A 0.17A 0.12A O.lOA 0.2OA 0.32A 0.49A 0.678 0.89 1.26 1.84 2.33 3.10 4.40 5.54 7.02 7.55 7.33 6.78 5.85 5.07 4.13A 2.5211 1.67A
-50
-40
0.68A 0.44A 0.33A 0.29A 0.22A 0.15A 0.10A 0.19A 0.29A 0.46A 0.67 0.89 1.27 1.86 2.34 3.08 4.31 5.44 7.08 8.00 8.03 7.67 6.67 5.69 4.32A 2.33A 1.35A
-40
-30
0.70A 0.48A 0.37A 0.32A 0.24A 0.16A O.llA 0.18A 0.27A 0.42A 0.66 0.88 1.25 1.83 2.31 3.04 4.24 5.39 7.14 8.40 8.65 8.49 7.52 6.41 4.45A 2.03A l.OOA
-30 0.69A 0.4OA 0.31A 0.30A 0.21A 0.14A 0.12A
0.7lA 0.46~ 0.34A 0.31A 0.23A 0.15A 0.12A 0.18A
-20
fppmvl
20
for MARCH
30
40
50
-10
larPde 10 20
tppmv) for APRIL
30
40
50
7135 4.19A 4.05A 4.i5A 4.4iiA i.8bA 4.86A 4.9439 1.6OA 1.49A 1.61A 2.02A 2.71A 3.32A 3.63A 0.69A 0.551 0.69A 0.88A 1.38A 2.13A 2.53A
latitude 0 10
average ozone
6197 4.41A 1.77A 0.77A
9.22 9.78 y; lfpf I
2124
0:w :.y
0.86 ;*;g 2126
;.::A
LJgA
O.lBA 0.26A 0.25A
-10
ozone
-20
average
60
-
60
70
-
70
80
-
80
~rnm
_
-70
-80
_
-70
-80
0.2OA 0.29A 0.46A 0.71 0.93 1.28
1.06 2.37 3.11 4.31 5.44 7.14 0.39 0.73
0.2OA 0.31A 0.47A 0.69 0.91 1.20
1.91 2.40 3.39 4.91 6.16 7.65 0.20 0.06
0.241 0.32A 0.47A 0.72A 0.97A
-50
_ _ _
-60
_ _ _ _
2.i2A 3.61A 5.12A 6.SSA 6.84A 6.3611 5.90A 5.59A 5.22A 4.77A 4.444 -
_
_
-10 0.61A 0.3S.A 0.33A 0.3SA 0.26A
0.6lA 0.32A 0.31A 0.35A 0.26A
0.61A 0.34A 0.30A 0.32A 0.24A
latitude 10 20
MAY
30
0.63A.0.72A 0.43A 0.54A 0.36~ 0.44A 0.32A 0.3SA 0.24A 0.23A
(ppmvl for 40 0.74A 0.56A 0.44A 0.34A 0.2lA
so 0.65A O.SOA 0.4OA 0.31A 0.2OA
_ 60 0.56A 0.43A 0.35A 0.28A 0.20A
70
'(0 0.44A
0.29A 0.23A
0.21,': 0.176
0.3SA O.ZOX
0.49A
-30 0.73A 0.46A 0.33A 0.25A 0.18A 0.13A
-10 0.43A 0.28A 0.29A 0.27A
0.49A 0.32A 0.3OA 0.26A 0.16A
lat;t"de 10
0.43A 0.3OA 0.311 0.27A 0.18A 0.17A 0.16A 0.12A O.llA O.llA
-20 0.57A 0.34A 0.29A 0.26A
8.97 8.18 7.20 4.8lA 2.lSA 1.02A
1.86 2.36 3.03 4.11 5.17 6.94 0.51 9.00
0.2011 0.29A 0.44A 0.66 0.08 1.25
0.56A 0.37A 0.30A 0.24A 0.15A
20
for JUNE
9.50 8.64 7.46 4.57A 1.77A 0.68A
1.86 2.35 3.01 4.07 5.10 6.81 0.41 9.15
(ppmvl
9.72 8.84 7.48 4.17A 1.40A 0.48A
1.86 2.35 3.01 4.07 5.00 6.72 8.20 9.04
0.2OA 0.2OA 0.29A 0.29A 0.43A 0.43A 0.68 0.66 0.09 0.80 1.25 1.25
ozone
9.60 8.71 7.42 4.24A 1.54A 0.56A
aversge
8.70 7.95 6.93 4.SSA 1.82A 0.74A
1.87 2.36 3.03 4.12 5.16 6.00 0.25 9.07
0.2OA 0.29A 0.44A 0.71 0.92 1.27
30 0.67A 0.46A 0.3SA 0.2SA 0.14A
50
7.67 6.86 6.17 4.74A 3.13A 2.06A
1.718 2.16 2.79 3.86 4.93 6.66 0.03 0.09
0.22A 0.29A 0.43A 0.67 0.86 1.17
0.8OA 0.84A 0.57A 0.60A 0.421 0,4OA 0.27A 0.23A O.llA 0.13A
40
1.788 2.26 2.90 3.90 5.05 6.79 0.26 0.51
0.2lA 0.29A 0.43A 0.66 0.87 1.21
8.69 8.28 7.91 7.48 7.02 6.70 4.92A 4.66A 2.61A 2.94A 1.33A 1.7OA
1.84B 2.33 2.99 4.09 5.16 6.92 8.39 0.79
0.2lA 0.29A 0.44A 0.66 0.(18 1.24
0.79A O.SlA 0.31A 0.17A 0.13A
60
6.04 6.11 5.51 4.54A 3.29A 2.4OA
1.638 2.06 2.60 3.74 4.00 6.44 7.45 7.35
0.22A 0.30A 0.4$A 0.67 0.04 1.13
60
-
5.28h 4.76A 4.58A -
1.5Ott 2.02k 2.6711 3.6OA 5.03A 6.3311 6.47A 5.951;
0.24.G 0.34A 0.46A 0.65 0.79 1.04
0.67A 0.56h O.llA 0.33A 0.26A 0.21A 0.16A O.lSA 0.13A O.lZA
70
S.09 5.26 4.90 -
1.548 1.97 2.61 3.72 4.73 6.11 6.73 6.47
0.2211 0.31A 0.45A 0.66 0.62 1.00
0.23A 0.3SA O.SlA 0.70 0.92
0.20A 0.30A 0.47A 0.72 0.94
1.8s 1.30 2.37A 3.1OA 4.49A 6.17A 5.6lA 7.57A 7.16A 7.91 8.12 7.74 8.35 7.29 0.23 6.64 7.51 5.97 6.71 4.77A 4.6OA 2.37A 1.92A l.lZA 0,78A
1.29 1.88 2.46A 3.41A 4.97A
0.22A 0.34A 0.51A 0.708 0.92
1.87 1.32 2.36A 3.12A 4.33A S.4OA 7.01A 8.43 8.87 8.94 8.09 7.07 4.41A 1.50A O.SOA
0.19A 0.28A 0.44A 0.73 0.94 1.86 1.30 2.36A 3.09A 4.26A S.31A 6.9611 8.46 9.03 9.17 0.32 7.23 4.7OA l.74A 0.59A
0.2OA 0.29A 0.44A 0.71 0.92
1.85 1.29 2.36A 3.08A 4.24A S.31A 7.03A 8.53 9.06 9.07 8.23 7.26 4.01A 1.8lA 0.67A
O.lSA 0.28A 0.44A 0.70 0.91
1.84 1.29 2.35A 3.06A 4.2lA S.29A 7.03A 8.49 8.88 8.69 7.04 6.96 4.80A 2.12A 0.99A
0.19A 0.28A 0.45A 0.70 0.93
1.80 1.28 2.28A 2.9811 4.09A 5.14A 6.83A 8.26 8.70 8.61 7.74 6.06 4.07A 2.47A 1.2S.A
0.20A 0.3OA 0.47A 0.71 0.93
1.72 1.23 2.1OA 2.64A 3.92A 4.93A 6.56A 7.98 0.36 A.25 7.43 6.64 4.7711 2.78A 1.58A
1.62 1.16 2.04A 2.68A 3.70A 4.68A 6.27A 7.70 7.92 7.68 6.86 6.17 4.SlA 2.9231 1.84A
0.2lA 0.2lA 0.306 0.29A 0.45A 0.43A 0.68 0.67 0.89' 0.86
1.11 1.52 1.90A 2.49A 3.45A 4.37A 5.84A 7.03 7.07 6.70 5.92 5.37 4.12A 3.02A 2.12A
0.2OA 0.29A 0.43A 0.67 0.84
1.34 6.14 5.65 4.93 4.53 3.55A 3.07A 2.28A
r,.Slh
-
1 1.078 41 1.04B 1.370 1:76A 2.33A 3.286 4.16A -
0.2lA 0.22A 0.3OA 0.3lA 0.43A 0.44h 0.69R O:Alti 0.828 O.MlB
O.llA O.llA O.llA O.llA 0.13A 0.13A 0.13A 0.12A 0.13A O.llA O.llA 0.12A 0.13A 0.12A 0.12A 0.12A 0.14A 0.1SA O.lSA O.lSA O.lSA
2.;4A 2.13 1.32 3.35A 2.8OA 4.97A IellA 7.12A 6.26A 7.78A 7.44A 7.28A 8.02A 6.41 7.52 5.93 7.06 5.348 6.45 5.09 5.92 4.79 5.42 4.70A 4.BOA 2.99A 2.6211 2.OlA 1.53A
-
_ -
-
-
0.74A 0.47A 0.32A 0.23A 0.1711 0.14A
-40
2.77 3.93 5.83 7.03 7.80 7.65 7.22
0.21A 0.32A 0.48A 0.70 0.93 1.33 2.09
5.76 6.63 7.61 5.36 6.04 6.93 4.96 5.46 6.16 4.40A 4.71A 4.79A 2.75A 3.SSA 2.20A l.OOA l.SOA 1.09A
2.53
3.19 4.63 6.67 7.51 7.49 6.77 6.21
2.42
5.118 4.79 4.52 . -
-20 0.68A 0.4lA 0.32A 0.31A 0.23A
ozone
0.18A 0.14h O.lSA 0.16A 0.16A 0.16A 0.16A 0.16A O.lSA O.lSA O.lSA O.lSA 0.14A 0.19A 0.13A 0.12A O.llA O.llA O.llA 0.12A 0.13A 0.14A 0.15A O.lSA 0.14A O.lSA O.lSA
3.478 4.9OE 6.44B 6.008 6.56 5.87 5.450
* _
*
-30 0.82A 0.49A 0.33A 0.2OA 0.2lA 0.14A
-40
average
0.91A 0.54A 0.35A 0.26A 9.20A 0.19A O.lSA
-50 0.88A 0.48A 0.30A 0.22A 0.20A
-60
4 (continued)
OzoneReferenceModels
(9/10)27
P lmbl
P (mb)
-70
0.5OA 0.35A 0.3CA 0.31A 0.28A 0.21A 0.19A 0.16A 0.2BA 0.25A 0.37A 0.35A O.IBA 0.47A 0.64 0.63 0.80 0.80 1.086 1.10 l.SSB 1.62 2.11A 2.87A 4.09A 5.03A 6.21A 6.54 6.45 6.17 5.38 4.80 3.40A 2.55A 1.91A
-80
0.55A 0.35A 0.26A 0.23A 0.21A 0.19A
-70
-80
0.53A 0.37A 0.33A 0.34A 0.31A 0.236 0.14A 0.21A 0.31A 0.4SA 0.65 0.45 1.20 1.75 2.286 3.11A 4.49A 5.67A 7.29A 7.91 7.81 7.38 6.51 5.84 4.9lA 3.46A
-50
-50
-40
-40
0.68A O.SOA 0.4111 0.36A 0.29A 0.21A 0.13A 0.19A 0.28A 0.43A 0.65 0.07 1.22 1.76 2.27A 3.08A 4.44A 5.66A 7.46A 8.40 8.39 7.94 6.85 6.01 S.OOA 3.21A 2.4lA 2.24A 1.86A
0.4OA 0.34A 0.31A 0.34A 0.31A 0.23A 0.14A 0.22A 0.33A 0.47A 0.64 0.83 1.15 1.69 2.21A 3.01A 4.3211 5.40A 6.80A 7.25 7.17 6.86 6.11 5.56 4.39A 3.37A
-60
-60
TABLE 4 (continued)
0.77A 0.59A 0.47A 0.35A 0.25A 0.18A 0.12A 0.17A 0.26A 0.41A 0.66 0.88 1.24 1.77 2.26A 3.03A 4.30A 5.5OA 7.40A 8.71 8.92 8.51 7.36 6.40 4.98A 2.79A 1.3211
-30
-30
-10
(ppmvb
latPde
ozone 10
for 20
-20 -10
0.71A 0.67~ 0.SJ.A 0.4SA 0.41A 0.35A 0.31A 0.29A 0.22A 0.22A 0.16A 0.17A 0.12A 0.13A 0.17A 0.17A 0.25A 0.25A 0.39A 0.3BA 0.66 0.658 0.808 0.878 1.2SB.l.2SE 1.711 1.78 2.26A 2.27A 3.OOA 2.97A 4.19A 4.lOA 5.33A S.18A 7.21A 7.OOA 8.93 8.72 9.36 9.40 9.20 9.53 8.06 8.39 7.01 7.26 4.70A 4.2711 2.15A 1.76A 0.86A 0.78A
20
0.6SA 0.44A 0.34A 0.27A 0.19A O.lBA 0.16A 0.15A 0.14A 0.13A 0.12A 0.17A 0.16A 0.16A 0.24A 0.24A 0.24A 0.381 0.38A 0.38A 0.658 0.658 0.656 0.861 0.868 0.868 1.248 1.238 1.238 1.78 1.78 1.77 2.27A 2.2811 2.27A 2.96A 2.99A 3.04A 4.05A 4.12A 4.28A 5.09A 5.18A 5.42A 6.84A 6.93A 7.2OA 8.63 8.67 8.58 9.43 9.37 9.04 9.68 9.55 9.04 8.55 8.47 8.05 7.32 7.30 7.04 4.39A 4.46A 4.47A 1.59A 1.63A 1.80A 0.58A 0.57A 0.75A
0.69A 0.47A 0.37A 0.29A 0.2lA
latFude 10 0.72A 0.48A 0.37A 0.29A 0.22A
50 O.SBA 0.33A 0.23A 0.19A 0.16A 0.13A
60 0.59A 0.29A 0.18A 0.15A 0.13A O.llA
70 0.55A 0.26A 0.16A 0.13A 0.12A O.llA
0. 0. 0. 0. 0. 0.
