Author's Accepted Manuscript
Innovate or Imitate? Behavioural technological change Cars Hommes, Paolo Zeppini
www.elsevier.com/locate/jedc
PII: DOI: Reference:
S0165-1889(14)00194-8 http://dx.doi.org/10.1016/j.jedc.2014.08.005 DYNCON3055
To appear in:
Journal of Economic Dynamics & Control
Received date: 30 October 2013 Revised date: 30 May 2014 Accepted date: 6 August 2014 Cite this article as: Cars Hommes, Paolo Zeppini, Innovate or Imitate? Behavioural technological change, Journal of Economic Dynamics & Control, http: //dx.doi.org/10.1016/j.jedc.2014.08.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
∗
† ‡
! " # " "
! "
#! $ " %! & ' " " (
&
" ! ) *
∗
! " # $%#& ' ' ())* % # + + ' $ # ' , , 15th 17th & & $ ' ' #%' , -+$ . ()/) ,
11th 0 & - + $1#+ ()/) + 25th $$+ " 65th $'$ 0 27th $$+
† 2 &113 ‡ $ 2 !43
R&D
! "#$$% &
' "##(%
)
"#$*%
+
,
"#$#%
- . + "#$/%
R&D
0 . +
1 '
R&D
"#$23 + "#$23 -
"#$$3 4 "##53
+ )
"##$%
+
6 ! /((7%
& 8 9 8 8
: ; /((5% '
/
# $
! "
% %
&'
&'
&"
&' ( )*+ ! % ,
))
&
$
-' &' &
,
' ( .
( )+
( . '
( )#/ 0
'
1 0 + & 2
) % 3 4
"
5
'
5
' ' & 0 & 3 ))/
6
1
& '
7 ( 8 )/9.
& $ %
: 1 % 1
0
' "
;
!
< ))= 7 3 ))
$
( 7 ' 4 3' )) ))* $
' % ' " & ' 5
' ' '
>
! 4 / ,
, 1 )9 0 )9) "
'
! " # # ! $ ! " % & ' # ( # ) # ! * +
) , -# & .
' #*
/ + #
0 0 + + # 1
$ !
#
* !
#
$
# ! 0 # $
/
# "
$
#
2 $ $
3
$
. -
,
!
#" + "
$ #
1
"
$
, /
, 4#
!!!"
# $ %$ &'()* + &',-* . / &''!" &''&" $ $ $ $ 0 &',&* 1 2 &''-* 3 &''4" . 1 &''(" # # 5 $ $ . 6 7 $ $ 5 $ 8 #
$ $ 9 # 8 $ $ $ $
& $ $ $ : -
1 $ N
$
$ $ ; nt
)
1 − nt
S h (pt )
t
h
h
!
" #
D(pt ) = nt StIN N (pt ) + (1 − nt )StIM (pt ),
h = INN
h = IM
$
'
N ½
nt
C
1 − nt
q
h t πth = pt qth −ch (qth )
&
"
( ) * $++,#
h
$
& '
qth ≡ Sth (pt )
%
h
N sIN t
sIM t
sIN N > sIM
q
StIM (pt ) = sIM t pt .
¾
.
-
C IN N = C > 0
/ //
¿
#
2
q Δc = − 2s 2 Δs
C IM = 0
$+0,
1
c(q) (
) * $++, #
+ Ch
&
q2 2sh
!
&
N StIN N (pt ) = sIN pt , t
ch (q) =
R&D
2 $+0,
N IN N IM + j=1 Sj,t
St = Ni=1 Si,t IN N IN N IM IM Si,t = St Sj,t = St i j St = NtIN N StIN N + NtIM StIM N ¾ ! ! q = Aφ(K, L)" φ " s A ¿ # $ " ! " % S IN N %
& " S IN N
½
IN N t
3
IM t
!
