Applied Mathematics and Computation 218 (2012) 6511–6518
Contents lists available at SciVerse ScienceDirect
Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc
Neighborhood properties of certain classes of multivalently analytic functions associated with the convolution structure H.M. Srivastava a,⇑, Serap Bulut b a b
Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada _ Department of Mathematics, Civil Aviation College, Kocaeli University (Arslanbey Campus), TR-41285 Izmit-Kocaeli, Turkey
a r t i c l e
i n f o
a b s t r a c t
Keywords: Analytic functions Starlike and convex functions Multivalent functions Hadamard product (or convolution) Coefficient bounds Distortion inequalities Neighborhood properties Non-homogeneous Cauchy–Euler differential equations
In this paper, by making use of the familiar concept of neighborhoods of p-valently analytic functions, we prove coefficient bounds, distortion inequalities and associated inclusion relations for the (n, d)-neighborhoods of a family of p-valently analytic functions and their derivatives, which is defined by means of a certain general family of non-homogenous Cauchy–Euler differential equations. Ó 2011 Elsevier Inc. All rights reserved.
1. Introduction and definitions Let R ¼ ð1; 1Þ be the set of real numbers, C be the set of complex numbers,
N :¼ f1; 2; 3; . . .g ¼ N0 n f0g be the set of positive integers and
N :¼ N n f1g ¼ f2; 3; 4; . . .g: Let T n ðpÞ denote the class of functions of the form:
f ðzÞ ¼ zp
1 X
ak zk
ðak = 0; p; n 2 N :¼ f1; 2; 3; . . .gÞ;
ð1:1Þ
k¼nþp
which are analytic and p-valent in the open unit disk
U ¼ fz : z 2 C and jzj < 1g: A function f 2 T n ðpÞ is said to be p-valently starlike of order a (0 5 a < p), that is, f 2 T n;p ðaÞ if it satisfies the following inequality:
R
0 zf ðzÞ > a ðz 2 UÞ: f ðzÞ
Furthermore, a function f 2 T n ðpÞ is said to be p-valently convex of order a (0 5 a < p), that is, f 2 C n;p ðaÞ if it satisfies the following inequality: ⇑ Corresponding author. E-mail addresses:
[email protected] (H.M. Srivastava),
[email protected] (S. Bulut). 0096-3003/$ - see front matter Ó 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2011.12.022
6512
H.M. Srivastava, S. Bulut / Applied Mathematics and Computation 218 (2012) 6511–6518
00 zf ðzÞ > a ðz 2 UÞ: R 1þ 0 f ðzÞ Denote by f ⁄ g the Hadamard product (or convolution) of the functions f and g, that is, if f is given by (1.1) and g is given by 1 X
