ANALYTICAL
BIOCHEMISTRY
87, 223-242 (1978)
Molar Absorptivity and A:Frn Values for Proteins Selected Wavelengths of the Ultraviolet and Visible Regions. XV. DONALD
at
M. KIRSCHENBAUM’
Department of Biochemistry, College of Medicine. Downstate Medical Center, 450 Clarkson Avenue, Brooklyn. Net<, York 11203 Received October 31, 1977: accepted January 27, 1978
Table 1 lists the molar absorptivity and A:‘%, values at the indicated wavelengths for approximately 200 proteins. Literature citations are given for all the proteins. For many of these proteins the molecular weights and the conditions used to obtain these values are also given, as is additional information in the footnotes to the table. The last published paper in this series is Ref. (1) and the contents of the first 10 papers of the series can be found in Ref. (2). ACKNOWLEDGMENTS I have collected the data in this paper over the past several years. I did the major portion of the library work using the facilities of the Library of the College of Medicine, Downstate Medical Center. During the summer months I used the Library of the Marine Biological Laboratory, Woods Hole, Massachusetts, and more recently, February-July 1976, the Library of the University of Sussex, Falmer, England. 1 thank the librarians of each of these libraries for their kind assistance. Mr. Edward Becker assisted me in checking references.
REFERENCESTOTEXT 1. Kirschenbaum, D. M. (1977) Anal. Biochem. 82, 83-100. 2. Kirschenbaum, D. M. (1975) in Handbook of Biochemistry and Molecular Biology: Vol. 2: Proteins (Fasman, G. D., ed.). 3rd ed., pp. 385-545, Chemical Rubber Co., Cleveland. Ohio. ’ Faculty Exchange Scholar, State University of New York.
223
0003-2697/78/0871-0223$02.00/O Copyright All rights
0 1978 by Academic Press, Inc. of reproduction in any form reserved.
DONALD
224
M. KIRSCHENBAUM TABLE
MOLAR
ABSORPTIVITY
AND
1
A :Trn VALUES
FOR PROTEINS
Ey 0
Protein Desulforedoxin Desulfovibrio
x 10-a
A :Tmo,”
nm”
Comments”
Ref.
(oxidized) gigas
0.9934 0.9437 0.6540 1.1960 0.7029
278 285 310 370 507
1 I 1 1 1
280
2
280
3
pH 7.8, 0.1 Refr.
16.5
281.5
4
Dry wt MW = 50,000 (4) pH7.3,O.l M KPh
14.0
280
5
AA
7.29
19.61 24.9 26.6
280 280 280
6 7 8
pH 8.8, 0.2 M Tris Inter. pH 5.0, 0.01 M AC, MW = 27,422 (8)
9.11
13.8’
280
9
pH 8.1, 0.05 M Tris-Cl, MW = 66,000 (9)
280
10
11.9 13.5
280 280
11 12
9.4
280
13
12.6
nc
14.2
280
Diamine oxidase Pig kidney Dihydrofolate reductase Chicken liver
2.8970
Dihydropteridine reductase [EC 1.6.99.71 Beef liver
8.25
1.7
Dipeptidase [EC 3.4.13.21 Pig intestinal mucosa 14.6 Elastase Pig Human pancreas
AA do. do. do. do.
M
KPh,
Exotoxin Pseudomonas
aeruginosa
Factors Factor G, EF-G, Elongation factor Escherichia
co/i
5.9
Factor V Bovine Factor X, Bovine Factor XI, plasma thromboplastin antecedent Bovine Factor XII, Hageman factor Bovine plasma
16.6
14 Refr. MW = 132,000 (14) 15
pH 7.5, 0.02 M Tris-HCI containing 0.2 M NaCI, corrected for light scattering, Refr.