0.74A 0.48A 0.36A 0.27~ 0.19A 0.14A 0.12A 0.16A 0.24A 0.38A 0.658 0.868 1.238 1.77 2.26A 3.0911 4.49A 5.72A 1.45A 0.43 0.54 8.32 7.46 6.63 4.4lA 2.03A 0.99A
30
0.24A 0.38A 0.64 0.86 1.238 1.80 2.32A 3.13A 4.46A 5.65~ 7.44A 8.55 8.71 0.44 7.57 6.70 4.67A 2.20A 1.05A
0.77A 0.5OA 0.36A 0.26A 0.19A 0.15A 0.12A 0.16A 0.25A 0.38A 0.650 0.860 1.238 1.81 2.32A 3.26A 4.86A 6.10A 7.55A 7.89 7.64 7.24 6.66 6.10 4.40A 2.32A 1.33A
40
0.25A 0.40A 0.66 0.89 1.26 1.80 2.29A 3.11A 4.48A 5.67~ 7.32A 8.10 8.10 7.01 7.08 6.37 4.53A 2.43A 1.40A
0.68A 0.40A 0.26A 0.22A 0.19A 0.17A 0.13A 0.16~ 0.25A 0.39A 0.64 0.85 1.218 1.87 2.45A 3.521 5.33A 6.51A 7.45A 7.24 6.70 6.30 5.95 5.62 4.20A 2.55A 1.72A
50
0.26A 0.42A 0.67 0.89 1.25 1.77 2.24A 3.09A 4.52A 5.69A 7.18A 7.59 7.32 6.86 6.24 5.73 4.16A 2.57A 1.69A
0.63A 0.33A 0.20A 0.17A 0.19A 0.2OA 0.19A 0.21A 0.27A 0.40A 0.63 0.82 1.19 1.93 2.60A 3.76A 5.61A 6.59A 7.00A 6.51.4 6.03A 5.6611 5.47A 5.33A -
60
1.91A
0.27A 0.42A 0.64 0.85 1.19 1.73 2.23A 3.14A 4.70A S.02A 6.96A 6.94 6.45 5.92 5.39 5.03 3.14A 2.62A
0.64A 0.3OA 0.16A 0.13A 0.17A 0.21A 0.26A 0.29A 0.33A 0.4OA 0.60 0.78 1.16 2.09A -
70
-
0.28A 0.41A 0.62 0.80 1.13 1.70 2.26A 3.22A 4.75A 5.66~ 6.25A 5.94A S.43A 4.95A 4.62A 4.43A .-
GO
90
-
1
a-
0.56A 0.24.4 0.12.t O.OSA 0.14h 0.18A 0.26A 0.33A 0.36A
0. 0. 0. 0. 1. 1.
O.llA O.lOA O.lOA O.llA 0. 0.16A 0.16A 0.17A 0.17A 0.19A 0.
40 0.61A 0.42A 0.33A 0.27A 0.20A 0.14A
30 ~0.64A 0.4SA 0.36A 0.29A 0.211\ 0.15A O.llA
!iECTEfU3ER
average ozone (ppmv) for OCMBER
-20
average
-60 0.57h 0.43h 0.33h 0.23h
0.003 0.00s 0.007
SE%
:E% 2o:ooo 30.000
x0" 7:ooo
:-E 2:ooo
1% 0:700
0:200
Ei pg
-
-60
-70
-80
0.58A 0.29A 0.19A O.llA 0.13A 0.13h 0.16~ 0.25A 0.34A 0.47A 0.708 0.828 1.03 1.36
P (mb)
c% 0:020 0.030
5:99 5.45 4.49A 3.22h 2.33A
5:33 4.86 3.74A 2.59A 2.02A
-
3.00A 2.1QA
4.51 5.17 3.5OA 4.33h
1.51 1.88 2.42 3.31 4.20
1.39 1.73A 2.2QA 3.19A 4.06A
2.70A 2.08A
0.72A 0.46A 0.29A 0.17A 0.12A 0.12h 0.15A 0.21A 0.29A 0.43h 0.66 0.82 1.09
0.69A 0.39A 0.23A 0.14h 0.12A 0.13A 0.15A 0.22A 0.31A 0.44A 0.678 0.81 1.04
'6:;;
g:;;
$6;
O.llh 0.21A 0.30A 0.44h 0.66 0.83 1.12 1.59 2.00 2.62 :."6;
-
O.llh 0.22h 0.31h 0.44h 0.65 0.81 1.07 1.48 1.87A 2.52A ;.~;"A
C&A
O.lSh 0.24h 0.33A 0.45h 0.64 0.79 1.03 1.438 -
O*llh 0.13110.15h 0.12h 0.12h 0.13h
-70
0.52A 0.37A 0.27h O.l9h
-80
0.4% 0.29h 0.21h 0.14h
4 (continued)
-
P (mbl
TABLE
I.
4.39A 2.97h 2.08A
2.02 2.57A 3.47 4.39 6.00 7.55 7.85 7.59 6.50 5.58
bl
-so 0.72A O.SOA 0.3Sh 0.22h 0.13A O.llA 0.13A 0.2OA 0.28h 0.43A 0.66 0.84 1.14 . *..
-30
1.
4.49A 2.90A 1.Q7A
2.12 2.70 3.65 4.62 6.32 7.87 8.38 8.27 7.09 5.97
II
-40 0.67A 0.49A 0.36A 0.24A 0.14A O.llh 0.12A 0.19A 0.27~ 0.43A 0.67 0.87 1.20 _ -_
-20 -10
for 20
lJOVE%iBER
30
ItI
4.60A 2.50A 1.27~
1.
2.21 2.83 3.85 4.88 6.65 8.33 8.87 8.81 7.67 6.53 4.61A 2.07A 0.93A
1.81 2.27 2.95 4.05 5.13 6.95 8.65 9.18 9.15 8.10 6.98
-20
4.49A 1.66A 0,67A
l.Ml 2.32 3.03 4.18 5.28 7.07 8.65 9.23 9.34 8.33 7.12
-10 0.46A 0.32A 0.29h 0.26h 0.20h 0.14A 0.12A 0.1-/h 0.25h 0.38A 0.666 0.86 1.21 -.
4.55A 1.40A 0.49A
1.81 2.36 3.08 4.24 5.33 7.04 8.45 8.94 9.14 E.24 6.96
0.44A 0.31A 0.30A 0.28A 0.20A 0.1E.A 0.12A 0.17A 0.24A 0.37A 0.64B 0.84 1.10 -_
4.32A 4.41A 1.513A 1.90h 0.64A O.QQA
1.81 2.33 3.06 4.26 5.37 7.02 8.10 8.46 8.55 7.79 6.73
0.45A 0.54A 0.3OA 0.34A 0.29A 0.28A 0.28A 0.27A 0.21A 0.23A O.lSA 0.17A 0.12A 0.12A 0.16A 0.17A 0.24~ 0.26A 0.37A 0.41A 0.678 0.68 0.86 0.89 1.20 1.24 -. --
20
4.6SA 2.40A 1.25A
1.86 2.32 3.17 4.62 5.81 7.20 7.68 7.54 7.21 6.76 6.22
0.71A 0.45A 0.31A 0.25A 0.23A 0.19A 0.14A 0.19A 0.31A 0.4RA 0.66 0.90 1.29 - --
30
DECEHUER
1.81 2.28 3.05 4.32 5.46 7.06 7.90 7.99 7.80 7.19 6.43
for
latitude 10
(ppmvl
0.67h 0.64A'0.72h 0.48A 0.45h 0.47h 0.4Oh 0.36A 0.35h 0.33A 0.30h 0.28h 0.24h 0.23A 0.22h
latitude 10
(ppw)
0.67A 0.46A 0.37h 0.3Oh 0.22A
ozone
0,63A 0.44h O.J!ih 0,28h 0.21A
average
0.62A 0.46A 0.37h 0.28h 0.20h
0.49A 0.35A 0.29A 0.24A 0.17A 0.13h O.llA O.llA 0.17A 0.16A 0.25~ 0.25A 0.42h 0.40h 0.69 0.69 0.90 0.90 1.25 1.26 _ _^ _ -_
0.5711 0.41h 0.32A 0.24A 0.15A O.llA
-30
0.68h O.Slh 0.4Oh 0.3011 0.20h 0.15h 0.13h
ozone 40
4.76A 2.78A 1.65A
1.95 2.49 3.54 5.29 6.43 7.27 7.20 6.85 6.46 6.23 5.95
0.82A 0.56A 0.35A 0.22A 0.2OA 0.20A O.lQA 0.23A 0.34A 0.52A 0.698 0.92 1.22
40
0.84A 0.55A 0.37A 0.26A 0.20h 0.16h 0.17h 0.17h 0.18h 0.18h 0.17h 0.17A 0.13h 0.13h 0.13A.0.13A 0.1321 0.13A 0.14h 0.19h 0.18h 0.17h 0.17h 0.16A 0.16A 0.16h 0.17h 0.19A 0.28h 0.27A 0.26h 0.2Sh 0.24A 0.24h 0.2Sh 0.27A 0.28A 0.42A 0.42A 0.4lA 0.38h 0.3BA 0.39h 0.40h 0.4lh 0.42A 0.65 0.65 0.65 0.65 0.678 0.688 0.67 0.65 0.65 0.85 0.86 0.07 0.078 O.BBB 0.89 0.89 0.87 0.86 1.19 1.21 1.23 1.248 1.240 1.24 1.25 1.26 1.25 1.71 1.75 1.78 1.01 1.82 1.82 1.81 1.84 1.93 2.14 2.20 2.24 2.29 2.31 2.30 2.21 2.32 2.49 2.77 2.84 2.90 2.96 2.99 2.99 2.99 3.15 3.54 3.81 3.89 3.98 4.03 4.05 4.09 4.20 4.59 5.31 4.87 4.95 5.05 5.07 5.06 5.12 5.30 5.80 6.51 6.67 6.79 6.86 6.02 6.72 6.75 6.97 7.32 7.48 0.15 8.44 8.56 0.42 6.23 8.17 8.12 7.88 7.43 8.37 8.82 9.08 9.12 9.01 8.78 8.4s 7.86 7.04 7.93 8.55 9.00 9.34 9.47 9.04 0.43 1.62 6.61 6.80 7.44 7.99 8.35 8.46 8.17 7.70 7.03 6.22 5.84 6.30 6.89 7.17 7.10 7.02 6.76 6.34 5.82 4.03A 4.QlA 4.66A 4.42A 4.29A 4.3lA 4.37A 4.44h 4.44A 2.87h 2.5OA 2.02h 1.8SA 1.68A 1.66A 1.0lA 2.06A 2.47A 1.63A 1.24h 0.86A 0.73A 0.56A 0.66h O.QlA 1.lOA 1.47A
-40 0.69A O.Slh 0.4Oh 0.29h 0.19h 0.14h 0.13h
-50 0.62h 0.47h 0.37h 0.26A 0.17A 0.13A 0.14h 0.20A 0.29h 0.43A 0.6s 0.84 1.16 1.66 2.08 2.71 3.76 4.80 6.51 7.70 7.70 7.35 6.39 5.64 4.7411 3.12A 2.06A
average 50
60
4.84A 3.21A 2.28h
2.03 2.69 3.89 5.62 6.50 6.81 6.47 6.11 5.75 5.67 5.488
0.83A 0.57A 0.34A 0.19h 0.17A 0.21A 0.25A 0.3OA 0.38A 0.52A 0.706 0.92 1.36
so
2.71 3.96 5.87 6.84 7.17 6.70 6.25 5.83 5.66 5.428 4.57h 2.87A 1.96A
2.03
-
1.97 2.74 3.81 5.18 5.86 6.18 6.01 5.74 5.468 5.268 5.03B
60
_
2.05
-
5.19h 4.81A 4.37A 4.08A 3.86A
5.39h
1.&A 2.21A 3.OOA 4.14A 4.86A
70
-
_ _
70
1.99A 2.88 2.63A 4.12 3.51A 5.72 4.58A 6.43 S.lSA 6.57 5.42A 6.08 4.88A 5.69 4.3QA 5.38 4.01A 5.198 3.78A 4.988 3.56A
0.87A 0.8SA 0.52h 0.47A 0.31h 0.24A 0.20h 0.14A 0.19h 0.17A 0.2Oh 0.21A 0.19h 0.27A 0.23A 0.32h 0.31A 0.36A 0.44A 0.4% 0.63 0.84 1.25
S.‘l!..
