Applied Mathematics and Computation 212 (2009) 66–71
Contents lists available at ScienceDirect
Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc
Inclusion and neighborhood properties for certain classes of multivalently analytic functions of complex order associated with the convolution structure H.M. Srivastava a,*, Sevtap Sümer Eker b, Bilal Sß eker b a b
Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada Department of Mathematics, Faculty of Science and Letters, Dicle University, TR-21280 Diyarbakır, Turkey
a r t i c l e
i n f o
a b s t r a c t
Keywords: Analytic functions Univalent functions Multivalently analytic functions Hadamard product (or convolution) Coefficient inequalities Inclusion properties Neighborhood properties Ruscheweyh derivative operator
Making use of the familiar convolution structure of analytic functions, in this paper we introduce and investigate two new subclasses of multivalently analytic functions of complex order. Among the various results obtained here for each of these function classes, we derive the coefficient inequalities and other interesting properties and characteristics for functions belonging to the class introduced here. Ó 2009 Elsevier Inc. All rights reserved.
1. Introduction and definitions Let Ap ðkÞ denote the class of functions of the form:
f ðzÞ ¼ zp þ
1 X
aj zj
ðp < k; k; p 2 N; N :¼ f1; 2; 3; . . .gÞ;
ð1:1Þ
j¼k
which are analytic and p-valent in the open unit disk
U ¼ fz : z 2 C and jzj < 1g: For the functions f ; g 2 Ap ðkÞ, where f is given by (1.1) and g is given by
gðzÞ ¼ zp þ
1 X
bj zj
ðp < k; k; p 2 NÞ;
j¼k
the Hadamard product (or convolution) f g is defined (as usual) by
ðf gÞðzÞ :¼ zp þ
1 X
aj bj zj ¼: ðg f ÞðzÞ ðz 2 UÞ:
j¼k
We denote by Tp ðkÞ the subclass of Ap ðkÞ consisting of functions of the form:
* Corresponding author. E-mail addresses:
[email protected] (H.M. Srivastava),
[email protected] (S.S. Eker),
[email protected] (B. Sßeker). 0096-3003/$ - see front matter Ó 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2009.01.077
ð1:2Þ
H.M. Srivastava et al. / Applied Mathematics and Computation 212 (2009) 66–71 1 X
f ðzÞ ¼ zp
a j zj
p < k; aj = 0 ðj = kÞ; k; p 2 N ;
67
ð1:3Þ
j¼k
which are p-valent in U (see, for details [4,11]). For a given function g 2 Ap ðkÞ defined by
gðzÞ ¼ zp þ
1 X
bj zj
p < k; bj = 0 ðj = kÞ; k; p 2 N ;
ð1:4Þ
j¼k
we introduce here a new class Sg ðp; k; b; m; nÞ of functions belonging to the subclass of Tp ðkÞ, which consists of functions f ðzÞ of the form (1.3) satisfying the following inequality:
! 1 zn ðf gÞðmþnÞ ðzÞ ðp mÞ n < 1 ðmÞ b ðf gÞ ðzÞ
ð1:5Þ
ðm þ n < p; n; p 2 N; m 2 N0 :¼ N [ f0g; b 2 C n f0g; z 2 UÞ; where ðjÞn denotes the falling factorial defined as follows:
j
ðjÞ0 ¼ 1 ¼:
0
and ðjÞn ¼ jðj 1Þ ðj n þ 1Þ ¼: n!
