Innovate or Imitate? Behavioural technological change

Innovate or Imitate? Behavioural technological change

Author's Accepted Manuscript Innovate or Imitate? Behavioural technological change Cars Hommes, Paolo Zeppini www.elsevier.com/locate/jedc PII: DOI...

2MB Sizes 0 Downloads 33 Views

Author's Accepted Manuscript

Innovate or Imitate? Behavioural technological change Cars Hommes, Paolo Zeppini

www.elsevier.com/locate/jedc

PII: DOI: Reference:

S0165-1889(14)00194-8 http://dx.doi.org/10.1016/j.jedc.2014.08.005 DYNCON3055

To appear in:

Journal of Economic Dynamics & Control

Received date: 30 October 2013 Revised date: 30 May 2014 Accepted date: 6 August 2014 Cite this article as: Cars Hommes, Paolo Zeppini, Innovate or Imitate? Behavioural technological change, Journal of Economic Dynamics & Control, http: //dx.doi.org/10.1016/j.jedc.2014.08.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

  

∗        

  †       ‡                        

              

             !  "  #    "  "          

                  

 

                 !                       "        

#!              $      " % !              &     ' " "  (      

&                          

   "  !   ) *                      



                                      !       "    # $%#& '  '    ())*  %  #   +    +   '  $  #  '      ,   ,    15th   17th     &   &  $     '   '     #%'     ,      -+$ .    ()/)  ,  

 11th   0  &        -      +    $1#+ ()/)    +     25th $$+      "  65th $'$    0    27th $$+   

 †   2 &113   ‡ $  2 !43 

                                                                                                             

           

R&D

         

! "#$$%      &         

       

         

   

     

'  "##(%         

    

         ) 

"#$*% 

                             +        

       ,

"#$#%          

                                 -          .   +  "#$/%            

R&D

     

        

   0          . +                    



1  '                      

R&D



 "#$23 +  "#$23 -

     "#$$3 4   "##53

+  )  

 "##$%

           

         

                +                               

 6   ! /((7%   

  

               

          &                                   8           9                                   8           8

   :   ;  /((5%                      '            

       

        

                 

   /

             

              

          

      

   

     

       

      

   

  # $       

    

      

       

  ! "

   %      % 

&'    

        &'          

 

    &"

      &'   ( )*+ !      %  ,

  ))    

     

      



    

  &   

  

 

$

    -'   &'    &  

       , 

          '  (  .       

      

   (   )+   



  ( .  '     

   (  )#/ 0  

    '        

   

  

      1     0   +  &    2 

 )     %  3  4

        "          

  5

 '          

       

      

5     

    '                ' &  0 &  3 ))/

6   

   1   

 &     '                       

 

 

                  

  

   

    7    (  8 )/9.   

  

  

      & $          % 

            :    1   %     1      

     

0    

       

  

          

  '       "                      

     ;     

! 

   <  ))= 7    3   ))

$        



   (   7 '    4   3'  )) ))* $ 

      '  %              '   " &    '  5

                '        '    '    

     

         

     

        

          >    

!  4   / ,   

  

     

    , 1 )9  0  )9)  "

                '     



                                   !       "                         #  #  !                 $               !  "               %    & ' # (      #              )                   #  ! *     +   

 )                  ,   -# & .

    ' #*   

 /    +   #

    

 

0                     0     +               + #  1    

   $ !

 #     



    * !   

       #   

       $     

          

       

     

 #          !            0            #                             $      



   

  /



            #   "

   $ 

   #   

      



    2         $                     $   

 

 

      3           

$   

 

  

  .        -    

  ,

   !  



 #"       + "

              

$           #                 

 

   

        1    

 

 "

    

 

     $                 



     ,      /

    

  

 ,    4#

          



                                                                     !!!"                                       

      #              $         % $ &'()* +  &',-* .   / &''!"                  &''&"             $    $     $    $                0       &',&* 1   2  &''-* 3    &''4" .                       1 &''("       #             #    5                         $           $   .                                  6        7     $            $ 5            $            8                          #         

                 $     $       9       #            8                 $       $      $      $            

              &                    $ $     $     :                  -   

    

          1      $  N     

    $  

                       $    $ ;           nt   

)



1 − nt

  



          

                            

S h (pt )

   

t

   

  

            

h

h

   

     ! 