PROTEINS:
MOLAR
ABSORPTIVITY TABLE
Protein
Sambucus racemosal
Blue-green alga, Nostoc verrucosum Desulfovibrio desulfuricans Oxidized
225
VALUES
I (Contini&)
E,$J N x 10-a
Ai9grnb
nmr
13.2
280
16 Inter., pH 7.2, 0.02 M morpholinopropanesulfonic acid
11.6 12.0
280 280
16 do. 17
12.3
280
18
2.42
32.76
280
19
1.68 0.023l
22.74
390 466
19 20
0.01’ 0.015’ 0.02’
423 331 277
20 20 20
1.1512 1.1127
425 422
21 21
1.7500 2.0588
390 305
22 22
Factor IX Human
Factor X Human Factor IX, Christmas factor Fatty acid synthetase Pig liver Ferredoxin Clostridium thermoaceticum
AND A$
Ref.
Comment&
pH 7.6, 0.1 M Tris-HCI, MW = 7387 (19) do. From Fe analysis, assuming 2 Feimol do. do. do.
Ferritin, apoCorbicula sandai coelomic fluid
13.4
280
23
Corrected for absorbance of hydrated ferric oxide crystallite
Fibrinogen Chicken
12.1
280
24
13.5
282
24
pH 7.0,O.Ol M NaPh in saline. 6 M urea, 0.1 N NaOH
6.8
280
25
13.1 8.3 14.3 9.5 9.0
280 260 280 260 280
26 KN 26 do. 26 2% SDS 26 do. 27 Dry wt
12.93
280
28
Filamin Chicken gizzard Fumarylacetoacetate fumarylhydrolase [EC 3.7.1.21 Beef liver
mdo-@-Galactosidase n-Glucosidase Buckwheat seeds
Lowry
Dry wt
226
DONALD
M. KIRSCHENBAUM
TABLE
1 (Continued) EM”
x lo-’
Protein Porcine serum P-D-Glucosidase [EC 3.2.1.211 Almond
nmp
Ref.
8.1
280
29
1.25 7.06 4.0
217 280 290
30 30 30
7.6
280
31
From Fig. 2 of Ref. (31)
4.14
278
32
5 mM NaB, pH 6.4, Dry wt, MW = 63,000 (32)
17.8
280
33
Refr., SO mM Tris, 10% glycerol, pH 7.4, containing 0.2 mM PMSF and 1 mivt DTT
13.4
280
34
Refr.
10.2
nc
35
Dry wt
9.7
277
36
14.1
403
37
1.08 0.96 0.62 0.31 12.2 0.837 0.649
505 540 568 620 423 550 587
37 37 37 37 37 37 37
10 mM Ph buffer, PH 7 do. do. do. do. do. do. do.
411 416 412 428 384 410 414 416
38 38 38 38 38 38 38 38
pH pH pH pH pH pH pH pH
Ai9&,,*
Comments” Dry wt
Glutamate synthase Thiobacillus
thioparus
L-Glycerol-3-phosphate dehydrogenase [EC 1.1.1.81 Mediterranean fruit fly, Ceratitis
2.61
capitata
Glycogen debranching enzyme [EC 2.4.1.25 + 3.2.1.331 Squalus
acanthias
Glycogen synthase [EC 2.4. I. 1l] Rabbit muscle Glycoprotein, Cat+ binding Human urine cr,-Glycoprotein Human placenta Hemoglobin Protoporphyrin globin
Zinc protoporphyrin
globin
Horse erythrocytes Methemoglobin Cyanmethemoglobin Hemoglobin + cyanide Green hemoglobin reduced in CO
9.0 10.4 9.2 13.5 6.1 7.7 7.6 7.7
10.8 4.77 10.8 9.2 1.16 4.7 10.6 9.8
PROTEINS:
MOLAR
ABSORPTIVITY TABLE
Tadpole and adult Rana catesbeiana Reduced
tubifex
Limnodrilus HbO, Hb HbCO Hbferri HbCNferri Nine-banded Dasypus Polychaete, Pallas HbO,
1.26 0.705
Comment@
17.3 22.2 22 19.4
280 280 280
41 42 43
1.2
540
44
1.48 I .25 1.42 0.912 10.4
575 588 569 405 420
45 45 45 45 45
540
46
For HbCO at pH 7.4 in Ph buffer.