gðzÞ ¼ zp þ
b k zk
ðp; n 2 NÞ;
ð1:2Þ
k¼nþp
then
ðf gÞðzÞ :¼ zp
1 X
ak bk zk ¼: ðg f ÞðzÞ ðp; n 2 NÞ:
ð1:3Þ
k¼nþp
Let S n;p ðg; k; l; aÞ denote the subclass of T n ðpÞ consisting of functions f which satisfy the following inequality:
R
zðF k;l gÞ0 ðzÞ > a ð0 5 l 5 k 5 1; 0 5 a < p; z 2 UÞ; ðF k;l gÞðzÞ
ð1:4Þ
where 0
F k;l ðzÞ ¼ klz2 f 00 ðzÞ þ ðk lÞzf ðzÞ þ ð1 k þ lÞf ðzÞ
ð1:5Þ
and g is given by (1.2). Various special cases of the class S n;p ðg; k; l; aÞ were considered by many earlier researchers on this topic of Geometric Function Theory. For example, we have the following relationships with the classes which were studied in some of these earlier works:
S n;p ðg; k; 0; aÞ ¼ S n;p ðg; k; aÞ :¼
zðF k g Þ0 ðzÞ > a ð0 5 a < p; z 2 U; F k ¼ F k;0 Þ ; f : f 2 T n ðpÞ and R ðF k g ÞðzÞ
z ; k; l; a T l ðn; p; k; aÞ ðsee ½7Þ; 1z z S n;p ; 0; 0; a T n;p ðaÞ T a ðp; nÞ ðsee ½13Þ; 1z ! z z S n;p ; 1; 0; a C n;p ðaÞ CT a ðp; nÞ ðsee ½13Þ; ; 0; 0; a S n;p 2 1z ð1 zÞ z ; k; 0; a T n ðp; a; kÞ ðsee ½3Þ; S n;p 1z z ; k; 0; a Pðn; k; aÞ ðsee ½2Þ; S n;1 1z z S 1;p ; 0; 0; a T ðp; aÞ ðsee ½8Þ; 1z ! z z ; 1; 0; ; 0; 0; a a Cðp; aÞ ðsee ½8Þ; S 1;p S 1;p 1z ð1 zÞ2 z ; 0; 0; a T a ðnÞ ðsee ½12Þ; S n;1 1z ! z z S n;1 ; 1; 0; a C a ðnÞ ðsee ½12Þ; ; 0; 0; a S n;1 2 1z ð1 zÞ z S 1;1 ; 0; 0; a T ðaÞ ðsee ½10Þ 1z S n;p
and
!
z
S 1;1
; 0; 0; a ð1 zÞ2
S 1;1
ð1:6Þ ð1:7Þ ð1:8Þ
z ; 1; 0; a CðaÞ ðsee ½10Þ: 1z
Finally, let Rn;p ðg; k; l; a; m; uÞ denote the subclass of T n ðpÞ consisting of functions f which satisfy the following non-homogenous Cauchy–Euler differential equation (see, for example, [11, p. 1360, Eq. (9)]): m
zm
d w m þ dz
¼ hðzÞ
m1 m1 Y d w m m ðu þ m 1Þzm1 m1 þ þ w ðu þ jÞ 1 m dz j¼0
m1 Y
ðu þ j þ pÞ
j¼0
w ¼ f ðzÞ 2 T n ðpÞ; h 2 S n;p ðg; k; l; aÞ; m 2 N and u 2 ðp; 1Þ :
ð1:9Þ
6513
H.M. Srivastava, S. Bulut / Applied Mathematics and Computation 218 (2012) 6511–6518
For
gðzÞ ¼
z ; 1z
m ¼ 2 and
l ¼ 0;
we have the class given by
Rn;p ðg; k; l; a; uÞ Kn ðp; a; k; uÞ
w ¼ f ðzÞ 2 T n ðpÞ; h 2 T n ðp; a; kÞ and u 2 ðp; 1Þ ;
ð1:10Þ
which was introduced and studied by Altıntasß et al. [5]. Following the works of Goodman [6] and Ruscheweyh [9] (see also [4,5]), Altıntasß [1] defined the (n, d)-neighborhood of a function f 2 T n ðpÞ by
(
d N n;p ðf Þ
h : h 2 T n ðpÞ;
¼
p
hðzÞ ¼ z
1 X
k
ck z and
k¼nþp
1 X
)
kjak ck j 5 d :
ð1:11Þ
k¼nþp
It follows from the definition (1.11) that, if
eðzÞ ¼ zp