" #
$
%
%&'(
R&D
#
AC IN N ≡
$ %&'
) * +,- . /
$
01
$
N sIN = sebC t
sIM = s t
b > 0
2
c (q) =
q q c (q) = s sebC cINN (q) p p C IM = 2 + sINN AC = 2 AC IN N ≥ AC IM AC IN N = AC IM q p
# % # 3
$
&
# &
4 #
1
1 IN N 2 1 st pt − C = sebC p2t − C, 2 2 1 1 πtIM = sIM p2 = sp2t . 2 t t 2 Δπ ≡ π IN N − π IM = 0 p = p ≡ 2C/s(ebC − 1) πtIN N =
2
5
* (
6 76 8 +,,9 78 ! % 6
8
:
$ %
t
1
INN
nt = 2 3 #
eβπt−1 INN
;
Δπt ≡ πtIN N − πtIM = 12 s(ebC − 1)p2t − C
−β
1+e
1 1 s(ebC −1)p2t−1 −C 2
β
.
≡ gˆ(pt−1 ).
0
Δπ
%
#
nt = gˆ(pt−1 )1 nt =
IM
eβπt−1 + eβπt−1
2
β = 0 ( 4 n = 1/2
3
β=∞
9
! "
# $% & ' ( $' # ) ( ( ' # * ( ) ) # '
% ( +,)# -(# . ' ( / 0 ( ( # # ) # 1 ) # 2 2 &33. 0 #
0 ) ( # " 4 ' # 5 # D(pt) = pa # % −d d > 0 N ") % % sIN = sebC sIM = s t t d t
q
n=1: S(p)=4p S(p)=4np+(1-n)p n=0: S(p)=p
D(p)=1/p
p*min=1/2
p
p*max=1
D(p) = 1/p sINN = 4 sIM = 1
pt =
s
(ebC
a − 1)nt + 1
1 1+d
≡ fˆ(nt ),
6
! n p " # $ #
7
nt 1 − nt
fˆ(n) ebC > 1
p∗IN N = a a ∗ !
" p = IM se s #
$ % $ & " p n ' ' ' pt nt ( )' % & * bC
1 1+d
1 1+d
pt =
1
a 1+d
1
1 + eβ[ 2 s(e 1
1 + eβ[ 2 s(e
s
1 1+d
bC −1)p2 t−1 −C]
≡ f (pt−1 ).
bC −1)p2 t−1 −C]+bC
1
nt =
d−1 1 d+1 bC s (e −1) 2
−β
1+e
s
a nt−1 (ebC −1)+1
2 1+d
≡ g(nt−1 ).
−C
d = 1
! " " " # $
% &
p∗
p∗ = f (p∗ )
'&
f
g
n∗ = g(n∗ )
p∗ n∗ !
p
∗
f
g
" % & % !
"
p∗
n∗ ω → 0 ω = a, b, C, s, β
! " % & %
β = ∞
(
'
p =
2C/[s(ebC
− 1)]
p
)
N 1 n 0 *
$
p > p Δπ > 0 β = ∞ nt = 1 p = p∗IN N p < p β = ∞ nt = 0 p = p∗IM ! p = p " # $ p∗ $ p β = ∞ ݂ሺሻ
݂ሺሻ
݂ሺሻ
כ ூெ כ ூெ כ ூெ כ ூேே כ ூேே
כ ூேே
כ
ൌ כ
f (p) β = ∞
p∗ > p
כ
p∗ = p
p∗ < p
β n∗ d−1
βs d+1 a2 (ebC − 1)2 g (n ) = −n [1 − n ] d+3 . (ebC − 1)n∗ + 1 d+1
∗
∗
∗
−1 < g (n∗) < 0 n∗ 1 n∗ 0 ! a" d" b" C " s β #
$ " % !! & a d p∗IN N p∗IM " p #
a ' ("
p∗IM − p∗IN N ) *" !+(( #
d
p∗IM − p∗IN N " ) " s" b C p [p∗IM , p∗IN N ] " , g - " |g (n∗)| > 1" ' . g
" !/ , 0 - nt 1
' n∗ 0.43 1 !/"
β = 5 β = 10 (+
0.5 0.48 0.46 n
0.44
n
0.42 0.4 0.38 0
5
10
15 t
20
25
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
30
0
1
1
0.8
0.8
5
10
15 t
20
25
30
0.6
0.6 n
n 0.4
0.4
0.2
0.2
0
0 0
5
10
15
20
β
0 0.5 1 1.5 2 2.5 3 3.5 4 b
n β = 5 ! β = 10 " a = d = 2# b = C = s = 1 $ n % ! β b = 1# a = 2# d = 2 % & b β = 5# a = 4# d = 0.5 " s = C = 1
C ! "# $ % & ' ( ) * +,-./ 0 1 / & & 2 & 0 & 34 566./
$ # β b β 7 b 2.7
β {0, 1} 3 b 3 31 ++
b n b 1.5 b > 1.5 sIN N = sebC ! p " # b
$ β %
& '())
* + , -..' " / '((0 1 & 1 -..23 4 -..2 1 − α α ∈ [0, 1] + #
t INN
nt = αnt−1 + (1 − α)
eβπt−1 INN
IM
eβπt−1 + eβπt−1 = αnt−1 + (1 − α)g(nt−1 ) ≡ gˆ(nt−1 ),
'.