j n
ðn 2 NÞ:
We note that there are several interesting new or known subclasses of our function class Sg ðp; k; b; m; nÞ. For example, if we set
m ¼ 0; n ¼ 1 and b ¼ pð1 aÞ ðp 2 N; 05a < 1Þ in (1.5), then Sg ðp; k; b; m; nÞ reduces to the function class studied recently by Ali et al. [1]. On the other hand, when n ¼ 1, if the coefficients bj in (1.4) are chosen as follows:
bj ¼
kþj1
jp
ðk > p; p 2 NÞ
and k is replaced by k þ p in (1.2) and (1.3), then we obtain the function class introduced and investigated earlier by Raina and Srivastava [7], which involves the familiar Ruscheweyh derivative operator. Furthermore, if we choose n ¼ 1 in (1.5), we obtain the function class Sg ðp; n; b; mÞ which was studied by Prajabat et al. [6] (see also [3,9,12], and the references cited in each of them). For a given function gðzÞ defined by
gðzÞ ¼ zp þ
1 X
bj zj 2 Ap ðkÞ
p < k; bj > 0 ðj = kÞ; k; p 2 N ;
j¼k
let Pg ðp; k; b; m; n; lÞ denote the subclass of Tp ðkÞ consisting of functions f ðzÞ of the form (1.3), which satisfy the following inequality:
! ðmÞ 1 ðf gÞðzÞ ðmþnÞ þ l ðf gÞ ðzÞ ðp mÞ ðpÞn ð1 lÞ n < ðp mÞn n b z ðm þ n < p < k; n; p 2 N; m 2 N0 ;
ð1:6Þ
l = 0; b 2 C n f0g; z 2 UÞ:
Following recent investigations by several authors (see, for example [2,5,12], and others), if
f ðzÞ 2 Tp ðkÞ and d = 0; then we define the ðq; dÞ-neighborhood of the function f ðzÞ by
( Nqk;d ðf Þ ¼
h : h 2 Tp ðkÞ; hðzÞ ¼ zp
1 X
cj zj and
j¼k
1 X
) j
qþ1
jaj cj j 5 d :
ð1:7Þ
j¼k
It follows from the definition (1.7) that, if the identity function eðzÞ is given by
eðzÞ ¼ zp
ðp 2 N; z 2 UÞ;
ð1:8Þ
then
( Nqk;d ðeÞ ¼
h : h 2 Tp ðkÞ; hðzÞ ¼ zp
1 X j¼k
We observe that
N02;d ðf Þ ¼ Nd ðf Þ
cj zj and
1 X j¼k
) j
qþ1
jcj j 5 d :
ð1:9Þ
68
H.M. Srivastava et al. / Applied Mathematics and Computation 212 (2009) 66–71
and
N12;d ðf Þ ¼ Md ðf Þ; where Nd ðf Þ and Md ðf Þ denote, respectively, the d-neighborhoods of the function
f ðzÞ ¼ z
1 X
aj zj
aj = 0 ðj = 2Þ
ð1:10Þ
j¼2
as defined by Ruscheweyh [8] and Silverman [10]. The object of the present paper is to investigate the various properties and characteristics of functions belonging to the above-defined classes
Sg ðp; k; b; m; nÞ and Pg ðp; k; b; m; n; lÞ: Apart from deriving coefficient bounds and coefficient inequalities for each of these classes, we establish several inclusion relationships involving the ðq; dÞ-neighborhoods of functions belonging to the general classes which are introduced above. 2. Coefficient bounds and coefficient inequalities We begin by proving a necessary and sufficient condition for the function f ðzÞ 2 Tp ðkÞ to be in each of the classes
Sg ðp; k; b; m; nÞ and Pg ðp; k; b; m; n; lÞ:
Theorem 1. Let f ðzÞ 2 Tp ðkÞ be given by (1.3). Then f ðzÞ is in the class Sg ðp; k; b; m; nÞ if and only if 1 X ðjÞm ½ðj mÞn ðp mÞn þ jbjaj bj 5 jbjðpÞm
ð2:1Þ
j¼k
ðm þ n < p < k; m 2 N0 ; n 2 N; b 2 C n f0gÞ: Proof. Assume that f 2 Sg ðp; k; b; m; nÞ. Then, in view of (1.3)–(1.5), we have
zn ðf gÞðmþnÞ ðzÞ ðp mÞn ðf gÞðmÞ ðzÞ
R
!