  " #

D(pt ) = nt StIN N (pt ) + (1 − nt )StIM (pt ), 

h = INN

     

 

h = IM

$

  

                        '   

N ½



nt

C

 

1 − nt

q

           

h    t  πth = pt qth −ch (qth )

       

   &    

 

    



" 

        (     ) *  $++,#

        

h

$ 

    &      '

          

qth ≡ Sth (pt )

%

h



 

N sIN t

 

sIM t

sIN N > sIM

q

StIM (pt ) = sIM t pt .

¾

.     

-

C IN N = C > 0

        

                       / //    

¿



    #

     

2

q Δc = − 2s 2 Δs

C IM = 0

   

      

 $+0,

 1    

              

          

   

c(q)  (    

) *  $++,           #

      

+ Ch

             

           & 

q2 2sh

    !      

  &         

N StIN N (pt ) = sIN pt , t

ch (q) =

R&D

    

 2  $+0,  

                        







N IN N IM + j=1 Sj,t          

  St = Ni=1 Si,t IN N IN N IM IM     Si,t = St Sj,t = St    i j    St = NtIN N StIN N + NtIM StIM         N          ¾    !        ! q = Aφ(K, L)"  φ          "   s            A ¿                                 #             $  "  !         "              %      S IN N   %          

  &            "                   S IN N 

½

IN N t

3

IM t

    

           

          

   

         

   

!

     

   " #

   $

     %     

  

       %&'( 

 

R&D

   #   

AC IN N ≡

  

$    %&' 

)  *   +,- . /

  

    $     

 

01

 

      

    $   

N sIN = sebC t



sIM = s t



b > 0

   2      

c (q) =

q q       c (q) =        s sebC cINN (q) p p C IM = 2 + sINN  AC = 2    AC IN N ≥ AC IM  AC IN N = AC IM q p

     #    %          #             3

 $ 

      

 

 

    &     

            #  &

 4     #  

  

   1

1 IN N 2 1 st pt − C = sebC p2t − C, 2 2 1 1 πtIM = sIM p2 = sp2t . 2 t t 2  Δπ ≡ π IN N − π IM = 0  p = p ≡ 2C/s(ebC − 1) πtIN N =

2  

5

*   (

           6  76  8 +,,9 78 !                  %  6

   

           8

:

  $        %   

   

t

   1

INN

nt = 2     3  #     

eβπt−1 INN



;

Δπt ≡ πtIN N − πtIM = 12 s(ebC − 1)p2t − C 

−β

1+e



1 1 s(ebC −1)p2t−1 −C 2

            β

.

 ≡ gˆ(pt−1 ).

    

0

Δπ 

%

   

                

    #           



  

    

nt = gˆ(pt−1 )1 nt =

 

IM

eβπt−1 + eβπt−1

     2

β = 0           (    4 n = 1/2

   3       

   

β=∞

     

            

9

                                             ! "        

#     $% &     '     (    $'      #   )     ( (         '   # *     (  ) )      #            '       

  %      ( +,)#  -(# .               '            (        /     0  (            (    #     #    )     #   1   )     #                    2       2    &33.  0     #   

      0       ) (  # "  4 '   #            5    #    D(pt) = pa        # %  −d d > 0 N ")     %    %     sIN = sebC  sIM = s   t t d t

q

n=1: S(p)=4p S(p)=4np+(1-n)p n=0: S(p)=p

D(p)=1/p

p*min=1/2

p

p*max=1

        D(p) = 1/p sINN = 4  sIM = 1

 pt =

s



(ebC

a  − 1)nt + 1

1  1+d

≡ fˆ(nt ),

6

                                                                             

   

   !  n     p  "   #  $  #

7

  nt  1 − nt    

           fˆ(n)     ebC > 1            

     

          p∗IN N = a  a ∗        ! 

    "   p = IM se s                                        #                     

               $       %   $   & "            p   n             '              '                             '               pt      nt     (     )' %  &    *       bC

1 1+d

1 1+d

pt =

1

a 1+d



1

1 + eβ[ 2 s(e 1

1 + eβ[ 2 s(e

s

1  1+d

bC −1)p2 t−1 −C]

≡ f (pt−1 ).

bC −1)p2 t−1 −C]+bC



                    

1



nt =

d−1 1 d+1 bC s (e −1) 2

−β

1+e  

    

s

   



a nt−1 (ebC −1)+1

2  1+d

 ≡ g(nt−1 ).