g ) α = 0 * gˆ '. nt−1 g(nt−1) * α % 5 * " gˆ α = 0 *
α α ' * gˆ % 5 * " % 5 1 β * -* # " β 5 α * ! β
'-
1
β = 20 a=2 d=2 s=1 b=1 C=1
α=0
0.9
α = 0.2 0.8 0.7
g(n)
0.6
1 0.8
α = 0.5
0.6
0.5
n
0.4
0.4
α = 0.8
0.3
0.2
0.2
α=1
0.1
0 0 0
0.1
0.2
0.3
0.4
0.5
n
0.6
0.7
0.8
0.9
0
1
20
40
1
1
0.8
0.8
0.8
0.6
0.6
n
n
0.4
0.4
0.4
0.2
0.2
0.2
0
0 0.4
0.6
0.8
100
0.6
n
0.2
80
t
1
0
60
1
0 0
0.2
0.4
α
0.6
0.8
1
0
0.2
0.4
α
0.6
0.8
1
α
gˆ
α nt α = 0.6 β = 30 a = 4 d = C = 2 b = 1 s = 0.5! "
# α " β = 10 $ β = 20 % β = 30 a = 4 d = 2 b = 1 s = 0.5 C = 2!
α > 0.5
α
!
α
α
"
α
n
#
# $
% &''(
)
α
*
gˆ β C α1 α2 α3 0 < α1 < α2 < α3 < 1 • (A1) gˆ • (A2)
! α ∈ [0, α1 )
gˆ [α2 − , α2 + ]
• (A3) gˆ
" α ∈ (α3 , 1]
&*
!" # $ % &''( &'')* + , , - "
.
+
/
γ δ ,
+ t−1
s(t) = se
i=1 [γni −δ]
.
$&&*
γni − δ ni i
ebC $" (& 0- 1* + N sIN = s(t)ebC , t
sIM = s(t). t
$&(*
+ 2 ebC C
&
γ
Δs(t) = s(t)(e
bC
s(t)
− 1)
γ
b C
α = 0!
" #$ s s(t) %! & & '!
nt =
−β
1+e
1 1 s(t)(ebC −1)p2t−1 −C 2
s(t) (ebC
pt =
* $)! $(!
−β
1+e
$(!
1 1+d
$)!
.
+
1
nt = G(nt−1 ; s(t)) ≡
"
a − 1)nt + 1
,
d−1 1 s(t) d+1 (ebC −1) 2
a nt−1 (ebC −1)+1
2 1+d
.
$%!
−C
F (pt ; s(t)) $(! $)!
s(t)
, - .
/ % G s(t) 1
1
s(t)=0.2
0.9 0.8
s(t)=2
0.7
s(t)=4
0.4
0.3
0.3
0.2
0.2
0.1
0.1 0.2
0.4
n
0.6
0.8
1
0 0
s(t)=1
0.6
0.5
g(n)
g(n)
g(n)
s(t)=2
0.6
0.5
0 0
s(t)=4 0.8
0.7
0.6
0.4
0.9
0.8
s(t)=1
0.7
1
0.9
s(t)=0.5
0.5 0.4
s(t)=0.5
0.3 0.2
s(t)=0.2
0.1 0.2
0.4
n
0.6
0.8
1
0 0
0.2
0.4
n
0.6
0.8
G(x; s(t)) d = 0.5 d = 1 d = 1.5 β = 10 b = C = 1 a = 2
1
d
< 1
d
> 1
n
d
= 1
s(t) > 0
d < 1 n∗ ! d = 1 " # d > 1 ! "
# $$ !
%
&
!