ðp 2 NÞ;
ð1:12Þ
then
( d N n;p ðeÞ
¼
h : h 2 T n ðpÞ;
p
hðzÞ ¼ z
1 X
k
ck z and
k¼nþp
1 X
) kjck j5d :
ð1:13Þ
k¼nþp
The main object of this paper is to investigate the various properties and characteristics of functions belonging to the above-defined classes
S n;p ðg; k; l; aÞ and Rn;p ðg; k; l; a; m; uÞ: Apart from deriving coefficient bounds and distortion inequalities for each of these function classes, we establish several inclusion relationships involving the (n, d)-neighborhoods of functions belonging to the general function classes which are introduced above. 2. Coefficient bounds and distortion inequalities In this section, we prove the following results which yield the distortion inequalities for functions in the subclasses
S n;p ðg; k; l; aÞ and Rn;p ðg; k; l; a; m; uÞ: Lemma 1. Let the function f 2 T n ðpÞ be defined by (1.1). Then f is in the class S n;p ðg; k; l; aÞ if and only if 1 X
ðk aÞwðkÞak bk 5 ðp aÞwðpÞ ð0 5 l 5 k 5 1; 0 5 a < p; z 2 UÞ;
ð2:1Þ
k¼nþp
where
wðsÞ ¼ ðs 1Þðkls þ k lÞ þ 1:
ð2:2Þ
The result is sharp for the function f given by
f ðzÞ ¼ zp
ðp aÞwðpÞ k z ðk aÞwðkÞ
ðk ¼ n þ p; n þ p þ 1; . . .Þ:
ð2:3Þ
Proof. We first suppose that the function f given by (1.1) is in the class S n;p ðg; k; l; aÞ. Then, in conjunction with (1.4) and (1.5), we find that
R
pwðpÞzp wðpÞzp
P1
k¼nþp kwðkÞak bk z P1 k k¼nþp wðkÞak bk z
k
!
> a:
If we choose z to be real and let z ? 1, we arrive easily at the inequality (2.1). Conversely, we suppose that the inequality (2.1) holds true and let
z 2 @U ¼ fz : z 2 C and jzj ¼ 1g: We then find from the Eqs. (1.3), (1.4) and (1.5) that
P1
P1 P
k k
zðF k;l gÞ0 ðzÞ
pwðpÞzp 1
k¼nþp kwðkÞak bk z k¼nþp ðk pÞwðkÞak bk z
k¼nþp ðk pÞwðkÞak bk
ðF gÞðzÞ p ¼
wðpÞzp P1 wðkÞa b zk p
¼
wðpÞzp P1 wðkÞa b zk
5 wðpÞ P1 wðkÞa b : k;l k k k k k k k¼nþp k¼nþp k¼nþp
6514
H.M. Srivastava, S. Bulut / Applied Mathematics and Computation 218 (2012) 6511–6518
By means of the inequality (2.1), we can write 1 X
ðk pÞwðkÞak bk 5 ðp aÞwðpÞ
k¼nþp
1 X
ðp aÞwðkÞak bk :
k¼nþp
We thus obtain
P1
P1
z F g 0 ðzÞ ðp a Þ wðpÞ wðkÞa b k k ðk pÞwðkÞa b k¼nþp k k
k;l k¼nþp P P 5 ¼ p a: p 5
F k;l g ðzÞ wðpÞ 1 wðpÞ 1 k¼nþp wðkÞak bk k¼nþp wðkÞak bk This evidently completes the proof of Lemma 1. h Lemma 2. Let the function f given by (1.1) be in the class S n;p ðg; k; l; aÞ. Then 1 X
ak 5
k¼nþp
ðp aÞwðpÞ ðn þ p aÞwðn þ pÞbnþp
ðbk = bnþp Þ
ð2:4Þ
and 1 X
kak 5
k¼nþp