4."81\ 4.62.t 4.2% 4.00~ 3.77A -
1.6LG 2.154 2.93h 4.03~ 4.72~
80
-
4.74A 4.29h 3.8% 3.42;r 3.1QA 3.01,ts
4.55h
3.24A 4.14A
2.42h
1.94A
-
80
2
s
B
m
f
-60
20 40 -60 -40 -20 0 LATITUDE(DEG)
60
60
50.000 70.000 20 40 -00 -60 -40 -20 0 LATITUDE(DEC)
50.000 70.000
60
FEBRUARY
5.000 7.000 10.000 15.000 20.000 30.000
2 iz' .500 zi .700 iii 1.000 1.500 2.000 3.000
.070 .lOO .150 i;i ,200 ?i .300
.050
AVERAGE 03
5.000 7.000 fO.OOO 15.000 20.000 30.000
1.500 2.000 3.000
.560 .700 1.000
A300
JANUARY
Figure 8. Monthly zonal mean ozone volume mixing ratios (ppmvf as function of latitude tdeg) and pressure (mb).
8
i! B
G s
,100 .150 .200
.050 .070
.030.
AVERAGE 03
60
OzoneReferenceModels
1
I 3 ?
1
(fiHf) 38flSSBtId
(9/10)31
(9/10)32
6. M.Keating ct al.
. i 0
/ i
(EM) 3liflSS33d
8
\
l
f
(EH) 33flSSBtd
(9/10)33
(&IS%) 3ElnSS3Zid
8
50.000 70.000I -80
30.000
15.000 20.000
7.000 10.000
5.000
3.000
500. .700.
-60
,2-o-
.200* #LO F300.
-40
Figure 8 (continued)
3 3 8
i;i E
.150* -0.0
60
3.0-
-0.1)
SEPTEMBER
-20 40 0 20 LATITUDE (DEC)
AVERAGE 03
E
3
2
E ii
i;i
-80
-60
1.500. so2.oc-
,500. .700. 1.000. -3.0
.15ok
.070L04 .lOO- * -
-40
40
->-
/2!0-
-
60
0.0,
60
-
.
o.a-..1
OCTOBER
0 20 -20 LATITUDE (DEC)
AVERAGE 03
a-
1.0-
60
NOVEMBER
-60 -60 -40 -20 0 20 40 LATfUDE (DEG)
1.000 .
.700.
.500 *
300 s---
-200---m
Figure 8 (continued)
/z
i4
5
g w M
AVERAGE 03
80
‘2.Q
1
60
DECEMBER .- 1 O.#0.4 -
20 40 -80 -80 -40 -20 0 LATITUDE(DEG)
AVERAGE 03
80
I
MONTH
IAT=-
JFUAMJJASONDJ
from
MONTH
ANNUAL AMP % OF MEAN LAT=50 ’ Y .: .. ..I .. ..I ‘.-.’ ’
Figure 9. Annual variation of ozone volume mixing ratio (in percent) annual mean at 5005 and 50oN latitude.
JFMAMJJASONDJ
ANNUAL AMP % OF MEAN
F
M
A MONTH
M
J
J
J
M
A MONTH (in percent)
F
M
J
SEMEA AMP% OF MEAN LAT= 30
Figure 10. Semiannual variation of ozone volume mixing ratio from the annual mean at 3005 and 300N latitude.
J
SEMI-A AMP % OF MEAN LAT= -30
J
OL
09
61-k OS'2 C9'1 66'0 Li"0 bE.0 61'0 LI'O
08
ZC'C 1I'Z
IS'S E8.l' CL'S
96'2 98'T
LO'S
88'S 22'9
_
*
_
92'S BE')
*
09
OL
fX'0 ST'0
it';
08
02'0 21'0
Z&*0
t)'O IC'O
_
IL.0
99'0 PC.0
_ ZE'S 6)'s L'S 5 9'P
_
t9'Z PE’f
I)'9 0:;
. ZT'S $I:;
09
_ OC'9 IT'L LO'L 98'P 24'2 ZD'i 6L'O W'O OE'O EE*O 12'0
*
(1 * 3'E.E t&t EC'1
OL
08
”
fit.9 11'9 85'9 LL't 29.Z 8t'l 9L'O 9t'O LE.0 62.0 LI'O
_
_ SO'9 14'9 Ot'9 8S't 06'2 Tl't SL'D Lt.0 LC'O ~2.0 21'0
OS
IV'9 ZL'P 99'2 li9.1 98'0 Si"0 82'0 IZ'O 02'0
LO'S
09'9
P5.f 8c.s
OS
52'0 61'0
Zv.0 M'O
8b.I 8L'O
OE
91'0 If'0
!'I'0 EC.0
)9'I 66'0
8)'O LD'O OZ'O.OtZ'O
99'1 66'0
ZZ'r LS't
Zf'I 92'S r6:8 60.6 CO L
3N020
,33:: 3mK.V~
02'0 92'0
et'0 02'0
S9.1. Y6'0
6C') CS'Z
ZS*; SZ'S Zr:8 IL 8 60'L
MWddJ
oz-
or-
Ol-
0
6I'O
61'0 Et.0 82'0
8P'O
09'1 86'0
6f.p 95'2
S‘t'I PS'S SC:6 95.6 LO L
'Pt.0 62'0
65'1 L6'0 Lt.0
01') ZS'Z
EO'I 81r'S S):6 9k.6 00 1
OF
26'0 9P'O 61'0 CI'O 92'0
02 ts3rlt 3an!:wl
0
SS‘T
P6'0 St"0 61'0 CI'O Lt.0
85'1
frC'P SS'Z
20'6 LO'6 62'L
92'1
LZ'L 6C'P 9'5.2
8E'B CL'8
CT'1
OkOEOZ-
IT.1 65'0 CZ.0 II'0 et.0 OI-
20'1 6p.O 8K*O 11.0 DZ'O
9L'T 56'0 LV'O 61'0 21'0 SZ'O
60'7 Ti'O 6X.0 01'0 TZ‘O
ZL'9 BZ'P 89-Z
9L'I
L6'9 SC'P fL.2
b6.1 90.5 ST'8 99'L liL'8 IC'8
0~‘s
99.X
ov-
22'0 01'0 81'0
tT'I SE'0
LL'Z 08'1
SP'P
S6'5 16') OS'L EZ'8 06'9
89'1
OZ.1 9C'P 99'Z
8S.8 PO.6
Pt.5
6f'T
OE-
61'0 fl'0 CZ'O
80'1 is.0
8)')
BL'Z 8L'I
CL'1 67'S LI'8 OL'8 60'L
Ok-
ES.1
IE'L CC'P LS'Z
80'6 LC'6
LESS
92'1
?..yVONVCtJOd IAWddl 3NOZO 3DV33AV
OP
t6.v ZL'b 8L'Z 89'2 XL'Z LS'I 26'0 96'0 OS'0 05'0 fZ'0 6I'O ZZ'O 61'0 02'0 .EZ'O
FZ'L OS'P 6S'Z 29'1 L6'0 Lb'0 6I'O 91'0 92'0
9S'L Et'8
EP'T
PC.5 PO-S PI’S or’s
80'2
86'9 t'l'L t9'L E6'9 ST'1
LS'9
S8'2 BP'S
oz-
61'0 ZI'O LZ'O
6)'O
69'1 20-I
6f'0 89'2
PC'1 ZE'S ,818 LT.6 91 L
OE-
OC'O
ET-O 82.0 n-0
OZ.0
rr*o
'IZ'O 82'0
n-0
LZ'O
20'8 Et'L 8S't 9L'Z PL'T ZO'I TS'O oz.0
9S'B OZ'L ZS'P ill.2 'LL'I 00'1 60'0
6L'P SI'L
L6.t
59-L 9'1'5 00'8
Zv'f
Ok's lL'8 96'8 SO'L SE'P 99'2 89'1 66'0 6t.O
OS'S 9S.6 82'6 Lg.9 21') 29'2 89'1 10'1 6t'O 02'0
Of'1
3W33AV
61'7 8)'s bl.'b 12‘6 15'9 PO'P TS'Z 69'1 CO.1 Et.0 67'0 EI*O 92'0
3ani:;Lv1 0
TE'T SV*S 52'6 86'8 89'9 VT') E9'Z OL'T 20'1 Lt.0 02'0 a.0 LZ'O
iPVnliE33 8Od tAWdd1 3NOZO 3DVli3AV
Ok
tZ'0 12'0
St.0 12'0
OP"1 '58'0
E9'P 89'2
Eb‘t Il'Z
3Od
/of
C6') S9'2
HlUVW
OC
96'2 92'2 LS'S Lb's f.L.9 6Z'L SS'L et.8 9t'L IC'L
OP
PO'E ZC'Z SP'I CS'S SS'S 24'S OZ'L E6'L E9'9 OZ.8 VP'8 OL'8 'Lp.1 8T'L 56'9 E9't 15') EC') t'9.Z OL'Z 89'Z 29'1 l.9.1 69'7 26'0 S6'0 86'0 91'0 BP'0 8V'O 6X.0 02'0 02'0 92.0 61.0 s1.0 62'0 XC.0 62'0
CS'E 8S'S 9E'P E6'9 S8'9
OS
W'E 8t.S D9'9 9L'L OP'L 9L'P SS'Z ES'1 Se.0 CV'O EZ'O tc*o SZ'O
LP*L LO'P 6t'S
OS-
9t.9. 81'6 09'2 EL'1 OI'I E9'0 LZ'O (1'0 St.0
98.9 29-L
I;L.~
SE'2
os-
52'0 2'1.0 ST'0
09-
IT'9 6O'P Vi.2 LP'I 60'1 09'0 ZE.0 51'0 21'0
:b: PL'9
OL-
08-
-
-
08-
60'0
ZE'O 91'0
66'0 29'0
-
-
-
08-
LL'S 86'E VP'2 SS'I LO'I 00'1 IL'0 1.9'0 9S'O OP.0 L1'0 02'0 lit.0 ZI'O
i!*: X8'S
8915
OL-
09-
ZP:Z
01'0
ZIsO
OC*0 PI'0
TO'T 19'0
.OF-P ZS'Z
BE'9 8Z'P 6S'Z
SS'f
6S:P !ii‘;
62'0 ET.0
'3'0 Ck'O ZZ.0
-
II-O ix.0 11'0
OL-
51'0
EL'S 92'9 t8'P E4'Z OS'Z P8'0 Slr'O ZZ'O
6S'P
SO'2 LP:E ZS S 65'9
I'L'T 99'1 80'1 PO'1 65'0 09'0
SE'P 69'2
EZ"Z ES'D 99'9 p9.L Lg.9
os-
09-
z1*0 n-0 ‘[Z'O LT.0
VP-L 29'9 ‘to.1 LL'9 8S'P t9'P KL'Z IP'Z 69'1 6S'T 86'0 06'0 ZS'O 6t'O TZ'O TZ'O
SZ'Z 8t'P CC'9
OOO'OL OOO'SL
(WX)Z
000'09 000'59 OOO'OL OOO'SL 000'08
;g:t$
go":;:
gtj:g
1WH12
000'08
000'09 OOO'S9
000'235
g:g
8;;:;;
000~02 g;.g
(I%X)!Z
OOO*SL 000'08
OOO'SS 000'04 000'59 OOO'OL
8%SF "og:;;
ooo:oC
g"o:f?ji
ZIKHI
80.000
ZtKN)
-60
-go
-80
-70
-70
6:49 5.78 4.71
;.&I
..70
-20
-30
-40
-so
0.11 0.53 0.20 1.06 1.73 2.76 4.49 7.13 8.71 0.25 5.56 1.60
0.12 0.51 0.20 1.03 1.72 4.46 2.74 7.08 El.81 0.66 5.73 1.39
0.27 0.12 0.51 0.20 1.73 1.04 4.47 2.74 7.01 0.76 8.76 5.72 1.32
-10 0.27 0.12 0.52 0.20 1.06 1.74 4.55 2.75 7.06 0.66 8.52 5.40 1.12
-20 0.26 0.12 0.52 0.20 1.70 1.03 2.76 4.66 7.16 8.23 7.88 5.38 1.51
-30 0.27 0.13 0.51 0.21 1.62 0.93 4.86 2.70 7.37 7.84 7.00 5.25 1.96
-40 0.26 0.15 0.43 0.19 0.80 1.51 5.40 2.68 7.78 7.44 6.27 5.00 2.33
-50 _ 5.30 2.61 7.69 6.56 5.32 4 2:08 75
-
I.;9
6.76 6.09 5.35 -
0.26
0 LAT:yDE
0.23
4;"'
60
70
80
6:12 4.98 -
6:56 S.S4 -
2:S2 ;.:; 7:39 4.90 6.46 3.01
8.06 6.77 5.26 7.27 2.70
8.39 6.90 5.55 7.69 2.52
80 0.12 0.18 0.37 ;.;f '1 -
70 0.13 0.17 0.33 T.;X l:S6 2.45 4.03 5.80 6.16 5.14 3.76 2.73
60 0.14 0.16 0.29 0.65 1.00 1.62 2.51 4.11 6.22 7.06 6.18 4.43 2.65
SO 0.19 0.15 0.26 0.60 1.00 1.66 2.60 4.27 6.59 7.06 7.17 4.96 2.48
0.24 0.13 0.25 0.57 ;.;I: ;e;; 2175 2:69 4.46 4.38 6.81 0.23 7.77 5.34 2.29 7.00 0.53 0.13 5.52 1.98
0.23 0.12 0.22 0.56
30
40
;:;; ;:;;
2149 2156 i.;': "6.;;
::;:
0.20 0.15 0.15 0.16 ;.f': i.2'2 ::;;
0.27 0.24 0.15 0.15 ;."Sf ;.$
50
2:61 4.25
40 0.30 0.15 0.24 0.54 1.04 1.72 2.70 4.35
AVERAGE OZONE (PPHV) FOR JUNE
-60
5.71 8.59 1.77
5.69 9.10 1.38
9.31 1.13 5.50