−C

d = 1

          

!            "  "  "  #   $



     

%   &   

p∗

 

p∗ = f (p∗ )

'&     

f



g 

     

n∗ = g(n∗ )

            p∗  n∗ !        

p



f



g     

 " %  & % !  

          "



p∗

 n∗       ω → 0  ω = a, b, C, s, β 

!   "   %  & %   

β = ∞

         (   

          ' 

p =



2C/[s(ebC

− 1)]

p

) 

                 N  1   n  0 *

 

$

 p > p   Δπ > 0  β = ∞     nt = 1    p = p∗IN N            p < p  β = ∞   nt = 0  p = p∗IM         !                p = p " #      $             p∗   $         p    β = ∞ ݂ሺ‫݌‬ሻ

݂ሺ‫݌‬ሻ

݂ሺ‫݌‬ሻ

‫כ‬ ‫݌‬ூெ ‫כ‬ ‫݌‬ூெ ‫כ‬ ‫݌‬ூெ ‫כ‬ ‫݌‬ூேே ‫כ‬ ‫݌‬ூேே

‫݌‬

‫כ‬ ‫݌‬ூேே

‫݌‬

‫כ݌‬

‫݌‬

‫ ݌‬ൌ ‫כ݌‬

    f (p)  β = ∞ 

p∗ > p



‫כ݌‬

p∗ = p



‫݌‬

‫݌‬

p∗ < p

    β                         n∗  d−1

βs d+1 a2 (ebC − 1)2 g (n ) = −n [1 − n ]   d+3 . (ebC − 1)n∗ + 1 d+1 









     −1 < g  (n∗) < 0                    n∗  1    n∗  0                   !                      a" d" b" C " s  β  #

           

  $ " % !!               &          a  d           p∗IN N  p∗IM "    p   # 

  a      '               ("    

 p∗IM − p∗IN N          ) *" !+(( # 

  d  

        p∗IM − p∗IN N "     ) "          s" b  C   p      [p∗IM , p∗IN N ]             "  ,    g       - "    |g  (n∗)| > 1"   '            . g  

   "                !/     ,   0    -            nt      1      

    '            n∗  0.43 1          !/ "   

       β = 5  β = 10 (+

0.5 0.48 0.46 n

0.44

n

0.42 0.4 0.38 0

5

10

15 t

20

25

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

30

0

1

1

0.8

0.8

5

10

15 t

20

25

30

0.6

0.6 n

n 0.4

0.4

0.2

0.2

0

0 0

5

10

15

20

β

0 0.5 1 1.5 2 2.5 3 3.5 4 b

 

    

          n       β = 5   !  β = 10 " a = d = 2# b = C = s = 1 $         n    %       !   β b = 1# a = 2# d = 2    %         & b β = 5# a = 4# d = 0.5 " s = C = 1

          

                             C                                                  ! "# $ %              &            '   (  )              *     +,-./              0 1  /   &     &                      2        &     0     &              34             566./  

                                                 $   #                        β  b                  β  7    b  2.7

            β          {0, 1}   3                          b   3         31   ++

        b                          n           b  1.5            b > 1.5                                               sIN N = sebC  !             p                                                   "               #   b               

$                                                           β           %    

  

          &  '())           

           *             +  ,   -..' "                                /   '((0 1                   &     1   -..23 4  -..2          1 − α α ∈ [0, 1]                 +  #      

      t       INN

nt = αnt−1 + (1 − α)

eβπt−1 INN

IM

eβπt−1 + eβπt−1 = αnt−1 + (1 − α)g(nt−1 ) ≡ gˆ(nt−1 ),

'.

      g    )                     α = 0      *      gˆ  '.                  nt−1          g(nt−1)         *          α % 5  *    "   gˆ        α = 0     *        

 α         α  '   *       gˆ                % 5  *   "                    % 5       1  β         *        -*    #     "   β       5        α   *    !   β                           

'-

1

β = 20 a=2 d=2 s=1 b=1 C=1

α=0

0.9

α = 0.2 0.8 0.7

g(n)

0.6

1 0.8

α = 0.5

0.6

0.5

n

0.4

0.4

α = 0.8

0.3

0.2

0.2

α=1

0.1

0 0 0

0.1

0.2

0.3

0.4

0.5

n

0.6

0.7

0.8

0.9

0

1

20

40

1

1

0.8

0.8

0.8

0.6

0.6

n

n

0.4

0.4

0.4

0.2

0.2

0.2

0

0 0.4

0.6

0.8

100

0.6

n

0.2

80

t

1

0

60

1

0 0

0.2

0.4

α

0.6

0.8

1

0

0.2

0.4

α

0.6

0.8

1

α

                gˆ         

 α    nt α = 0.6 β = 30 a = 4 d = C = 2 b = 1 s = 0.5! "

   #      α " β = 10 $ β = 20 % β = 30   a = 4 d = 2 b = 1 s = 0.5 C = 2! 

α > 0.5  

          

               

α             

                

!     