ðf gÞðmÞ ðzÞ
> jbj ðz 2 UÞ;
which yields
R
P1
mÞn ðp mÞn aj bj zjp P jp ðpÞm 1 j¼k ðjÞm aj bj z
j¼k ðjÞm ½ðj
! > jbj ðz 2 UÞ:
ð2:2Þ
Putting z ¼ r ð0 5 r < 1Þ in (2.2), the expression in the denominator on the left-hand side of (2.2) remains positive for r ¼ 0 and also for all r 2 ð0; 1Þ. Hence, by letting r ! 1, the inequality (2.2) leads us to the desired assertion (2.1) of Theorem 1. Conversely, by applying the hypothesis (2.1) and setting j z j¼ 1, we find that
P1 jp zn ðf gÞðmþnÞ ðzÞ j¼k ðjÞm ½ðj mÞ n ðp mÞn aj bj z P ðp mÞn ¼ jp ðf gÞðmÞ ðzÞ ðpÞm 1 j¼k ðjÞm aj bj z P1 j¼k ðjÞm ½ðj mÞn ðp mÞn aj bj P 5 ðpÞm 1 j¼k ðjÞm aj bj h i P1 jbj ðpÞm j¼k ðjÞm aj bj P < ¼ jbj: ðpÞm 1 j¼k ðjÞm aj bj Hence, by the maximum modulus principle, we infer that f 2 Sg ðp; k; b; m; nÞ, which completes the proof of Theorem 1. h In a similar manner, we can prove Theorem 2 below. Theorem 2. Let f ðzÞ 2 Tp ðkÞ be given by (1.3). Then f ðzÞ is in the class Pg ðp; k; b; m; n; lÞ if and only if 1 X ðj nÞm ½lðjÞn ðl 1ÞðpÞn aj bj 5 ðp mÞn ½jbj 1 þ ðpÞm : j¼k
ðm þ n < p < k; m 2 N0 ; n 2 N; b 2 C n f0gÞ:
ð2:3Þ
69
H.M. Srivastava et al. / Applied Mathematics and Computation 212 (2009) 66–71
3. A set of inclusion relationships We now establish some inclusion relationships for each of the function classes
Sg ðp; k; b; m; nÞ and Pg ðp; k; b; m; n; lÞ involving the ðq; dÞ-neighborhood defined by (1.7). Theorem 3. If bj = bk ðj = kÞ and
kjbjðpÞm ðkÞm ½ðk mÞn ðp mÞn þ jbjbk
d¼
ðp > jbjÞ;
ð3:1Þ
then
Sg ðp; k; b; m; nÞ N0k;d ðeÞ:
ð3:2Þ
Proof. Let f ðzÞ 2 Sg ðp; k; b; m; nÞ. Then, in view of the assertion (2.1) and the given condition that bj = bk ðj = kÞ, we get
ðkÞm ½ðk mÞn ðp mÞn þ jbjbk
1 X
aj 5
j¼k
1 X ½ðj mÞn ðp mÞn þ jbjðjÞm aj bj < jbjðpÞm ; j¼k
which implies that 1 X
aj 5
j¼k
jbjðpÞm : ðkÞm ½ðk mÞn ðp mÞn þ jbjbk
ð3:3Þ
Furthermore, by rewriting the assertion (2.1) as follows: 1 X ðj 1Þ! ½ðj mÞn ðp mÞn þ jbjjaj bj < jbjðpÞm ; ðj mÞ! j¼k
we obtain 1 X j¼k
jaj 5
jbjðk mÞ!ðpÞm ¼ d ðp > jbjÞ; ðk 1Þ!½ðk mÞn ðp mÞn þ jbjbk
ð3:4Þ
which, by virtue of (1.9), establishes the inclusion relationship (3.2). h In an analogous manner, by applying the assertion (2.3), instead of the assertion (2.1), to the functions in the class Pg ðp; k; b; m; n; lÞ, we can prove the following inclusion relationship. Theorem 4. If bj = bk ðj = kÞ and
d¼
kðp mÞn ½jbj 1 þ ðpÞm ðk m nÞ! ðk nÞ!½lðkÞn ðl 1ÞðpÞn bk
ðl > 1Þ;
then
Pg ðp; k; b; m; n; lÞ N0k;d ðeÞ: 4. Neighborhood properties In this concluding section, we determine the neighborhood properties for each of the function classes
SgðaÞ ðp; k; b; m; nÞ and PgðaÞ ðp; k; b; m; n; lÞ; which are defined as follows. ða Þ
Definition 1. A function f ðzÞ 2 Tp ðkÞ is said to be in the class Sg ðp; k; b; m; nÞ if there exists a function hðzÞ 2 Sg ðp; k; b; m; nÞ such that
f ðzÞ < p a ðz 2 U; 0 5 a < pÞ: 1 hðzÞ
ð4:1Þ
Definition 2. A function f ðzÞ 2 Tp ðkÞ is said to be in the class PðgaÞ ðp; k; b; m; n; lÞ if there exists a function hðzÞ 2 Pg ðp; k; b; m; n; lÞ such that the inequality (4.1) holds true.