9.17 1.20 5.49
5.69 8.30 2.16
8.62 7.03
5.7E 7.04
8.81 6.90
8.64 6.80
0.69 6.87
8.34 1.44 5.47
7.30 1.04 5.33
8.56 7.16
8.14 7.51
6.41 2.26 5.04
5.14 -
7.53 7.63
6:06 6 67 5.68 2.61 4.71
2.;9 4.90 6.79 7.50
1.76 2.74 4.34
1.04 0.51
2.75 1.72 4.53
2.70 1.67 4.89
2.70 1.61 S.36
1.58 2.76 5.37
1.76 2.75 4.39
1.06 0.53
1.03 0.52
0.94 0.48
0.05 0.43
0.74 0.36
-
0.34 0.22 0.14
0.35 0.21 0.14
0.31 0.21 0.14
0.26 0.21 0.20
-
0.28 0.19 0.13
0.31 0.1s 0.23 0.52 1.04 1.75 2.76 4.42
ji""' 30
0.28 0.18 0.15
0.31
0 LhT;$DE 0.30 0.14 0.22 0.22 0.14. 0.51 0.51 1.02 1.02 1.75 2.74 1.75 2.77 4.35 4.41
-10
AVERhGE OZONE (PFMV) FOR MAY
-60
5.56 -
5.87 -
5.17 6.37 3.36
S.42 7.02 3.19
5.64 7.71 2.74
5.01 0.30 2.10
5.78 8.70 1.75
9.26 1.54 5.72
9.71 1.17 5.65
9.44 1.22 5.65
8.61 1.39 5.42
7.70 1.69 5.20
6.71 2.06 4.77
5.74 2.00 4.14
5.28 -
6:SO 6.27
6:66 6.79
7:Ol 7.42
7112 8.17
7.19 4.42 8.50
7.1C 4.48 0.63
7.03 4.38 8.77
6.76 4.25 8.77
6.59 4.19 0.96
6.71 4.25 8.93
7.10 4.41 0.80
7.36 4.64 8.36
7.35 4.06 7.76
6.87 4.99 7.21 4.06 6.42' 6.90
0.35 0.25 0.23 0.51 0.96 1.59 7.;;
0.38 0.22 0.23 0.51 0.99 1.66 2.65
0.37 0.18 0.22 0.50 1.00 1.71 2.74
0.32 0.14 0.22 0.49 1.01 1.73 2.73
0.26 0.13 0.21 0.48 1.03 1.74 2.70
0.29 0.14 0.20 0.50 1.04 1.75 2.70
0.28 0.13 0.21 0.52 1.05 1.75 2.71
0.27 0.12 0.21 0.51 1.02 1.72 2.70
0.28 0.13 0.20 0‘49 0.98 1.69 2.72
0.29 0.15 0.19 0.47 0.93 1.67 2.75
0.20
0.26 0.19 0.43 0.06 1.50 2.65
0.20 0.23 0.24 0.39 0.74 1.40 2.57
80 0.20 0.25 0.31 0.52 0.86 1.52 a.;:
70 0.27 0.28 0.27 0.52 0.99 1.51 a.;;
60 0.32 0.27 0.24 0.51 0.92 1.54 4".:;
50
40
30
LAT;$JDE :;EGl -10
-20
-30
-40
-50
0
AVERAGE OZONE IPPMV) FOR APRIL
-60
TAX,E 5 (continued)
-60
0.20 0.20 0.23 0.39 0.72
1.40 2.21 3.99 5.97 6.31
5.53 -
-60
0.23 0.25 0.21 0.43 0.78 1.41 2.30 4.19 6.35 6.80 5.98 4.74 3.47
. -
1.h 3.28 4.80 5.41
;.;;
-70
0.21 0.26 0.25 0.41 0.73 1.25 2.09 3.66 5.42 6.07 5.54 4.31 -
0.26 0.22 0.19 0.45 0.85 1.57 2.62 4.80 1.29 7.76 6.55 5.06 3.20
-50
4.67 5.83 2.92
1.52 2.56 4.88 7.21 7.22
0.21 0.17 0.10 0.42 0.82
-50
4.01 4.89 6.25 .7.22 6.22 6.82 5.48 5.72 4.46 5.01 3.30
-10 0.26 0.12 0.19 0.48 1.03 1.71 2.73 4.56 7.31 8.98 5.34 8.56 1.43
-10 0.26 0.13 0.19 0.47 1.05 t.71 2.72 4.49 7.22 9.15 8.8C 5.37 1.41
-20 0.26 0.13 0.19 0.48 1.04 2.78 1.74 4.73 7.46 8.54 7.83 5.34 1.81
-20 0.29 0.13 0.20 0.47 1.03 1.72 2.76 4.65 7.48 8.96 8.20 5.37 1.65
-30
6.64 7.09 5.15 5.31 2.63 .2.27
-30
0.28 0.20 0.18 0.47 0.93 1.69 2.79 4.99 7.72 8.24 7.08 5.29 2.66
-40
2.63 1.71 5.10 7.66 7.84
0.23 0.15 0.18 0.47 0.92
-40
0.30 0.16 0.19 0.48 0.99 1.71 2.78 4.83 7.69 6.64 7.55 5.41 2.17
2.83 1.76 4.94 7.56 6.10
0.25 0.14 0.19 0.49 1.01
4.40 7.20 8.82 8.55 5.43 1.27
0.25 0.11 0.19 0.40 1.00 2.69 1.69 4.47 7.24 8.83 8.63 5.69 1.50
0.24 0.11 0.19 0.47 0.99 2.70 1.68
0.19
8.84 5.69 1.54
5.74 1.48
9.05
5.54 1.45
9.00
0.23 0.12 0.18 0.46 0.99 1.66 2.69 4.41 7.13 9.13
0 LAT:yDE 0.25 0.12 0.10 0.47 1.03 1.48 2.69 4.36 7.04 9.11
30
4.57 7.17 8.53 8.08 5.43 1.82
0.21' 0.11 0.19 0.52 1.09 2.79 1.76
40
4.50 6.94 6.14 7.60 5.16 2.07
0.20 0.12 0.23 0.57 1.11 2.76 1.74
5.61 8.45 1.67
1.67 2.74 4.60 7.42 8.89
0.25 0.11 0.18 0.45 0.96
30
8.00 5.37 1.83
1.73 2.81 4.70 7.41 8.60
0.24 0.11 0.18 0.46 1.01
j;EC! 40
7.53 5.16 2.05
2.79 1.74 4.61 7.18 0.16
0.20 0.10 0.19 0.51 1.06
5.59 1.56
8.55
0.25 0.13 0.17 0.44 0.96 1.65 2.72 4.57 7.38 8.92
$p"'
5.35 1.74
7.99
0.28 0.13 0.17 0.43 0.96 1.6C 2.73 4.67 7.47 8.64
30
0.26 0.13 0.16 0.45 0.98 1.65 2.70 4.70 7.34 8.10 7.43 5.12 2.02
40
(PPtW) FOR SEPTEMBER
0.24 0.11 0.19. 0.47 0.97 1.65 2.69 4.46 7.25 9.12
4.54 7.29 8.71 8.28 5.57 1.70
0.23 0.10 0.18 0.48 1.03 2.76 1.71
IPPMV) FOR AVGVST
LAT;p"
AVERAGE OXME
5.51 8.76 1.42
2.68 1.67 4.44 7.19 P.OB
0.40 1.00
0.25 0.11
0
AVERAGE OZONE
4.59 7.27 0.73 8.31 5.16 1.28
4.73 7.32 8.22 7.66 5.28 1.62
4.91 7.39 7.91 7.12 5.35 2.07
5.25 7.55 7.4.9 6.45 5.21 2.65
2.08
-10 0.25 0.11 0.19 0.49 1.03 2.73 1.71
-20
-30 0.23 0.12 0.19 0.51 0.98 1.69 2.78
FOR JULY
o LAT;yVDB :;""I
AVERAGE OZONE IPPMV)
0.24 0.11 0.19 0.50 3.03 2.71 1.72
-40
0.21 0.13 0.18 0.46 0.88 2.71 1.59
-50
0.17 0.17 0.20 0.38 0.93 2.49 1.60
-60
-70
-70
TAELE 5 (continued)
50
60
1.60 2;57 4.3) 6.52 6.86
0.14 0.12 0.25 0.57 1.03
60
4.17 6.23 6.88 5.96 4.12 2.39
0.14 0.15 0.29 0.65 1.09 2.54 1.63
0.19 0.12 0.17 0.46 0.96 1.61 2.63 4.69 7.111 7.45 6.54 4.69 2.25
50
0.15 0.11 0.17 0.44 0.89 1.54 2.57 4.75 6.91 C.70 5.66 4.21 2.39
60
4.70 6.711 5.@9 4.04 2.22 2.29
2.68 1.68 4.53 6.89 7.59
0.16 0.11 0.22 0.55 1.06
50
4.37 6.67 7.67 6.95 4.77 2.27
0.18 0.14 0.27 0.60 1.10 2.65 1.69
80 0.10 0.14 0.21 0.40 0.76 1.39 -
-
4.81 3.37 2.29
70
-
1.53 2.50 4.27 5.90 5.79
0.13 0.11 0.10 0.41 0.81 1.45 2.49 4.64 6.18 5.73 4.10 -
80 0.09 0.14 0.29 0.62 0.98
70 0.11 0.12 0.27 0.59 1.01
-
-
4.04 5.79 5.93 4.91 3.38 2.39
80 0.11 0.18 0.37 0.79 1.10 -
70 0.12 0.16 0.33 0.72 1.10 2.46 1.56
OZ.0 OZ.0 81'0 09
I
8t.T t9'0 kc.0 LZ'O OZ.0 51'0
OL
-
8Z'O 51'0 11'0
08
_
_
_
_
9r.o
rr'0
OS
SI'O LI'O EZ'O
LT.9 Tt'L IZ'L L6'k SS‘Z 60'7 08'0
88')
DC'Z
OS
19'S 9P.9 29'9 SR'P LP'Z 9C.1 IL.0
09
OL
08
'PZ'O
02'0
_ _ _
OL'O 9r:o g.;
ZL'Z CO'S 6L'S 69'9 OO'L 16') ;;i;:
OS
P9'0 rr:o ft.;
91'9 9t.9 05:P ;C&
fr's
09
_ -
-
PO'S ST'S OS'E SO'2 _ _
SO'P
rs'r
OS'0 ZC‘P CfJ'C
_
r
OL
_
-
08
LP’S SO’9 Z6’S 00.) ST’Z
OE KJ
Of
OE-
Lt.0 CT'0 52'0
9p.o
9S'E ZB'8 tZ'L ZS't 69'2 99'f 86'0
SP'S
TP't
81'0 Pt.0 LZ'O
LP'O
SO'6 CO'6 OO'L Ok'k IL.2 69'1 10'1
ES'S
St'1
0
Ll'6 PO.6 t6'9 kE'C 69'2 69'1 ZO'I ~fr.0 ET.0 91'0 82'0
95'S
CZ'T
OT-
66'8 80'6 OI'L IP'tr IL'Z 0L.C CO'T BP'O 61'0 ST.0 8Z'O
r)'S
OP.1
IAWdd) 3N020 3tMl3AV
0
tl3CiO.LM304 IhWdd) 3NOZ0 3f)\(t43&
OP
0.0
16'L 8P.8 8C'L 19'P C9.Z 19.1 b6.0
8Z.S
99'1
9‘['0 91'0 VI'0 El.0 9Z'O .92'0
6r.o
66'1 LO'S 86'9 6L'L LC'L 6L.t 09'Z LS'I 80'0
LI'O 91'0 IC'O
BP.0
PP'S 99'8 LP'B BL'9 ZC'P 69'2 oL*z ZO'T
zr.1
or ,33!f 3m-&V~
LI'O 91'0 82'0
tl38i+3AON Pod
0)
LI'O LZ'O
LT.0 91'0 62'0
lTP.0 LP'O
66'0 LI'O
Z6'0
29-x
Es.1
8P'I 9E'S Tt.8 LZ'B 56'9 EC‘Y 09'2 ~9.1 66'0
LL'T SZ'S 8C'L LE'L tl'L 9S'P 09-z
TZ'Z 80'S 8P'9 PC'L OZ'L 06'0 95'2 18'0
OT-
(AWdd) 3NOZO 33VU3AV
ml&l
0
oz-
Pg.8 9T.6 IC'L 15') tL'Z 69'7 20'1 8k.o 61'0 PI'0 62'0
Oi-
C6'L S8'8 O'L 9S'P 89'Z 99'1: 00.X 8t.o 61'0 St.0 ZE'O
SZ'Z
or-
OC-
954-S 8P.S
L9'T
oz-
oz-
OP-
9L'Z LC'S ID'L OP.8 ZD'L 09') 99-Z 29-t 96'0 6v.o TZ'O LI'O Pt.0
OC-
OP-
61'0
os-
6I'E 9E'S ZO'L LB'L EI'L PS'P 09'1: LS'T 216'0 w.0 ZZ'O 61'0 PC'0
os-
os-
04-
IT'S 49'9 CZ'L 09'9 LE‘P 1S.Z ZS'1 68'0 05.0 PZ'O 81'0 Et.0
9i'f
04-
09-
:“o :;
‘0
‘1
Y38W333Cl UOd
Ok
EG tr.0 51'0 rx.0
:; :;
21.0
28'2 ;;:9" 66'9 80'9 g:; s9:r
::
‘2
OL-
P9.P LT.9 115'4 68'S 00') LE.2 SP't LB'0 15'0 LZ'O 81'0 OE'O
OL'Z
OL-
OL-
TL'O 9C'O ET.0 ZI'O
60'2
95‘T
Ob-
8i.I 9E'O 15.0 6Z'O 61‘0 CZ'O
-
-
08-
OB-
9L'O IP'O IZ'O ZI'O
6i.t
(WXiZ
tl::% 000'09 000.59 OOO'OL OOO'SL 000'08
KE
KG:
%K .
fW%)Z
(WXF?.