MW do.
= 68,000.
345 418 541 576 280 431 555 397 504 280 357 421 545 280 280
47 47 47 47 47 47 47 47 47 47 47 47 47 47 47
pH 7.7, NaPh do. do. do. do. do. do. do. do. do. do. do. do. do.
410.5 546 581
48 48 48
Inter. pH 5.0, 0.04 M AC containing 0. I6 mmol of NaCl + 0.001 mol of NaCN/liter This is CN derivative MetHb, l hl is cm-’ valine-’
aphroditois, 3.29 11.89 1.49 1.47 19.5 11.97 1.25 10.85 1.3
MetHb
18.7 CyanMetHb
4.17 12.02 1.35 19.0 11.3 Mermis
Ref.
39 39 40
7.70’
Hb
Globin Nematode, HbO,
nmc
560 560 280
armadillo, novemcintus Eunice
A;“&,,6
bullfrog,
OXY Mollusc, Helisoma trivolvis Horse leech, Huemopsis sanguisuga Polychaete, Vista pac$ca Snail, Biomphalaria glabruta
Tubifex
227
A:2m VALUES
1 (Continued)
%.I” x 10-a
Protein
AND
nigrescens 11.3 1.36 1.0
228
DONALD
M.
KIRSCHENBAUM
TABLE EM(’ x lo-”
Protein Hb
Aiv:,”
8.7 1.19 15.8 1.62 1.62
HbCO
Trout ApoHb Earthworm, HbCN, HbO,
I (Continued)
Ref.
421 557 418.5 541 567
48 48 48 48 48
280
49
11.4 10.5 10.6 11.2 9.7 10.4 10.8 5.6 4.0
540 417 417 417 417 417 417 417 417 417
50 51
3.0
417
51
0.519 1.50 0.888 1.59 0.0064 0.0274 0.550 1.50 1.19 1.50 0.0004
510 540 560 576.5 680 920 500 537.5 5.55 568 920
52 52 52 52 52 52 52 52 52 52 52
3.10 11.0 1.07”
280 540 276 420 540 540 276 420 540
53 54 54 54 54 54 54 54 54
1.3
571
55
IV Lumbricus ferri-
nm”
11
Comments”
terrestris
Calf HbO,
HbCO
Human Globin tetramer a-Chain CNMet
P-Chain CNMet
Cobalt-apoHb complexes + protoporphyrin IX
4.42
8.0 6.99* 2.74 11.8 1.12y 6.67n
1.0 M NaCl NaCl 1.0 M NaClO, 0.4 M MgClp 1.0 M M&l, 1.0 M NaI 1.0 M GHCI 2.0 M GHCI 2.0 M GHCI + 0.1 MME 6.0 M GHCI
51 2.0 M 51 51 51 51 51 51 51
Oxy, 0.1 M Ph, pH 7.0, ST, 0, pressure = 750 Torr
PROTEINS:
MOLAR
ABSORPTIVITY
TABLE
+ mesoporphyrin
+ deuteroporphyrin
Oxy-HbA Oxy-Hb’
Oxy-Hb Zurich Deoxy-HbA Deoxy-Hb’
Deoxy-Hb Zurich Hb-Ferrij
IX
229
1 (Continued)
%I” x 10-q
Protein
AND A::,, VALUES
nm”
Ref.