ðn þ pÞðp aÞwðpÞ ðn þ p aÞwðn þ pÞbnþp
ðbk = bnþp Þ:
ð2:5Þ
Proof. By using Lemma 1, we find from (2.1) that 1 X
ðn þ p aÞwðn þ pÞbnþp
ak 5 ðp aÞwðpÞ;
ð2:6Þ
k¼nþp
which immediately yields the first assertion (2.4) of Lemma 2. For the proof of second assertion of Lemma 2, by appealing to (2.1), we also obtain
wðn þ pÞbnþp
1 X
kak a
k¼nþp
1 X
! ak
5 ðp aÞwðpÞ:
ð2:7Þ
k¼nþp
Thus, by using (2.4) in (2.7), we can get the second assertion (2.5) of Lemma 2. h Our proposed distortion inequalities for functions in the multivalently analytic function class S n;p ðg; k; l; aÞ are given by Theorem 1 below. Theorem 1. Let a function f 2 T n ðpÞ be in the class S n;p ðg; k; l; aÞ. Then
jf ðzÞj 5 jzjp þ
ðp aÞwðpÞ jzjnþp ðn þ p aÞwðn þ pÞbnþp
ðz 2 UÞ
ð2:8Þ
jf ðzÞj = jzjp
ðp aÞwðpÞ jzjnþp ðn þ p aÞwðn þ pÞbnþp
ðz 2 UÞ
ð2:9Þ
and
and (in general)
ðqÞ
f ðzÞ 5
p! ðn þ pÞ!ðp aÞwðpÞ jzjnþpq jzjpq þ ðp qÞ! ðn þ p qÞ!ðn þ p aÞwðn þ pÞbnþp
ðp > q; q 2 N0 ; z 2 UÞ
ð2:10Þ
ðqÞ
f ðzÞ =
p! ðn þ pÞ!ðp aÞwðpÞ jzjpq jzjnþpq ðp qÞ! ðn þ p qÞ!ðn þ p aÞwðn þ pÞbnþp
ðp > q; q 2 N0 ; z 2 UÞ:
ð2:11Þ
and
The result is sharp for the function f given by (2.3). Proof. Suppose that f 2 S n;p ðg; k; l; aÞ. We then find from the inequality (2.4) that
jf ðzÞj 5 jzjp þ jzjnþp
1 X
ak 5 jzjp þ
k¼nþp
which is equivalent to (2.8), and that
ðp aÞwðpÞ jzjnþp ðn þ p aÞwðn þ pÞbnþp
ðz 2 UÞ;
H.M. Srivastava, S. Bulut / Applied Mathematics and Computation 218 (2012) 6511–6518
jf ðzÞj = jzjp jzjnþp
1 X
ak = jzjp
k¼nþp
ðp aÞwðpÞ jzjnþp ðn þ p aÞwðn þ pÞbnþp
6515
ðz 2 UÞ;
which is precisely the assertion (2.9). The demonstration of the inequalities (2.10) and (2.11), as well as of the assertion involving sharpness of the results of Theorem 1 is fairly straightforward. h The distortion inequalities for functions in the class Rn;p ðg; k; l; a; m; uÞ are given by Theorem 2 below. Theorem 2. Let a function f 2 T n ðpÞ be in the class Rn;p ðg; k; l; a; m; uÞ. Then
jf ðzÞj 5 jzjp þ
ðp aÞwðpÞ
Qm1
ðu þ j þ pÞ jzjnþp Qm2 ðu þ j þ n þ pÞb nþp j¼0
j¼0
ðn þ p aÞwðn þ pÞðm 1Þ
ðz 2 UÞ
ð2:12Þ
ðz 2 UÞ;
ð2:13Þ
and
jf ðzÞj = jzjp
ðp aÞwðpÞ
Qm1
ðu þ j þ pÞ jzjnþp Qm2 ðu þ j þ n þ pÞb nþp j¼0
j¼0
ðn þ p aÞwðn þ pÞðm 1Þ
and (in general)
ðqÞ
f ðzÞ 5
p! jzjpq ðp qÞ!
Q ðn þ pÞ!ðp aÞwðpÞ m1 j¼0 ðu þ j þ pÞ þ jzjnþpq Q ðu þ j þ n þ pÞb ðn þ p qÞ!ðn þ p aÞwðn þ pÞðm 1Þ m2 nþp j¼0
ðp > q; q 2 N0 ; z 2 UÞ
ð2:14Þ
ðp > q; q 2 N0 ; z 2 UÞ:
ð2:15Þ
and
ðqÞ
f ðzÞ =
p! jzjpq ðp qÞ!