G. M. Keatingeraf.
WlOW TABLE 6
Nightside
mesospheric
ozone volume mixing ratios (ppmv)
03ZONALMEAN
OCT
Wmb)
-60.
-50.
0.05
-_..
____
..e.*
w...
.
..-a
-.__
.*._
____
0.07
. ... 1.48
---. 1.59
-..1.55
---1.52
*--1.47
-..1.81
---1.63
.--1.57
---1.42
0.15
1.46
1.48
1.45
i:44
1.41
1.48
1.48
1.43
0.20
1.49
1.48
1.45
1.45.
1.43
1.45
1.43
1.41
0.30
1.58
1.55
1.53
1.54
1.54
1.58
1.53
0.50
1.92
i.87
1.86
1.87
1.88
1.90
1.88
-40.
-30.
-20.
-10.
0.
Latitude(degrees)
0.10
-40.
-30.
-20.
-10.
..-
0.
to.
20.
30.
40.
50.
60.
70.
80.
1.47
1.39
1.38
1.59
2.05
2.17
1.36
1.32
1.35
1.42
1.81
1.66
1.30
1.29
1.33
1.31
1.30
1.31
1.38
1.31
1.28
1.29
1.26
1.22
1.21
1.42
1.37
1.34
1.34
1.31
1.27
1.24
1.53
1.55
1.51
1.49
1.47
1.45
1.45
1.43
1.87
1.89
1.91
1.94
1.99
2.03
2.08
1.96
10.
20.
30.
40.
50.
60.
70.
80.
032oNALMEANNoV Latitude(degrees) WW
-60.
-50.
0.05
-*..
----
. ..-
--..
I--.
_.I.
-..-
. . ..
--..
1.51
1.40
1.39
1.50
2.20
2.14
0.07
. .. .
---.
.--"
----
....
---.
1.42
1.33
1.31
1.49
1.88
1.73
----
1.83
1.80
1.56
--.. 1.50
----
0.10
. ..1.48
1.48
1.49
3.44
1.37
1.30
1.27
1.29
1.33
1.43
0.15
----
1.49
1.45
7.46
1.39'
1.39
1.36
1.38
1.40
1.35
1.30
1.25
1.24
1.22
1.24
0.20 0.30
-------
1.47 1.53
1.46 1.54
1.46 1.56
1.41 1.52
1.39 1.51
1.38 1.47
t.39 1.52
1.43 1.56
1.40 1.54
1.36 1.50
t.31 1.44
1.29 1.42
1.24 1.38
1.22 1.33
0.50
----
1.83
1.84
1.87
1.87
1.89
1.88
1.89
1.92
l.Q4
i.QQ
2.01
2.03
1.95
1.85
-40.
-30.
-20.
Latitude (degrees) -10. 0. 10.
20.
30.
40.
50.
60.
70.
80.
TABLE 6 (Continued) 03 ZONALMEAN PW)
DEC
-60.
-50.
0.05
.-.-
---.
.-..
-...
1.46
1.42
1.40' ----
1.50'
1.40'
1.54*
1.83
2.17
2.31
2.06
0.07
.--.
----
-.._
__..
t.43
1.36
1.33
----
1.38
1.40
1.42
1.47
1.70
1.78
1.72
0.10
-*--
1.72
1.75
1.80
1.41
1.33
1.30
i.32
1.33
1.41
1.36
1.38
1.38
1.41
1.45
0.15
----
1.55
1.55
i.46
1.37
1.31
1.27
1.30
1.35
1.41
1.36
1.31
1.27
1.26
1.27
0.20
*---
1.51
1.50
1.45
1.40
1.35
1.32
1.36
1.41
1.46
1.41
1.35
1.29
1.24
1.23
0.30
----
1.58
1.55
1.54
1.51
1.4%
1.45
1.49
1.54
1.57
1.52
1.48
1.41
1.30
1.26
0.50
----
1.84
1.85
1.86
1.87
1.90
1.90
1.92
1.92
1.94
1.98
l.Q8
1.88
1.70
1.63
20.
30.
40.
50.
80.
70.
80.
l
03ZONALMEANJAN Latitude(degrees) PW)
-60.
-50.
-40.
-30.
-20.
-10.
0.05
..--
--.-
..-.
-...
1.41
1.43
1'.47* 1.51'
1.49
1.48'
1.41'
1.72' 2.06'
2.32
2.28
0.07
. .. .
.--.
.---
---.
1.32
1.35
1.39
1.43
1.40
1.43
1.43
1.58
1.71
1.84
1.80
0.10 0.15 0.20 0.30
---*---------
1.73 1.55 1.52 1.59
1.73 1.55 1.51 1.60
1.46 1.41 1.45 1.58
1.29 1.3t 1.38 1.51
1.31 1.32 1.37 1.46
1.34 1.33 1.37 1.43
1.37 1.34 1.37 1.47
1.35 1.34 1.39 1.52
t.40 1.41 1.47 1.61
1.45 1.45 1.52 1.64
1.48 1.42 1.47 1.61
1.47 i.39 1.42 1.55
1.49 1.35 1.34 1.45
1.47 1.32 1.31 1.40
0.50
----
1.89
1.92
1.92
1.89
1.83
1.78
1.84
1.91
2.01
2.11
2.11
2.05
1.88
1.78
l
.
0.
10.
ESTlMATEDERROREXCEEDS20PERCENT
(9JlW3
TABLE 6 (Continued) 03 ZONALMEAN
FE6 Latitude(degrees)
Wmb)
-60.
-50.
-40.
0.05
-..-
.---
-...
0.07
--.-
----
-..*
0.10
1.12
1.69
1.56
0.15
1.23
1.54
0.20
1.34
0.30 0.50
-30.
-20.
-10.
0.
10.
20.
30.
--.-
1.35'
----
1.31
1.50'
1.63
1.43
1.51
1.60'
1.50
1.44
1.52
1.42
1.37
1.34
1.30
I.40
I.44
2.46
1.36
1.35
1.46
1.35
1.32
1.39
I.40
1.40
1.36
1.52
1.49
1.41
1.39
1.43
1.42
1.42
1.52
1.61
1.80
1.55.
1.50
1.52
1.50
1.90
t.Q4
1.96
I.97
I.69
I.66
1.82
40.
50.
60.
70.
60.
1.50
1.60
2.01
2.52
2.65
1.45
1.50
1.71
1.93
2.01
1.42
I.44
1.51
1.53
1.56
1.37
1.41
1.40
1.43
1.43
1.40
I.40
1.43
1.46
1.46
1.47
1.47
1.51
1.52
1.54
1.58
1.61
1.61
1.64
1.67
1.71
1.86
1.9i
2.01
2.09
2.16
2.25
2.27
2.21
20.
30.
40.
60.
60.
70.
80.
03 ZONAL MEAN MAR
Latitude (degrees) PW)
-60.
-50.
-40.
-30.
-20.
-IO,
0.
IO.
0.05
1.63
---.
..-.
---.
0.07
1.50
.---
.-..
-.--
. ..-
----
--..
--..
1.77'
1.57'
1.70
1.74
1.77
2.07
1.68
.-..
----
-...
--."
1.62
1.49
1.57
1.64
1.70
1.60
0.10
1.44
1.46
1.38
1.62
1.36
1.45
1.61
1.65
1.80
1.52
1.44
1.46
1.56
1.63
1.62
0.15
1.42
I.45
1.46
1.38
I.37
1.43.
1.52
1.53
1.48
1.45
I.41
i.44
I.47
I.51
I.51
0.20
1.47
1.44
1.46
I.44
1.42
I.47
1.52
1.52
1.48
1.48
1.45
1.47
1.49
1.52
I.54
0.30
1.53
1.59
1.59
1.56
1.54
1.57
1.61
1.59
1.56
1.59
1.59
I.59
1.61
1.63
1.67
0.50
1.76
I.98
1.97
1.96
1.93
1.93
1.94
1.91
1.94
1.99
2.01
2.02
2.04
2.12
2.27
2.45
30.
40.
50.
60.
70.
60.
* ESTMATEO ERFIOR EXCEEDS 20 PERCENT
TABLE 8 (Continued) 03 ZCHALMEAN
APR Latitude(degrees)
WW
-60.
-50.
-40.
-30.
-20.
-IO.
0.
10.
20.
0.05
1.39
I.34
1.37'
I.50
.-..
----
-.--
----
-.--
1.79' 2.17
2.38
2.26
1.60
----
0.07
I.34
I.29
1.27
1.37
....
----
.---
---.
.---
1.66
1.86
2.02
1.99
1.58
----
0.10
1.31
1.27
1.23
1.31
1.53
1.75
1.79
1.76
I.65
1.60
1.63
1.76
1.77
1.51
----
0.15
1.27
1.26
1.26
1.35
1.46
1.60
1.62
1.59
1.55
1.52
1.53
1.59
1.59
1.44
----
0.20
1.32
1.35
1.36
1.41 .I.50
1.56
1.59
1.57
1.56
1.53
1.54
1.57
1.56
1.47
----
0.30
1.48
I.51
1.50
1.53
1.60
1.65
1.66
1.66
1.66
1.65
1.65
1.65
I.64
1.61
----
0.50
2.02
2.00
1.94
1.92
1.96
1.99
1.96
2.01
2.04
2.04
2.03
2.00
2.00
2.01
----
-20.
Latitude(degrees) -10. 0. IO.
20.
30.
40.
50.
60.
70.
80,
03 ZONALMEAN
MAY
P(mb)
-60.
-50.
-40.
-30.
0.05
i.64*
l.I6'
i,i6'
I.379 *-..
*-.-
.--.
..-*
----
.I..
----
.-..
---*
..-.
.-..
0.07
1.52
1.20
1.20
1.30
. . ..
-...
. .. .
-...
. .. .
-...
--I.
.. . .
-..-
"...
.---
0.10
1.31
i.25
1.23
1.27
I.46 $1.68
1.74
I.72
1.65
1.72
1.85
1.94
1.66
----
----
0.15
1.23
1.24
1.25
1.30
1.42
1.55
1.59
1.58
1.55
I.58
1.66
I.72
1.65
----
----
0.20
1.28
1.32
1.33
1.37
I.45
1.54
1.57
1.56
1.58
1.59
1.63
1.67
1.60
----
----
0.30
1.43
1.51
1.51
1.52
1.56
I.63
1.65
1.66
1.69
1.70
1.71
1.72
1.66
----
----
0.50
2.11
2.13
2.04
1.95
1.94
1.95
1.96
1.99
2.05
2.06
2.05
2.03
1.96
----
----
* ES~~TED
ERROR EXCEEDS 20 PERCENT
G. M. Keatingetal.
(9/10)44
Shown in Figure 11 is a comparison of the reference model for January, Equator (dayside above 0.5 mb) and the corresponding nightside LIMS values from 0.5 mb to 0.05 mb (taken from Table 6). Little diurnal variability occurs below 0.5 mb due to the lower dayside 0103 ratio at the lower altitudes resulting in less production of ozone on the n~ghtside. At pressures of 0.05 mb the night/day ozone ratio increases to approximately a factor of 6. Figure 12 gives a detailed view of latitudinal-seasonal variations in the night-day ozone ratio at 0.1 mb (approximately 66 km) based on the nightside 1979-60 LIMS data and 1982-1983 SME data. It should be taken into consideration that opposed to all of the differences being diurnal, part may be due to interannual variations and biases of SME data relative to LIMS data. However, Solomon et al. [43] show good agreement between dayside mesospheric SME data and dayside LIMS data corrected for nonLTE effects. Ratios at this level appear to exceed a factor of 3 and maximize during solstice periods near 45 degree latitude in the local summer hemisphere and near the Equator during the equinox periods. This may largely result from the dayside ozone being more strongly photodissociated by the more directly incident summer sun at mid latitudes and the equinoctial sun near the Equator [37]. For convenience, Table 7 lists conversion from volume mixing ratio.
factors for deriving
common
units for ozone
measurements
DIURNAL VARIATIONOF OZONE IN ~ESOSPHERE JAN ,I
IIS
LATITUDE = 0 It .I III
1 ,
.x
-15 .2
.3 .4
.6 .6
0
REFERENCEMODEL
0
NlGHTSIDE LIMS
1. 1.52. 03 (PPMV)
11. r‘iurnalvariation of mesospheric ozone from satellite data. Comparison of ozone reference model (dayaide above 0.5 mb) with the LIMS nightsida measurements (0.05 mb to 1 mb) for Equator in January.
Figure
Ozone Reference Models
19/lOW5
NIGHT (~~4s)/ DAY (SME) ME~~SPHERIC OZONE RATIO 0.1 mb
-60t OCT
I
i
I
NOV
DEC
JAN
I MAR
FEE
I APR
1 MAY
Figure 12. Night (LIHS) to day (SME) mesorphoric ozone ratio at 0.1 mb (-66 km) as a function of latitude and season. TABLE 7
Unit convaraionr
To convert from volume mixing ratio (ppmv) to the units below, multtply by: MASS MIXING RATIO (ppmm)
1.657
HAS6 DENSITY
1.657 x W6
(kg-m-3)
NUMBER DENSITT
(~1'~)
2.079 L 10t9.pt
PARTIAL PRESSURX (nb)
Pt
vhere p is the total atmospheric prarmmi in mb and
pt is the total
pt
atmospheric density in
(1 rb - 101)pascals)
kg-m’3
at a given altitude.