# # '(
&
# '(
!
!
) $***
s(t)
s(t) = se−δ(t−1) eγ
s(t)
nt nt
s(t) t−1 i=1
+,
ni
.
-.
→ 0
γ − δ
−δ
→ 1
n∗ n∗ -.
γ < δ
s(t) → 0 pt → ∞
γ = δ
s(t) = se−γ
t−1 1
qt ≡ D(pt ) → 0
(1−ni )
!
∞ 1 (1 − ni ) → ∞ s(t) → 0 pt → ∞ qt → 0 −γΣ p → p∗ > 0 ! ! ! ∞ 1 (1 − ni ) → Σ < ∞ s(t) → se
" γ > δ ! γ t−1 i=1 ni < δt s(t) → 0 pt → ∞ qt → 0 −γΣ p → p∗ > 0 ! ! γ t−1 i=1 ni ∼ δt ∃Σ ∈ (0, ∞) s(t) → se ! γ t−1 i=1 ni > δt s(t) → ∞ pt → 0 qt → ∞
2b 3b
# ⇔ n∗ = γδ ! " nt ! ! s(t) → 0 # $ ! s(t) (3) # ! ! ! % 3a& ' γ δ # ! δt % 3b& (2b) # (3c) c(q) = p/s
( ' γ δ ! ) 3a t−1 i=1 ni δ *
+
3c
nt → 0
δt 2b 3b p∗
∞ nt s(t) pt !" # $ " %
ni → n∗
ν ∗ ≡ γn∗ − δ (i) ν ∗ < 0
→ p > 0 → ∞ p → 0
s(t) ∼ seν (t−1) → 0 pt → ∞ qt → 0 ∗
(ii) ν ∗ = 0
s(t) → se−Σ pt
(iii) ν ∗ > 0
s(t) ∼ seν (t−1) ∗
& (i)
∗
t
$ " # (1)
(2a) (3a) & (ii) n∗ =
δ γ
≤ 1
(2) (3) $ " & (ii)
(2b) (3b) $ " ' (iii) γ > δ
(3c) $ "
(
( ( ) *
#
*
( +
,
+- ,
.
/
δ γ
( # δ = γ
0
*
1
!2
γ !
" #$$ !
% & ''(
) * * *+ )
)
) , % ) ) % ) ) nt s(t) ) R&D ) . #$$ , + ) ) ) nt s(t) / ) 0 1 ,
) ) % %
, )
n
s(t) )
)
+ ) 0
2 3 0
* % )
%
s(t) = 0 0 ) ) % * % ) +
4 γδ = 0.1 '3 2 ) +
pt → 0
/ 5 % + 2 3 %
)
#
frontier
price
innovators 1
20
0.8
0.6
15
0.6 nt
0.8 pt
s(t)
1
0.4
10
0.4
0.2
5
0.2
0
0 0
200
400
600
800
0
1000
0
200
400
t
0
200
400
0.5 0 600
800
800
1000
800
1000
innovators
0.6 0.4 0.2 0 200
400
t
600
800
1000
0
200
400
t
frontier
600 t
price
innovators 1
0.7 0.6
500
1000
0.8
0
600
800
1
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
1000
600 t
nt
pt
s(t)
1
400
1000
price
1.5
200
800
t
frontier
0
600
0.8
300
0.3
200
0.2
100
0.1
0
0.6
0.4
nt
pt
s(t)
0.5 400
0.4 0.2
0 0
200
400
600
800
1000
0 0
200
400
t
600
800
1000
0
200
400
t
600 t
d = 0.5 γ = δ = 0.02
γ = 0.1 δ = 0.01 γ = 1 δ = 0.01 ! "" # β = 5 a = 1 b = C = s = 1 d = 1.1 pt → 0
# $% frontier
price
600000 pt
s(t)
800000
400000 200000 0 200
400
600
800 1000
innovators 1
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
0.8 0.6 nt
1e+006
0
! "
0.4 0.2 0 0
200
400
t
600 t
800
1000
0
200
400
600
800
1000
t
$ d = 1.1 ! " # γ = 0.1 δ = 0.01 β = 5 a = 1 b = C = s = 1
&'
! " #$% & ' % & ( ) * + #%,% & - % . - ! * % & - - ( - / % & - * -% 0 - s(t) - - - 1 % 2 + #%,% 0 - % 0 ( - - n % & - - ( -% 0 1 1 - % 0 - - % 3 % & - - 4 1 1 4 % + 1 * % & 4 - - % & ( - - 4 % & - 5% 6 - % 7 * - - ( ( -
#
!