Q ðn þ pÞ!ðp aÞwðpÞ m1 j¼0 ðu þ j þ pÞ jzjnþpq Q ðu þ j þ n þ pÞb ðn þ p qÞ!ðn þ p aÞwðn þ pÞðm 1Þ m2 nþp j¼0
Proof. Suppose that the function f 2 T n ðpÞ is given by (1.1). Also let the function h 2 S n;p ðg; k; l; aÞ be given as the function occurring in the general non-homogenous Cauchy–Euler differential equation (1.9) with, of course,
ck = 0 ðk ¼ n þ p; n þ p þ 1; n þ p þ 2; . . .Þ: We then readily see from (1.9) that
Qm1 j¼0
ðu þ j þ pÞ
j¼0
ðu þ j þ kÞ
ak ¼ Qm1
ck
ðk ¼ n þ p; n þ p þ 1; . . .Þ;
ð2:16Þ
so that
f ðzÞ ¼ zp
1 X
ak zk ¼ zp
k¼nþp
1 X k¼nþp
Qm1 j¼0
ðu þ j þ pÞ
j¼0
ðu þ j þ kÞ
Qm1
c k zk
ð2:17Þ
ðz 2 UÞ:
ð2:18Þ
and
jf ðzÞj 5 jzjp þ jzjnþp
1 X k¼nþp
Qm1 j¼0
ðu þ j þ pÞ
j¼0
ðu þ j þ kÞ
Qm1
ck
Moreover, since h 2 S n;p ðg; k; l; aÞ, the first assertion (2.4) of Lemma 2 yields the following inequality:
ck 5
ðp aÞwðpÞ ðn þ p aÞwðn þ pÞbnþp
ðk ¼ n þ p; n þ p þ 1; . . .Þ;
ð2:19Þ
which, together with (2.18) and (2.19), yields
jf ðzÞj 5 jzjp þ
Q 1 X ðp aÞwðpÞ m1 1 j¼0 ðu þ j þ pÞ jzjnþp Qm1 ðn þ p aÞwðn þ pÞbnþp k¼nþp j¼0 ðu þ j þ kÞ
Finally, in view of the following sum:
ðz 2 UÞ:
ð2:20Þ
6516
H.M. Srivastava, S. Bulut / Applied Mathematics and Computation 218 (2012) 6511–6518 1 X k¼nþp
Qm1 j¼0
1 ðk þ u þ jÞ
¼ ¼
1 X
m1 X
k¼nþp
j¼0
ðm 1Þ
ð1Þj ðm 1 jÞ!j!ðk þ u þ jÞ
Qm2 j¼0
1 ðu þ j þ n þ pÞ
!
ðu 2 R n fn p; n p 1; n p 2; . . .gÞ;
ð2:21Þ
the assertion (2.12) of Theorem 2 follows at once from (2.20) in conjunction with (2.21). The assertion (2.13) can be proven by similarly applying (2.17), (2.19) and (2.21). h Upon setting
gðzÞ ¼
z ; 1z
m ¼ 2 and
l¼0
in Theorem 2, if we use the relationship in (1.8), we obtain the following Corollary 1 given by Altıntasß et al. [5]. Corollary 1 [5, Theorem 1]. If the functions f and h satisfy the general non-homogeneous Cauchy–Euler differential equation. (1.9) with h 2 T n ðp; a; kÞ, then
jf ðzÞj 5 jzjp þ
ðp aÞ½kðp 1Þ þ 1ðp þ uÞðp þ u þ 1Þ nþp jzj ðn þ p aÞ½kðn þ p 1Þ þ 1ðn þ p þ uÞ
ðz 2 UÞ
ð2:22Þ
jf ðzÞj = jzjp
ðp aÞ½kðp 1Þ þ 1ðp þ uÞðp þ u þ 1Þ nþp jzj ðn þ p aÞ½kðn þ p 1Þ þ 1ðn þ p þ uÞ
ðz 2 UÞ:
ð2:23Þ
and
By setting k = 0 and k = 1 in Corollary 1, and using the relationships in (1.6) and (1.7), we arrive at Corollaries 2 and 3, respectively. Corollary 2. If the functions f and h satisfy the general non-homogeneous Cauchy–Euler differential equation (1.9) with h 2 T n;p ðaÞ, then
jf ðzÞj 5 jzjp þ
ðp aÞðp þ uÞðp þ u þ 1Þ nþp jzj ðn þ p aÞðn þ p þ uÞ
ðz 2 UÞ
ð2:24Þ
jf ðzÞj = jzjp