Tot81 column burden ( 0 ) in atm-cm. 1 atm-cm - 1000 Dobson units) above a given pressure (PO) can be calculated by integrating partfal pressure ~(0,) with roopect to ln (P,):
J
PO
o-
7.897 x 10-4
0
~(03) din U,)
G,M. KeatingCIal.
(9/10)46 5. ANNUAL MEAN MI~LATITUDE
MODEL
The Krueger and Minzner annual mean ozone reference model [4] of 45*N based on balloon and rocket data is compared here with this set of reference models based on satellite data. The Krueger and Minzner model has proven to be very useful and was included in the U. S. Standard Atmosphere, 1976. Data from rocket soundings in the latitude range of 45”N f 15O, results of balloon soundings at latitudes from 41*N to 47ON, and latitude gradients from Nimbus 4 BUV observations were combined to give this earlier estimate of the annual mean ozone concentration and its variability at heights up to 74 km for an effective latitude of 45”N. Shown in Figure 13a is a comparison of the vertical structure of the annual mean volume mixing ratio given by Krueger and Minzner [S] with that of the annual mean determined by averaging the monthly values at 40” and 50”N based on satellite data given in Table 4. As may be detected, there is good agreement between the balloon and rocket measurement model and the satellite measurement model. This agreement is even more noteworthy considering the lack of longitudinal coverage in the b8llOOn and rocket measurement model. Shown in Figure 13b are the percent differences of the Krueger and Minzner model [4] from the annual mean model based on Table 4 values. Below altitudes of 0.3 mb, the agreement is generally within 10%. Above 0.3 mb, differences es large as 25% occur, but differences at all levels are within the error bars indicated by the Krueger and Minzner model. Both models give maximum mixing ratios near 5 mb. Shown in Figure 14 is 8 comparison of the annual mean vertical ozone distribution from ozonesonde data from Hohenpeissenberg, Germany (48”N, tl*E) over the period 1967-1985 8nd from Thalwil-Payerne, Switzerland (47*N, 7”E) over the period 1967-1982 with the 47.3ON tonal average annual mean based on the satellite data. Also the annual mean vertical structure of Umkehr data from Arosa, Switzerland (1955-1983) (47ON, 10°E) is Compared. These three data sets were generously provided by R. Bojkov [81]. Considering that the ozonesonde and Umkehr data do not represent 8 zonal average but do represent conditions over a period of many years, the agreement is very good. Comparisons month by month of the ozonesonde data show better than 10% agreement with the zonal mean mixing ratios but show evidence of local phase shifts relative to the zonal mean variations. A number of other comparisons have been made with these satellite ozone reference models [82-85,371. Comparisons with the near equatorial ROCOZ-A ozonesondes [85] show excellent agreement with the satellite data model 1381.
0.001- 90
0.010
0
KRUEGER AND MINZNER, 1976
-
ANNUAL MEAN AT 45 N
0.010 f-
- 80 s
- 705
1 0
2
4
8
VOLUME MIXING R:TiO (PPMV)
10
-60
-40
-20
0
20
40
60
PERCENT DIFFERENCE
mixing ratio (ppmv) at 45oN Figure 13. Comparison of annual mean ozone volume based on the satellite data model of Table 4 and the balloon and rocket data model of Krueger and Minzner 141. On the left (a) is shown the vertical structure in the two models and on the right (b) the percent difference from the satellite data model of the Krueger and Minzner modal.
Ozone Reference
Models
(9/10)47
ANNUAL MEANS 0.001
Thalnil-Pagernc (1967-1982) Hohenpciasenbcr(l
0.010
0.100
z fz E 2
48N, 11E
(1967-1385)
-
Ozone
Ref.Model
47.3N
1.000
10.000
6
4
OZONE
8
(ppsnv)
Figure 14. Comparison of annual mean ozone reference model at 47.3oN wi:".: annual means of long-term balloon and Umkehr measurements.
a)
I 1. s. a.
b)
LOW LATITUDE 1
I
MID LATITUDE
\
c1
HIGH LATITUDE
I
f. i$
::
-
2.
bi z
S* 1.
g’j 11. g
II.
a
22.
y
II. VI. S3 SS. 12S IR. 253
Figure 15. Variation of ozone mass mixing ratio with total ozone. (from Mateer et al. (7)) (a) low-latitude ozone profiles for total ozone of 200, 230, 250, and 300 Dobson units (b) midlatitude ozone profiles for total ozone of 200, 250, .. 550 Dobson units (c) high-latitude ozone profiles for total ozone of 200, 250, ..,650 Dobson units. 6.MODELS OF TOTALOZ~E-VENICE
STRUCTURE RELATION
Matesrel al. [7] developed models of the vertical structure of ozone as a function of total column ozone and latitude. The models were based on balloon and rocket data. These models of the relation of total ozone to vertical structure are incorporated here. Shown in Figure 15a are low-latitude (approximately
G. M.Kcating etal.
(9/10)48
&2!Y’) profiles for ozone mixing ratios for total column ozone of 200, 230, 250 and 300 Dobson units (left to right). Shown in Figure 15b are similar mid-latitude {approximately 25O to !Xl*) profiles for total column ozone in increments of 50 Dobson units from 200 to 550 Dobson units (left to right). Finally, shown in Figure 15c are similar Hugh-iatitude (approximately 56O to 80*) profiles for total column ozone in increments of 50 Dobson units from 200 to 650 Dobson units (left to right). Note that the substantial variability in mixing ratio extends to lower pressures (higher altitudes) at the higher latitudes. Tabulations of the models are found in [7]. These models do not take into account conditions in the ozone hole. 7. OZONE HOLE AND GLOBAL TRENDS Evidence has been accumulating ~ncerning various long-term changes in global ozone. In 1985, Farman, et al. 1761 discovered rapid decreases in springtime Antarctic ozone which they attributed to the release of chiorofluorocarbons (CFC’s) through human activities. This region of severe ozone decline, relative to earlier periods, is called the ozone hole. Shown in Figure 16 is the decline of zonal mean total column ozone between 70% and 85% in Antarctic spring (September-November) between 1979 and 1969, based on Nimbus 7 TOMS Version 6 data. At the top of the figure is shown the ozone distribution, in Dobson units, for the (local) spring of 1979 and the spring of 1969. At the bottom of the figure are the depletions in ronal mean ozone which occurred over these 10 years in Dobson units and in percent. Largest depletions, 130 Dobson units and over 40 percent, occurred near the beginning of October, The strongest changes in the Antarctic ozone occur near the base of the stratosphere. Numerous studies have been published concerning these anthropogenic changes. Numerous studies have also been performed concerning trends in ozone on a global scale based on measurements from the ground, balloons, rockets, and satellites (66-943. In a study based on Nimbus
1989 -70
-85
-85 Nov
Sep
Dee
Sep
a_;pE
DEPLETION
Ott
Nov
DeC!
MONTH
MONTH
(00Bs0N
OZONE DEPLETION I
up
-85
Sep
OCt
Nov MONTH
Figure
Dee
Sep
act
Nov
Dee
MONTH
16. Growth of the ozone hole. Decline of Nimbus 7 TOMS (Version 6)zonal mean column ozone between 70°S and 85*S in the Antarctic spring (September-November) from 1979 to 1989. At top is shown ozone distribution, in Dobson units, for flocal) spring of 1979 and 1989. At bottom are the zonal mean ozone depletions, which occurred between 1979 and 1989, in Dobson units (left) and percent (right).
Ozone Reference Models
(9/10)49
7 TOM5 Version 6 data Stolarski et al. (SS), after taking into account natural variations
such as the il-year solar cycle effects, detected a 3 percent decline in global ozone between f 65 degree latitude effects, from November, 1976 to May, 1990. These trends, which were attributed to anthropogenic had strong latitudinal-seasonal variations peaking at high latitudes in local winter and early spring. Trends in total column ozone (percen~ear~ as a function of latitude and month based on ft years of TOMS (Version 6) data are shown in Figure 17. Studies have also been performed of global trends in ozone vertical structure (McCormick et al. 1931, Keating et al. (941). The strongest depletions of In the upper approximatafy 20% per decade are detected near the base of the stratosphere. stratosphere a combination of SAGE II and SBUV data (Keating et al. [94]) indicate maximum depletions of 10% per decade occur at high latitudes as would be expected from CFC increases on gas phase chemistry (Srasseur, [95], Hood et al. 1961). The eruption of Mount Pinatubo in 1991 resulted in severe perturbations in the global ozone distribution. New record low ozone values were reported in Dobson data, ozonesondes, TOMS data, SBUV 2 data and in Umkehr data after the eruption. Ozone decreases as large as 25% occurred between 12 and 22 km. Not until 1994 did ozone significantly recover from the 1991 eruption (Hofmann et at. [97]). Data analysis revealed that the volcanic aerosols resulting from the Mount Pinatubo eruption produced major Heterogenous chemistry on aerosol dynamic, radiative and heterogenous chemical effects on ozone. surfaces apparently resulted in increased deactivation of reactive nitrogen and increased activation of chlorine reservoir species resulting in increased ozone destruction [98-lOl]. The Upper Atmosphere Research Satellite (UARS) was launched in 1991 after the eruption of Mount Pinatubo, and thus initial results were difficult to interpret in terms of long-term trends given these severe ozone perturbations. As a result, it has been difficult to establish long term ozone trends in the 1990’s or to Many generate an improved ozone reference model not perturbed by the effects of volcanic aerosols. of the latest results concerning the ozone hole and global ozone depletion are given in Kurylo et al. 11021 and earlier results are summarized in Watson et al,[l03]. 8DN
40N
20N
4
EO
60s
80s J
FMAMJJA
S
0
N
0
MONTH
Figure
17. Trend term from TOMS total ozone as a function of latitude and season. Tkreshaded area indicates where the trends are not statistically different frc,mzero at the 2 sigma level. Significance was determined by rss sum of absolute and statistical error estimates. Poleward of the heavy solid line is polar night where no TOMS measurements are possible. (from Stolarski et al. f861) JASRIB:$-10-c
(9/10)50 8.
Ci.M. Keatingcf al.
OTHER SYSTEMATIC VARIATES
A number of systematic variations of ozone in addition to latitudinal-seasonal variations have been analyzed. For brevity only a few references are included here. Empirical analyses have been performed on the quasibiennial oscillation [104, 14, 151, solar cycle variations 11051081, solar rotation variations [lOQ-1131, diurnal variations (discussed in Section 4)[43,44,114,115], longitudinal variations [3,12,116,117], volcanic eruptions (discussed in Section 7) [104,116,26,98], possible response to nuclear explosions 11191, long-term trends (discussed in Section 7) [106,120,121,66,Q3,94], 4-year oscillations [15], response to stratospheric temperature variations [122-1241, response to sudden winter warmings (1251, and response to solar proton events [ 126-
1281.
The quasibiennial oscillation in ozone is thought to be related to the quasibiennial variation in equatorial zonal winds [12Q]. Shown in Figure 16 1141 is the biennial component of the zonal mean total ozone variation based on 7 years of Nimbus 4 BUV data. The contour interval is 2 Dobson units with the solid lines positive and the shaded area with dashed lines negative. Referring back to Figure 3, it may be seen that in the low and midlatitude regions the large interannual variations correspond to regions of large quasibiennial variation. However, since the variation is quasibiennial as opposed to biennial, the phase indicated in Figure 18 will change with time. There is also evidence that the period of the quasibiennial variation may vary somewhat with latitude [130] and that the latitude of maximum quasibiennial variation may vary somewhat with time [15].
SO’
60.
Figure
18. Biennial component of tonal mean ozone variation based on 7 years of Nimbue 4 BW mea8urementa. Contour interval is 2 Dobaon units, solid lines are positive deviations and dashed lines negative deviations. (from Tolson [141)
(9/10)51
OzoneReferenceModels
Evidence has accumulated that variations in ozone with a period of the order of 11 years occur at various locations. The early studies which were performed were reviewed by Keating (105]. Empirical studies on the response of ozone to 1i-year solar variations include the works of Rein& et al. [loa], Oehlert [131], Chandra [132], Keating et al. [16,107,94], Hood et al. [QS], Stolarski et al [SS], and Herman et al. [72]. From a study of Umkehr data, Reinsel et al. [108] estimate a 3% variation in ozone over the solar cycle near 36 km superimposed on a 3% per decade linear decline which may be associated with anthropogenic effects. Long term variations in total column ozone have been detected using the global Dobson network. Shown in Figure 19 are estimates of percent variation in global mean ozone based on those measurements as determined by Angel1 and Korshover [121]. Maximum values appear to occur near the times of solar maxima. Figure 20 shows the response of total column ozone as
of global yearly average total column ozone expressed Figure 19. Variation percent deviation from the mean based-on ground-based Dobson spectrophotometers as well ae M-83 ozonometers. (from Angel1 and Korshover [1041) TIME SERIES OF
TOW OZONE COLUMN
DENSITY
40S-40N USING 366-DAY RUNNlNG MEAN 294.0,
*
1
,
~
,
,
,
*
,
,
,
)
TOMS VERSION 6
Trend+Solar+OBO
76 79 60 61 82 63 eu4c;;
t
86 87 88 89 90 91
Figure 20. Time series or‘365~cay running mean of Nimbus 7 TOMS - Version 6 column ozone data (Dobson units) area weighted between 40°S and 40°N compared with an empirical model. The empirical model ('Trend+Solar+QBO*) includes a linear trend, the ll-year solar response term, and a 30-month quasibiennial oscillation term. The 30-month mean QBO is a good fit over this particular time interval. The corresponding least-mean-square-fitlinear trend term over these latitudes is also indicated. (from Xeatfng et al. flO7lf total
as
(9/10)52
Figure 21. Response of 2 mb ozone, as measured by the Nimbus 7 LIMS experiment, to solar rotation variations in solar ultraviolet radiation. At the top of the figure are fluctuations in the 5-day running mean of 205 nm solar UV radiation relative to the 27-day running mean. At the bottom of the figure are fluctuations in the 5-day running mean of 2 mb ozone fbetween f 40* latitude) relative to the 27-day running mean after empirically correcting from the response of ozone to temperature fluctuations. (from Keating et al. tllol) measured by the Nimbus 7 TOMS instrument to the combined effects of the ll-year solar cycle, the QBO, and ion~term trends 11071. An unexpectedly strong response of 2mb ozone to 11 year solar variations has recently been detected (Keating et al. [94]). It has now been established that there are solar UV variations as large as 5% at wavelengths between 180 and 208 nm associated with the 27day rotation period of the sun [133,134]. Analyses of satellite data are indicating a clearly detectable ozone response in both the stratosphere and mesosphere to these short-term solar variations [lOQ113,135,136]. Shown in Figure 21 is the response of 2 mb ozone as measured by the Nimbus 7 LIMS experiment to solar rotation variations [l lo]. Peak positive responses are detected near 40 km and peak negative responses (associated with solar Lyman-alpha radiation) are detected near 70 km [113]. Due to the temperature dependence of rate constants in the middle atmosphere, temperature decreases can result in increases of upper atmospheric ozone in regions approaching photochemicat equitibrium (122,1]. Other processes can also lead to negative correlations between ozone and temperature [138]. The sensitivity of ozone to temperature variations reaches a maximum value near the stratopause of about 2% increase in ozone per Kelvin decrease in temperature. In addition to the stratospheric ozone response, the mesospheric ozone is found to be strongly affected by temperature variations [22].