70
H.M. Srivastava et al. / Applied Mathematics and Computation 212 (2009) 66–71
Theorem 5. If hðzÞ 2 Sg ðp; k; b; m; nÞ and
a¼p
d ðkÞm ½ðk mÞn ðp mÞn þ jbjbk ½ðk mÞn ðp mÞn þ jbjbk jbjpm ; ðkÞm k qþ1
ð4:2Þ
then
Nqk;d ðhÞ SðgaÞ ðp; k; b; m; nÞ: Proof. Suppose that f ðzÞ 2 Nqk;d ðhÞ. We then find from (1.7) that 1 X
j
aj cj 5 d;
qþ1
j¼k
which readily implies that 1 X
jaj cj j 5
j¼k
d k
qþ1
ðk 2 NÞ:
Next, since hðzÞ 2 Sg ðp; k; b; m; nÞ, we find from (3.3) that 1 X
cj 5
j¼k
jbjðpÞm ; ðkÞm ½ðk mÞn ðp mÞn þ jbjbk
so that
P1 f ðzÞ ja c j 5 j¼k Pj 1 j 5 d ðkÞm ½ðk mÞn ðp mÞn þ jbjbk 1 1 hðzÞ qþ1 ðkÞm k j¼k c j ½ðk mÞn ðp mÞn þ jbjbk jbjðpÞm ¼ p a ðz 2 U; 0 5 a < pÞ; where a is given, as before, by (4.2). Thus, by Definition 1, f 2 SðgaÞ ðp; k; b; m; nÞ for a given by (4.2). This evidently proves Theorem 5. h The proof of Theorem 6 below (based upon Definition 2) is similar to that of Theorem 5 above. We, therefore, omit the details involved. Theorem 6. If hðzÞ 2 Pg ðp; k; b; m; n; lÞ and
a¼p
d qþ1
k
ðk nÞm ½lðkÞn ðl 1ÞðpÞn bk ; ðk nÞm ½lðkÞn ðl 1ÞðpÞn ðp mÞn ½jbj 1 þ ðpÞm
ð4:3Þ
then
Nqk;d ðhÞ PgðaÞ ðp; k; b; m; n; lÞ: Acknowledgements The present investigation was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0007353. References [1] R.M. Ali, M.H. Hussain, V. Ravichandran, K.G. Subramanian, A class of multivalent functions with negative coefficients defined by convolution, Bull. Korean Math. Soc. 43 (2006) 179–188. [2] O. Altintasß, H. Irmak, H.M. Srivastava, Neighborhoods for certain subclasses of multivalently analytic functions defined by using a differential operator, Comput. Math. Appl. 55 (2008) 331–338. [3] O. Altintasß, H. Irmak, S. Owa, H.M. Srivastava, Coefficient bounds for some families of starlike and convex functions of complex order, Appl. Math. Lett. 20 (2007) 1218–1222. [4] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983. [5] B.A. Frasin, M. Darus, Integral means and neighborhoods for analytic univalent functions with negative coefficients, Soochow J. Math. 30 (2004) 217– 223. [6] J.K. Prajapat, R.K. Raina, H.M. Srivastava, Inclusion and neighborhood properties for certain classes of multivalently analytic functions associated with the convolution structure, J. Inequal. Pure Appl. Math. 8 (1) (2007). Article 7, 1–8 (electronic). [7] R.K. Raina, H.M. Srivastava, Inclusion and neighborhood properties of some analytic and multivalent functions, J. Inequal. Pure Appl. Math. 7 (1) (2006). Article 5, 1–6 (electronic). [8] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981) 521–527. [9] B. Shrutha Keerthi, A. Gangadharan, H.M. Srivastava, Neighborhoods of certain subclasses of analytic functions of complex order with negative coefficients, Math. Comput. Modelling 47 (2008) 271–277.
H.M. Srivastava et al. / Applied Mathematics and Computation 212 (2009) 66–71
71
[10] H. Silverman, Neighborhoods of classes of analytic functions, Far East J. Math. Sci. 3 (1995) 165–169. [11] H.M. Srivastava, S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992. [12] H.M. Srivastava, K. Suchithra, B.A. Stephen, S. Sivasubramanian, Inclusion and neighborhood properties of certain subclasses of analytic and multivalent functions of complex order, J. Inequal. Pure Appl. Math. 7 (5) (2006). Article 191, 1–8 (electronic).