ðp aÞðp þ uÞðp þ u þ 1Þ nþp jzj ðn þ p aÞðn þ p þ uÞ
ðz 2 UÞ:
ð2:25Þ
and
Corollary 3. If the functions f and h satisfy the general non-homogeneous Cauchy–Euler differential equation (1.9) with h 2 C n;p ðaÞ, then
jf ðzÞj 5 jzjp þ
pðp aÞðp þ uÞðp þ u þ 1Þ jzjnþp ðn þ pÞðn þ p aÞðn þ p þ uÞ
ðz 2 UÞ
ð2:26Þ
jf ðzÞj = jzjp
pðp aÞðp þ uÞðp þ u þ 1Þ jzjnþp ðn þ pÞðn þ p aÞðn þ p þ uÞ
ðz 2 UÞ:
ð2:27Þ
and
3. Neighborhoods for the multivalently analytic function classes S n;p ðg; k; l; aÞ and Rn;p ðg; k; l; a; m; uÞ In this section, we determine inclusion relations for the classes
S n;p ðg; k; l; aÞ and Rn;p ðg; k; l; a; m; uÞ involving the (n, d)-neighborhoods defined by (1.11) and (1.13). Theorem 3. If
bk = bnþp
ðk ¼ n þ p; n þ p þ 1; n þ p þ 2; . . .Þ
and
d¼
ðn þ pÞðp aÞwðpÞ ; ðn þ p aÞwðn þ pÞbnþp
H.M. Srivastava, S. Bulut / Applied Mathematics and Computation 218 (2012) 6511–6518
6517
then d
S n;p ðg; k; l; aÞ N n;p ðeÞ;
ð3:1Þ
where e is given by (1.12). Proof. The inclusion relation (3.1) would now follow readily from the definition (1.13) and the assertion (2.5) of Lemma 2. h By setting
gðzÞ ¼
z ; 1z
l¼0
m ¼ 2 and
in Theorem 3, we get the following Corollary 4 given by Altıntasß et al. [5]. Corollary 4 [5, Theorem 2]. If f 2 T n ðpÞ is in the class T n ðp; a; kÞ, then d
T n ðp; a; kÞ N n;p ðeÞ; where e is given by (1.12) and
d¼
ðn þ pÞðp aÞ½kðp 1Þ þ 1 : ðn þ p aÞ½kðn þ p 1Þ þ 1
Theorem 4. If
bk = bnþp
ðk ¼ n þ p; n þ p þ 1; n þ p þ 2; . . .Þ
and
! Qm1 ðn þ pÞðp aÞwðpÞ j¼0 ðu þ j þ pÞ d¼ 1þ ; Q ðn þ p aÞwðn þ pÞbnþp ðm 1Þ m2 j¼0 ðu þ j þ n þ pÞ then d
Rn;p ðg; k; l; a; m; uÞ N n;p ðf Þ:
ð3:2Þ
Proof. Suppose that f 2 Rn;p ðg; k; l; a; m; uÞ. Then, upon substituting from (2.16) into the following coefficient inequality: 1 X
kjck ak j 5
k¼nþp
1 X
kck þ
k¼nþp
1 X
kak
ðck = 0; ak = 0Þ;
k¼nþp
we obtain 1 X
kjck ak j 5
k¼nþp
1 X k¼nþp
kck þ
Qm1
1 X k¼nþp
j¼0
ðu þ j þ pÞ
j¼0
ðu þ j þ kÞ
Qm1
kck :
ð3:3Þ
Since h 2 S n;p ðg; k; l; aÞ, the assertion (2.5) of Lemma 2 yields
kck 5
ðn þ pÞðp aÞwðpÞ ðn þ p aÞwðn þ pÞbnþp
ðk ¼ n þ p; n þ p þ 1; n þ p þ 2; . . .Þ:
ð3:4Þ
Finally, by making use of (2.5) as well as (3.4) on the right-hand side of (3.3), we find that
! Qm1 1 X ðn þ pÞðp aÞwðpÞ j¼0 ðu þ j þ pÞ ; kjck ak j 5 1þ Qm1 ðn þ p aÞwðn þ pÞbnþp k¼nþp k¼nþp j¼0 ðu þ j þ kÞ 1 X
which, by virtue of the sum in (2.21), immediately yields
! Qm1 ðn þ pÞðp aÞwðpÞ j¼0 ðu þ j þ pÞ ¼: d: kjck ak j 5 1þ Q ðn þ p aÞwðn þ pÞbnþp ðm 1Þ m2 k¼nþp j¼0 ðu þ j þ n þ pÞ 1 X