The authors wish to acknowledge the valuable contributjons of the ‘Ad Hoc Group on Ozone Reference Models for CIRA” in reviewing an earlier manuscript. The Group included C. A. Earth, P, K. Bhartia, D. F. Heath, K. Labitrke, C. A. Mateer, M. P. McCormick, A. J. Miller, and J. M. Russell 111.Others offering valuable comments included J. S. Chang, I?. Bojkov, Ft. J. Thomas, M. Allen, D. W. Rusch, and W. P. Chu. Those who played important roles in developing the ozone reference models include D. F. Young, M. C. Pitts, and C. Chen.
OzooeRefereweModels
(9/10)53
REFERENCES [II
0. M., M. C. PITTS, and D. F. YOUNG, COSPAR Chapter 86. Part II.. -,’ (1990)
KEATING (12)317
H.U., Can. J. Chem. 12, 1491
15, Adv. Space Res.. Lp
(1974)
L21
DUTSCH
131
LONDON J., R.D. BOJKOV. S.OLTMANS and J.I. KELLEY, of total ozone, July 1957-June 1967, NCAR TN/w
Atlas of the global distribution , Boulder, CO (1976)
[41
KRUEGER
4477
I51
BGJKOV
[61
HlLSENRATH E.. P. J. DUNN, and C. L. MATEER, in : Collection of Extended Summaries Contributions Presented at the Joint Assembly CMUA Sessions IAGA/IAMAP Seattle WA, August 1977. National Center for Atmospheric Research, Boulder. CO, 41-l-41-6 (1977)
[71
MATEER
t81
BHARTIA P. K., D. SILBERSTEIN, B. UONOSMITH, and A. J. FLEIG, in: mic Q.zQI& eds C. S. Zerefos and A. Ghazi, D. Reid& Publ., Dordrecht, Holland, 1984, p. 243
191
KLENK K. F., P. K. BHARTIA. 2012 (1983)
1101
DUTSCH
[Ill
MCPETERS
[121
HEATH D. F., A. J. FLEIG, A. J. MILLER, T. G. ROGERS, R. M. NAGATANI, H. D. BOMMAN, V. G. ~~~S~~, K. F. KLENK, P. K. BHARTIA, and K. D. LEE, NASA Reference Publication m, p. A2 (1982)
I131
BOWMAN
K. P., and A. J. KRUEGER,
f141
TOLSON
R. H.,
1151
HASEBE
F.,
[161
KEATING G. 34.. L. R. LAKE, J. Y. NICHOLSON 86, 9873 (1981)
[I71
KFXJEGER A. J., B. GUENTHER, A. J. FLEIG, D. F. HEATH, E. HILS~TH, 191 (1980) and C. PRABHAKARA, Phil. Trans. R. Sot. Lond. B2p6,
[I81
MCCORMICK M. P., T. J. SWXSSLER, J. Geophys. Res. fi, 5315 (1984)
t191
MCCORMICK
1201
KEATING G. M., L. FRANK, J. CRAVEN, R@s. 2, 183 (1983)
1211
KEATING 0. M., J. D. CRAVEN, L. A. FRANK, D. F. YOUNG, and P. K. BHARTIA, Geophys. Res. Lett. U, 593 (1985)
[221
D. W. RUSCH, R. J. THOMAS, G. H. MOUNT, G. J. ROTTMAN, G. E. THOMAS, EARTH C. A., R. W. SANDERS, and G. M. LAWRENCE, Geophys. Res. Lett. Lp, 237 (1983)
[231
SUZUKI K.,
[241
FREDERICK (1986)
i2-51
PLANET W, G., J. H. LIENESEH and M. L. HILL, in: v, and A. Ghazi, D. Reidel Publ., Dordrecht, Holland. 1984, p. 234
A.J. and R.A. MINZNER
R. D.,
J. Geophys.
J.of Appl. Net. 8, 284
C. L., J. J. DELUISI,
Res. a,
(1969)
and C. C. PORCO, NOAA TM ERL ARL 86
E. HILS~TH,
H. U., Pure Appl. Geophys.
l&
511
(1980)
(1978)
J. Geophys.
Res. 86, 7312
of
and A. J. FLEIG, J. Clim. Appl. Met. 22,
R. D., D. F. HEATH, and P. K. BHARTIA,
J.Geophys.
11976)
J. Geophys.
Res. a,
7967
Res. a,
5199
(1984)
(1985)
(1981)
J. Geophys. Rea. 88. 6819 (1983)
M.
P., and J. C. LARSEN,
T. OGAWA, J. E.,
III,
E. HILSENRATH,
Geophys.
and M. NATARAJAN,
A. J. KRUEGER,
Res. L&t.
M. SHAPIRO,
u,
D. YOUNG,
and S. KADOKURA, J. Geomag. Geoelectr.
R. P. CEBULA,
and D. F. HEATH, J. Atmos.
1280
S. Geophys.
R. MCPETERS,
and M. T. OSBORN,
(1986)
and P. BHARTKA,
2,
Res.
225
Adv. Space
(1985)
and Oceanic
Tech. 1, 472
eds C.S. Zerefos
(9/10)54
G. M. Keating L'I al
1261
PLANET W. G., et al., Geophys.
I271
RUSSELL
[281
BARATH
I291
ROCHE A. E., et al., J. Geophys.
t301
TAYLOR
i311
BEVILACQUA R. M., et al., Polar Ozone and Aerosol Measurement SPIE Conference Proceedings No. 2266, Q&Cal -
J. M.,
Res. L&t.,
et al., J. Geophys.
F. T., et el., J. Geophys.
21, 295 (1994)
Res., 98, 10777
Rec., &&, 19751 Res., pB, 18763
F. W., et al., J. Geophys.
Res., s,
for AtmosDhericand..~~ace Diego,
CA
(1993)
(1993) (1993)
19'799 (1993)
Resa,
Experiment
(POAM II),
ed. J. Wang and P. B. Hays, San
(1994)
t321
KEATING
0. M., and D. F. YOUNG, Adv. Space Res. I,
1331
KEATING
0. M., and D. F. YOUNG,
(341
XEATING
G. M., D. F. YOUNG,
r351
KEATING
G. M., and M. C. PITTS, Adv. Space Res. 1,
t361
KEATING G.
[371
KEATING
G. M.,
1381
KEATING
0. M., and C. CHEN, Adv. Space Res., &.3_,(1) 45 (1993)
[391
KEATING
G. M.. and M. C. PITTS, Adv. Space Res., a.
1401
BARNETT
J. J., and M. CORNEY,
[411
RUSSELL
III J. M.,
1421
GILLE J. C., and J. M. RUSSELL
[431
SOLOMON s., J. T. KIEHL, B. J. KERRIDGE. J. Geophys. Res. p1, 9865 (1986)
1441
REMSBERG E. E., J. M. RUSSELL III, J. C. GILLE, L. L. GORDLEY, P. L. BAILEY, W. G. PLANET, and J. E. HARRIES, J. Geophys. Res. & 5161 (1984)
1451
Systems
t461
BHARTIA P. K., K. F. KLENK, A. J. FLEIG, C. G. WE'VE, J. Geophys. Res. a, 5227 (1984)
1471
BASS A. M., and R. J. PAUR, in: mri&&& D. Reidel Publ., Dordrecht, Holland, 1984, p. 606
1481
eds C. S. Zerefos PAUR R. J., and A. M. BASS, in BOxone, D. Reidel Publ., Dordrecht, Holland, 1984, P. 611
1491
s. TAYLOR, R. B. McPETERS, and C. MELLEMEYER, Application of the BHARTIA P. K., Langley Plot Method to the Calibration of the Solar Backscatter Ultraviolet Instrument on the Nimbus 7 Satellite. Accepted, J. Geophys. Res. (1995)
t501
BHARTIA P. K., R. D. NcPBTBRS. C. L. MATEER, L. FLYNN, and C. MELLEHEYER, Algorithm for the Estimation of Vertical Ozone Profile from the Backscatter Ultraviolet Technique, (Submitted) J. Geophys. Res. (1995)
[511
KLENK K. F., B. MONOSMITH and P. K. BHARTIA. in: Be C. S. Zerefos and A. Ghasi, D. Reidal Publ., Dordrecht,
1521
CUNNOLD
1531
REITER R., and M.P. MCCORMICK,
t541
FLEIG A. J., P. K. BHARTIA, C. K. MONG, and K, F. KLENK, Proceedings of the 5th Conference on Atmosgheric Radiation (AMS), Oct. 31 - Nov. 4, 1983 Baltimore, MD (1984)
M.,
Handbook
(7)155 (1985)
of NAP &
205 (1985)
and M. C. PITTS, Adv. Space Res. 2,
and Applied
D. M., M. C.
Handbook
of NAP &
105
( 19871
(9)37 (1987)
D. F. YOUNG and M. C. PITTS, Handbook M. C. PITTS and C. CHEN, Handbook
( 10)
of NAP, a.
of MAP, a,
1 (1989)
37 (1989)
(6) 37 (1990)
47 (1985)
Adv. Space Res. .&, 14)107 (1984) III, J. Geophys.
Res. &&
5125
E. E. REMSBERG,
Sciences Corp., NASA CR m5-2806Q
and J. M. RUSSELL
III,
(1984) and D. GORDON,
eds C.
S. Zerefos and A. Ghazi,
e, Holland,
PITTS, and C. R. TREPTE, J. Geophys. Nature, FM,
(1984)
and A. Ghazi.
eds 1984. p. 625
Res. 89, 5249
(1984)
337 (1982)
(9/10)55
OzoneRefercnceModels IS51
FLEIG A. J., J. C. GILLE, M. P. ]rlcCORHICK, D. W. m.%iCH, J. M. R&%S?&L 1x1, and M. T.,ImSAY, in: m, eds C.S. Zerefos and A. Ghazi, D. Reidel Dordrecht, Holland, 1984, p. 258 J.
(561
MCMASTER l&E
L. R.,
W. P. CHU, and M. RONLAND,
Publ.,
*s Guide . , NASA Ref. Publ.
ser
(1992)
[571
RVSCH D. W,, G. H. MOVNT, C. A. BARTH, G. J. ROTTMAN, R. Y. THOMAS, G. E. THOMAS, R. W. SANDERS, G. M. LAWRENCE, and R. S. ECKMAN, Geophys. Res. Lett. J,&, 241 (1983)
[581
RVSCH D. W., G. H. MOUNT, C. A. BARTH, R. J. THOMAS, J. Geophys. Res. 89, 11677 (1984)
[591
SISKIND D. E., E. E, FtEMSBERG, R. PARRISH, {iathee: Publication 126h (1994)
1601
THOMAS R. J., C. A. BARTH, G. J, ROTTHAN, D. W. RUSCH, G. H. MOUNT, G. M. LAWRENCE, R. W. SANDERS, G. E. THOMAS, and L. E. CLEMENS, Geophys. Res. Lett. l!k, 245 11983)
1611
THOMAS R. J., C. A. BARTH, D. W. RUSCH, and B. W. SANDERS, (19841
i621
VALLANCE
(631
THOMAS L.,
1641
NOXON J. F.,
I651
VAUGHAN
1661
ALLEN
1671
WEEKS L. H., (1978)
[681
THOMAS R., private
1691
HEATH D. F.. (1973)
C. L. MATEER,
and A. J. KRUEGER,
GILLE J. C., 205 (1980)
P. L. BAILEY,
and J. M. RUSSELL
t711
Planet.
XERXAN
J. Geophys.
Res. Sp, 9569
243
(1980)
Space Sci. 3p. 545 (1962) 239
Quart. J. R. Met. Sot. us,
3. I. LUNINE,
M.,
J. J. TSOU, and A. 294, NASA Conference
(1973)
Phil. Trans. R. Soe. Lond. u,
G.,
5239
ECKMAN, B. J. CGNNOR, Pa,
Space Sci. Rev. ;cI, 355
(1984)
and Y. L. YVNG, S. Geophys.
R, E. GOOD, J. S. RANQHAWA,
communication
BHAFtTIA P. K., A. J. FLEIG,
&.
1721
JONES A.,
S.
and M. T. CALLAN,
Res. a,
4841
(1984)
and H. TRINKS, J. Gsophys.