% $
$ #
$
pt
%
&$ ' # $
Price
qt = D(pt )
$
0.8
8
0.6
6
0.4
4
0.2
2
0 0
50
100
150
200
t
Quantity
" # $
0
250
300
0.8
1
0.4
0
Quantity Growth
Price
0.6
0.2
0 0
10
20
30
40
50
t
60
70
80
90
−1
100
!""#$%
& '% β = 15 a = 1 d = 0.9 b = s = 1 C = 2 α = 0.6 γ = 0.2 δ = 0.01% ()
) * +,,$% () ' ) % β = 15 a = 1 d = 1.1 b = s = 1 C = 2 α = 0.6 γ = 0.2 δ = 0.01%
'
( % $
% $ $ $ ' # ' ) $ * +$
$ % ' # , ' ' ' ) $ '
' $ % * $
$
$- .'$ "
# ! " #
$ $ & $ / 0 # # 1 # 22
q q−q t
t−1
t−1
d = 0.9
d = 1.1
nt
s(t)
! " #
$%
! & '(
n∗ = δ/γ = 5%
)" #
* '( +
, !!
) & '(
% '(
)" #
--. )" # " #
% frontier
price
150 pt
s(t)
200
100 50 0 0
200
400
600
800
1000
1 0.8 0.6 0.4 0.2 0 0
200
400
t frontier
1000
0
200
400
40000 20000 0 200
300
400
500
600
800
1000
400
500
t innovators
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
1 0.8 0.6 nt
60000 pt
s(t)
800
price
80000
100
600 t
100000
0
innovators
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
nt
250
0.4 0.2 0 0
100
200
t
300 t
400
500
0
100
200
300 t
/'
! ! !
" ! # ! ! $ ! $ % & " % # & $! ! ! $ " # ! '! ! & ! ! &( ! & ) ! " ! $ " $ * % ' !+ ' !+ ! " ! % , ! & ! " ! & ) ! ! " $ ! ! " - ! ./
!
" #
$ !
" # $
% R&D " $ " $ & ' # ( ! ) '
' *
+ n
g ,- ".$/
1
g(n) = −β
1+e
d−1 1 d+1 bC s (e −1) 2
a n(ebC −1)+1
2 1+d
.
"01$
−C
0 < g(n) < 1 n ∈ [0, 1] / d−1
βs d+1 a2 (ebC − 1)2 g (n) = −g(n)[1 − g(n)] . d+3 d+1 bC (e − 1)n + 1
g (n) < 0
"0.$
2
n∗ = g(n∗ ) f ,- "1$ 3 40 45
n∗ a, b, C, s, β limω→0 g (n) = 0 ω = a, b, C, s, β limω→0 g (n∗ ) = 0
gˆ !"#$ gˆ(n) = αx + (1 − α)g(n),
!%#
g ' (A3) ( n∗ −1 < α + (1 − α)g (n∗ ) ) gˆ β, a, d, s, b, C α ! * |ˆg | < 1 + (A1) α gˆ g
g , gˆ α " - (A2) .
!%%/# (0" gˆ !%#
!# .
!%%/# # ), ) c1 c2 gˆ [c1, c2] # β, a, d, s, b, C 1 0 < gˆ < 1 - α gˆ (, .