Comments”
1.3 12.0 1.7
538 402 552
55 55 55
11.0 1.2
422 561
55 55
1.3 12.0 1.5
530 412 542
55 55 55
13.0 0.83
392 559
55 55
12.0 1.2
412 541
55 55
12.0 1.4399 1.5285 1.53 0.906 1.23 1.65 0.015 1.4283 I .4595 1.3373 1.08 1.34 1.16 1.01 0.115 1.3373 0.609
393 541 576 540 560 570 576 630 541 576 555 540 560 570 576 630 555 540
55 56 56 57 57 57 57 57 56 56 56 57 57 57 57 57 56 57
do. do. Deoxy, 0.1 M Ph. pH 7.0. + sodium dithionite do. Oxy. 0.1 M Ph, pH 7.0, 5°C 0, pressure = 750 Torr. do. do. Deoxy, 0.1 M Ph, pH 7.0, + sodium dithionite do. Oxy, 0.1 M Ph, pH 7.0, 5°C 0, pressure = 750 Torr do. Deoxy, 0.1 M Ph. pH 7.0, + sodium dithionite do.
0.373 0.355 0.358 0.412
560 570 576 630
57 57 57 57
A :9&b
Value per heme do. do. do. do.
Value per heme do. do. do. do. do. Value per heme, pH 6.2 do. do. do. do.
230
DONALD
M. KIRSCHENBAUM
TABLE
1 (Continued) Ey”
Protein
x 10-q
A:Srnb
0.583 0.357 0.340 0.342 0.394
HemoglobinA
nm’
Ref.
Comments”
540 560 570 576 630
60 60 60 60 60
pH 6.2 do. do. do. do.
11.6
279
61
16.7
280
62
414 280
63 64
280 428 550
65 65 65
258
66
20.6
278
67
8.85 9.47 10.5 5.53
280 280 278 280
68 68 69 70
6.0
278
71
7.62
280
72
5.70
280
73
Lowry
9.97
278
74
pH 7.0, 10 mM KPh, MW = 80,000 (74), Dry wt
215 230 275 230 275 230 210
75 75 75 75 75 75 76
Water do. Water do. Water do.
Hemoglobin reductase, ferrBlue-white dolphin, Srenella caeruleo-alba
Hemopexin Rat plasma
1.15
Human plasma Hemoptotein Pig liver
11.0 18.5
H-450 26.1 26.3 4.26
Hepatocuprein Horse liver Hevamine
11.97 12.06 1.95
1.04
Hevea brasiliensis latex Hexokinase [EC 2.7.1.11 Yeast PI Pi1 Wheat germ Bovine brain
Pig heart Human heart, Type 1 Histidine ammonia-lyase [EC 4.3.1.31 Achromobacter
liyuidum
Dry wt MW = 69,000 (62)
MW = 218,000(65) do. do.
AA AA Refr. pH 7.8, 0.05 M KPh. 0.002 M EDTA pH 7, y/2 = 0.1 Ph containing 1 mM EDTA
Histidyl transfer ribonucleic acid synthetase Salmonella
typhimurium
Histone Calf thymus LAK [f2a2] GRK [f2al] KAS [f2b] H-l
8.0
0.405 4.3 0.54 4.2 0.67 5.4 0.16
PROTEINS:
MOLAR
ABSORPTIVITY
TABLE
231
AND A:Tm VALUES
1 (Continued) EM<’
Protein
x 10-d
Hormone Luteinizing Human pituitary Component Component Component Component Sexual Vu/vo.r
c’arteri
I 11 III IV
1.8975 1.8958 2.0340 1.9161
(male) spheroids
A ; 9&,,b
nm”
Ref.
Comments”
5.4
277
77
5.9 5.9 5.8 6.1
280 280 280 280
78 78 78 78
Corrected for light scattering pH 7, 0.001 M Ph do. do. do.
3.3 2.7
273 283
79 79
pH 8, 0.1 M Tris-Cl pH 13, 0.1 M NaOH
400
80
pH 7.2, reduced protein
280 410 280 400
81 81 82 82
19 338 15.5 328 0.86 13 319
280 205 280 205 450 280 20.5
83 83 83 83 83 83 83
19 338 17 332 2.1 15 320 11.4
280 205 280 205 450 280 205 280
83 83 83 83 83 83 83 84
4.39
278
85
Dry wt
7.24
280
86
MW = 85,000 (87)
280
88
0.625 416
88
From Fig. 1 of Ref. (88) do.