α          

   

 

α

      

             "           

α

  

n 

                #   

      #  $

      

      

      

            

        % &''(         

               )  

α

*    

            



 gˆ     β  C       α1  α2  α3  0 < α1 < α2 < α3 < 1       • (A1) gˆ • (A2)

    !   α ∈ [0, α1 )

  gˆ      [α2 − , α2 + ]

• (A3) gˆ

   "  α ∈ (α3 , 1]

&*

                                           

  

                   

                          

                                                                                  !"   #        $   % &''( &'')*             + ,           ,                 -          "       

.                            

    

            + 

                     

                         /

           γ      δ  , 

       + t−1

s(t) = se

i=1 [γni −δ]

.

$&&*

       

         γni − δ   ni           i             

        

   ebC             $"  (& 0- 1*                                            + N sIN = s(t)ebC , t

sIM = s(t). t

$&(*

              +       2    ebC       C                

                     &

   

       

 γ    

                           

                                      Δs(t) = s(t)(e

bC

         s(t)   

− 1)              

 

           γ            

     

            

         

               

       

      b    C          

      α = 0!                  

    "   #$         s   s(t)              %!       &    &   '!        

nt =

−β

1+e



1 1 s(t)(ebC −1)p2t−1 −C 2

  s(t) (ebC

pt =

*     $)!  $(!   

−β

1+e

$(!

1  1+d

$)!

.

           +

1



nt = G(nt−1 ; s(t)) ≡

"      

a  − 1)nt + 1

,

d−1 1 s(t) d+1 (ebC −1) 2

a nt−1 (ebC −1)+1

2  1+d

.

$%!

−C

      F (pt ; s(t))      $(!  $)! 

      s(t)  

,        -       .

   

                              /  %        G       s(t) 1

1

s(t)=0.2

0.9 0.8

s(t)=2

0.7

s(t)=4

0.4

0.3

0.3

0.2

0.2

0.1

0.1 0.2

0.4

n

0.6

0.8

1

0 0

s(t)=1

0.6

0.5

g(n)

g(n)

g(n)

s(t)=2

0.6

0.5

0 0

s(t)=4 0.8

0.7

0.6

0.4

0.9

0.8

s(t)=1

0.7

1

0.9

s(t)=0.5

0.5 0.4

s(t)=0.5

0.3 0.2

s(t)=0.2

0.1 0.2

0.4

n

0.6

0.8

1

0 0

0.2

0.4

n

0.6

0.8

                      G(x; s(t))      d = 0.5       d = 1       d = 1.5  β = 10 b = C = 1  a = 2



1

      

d

< 1

               

             d

> 1

n

      

              

      

                   

  d

= 1

                     

 

                        

               

              s(t) > 0

       d < 1          n∗ !        d = 1       "     #       d > 1               ! "

            



  

    

    

 

     

      #   $$               !      

        %      

          &         

!        

                 

                     

                        #         #   '(

 

 

   

            &         

       #   '(



      

   

   !               

    !          

     )     $***          

   

s(t)

  

s(t) = se−δ(t−1) eγ      

s(t)

 

      nt      nt

s(t) t−1 i=1

       +,  

ni

.

-.

       

→ 0

   

γ − δ

−δ 





 

 

→ 1

              n∗             n∗          -.

                    

  

               

       γ < δ

s(t) → 0 pt → ∞

  γ = δ

s(t) = se−γ

t−1 1

 qt ≡ D(pt ) → 0 

(1−ni )

  

      ! 