!%%/# 2,3 * 4 ( 5
2 3 * !%06# ) , * - /#
' s(t) !!#
s(t) > 0 s s(t) 7
7 n∗ = g(n∗) s 8 d < 1 ∂n < 0 d > 1 ∂n > 0 d = 1 ∂s ∂s ∂n = 0 ∂s ∗
∗
∗
9
s(t) = se−δ(t−1) eγ
t−1 i=1
ni
.
γ s(t) → 0 ! γ < δ " pt → ∞ # $ % &" qt = D(pt ) = pad → 0 ! t ' γ = δ " ! s(t) ! ∞ 1 (1 − ni ) ( & ! limi→∞ ni = 1 ) !
" s(t) → 0 2a ' limi→∞ ni = 1 " ∞ & ! ! ! Σ" pt → p∗ > 0 $ 1 (1 − ni ) ) γ > δ " !& γ t1 ni ! δt ' γδ " s(t) → 0 3a ' ! & γδ " ! !
s(t) pt ! ! 3b * &" t1 ni γδ " ! s(t) → ∞ " pt → 0 $ % 2b 3b & n∗ = γδ ' " s(t) ! γδ #&
# δ(t−1) " " &
+ , - " s(t) ! , !" . ! / " n∗ = γδ
( " 0 0 $ 123 24 ( " 0 1 # # & 5 613$4 ( " 7" 8 9
" : 9 " : ; < " 7 = 5 % ! !> 1312 ( " 7" 7 = 44 ( ! 66365 ( " 7" 7 = 442 ?' 7" % # " ?( (# " @ 2 * & ! ! & A 453426 1
! "# $% &' ( ) & * ! * ! !$ +,- ,. / , 0 ! ! % &
! 1 !!#2 % 1! ) 2 3 % 4 5 ! % ! 6 4 ,& 7 ( ) $ 8 3 ! 7 ' " 2 9 . ,,
!
+,-
* / 0 / :" ; < , ) " %5 $ ! ! , $ ) ) 9 1! 3 " ! ! ! +,- , ) , ( % ! ! R&D = " +- ' > 8 ) & 75 3 >? ! +,- &&&
> 8 3 5 # ! # % ! ', " / % @ # $ % .,' ! / 2 ( A 1 / B*" % ! 5 ! &
!"#$ % !&'' ( ) * !!"!!!
% + , % - . + . / *
& 0 1 2. "$$' - . % % $ 23. 3. . * 4 4 . .. $"$ % % , 2 . !&&!
,56 1 ,7 % ( % 8 2 (.9 !&# 5* !" ! :; #"$ . / ! 6 . . * :; !"!'
!&& * 4 . 4 3 . . # $% $!"$$ # . < + 6 * / + 8 " &' " . $ =.. 7 !!&"!!'# !! 6 3 > * . !" 7 .
. . ! $"! 54 / !&' ( 5> . . * # $% :; !&"!& 8 ? % , , . !&& 6 .* . * !
:; $"$ &
!
"" # ! $% $& ' () ) *+ , -&+
! .
/ - 00! 1 ,+ ""+ , & + + "2 "" + , + & 0!0.
3 4 45 6 * " + .
.7 3 +) "+ ++ "+ &
.
0 8 ) )
! " & 1 9 3+
* : ; 00 9)& , )) & + , + + ",+ 60
8 & < + ++ + 7 .7 .
< $ ! 3++ + ,
676!!
7
+- ! *+" +)2 + , = ++ "' " ++ #
7 66
+ )& 3 * ,& > " , ,
$ %
!.
? ..
++ + + ' ++ " R&D & 7 7! 7
? # @ . /) A)& * - 1
*5 $ $ # & 6 3 +) +") &
7.!.
0
! " # &% '(
$ %
)( *+ , +, . , / 012 +3 4 4 5 6 7 00 8+ +, 9- .: / 1 # $ " ;, &% '( " 0 < + #
" 0# = , . ; = * 0 8 . , , > 5 . ( :+, 1# ; 4 0# = "+ < 1 0 ?
! " ! # $% & ' <3 8
1