Res. 82, 978
(1984) Pum
Appl. Geophys.
III, Phil. Trans.
K. F. KLENK, C. K. WGNG,
1.06-108, 1238
R. Sot. Lond. &296,
and D. GORDON,
J. Geophyys. Res.
(1984)
J.,
R.
WBLLEMEYER,
HUDSON,
R.
J. Geophys.
McPBTERS, R. STOLARSKI, Res., $$, 7531 (1991)
2. AHMAD, X-Y GV. S. TAYLOR,
and C.
I731
McPETERS R. D., A. J. KRUEGER, P. K. BHARTIA, J. R. HElDfAN, A. OAKS, 2. AHNAD, R. P. CEBULA, B. M. SCHLESINGER, T. SWISSLER, S. L, TAYMR, 0. TOGRES, and C. G. WELLENEYER, . ~ NASA 7 T-r fTO_ Products User ,s Guic& Reference Publication u (1993)
1741
LOVILL
t751
E. B. RoIxmRS, B. J. CONRATH, PRABHAKABA c., J. Geophys. Res. 81, 6391 (19761
[761
PRIOR E. J.,
t771
BHARTIA
1781
FARMAM J. C., B. 0. GARDINER,
1791
BOJKOV
R. D.,
Geophys.
f801
THGMAS
R. J.,
C. A.
is11
BOJKOV
R. D., private
J. E., and J. S. ELLIS, Geophys.
P.
K.,
and E. J. OZA, Geophys. Private Commuuication
R. A.
and V. G. KVNDE,
Res. Lett. 1. 547 (1978)
and J. D. SHANKLIN, 1236
Nature u,
(1987)
207
(1985)
(1986)
and S. SOLOMON, Geophys.
communication
HANSEL,
(1995)
Res. Lett. a,
BARTH,
Res. Lett. 1p. 447 11983)
Res. Lett. a,
673 (1984)
(9/10)56
G. M. Keatingeiai.
[821
WATANABE
[831
SUBBAPAYA
El.
(841
LOBSIGER
E.,
1851
BARNES R. A, (1987)
[861
STOLARSKI R. S., P. BLOOMFIELD, L&t., J.&, 1015 (3991)
[871
STOLARSKI R., R. BOJKOV, L. BISHOP, Science, 226, 342 (1992)
r-1
RBINSEL G. C!., G. C. TIAO, D. J. PEBBLES, L. BISHOP, and L. H. YING, J. of Geophys.
1891
McPETERS R. D., T. MILES, L. E. FLYNN, C. 0. WELLE34JZYER. and J. M. ZAWODNY, Geophys Res., eP, 20513 (1994)
igo1
RUSCH D. W., R. T. CLANCY,
and P.
f911
LOGAN J. A., J. of Geophys
Res., %&, 22553
1921
DeLUISI
I931
MCCORMICK
[941
KBATING
[951
BRASSEUR G., M. H. HITCHMAN, S. WALTERS, J. Geophys. Res., s, 5639 (1990)
f961
HOOD L. L., R. D. MePETERS, J. P. McCORMACK, L. E. FLYNN, S. M. HOL~D~RTH, J. F. GLEASON, Geophys. Res. Lett., a, 2667 (1993)
1971
HOFMANN
'I'., and T. OGAWA, Adv. Space Res. 2, H., and A. JAYARAMAN,
(9)123 (1987)
Adv. Space Res. 2, (gill9 (1987)
J. Atmos. Terr. Phys. pe, 493 (1987) A. c. HOLLAND,
and V. W. J. H. KIRCHOFF.
R. D. McPETERS,
J. J., et al., J. Geophys. M. P., R. E. VEIGA,
J. Geophys.
and J. R. HERMAN,
C. ZEREFOS, J. STAEHELIN.
K.
Res. s.
5573
Geophys.
Res.
and J. ZAWODNY,
J. B. KERR, A. J. MILLER, Res., pe, 5449 (19943
BHARTIA,
J. Geophys.
Res., B,
R. M. NAGATANI,
J.
20501
(1994)
269
(1992)
(19941
Res., s,
18901
(1994)
and W. P. CHU, Geophys.
Res. L&t.,
G. M., L. S. CHIOU and N. C. HSU, Adv. Space Res. u,(l) t M. DYMEK, E. FALISE,
2, 201
(1994)
and M. PIRR.8,
and
D. J., S. J. OLTMANS, J. M. HARRIS, J. A. LATHROP, G. L. KOENIG, W. D. T. DESHLER, and B. J. JOHNSON, Geophys. Res. Lett R. D. EVANS. D. M. QUINCY, 2p. 1779 (1994) RODRIGUEZ J. M., M. K. w. KO, N. D. SZE, C. W. HEISEY, G. K. YUE. and M. P. MCCORMICK, Geophys. Res. Lett., i& 209 (1994) KOMHYR,
[WI
[991
GRANIER
C., and G. BRASSEUR,
llOO1
TIE X., (1994)
G.
[IO11
BEKKI
ilO21
KURYLO M. J.. J. A. KAYE, R. F. HAMPSEN, and A. M. SCHKOLTNBR, Present State of Knowledge of the Upper Atmosphere 1993: An Assessment Report. NASA Reference Publication 1337 (1994)
[lo31
WATSON R. T., and Ozone Trends Panel, M. J. PRATHER and ad-hoc Theory Panel, and M. J. KURYLO and NASA Panel for Data Evaluation, NASA Reference Publ. L2pB (1988)
11041
ANGELL
ilO51
KEATING
[lo61
REINSEL G. C., G. c. TIAO, J. J. DELUISI, C. L. MATEER, J. E. FREDERICK, J. Geophys. Res. Be, 4833 (1984)
(1071
(9) KEATING G. M., G. P. BRASSEIJR, L. S. CHIOU, and N. C. HSU. Adv. Spacr Res., u, 199 (1994) RBINSEL G. C., G. C. TIAO, A. J. MILLER, D. J. WUEBBLES, P. S. CONNELL, C. L. NATEER. and J. L. DELUISI, J. Geophys. Res. 2, 2201 (1987)
I1081
[lo91
P. BRASSEUR,
J. Geophys,
B. BRIEGLEB.
S., and J. A. PYLE, J. Geophys.
J. K., and J. KORSHOVER,
Res., z,
18, 015 (1992)
and C. GRANTER,
Res., s,
Mon. Weather
18861
J. Geophys.
Res., %,
20545
(1994)
Rev. u,
725 119781
G. M., Solar Physics 14, 321 (1981)
GILLE J. C..
C. M. SMYTHE,
And D. F. HEATH, Science m,
A. J. MILLER,
315 (1984)
and
(9/10)57
Ozone Reference Models
[1181
KERTING
G.
Geophys.
M.,
G.
Res. L&t.
P. BPASSEUR, J. Y. NICHOLSON &.& 449 (1985)
III, and A. DERUDDER,
(1111
HOOD L. L.,
J. Geophys.
Res. e;L, 5264 (1986)
t1121
CHANDRA
S.,
J. Geophys.
Res. a,
[I131
KEATING (1987)
G. M.,
11141
LEAN J. L.,
r1151
LOBSIGER
[1161
WILCOX
[I171
BEKORYUKOV
[I181
DUTSCH H. U., in! B. Dordrecht, Holland, 1984, p. 263
[I191
JOHNSON
I1201
LONDON
J.,
[I211
ANGELL
J. K., and J. KORSHOVER,
11221
BAIUiEl'TJ. J., J. T. HOUGHTON,
Cl231
PITTS M. c., Masters
[I241
MILLER A. J., R. M. NAGATANI, and J. E. FREDERICK, in: AtmosPheric., eds C. S. Zerefos and A. Ghazi, D. Reidel Publ.. Dordrecht, Holland, 1984, p. 321
[I251
GHAZI A.,
[I261
HEATH
11271
THOMAS
f1281
JACKMAN C. H., A. R. DOUGLAS, R. B. ROOD, R. D. McPETERS, J. Geophys. Res., s, 7417 (1990)
11291
OLTMANS
[1301
HILSENRATH
(1311
OEHLERT
0. W., J. Geophys.
[1321
CHANDRA
S., J. Geophys.
I1331
HEATH D. F., R. F. DONNELLY, CO (1983)
t1341
LONDON
[1351
BRASSEUR (1987)
[1361
HEATH D. F., and B. M. SCHLESINGER, in: mQzone, eds. C. S. Zerefos A. Ghazi, D. Reidel Publ., Dordrecht, Holland, 1984, p. 666
[1371
SUMMERS M.
2719
(1986)
M. C. PITTS, 0. BRASSEUR,
J. Geophys.
Res. a,
and A. DERUDDER,
J. Geophys.
4973 (1982)
E., and R. F. KUNZI, J. Atmos. Terr. Phys. pB, 1153
R. W.,
G. D. NASTROM,
v. I.,
and A. D. BELMONT,
V. N. GLAZKOV,
H., 0. WHITTEN,
J. Atmos.
and V. V. FEDOROV,
Res. x,
6107
E.,
D. Reidel
Georgia
Institute
(1983)
of Technology,
Atlanta,
Georgia
Science 191, 886
Res. 82, 8981
J. Geophys.
Res. e;L, 2675
Res. 8p, 1373
(1977) G. M. LAWRENCE, up, 253 (1983)
and R. E. MEADE,
(1982)
Res. 86, 12087
(1981)
(1984)
and G. J. ROTTNAN,
0. M. KEATING,
NOAA Tech. Rep. m
Geophys.
Res. L&t.
424-a,
u,
and M. C!. PITT'S, J. Geophys.
D.
V~TESW~
J. Geophys.
S. V., J. G. MOORE,
Boulder,
54 (1984) Res. u,
F. STROBEL, R. M. BEVILACQUA, R. M. ZHU, M. T. DELAND, J. Geophys. Res., s, 22523 (1990)
11391
(1981)
(1986)
and R. G. MERRILL,
ROOD R. R., and A. R. DOUGLAS,
(1975)
(1974)
and P. J. CRUTZEN,
I1381
(1987) Publ.,
and J. A. PYLE. Quart. J. R. Met. Sot. l&l, 245
E., and B. M. SCHLESINGER,
G. M. KEATING,
(9)llS
987 (1974)
S. J.. and J. LONDON, J. Geophys.
G., A. DERUDDER,
(1977)
(1973)
R. J., C. A. BARTH, G. J. ROTTMAN, D. W. RUSCH, G. H. MOUNT, R. W. SANDERS, G. E. THOMAS, and L. E. CLEMENS, Geophys. Res. L&t. 119.
J., G. 0. BJARNASON,
290
Adv. Space Res. 1,
Y. Clim. Appl. Met. 22, 1611
Sci. ;1;L,2197
D. F., A. J. KRUEGER,
&,
eds C.S. Zerefos and A. Ghazi,
Science m,
Thesis,
(1986)
J. Appl. Meteorol.
and J. BIRKS, Y. Geophys.
and J. KELLEY,
Res. Sp, 889
M.
903
and
ALLEN
and
Res. Pp, 5733 (1985)
and A. J. KRUEGER,
J. Geophys.
Res. dfr, 1751
(1961)
(9/10)58
(;.M. Keating cfai.
11401
RAWCLIFFE R. D.. 0. E. MELOY, R. M. FRIEDMAN, 6425 (1963)
(1411
MILLER
11421
GUENTHER
(1431
HAYS P. B., and R. G. ROBLE,
[144]
RIEGLER (1976)
[1451
RAWCLIFFE
[146]
IOZBNAS V. A., V. A. KRASNOPOLSKI, Atms. Oceanic Phys. 5, 149 (1969)
(1471
ELLIOTT D. D., M. A. CLARK, (3260-10) (1967)
[148]
ANDERSON
[I491
FREDERICK (1977)
(1501
HEATH D. F., A. S. KRUEGER, (1975)
11511
MATEER
[1521
Nimbus Project, (1978)
The
[153]
Nimbus
Nimbus-7
(1541
HANEL R. A., B. SCHLACHMAN, F. D. CLARX, C. H. and L. CHANN, Appl. Opt. 2, 1767 (1970)
11551
LOVILL J. E., T. J. SULLIVAN, R. L. WEICHEL, J. S. ELLIS, J. G. HUEBEL, J. A. KORVER, P. P. WERDHAAS, and F. A. PHELPS, Lawrence Livermore Laboratory UCRL_52473 (1978)
D. E., and K. H. STmART, B., R. DASGUPTA,
and E. H. ROGERS,
Proc. R. Sot. Lond. 8288,
and D. F. HEATH, Geophys.
G. R., J. F. DRAKE,
Res. 68,
540 (1965)
Res. L&t.
A, 434 (1977)
Planet. Space Sci. z;C, 273 (1973) S. C. LIU, and R. J. CICERONE,
R. D., and D. D. ELLIOTT,
J. Geophys.
and R. D. HUDSON,
J. Geophys.
Res. 21, 5077
A. P. XUZNETSOV,
G. P., C. A. BARTH, F. CAYLA,
H. A. ROEDER,
and A. I. LEBEDINSKY,
Aerospace
Techn.
Report TR-0158
a,
239
and D. F. HEATH, J. Atmos.
and B. D. HURON,
C. A., D. F. HEATH, and A. J. KRUEGER, I Gua&, .
Res. 81, 4997
(1966)
and J. LONDON, Ann. Geophys.
J. E., P. B. HAYS, B. W. GUENTHER,
Project,
J. Geophys.
J. Atmos.
Goddard
Sci. &,
1987
Opt. Engng. ;ip* 323
Sci. 28, 1307
(1971)
Space Flight Center,
Data Product Summary, NASA Reference
(1969)
Publ. u
PROKBSH, J. 8. TAYLOR,
Greenbelt,
MD
(19891 W. M. WILSON