   ∞ 1 (1 − ni ) → ∞  s(t) → 0 pt → ∞ qt → 0      −γΣ  p → p∗ > 0  !   ! !  ∞ 1 (1 − ni ) → Σ < ∞  s(t) → se          

"  γ > δ      !     γ t−1 i=1 ni < δt  s(t) → 0 pt → ∞ qt → 0      −γΣ  p → p∗ > 0  ! !  γ t−1 i=1 ni ∼ δt  ∃Σ ∈ (0, ∞)  s(t) → se   !             γ t−1 i=1 ni > δt  s(t) → ∞ pt → 0 qt → ∞       

   2b  3b  

  



  #         ⇔ n∗ = γδ                    !      "         nt       !     !                      s(t) → 0 #   $   !        s(t)               (3)                     #    !                  !  !  %  3a& '       γ         δ #    !            δt %  3b&             (2b)               #   (3c)                  c(q) = p/s 

  ( '       γ  δ                    !  )    3a         t−1 i=1 ni  δ    *                                             

+

3c          

      nt → 0 

      

                  δt           2b  3b                               p∗         

              ∞       nt        s(t)  pt   !"            #              $ "     %

              ni → n∗

      ν ∗ ≡ γn∗ − δ       (i) ν ∗ < 0

   → p > 0          → ∞ p → 0      

 s(t) ∼ seν (t−1) → 0 pt → ∞  qt → 0  ∗

(ii) ν ∗ = 0

 s(t) → se−Σ pt

(iii) ν ∗ > 0

 s(t) ∼ seν (t−1) ∗

&  (i)  



t

       $ " #        (1)

(2a)  (3a) &  (ii)               n∗ =   

δ γ

≤ 1

    (2)  (3)  $ " &  (ii)        

   (2b)  (3b)  $ " '    (iii)   γ > δ     

(3c)  $ "

  

   (          

  

(    (        ) *   

      

                   

        

#            



   

                  *       

    

   

 ( +

 , 

       +-     ,   

                      

.  



       /   



           δ       γ   

     (  #          δ = γ  

                     

             0

     

* 



                        



   

      

   

 1  

  !2

    

                     

             

      γ                   !    

                      "  #$$ !    

             

    %                                            &    ''(   

      )       *       *  *+    )

       )             

  )     ,            %     )     )     % )      )         nt  s(t)      )  R&D  )             .  #$$ ,     + )       )        )    nt       s(t) /                               )       0  1    ,     

        

)  )    %      %           



              ,     )                

                           n      

s(t)    )  

  )    

+   )           0             

   

 2  3      0         

      *         %        ) 

      

  % 

   s(t) = 0   0   )  )           %          *     %     )        +                  

     4            γδ = 0.1           '3 2  )  +            

   

pt → 0    

              

                 /   5 %        +    2  3  %     

          

                      



        )     

    

    #

frontier

price

innovators 1

20

0.8

0.6

15

0.6 nt

0.8 pt

s(t)

1

0.4

10

0.4

0.2

5

0.2

0

0 0

200

400

600

800

0

1000

0

200

400

t

0

200

400

0.5 0 600

800

800

1000

800

1000

innovators

0.6 0.4 0.2 0 200

400

t

600

800

1000

0

200

400

t

frontier

600 t

price

innovators 1

0.7 0.6

500

1000

0.8

0

600

800

1

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

1000

600 t

nt

pt

s(t)

1

400

1000

price

1.5

200

800

t

frontier

0

600

0.8

300

0.3

200

0.2

100

0.1

0

0.6

0.4

nt

pt

s(t)

0.5 400

0.4 0.2

0 0

200

400

600

800

1000

0 0

200

400

t

600

800

1000

0

200

400

t

600 t

           d = 0.5     γ = δ = 0.02     

     γ = 0.1  δ = 0.01              γ = 1  δ = 0.01                    !  "" # β = 5 a = 1 b = C = s = 1                             d = 1.1           pt → 0

             

 

   #   $%    frontier

price

600000 pt

s(t)

800000

400000 200000 0 200

400

600

800 1000

innovators 1

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

0.8 0.6 nt

1e+006

0

 !   "   

0.4 0.2 0 0

200

400

t

600 t

800

1000

0

200

400

600

800

1000

t

 $          d = 1.1                  !  " # γ = 0.1  δ = 0.01  β = 5 a = 1 b = C = s = 1

&'

                                                    !  "   #$% &                 '    % &       (   )      *         + #%,% &         -            % . -             !     *    % & -           -  (  -    /              % &      -           * -% 0    - s(t)     -  -            - 1       % 2                + #%,% 0              -      % 0  (                -          -  n     % &   -       -        (   -% 0       1      1  -   % 0       -     -    % 3                                          % &   - -  4           1  1 4                   % +         1          *          % &           4    -                 -     % &      (  -         -  4 % &   - 5% 6 -      % 7  * -         -   (  (   -                              

                                    #

              !