Hydrogenase [EC 1.12.2. l] Clostridium
pasieurianum
9.6 1.4 16.4 4.7
Chromarium Desulfovibrio
2.53
w&w-is
L-cy-Hydroxyacid oxidase Rat liver A, fresh A. stored A, apoRat kidney B. fresh B, stored B, apoRat kidney L-3-Hydroxyacyl-CoA dehydrogenase [EC 1.1,1.35] Pig heart muscle D-3-Hydroxybutyrate dehydrogenase Rhodopseudomonas
spheraides
6.15
1.84 0.53
MW = 89,000 (82) do.
w-Hydroxylase Pseudomonas
oleovorans
27.5
232
DONALD
M. KIRSCHENBAUM
TABLE
Protein
1 (Continued)
EM” x IO-’
A, ,$
nm”
Ref.
II.4
280
89
Refr.
9.4’
280
90
0.19 11.4 11.3
595 278 280
90 91 91
pH 6.7, 0.2 M NaCl in 10 mM KPh do. Water do.
6.39
6.4
280
92
pH 7.5, 5 mM KPh, 1 mM EDTA, Refr. MW = 99,886 (92)
5.56
17. I
280
93
0.65
2.0 I5
470 280
93 94
pH 7.0, 0.1 M Ph. MW = 32,500 (93) do. Water, data from Fig. 4 of Ref. (94)
15
278
95
10.8 11.2 9.47 13.8 14.5 12.5
280 280 280 280 280 280
96 96 96 96 96 96
3-Hydroxy-3-methylglutaryl-CoA synthetase Chicken liver mitochondria 4-Hydroxyphenylpyruvate dioxygenase [EC 1.13. I 1.271 Pseudomonas sp. PJ874 Human liver
Comment@
3[ 17]@-Hydroxysteroid dehydrogenase Pseudomonas
testosteroni
3/3-Hydroxysteroid [EC 1.1.3.61 Brevibacterium
Streptomyces
oxidase sterolicum
violascens
Immunoglobulin IgA, secretory Human colostrum IgG, Human”’ Sac H chain L chain En H chain L chain IgG, Bovine serum”
17.72
12.22
280
101
Bovine colostrum
18.88
12.1
280
101
13.5
280
103
15.0
280
102
Ovine colostrum
MW = 145,000(101), pH 8.0, 0.32 M NaCl-0.01 M Tris-HCI MW = 156,000(101), pH 8.0, 0.32 M NaCI-0.01 M Tris-HCI pH 7.2, 0.1 M Ph, Dry wt do.
PROTEINS:
MOLAR
ABSORPTIVITY TABLE
AND A;:“,
233
VALUES
1 (Continued) CM(l
Protein
I&
x IO-’
A:q;,”
nmc
Ref. 101
Bovine serum”
17.96
12.3
280
Bovine colostrum
17.67
12.1
280
13.9
280
Ovine colostrum yG, conjugated with fluorescein isothiocyanate W Human, McE Fab, Y [Fcl,~ Bovine, IgM subunit Fab I@ Human, myeloma IgA, J chain Human Mouse Indoleamine-2,3-dioxygenase Rabbit small intestines Indolyl-3-alkane a-hydroxylase Pseudomonas xA Inhibitor Protease, VII, bromelain acetone powder Protease, double bean, Faha
(Phase&s
106 PH 9
280 280 280 280 280
107 107 107 108 108
17.0
280
109
6.53 7.0 6.5
275 278 280
110 95 Ill
406
I12
280
113 pH 5.5
9.7
280
114
pH 4.6
24.0 7.52 10.67
nc 280 276
115 116 I17
MW = 14,500 (116)
10.32
276
118
1.42 10.03
280 276
119 119
MW = 7,894 (119) MW = 8,620 (119)
5.3 5.5 12.60
280 280 280
120 120 121
pH 7.5, 0.1
21
1.09
MW = 146,000(101). pH 8.0. 0.089 M NaCl-0.01 M Tris- HCI 101 pH 6.0, 0.01 M Ph0.14 M NaCI, MW = 146.000 (101) 102 pH 7.2, 0.1 M Ph
12.2 12.7 11.2 12.6 14.0
16.8
vulgaris
Protease, potato Protease, IIb, potato Protease, Ha, potato active fragment Protease, adzaki beans
pH 7.0, 0.15 do. do.