Thus, by applying the definition (1.11), we complete the proof of Theorem 4. h Upon setting
ð3:5Þ
6518
H.M. Srivastava, S. Bulut / Applied Mathematics and Computation 218 (2012) 6511–6518
gðzÞ ¼
z ; 1z
m ¼ 2 and
l¼0
in Theorem 4, we can deduce the following Corollary 5 given by Altıntasß et al. [5]. Corollary 5 [5, Theorem 3]. If f 2 T n ðpÞ is in the class Kn ðp; a; k; uÞ, then d
Kn ðp; a; k; uÞ N n;p ðf Þ;
ð3:6Þ
where
d¼
ðn þ pÞðp aÞ½kðp 1Þ þ 1½n þ ðp þ uÞðp þ u þ 2Þ : ðn þ p aÞ½kðn þ p 1Þ þ 1ðn þ p þ uÞ
Acknowledgements The second-named author was supported by the Kocaeli University (Arslanbey Campus) under Grant HD 2011/22. References [1] O. Altintasß, Neighborhoods of certain p-valently analytic functions with negative coefficients, Appl. Math. Comput. 187 (2007) 47–53. [2] O. Altintasß, On a subclass of certain starlike functions with negative coefficients, Math. Japon. 36 (1991) 489–495. [3] O. Altıntasß, H. Irmak, H.M. Srivastava, Fractional calculus and certain starlike functions with negative coefficients, Comput. Math. Appl. 30 (2) (1995) 9– 15. [4] O. Altintasß, S. Owa, Neighborhoods of certain analytic functions with negative coefficients, Internat. J. Math. Math. Sci. 19 (1996) 797–800. [5] O. Altintasß, Ö. Özkan, H.M. Srivastava, Neighborhoods of a certain family of multivalent functions with negative coefficients, Comput. Math. Appl. 47 (2004) 1667–1672. [6] A.W. Goodman, Univalent Functions, vols. 1, 2, Polygonal Publishing House, Washington, New Jersey, 1983. [7] H. Orhan, M. Kamalı, Fractional calculus and some properties of certain starlike functions with negative coefficients, Appl. Math. Comput. 136 (2003) 269–279. [8] S. Owa, On certain classes of p-valent functions with negative coefficients, Simon Stevin 59 (1985) 385–402. [9] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981) 521–527. [10] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975) 109–116. [11] H.M. Srivastava, O. Altıntasß, S. Kirci Serenbay, Coefficient bounds for certain subclasses of starlike functions of complex order, Appl. Math. Lett. 24 (2011) 1359–1363. [12] H.M. Srivastava, S. Owa, S.K. Chatterjea, A note on certain classes of starlike functions, Rend. Sem. Mat. Univ. Padova 77 (1987) 115–124. [13] R. Yamakawa, Certain subclasses of p-valently starlike functions with negative coefficients, in: H.M. Srivastava, S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992, pp. 393–402.