  %   $  

 $ #

$  

pt

 % 

 &$  '  #    $

Price

qt = D(pt )

 $ 

0.8

8

0.6

6

0.4

4

0.2

2

0 0

50

100

150

200

t

Quantity

"  #  $  

0

250

300

0.8

1

0.4

0

Quantity Growth

Price

0.6

0.2

0 0

10

20

30

40

50

t

60

70

80

90

−1

100

 

                      !""#$%

       &   '%   β = 15 a = 1 d = 0.9 b = s = 1 C = 2 α = 0.6 γ = 0.2 δ = 0.01% ()           

 )        *  +,,$% ()         ' ) %   β = 15 a = 1 d = 1.1 b = s = 1 C = 2 α = 0.6 γ = 0.2 δ = 0.01%    

 

'

   

(   %  $ 

%   $         $  $   '  # ' ) $    *   +$       

 $     %   '   #      ,      ' '  ' )         $  '

 ' $     %       *  $

      $ 

    $-  .'$ "

  #   ! "             #



   $ $     &   $     /   0   #    #  1  #   22

                        q q−q t

t−1

t−1

 

   

                

 

       

d = 0.9



d = 1.1

                        

                           

       

   

                    

         

         

       

         

             

                 



                



                         

   

                    

            

nt

s(t)

      



    !      "  #      

 

  $%  

  !      & '( 



      

       

 

    

        

    

n∗ = δ/γ = 5%

)"  #      

* '( +           

    

, !!



 )      &   '(

%   '( 

   

     )"  #       

      

 

               --. )"  #            "  #       

    % frontier

price

150 pt

s(t)

200

100 50 0 0

200

400

600

800

1000

1 0.8 0.6 0.4 0.2 0 0

200

400

t frontier

1000

0

200

400

40000 20000 0 200

300

400

500

600

800

1000

400

500

t innovators

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

1 0.8 0.6 nt

60000 pt

s(t)

800

price

80000

100

600 t

100000

0

innovators

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

nt

250

0.4 0.2 0 0

100

200

t

300 t

400

500

0

100

200

300 t

 

                                          /'

                                           !            !                                            !                                  

"          !   #   !                    !     $                      !  $ %  &     "                   %     #                       &         $!                       !       !          $       "           #      ! '!   !         &        !           !                &(    !      &  )                          !                 "  !         $                 "  $                         *              %              ' !+       '  !+  !                       "                    !    %      ,   !           &                      !         "  !                  &     )  !  !                "  $     ! !       "                       -         ! ./

                                                                                                                                                               

                           !

       



        "   # 

$            !         

   



  "   #  $          

                 



 

    %                  R&D    "      $      "       $                                                               &             '                     #                    (         !                   )                     '    

        '               *        



    

  

+       n     

    g  ,- ".$/

1



g(n) = −β

1+e

d−1 1 d+1 bC s (e −1) 2

a n(ebC −1)+1

2  1+d

.

"01$

−C

      0 < g(n) < 1  n ∈ [0, 1]         / d−1

βs d+1 a2 (ebC − 1)2 g (n) = −g(n)[1 − g(n)]  .  d+3 d+1 bC (e − 1)n + 1 

       

  g  (n) < 0

"0.$

2      

n∗ = g(n∗ )            f  ,- "1$       3   40 45

           n∗             a, b, C, s, β        limω→0 g (n) = 0  ω = a, b, C, s, β       limω→0 g (n∗ ) = 0        

                        gˆ   !"#$ gˆ(n) = αx + (1 − α)g(n),

!%#

  g    &#            '      (A3)    (           n∗  −1 < α + (1 − α)g (n∗ ) )  gˆ        β, a, d, s, b, C          α    !   *     |ˆg | < 1     +     (A1)    α      gˆ     g      

              g    ,   gˆ          α       " -    (A2)     .

 !%%/#  (0"   gˆ   !%#      

      !#  .

 !%%/#                  #      ),   )            c1  c2    gˆ      [c1, c2]   #   β, a, d, s, b, C  1                0 < gˆ < 1 -     α   gˆ   (,   .

  !%%/#             2,3 * 4   (    5  

2  3 * !%06# )                 ,        *      - /#

        '           s(t)    !!#  

         

   s(t) > 0     s  s(t)   &#     7          

 7      n∗ = g(n∗)      s 8 d < 1 ∂n < 0  d > 1  ∂n > 0       d = 1   ∂s ∂s ∂n = 0 ∂s ∗





9

                            s(t) = se−δ(t−1) eγ

t−1 i=1

ni

.



                γ    s(t) → 0   ! γ < δ "   pt → ∞ #  $ %  &" qt = D(pt ) = pad → 0    !   t ' γ = δ   "      !  s(t)     !         ∞ 1 (1 − ni ) (  &     !   limi→∞ ni = 1 )  !       

 " s(t) → 0   2a ' limi→∞ ni = 1    "   ∞ & !      ! ! Σ"   pt → p∗ > 0  $ 1 (1 − ni )  )  γ > δ " !&        γ t1 ni  !        δt '                  γδ "   s(t) → 0   3a '       !          &   γδ "    !   !  

 s(t)   pt     ! !   3b * &"  t1 ni      γδ "  ! s(t) → ∞   "   pt → 0   $       % 2b   3b    &  n∗ = γδ  '   "            s(t)   !  γδ #&        

           #  δ(t−1)      "   "   &

+         ,     -      "   s(t)  !   ,  !"          .      !  / "    n∗ = γδ 

   (  " 0  0              $ 123 24 (  " 0 1   #  #     &       5 613$4 ( " 7" 8 9

" : 9 " : ; < " 7 =   5 %      !   !>               1312 ( " 7" 7 =   44 (         !            66365 ( " 7" 7 =   442        ?' 7" % # " ?( (# " @ 2 *      &  !       !  &   A                453426 1

        

  

         ! "# $%       &'  ( ) & * ! *  !  !$   +,- ,.  / , 0 !    !  % &

  

     

! 1                        !!#2 % 1! )  2  3 %    4 5 !  % !  6 4      ,&  7  ( ) $  8  3   ! 7         ' " 2  9 . ,,

   !

  +,-

 * / 0  / :"  ; <   , ) "    %5  $ !       !    , $   )   ) 9 1!  3   " ! ! !     +,- ,   ) , ( %  !     ! R&D =    "     +- ' >  8 )  & 75 3      >?  !  +,- &&&

 

>   8  3    5  # ! #    %   !   ',  " /   %  @        #   $  %   .,' ! /  2 ( A 1 / B*"    % !  5 !        &      

                                    !"#$  % !&'' (        )  *          !!"!!!

 

 % + ,   % - .  +     .     / * 

             &    0   1      2 .  "$$' - . % %  $ 23.   3.       . *    4 4 . ..                 $"$ %  % , 2  .  !&&!         

 ,56 1      ,7 %  ( % 8 2 (.9 !&# 5 *              !"  !   :;  #"$  .  / !&# 6 .      .     *         :; !"!'



    !&&    *  4   . 4  3     .  .       #   $ %   $!"$$     #        .    <   +  6 *   /  + 8     "      &'   "      .    $ =..  7   !!&"!!'#     !! 6     3     >    *  .          !"             7    .      

.      .         ! $"! 54  / !&'  (       5> .   . *           #   $ %  :; !&"!& 8   ? % , ,   .  !&&  6 .* . *      !    

 :; $"$  &



                     !

"" # ! $% $& '  () )  *+ , -&+ 

         ! .

 /  -   00! 1 ,+ ""+ , & + + "2 "" +  , + &             0!0.

 3 4  45 6 *  "  +       . 



 .7 3  +)  "+   ++ "+ &

       .

 0 8 ) ) 

 !       "   & 1  9 3+

  *  : ;  00 9)& , )) &   + , + + ",+            60

  8   & <  + ++ +     7 .7 . 

<  $ ! 3++ +    ,   

676!!

 7

+- ! *+"      +)2  + , = ++ "' "    ++    #   

7  66

+  )&   3 * ,&  > "   ,  , 

$     %

  !.

?    .. 

  ++   + + ' ++ "  R&D &       7 7! 7

?     # @ .           /) A)& * - 1

*5 $  $  # & 6 3  +)  +") &

       7.!.

0

             !  " # &% '(

    

          

$   %

   )(  *+ ,  +,    . ,  /    012  +3 4 4 5 6 7 00 8+ +,  9-  .: /     1 #  $ "           ;, &% '(    " 0  <  +      #  

    

   " 0# =     , .         ;  = * 0 8 . , ,    > 5     . (   :+,           1# ;  4 0#   =   "+ <            1 0 ?   

     !    "  ! #   $% & '          <3 8

1