M
NaCl
Value per heme
angularis)
I II Protease, Russell’s viper venom, Vipera
-1’
Comments”
0.112 0.865
russelli
T
f1 Protease, horse leukocytes
M
Tris
DONALD
234
M. KIRSCHENBAUM
TABLE
1 (Continued)
E&q<’
Protein
x 10-d
Al&‘)
nm”
Ref.
Comment@
Protease, sea anemone, Anemonia
sulsata
0.49
7.24 4.7
280 280
122 123
MW = 6,800 (122) Dry wt
0.245
2.8
275
124
pH 7, MW = 8,757
Protease, human plasma Protease, Saccharomyces cerevisiae
(124) Protease, Streptomyces 1.91
albogriseolus
276
125
pH 7, MW = 23,000
12.6
278
126
MW = 25,000 (126)
8.8 70.1
275 225
128 128
5.56 5.54 5.31 5.46 7.03
280 280 280 280 280
129 129 129 129 130
MW MW MW MW
1.3
276
131
pH 7.8, 50 mM AmB
10.2
280
132
13.0
278
133
280 280 275 275 275 275
134 135 136 136 136 136
280
134
12.6 10.3
280 280
137 138
3.5
280
139
6.88 5.0 5.3 8.4 8.4 5.1
280 140 280 141 280 142 275.5 143 275.5 143 280 144
8.29
(12% o-Amylase, wheat kernels” Papain and ficin Chicken egg white Pepsin, Ascaris
3.15
lumbricoides
0.965 0.86 0.86 1.72
I I1 III
IV a,-Plasmin, human plasma Protein kinase, rabbit skeletal muscle Subtilopeptidase, neutral Pig serum Subtilisin, barley, Hordeum
vulgare
TrypsiniChymotrypsin Blackeyed peas Chick peas, Cicer ariefinum Protein P3 Protein P4 Protein P5 Protein P6 Trypsin Blackeyed peas Barley, Hordeum disfichum var. Emend Lamark Potato. So/unum ruberosum
0.277 2.5 5.31 5.39 5.39 5.40 0.344
= = = =
17,359 15,533 16,207 31,505
pH 6.0, 0.1
M
(129) (129) (129) (129)
NaAc
L. 2.32
pH 7.0, 0.05 M Ph, MW = 22,500 (138), Dry wt
Hakuhenzu bean, Dolichos
cY-Trypsin Human Bl B2 Bovine
lablad
3.99 0.595 0.595
Water, 0.1
N
NaOH
PROTEINS:
MOLAR
ABSORPTIVITY
TABLE
AND A;&
235
VALUES
1 (Conrincfed)
EM ”
Protein Trypsin-Kallikrein Bovine’ Arg-15 modified Phe- 15 modified Try-15 modified Kallikrein Potato PKl-56 PK2-64 Insulin Bovine MonoiodoIsocitrate dehydrogenase, TPN specific Human heart Isocitrate dehydrogenase, NADP dependent [EC 1.1.1.421 Bovine heart Mitochondria
Bovine liver
Bacillus
x 10-J
Ref.
280 280 280 280
145 145 145 145
0.625 0.625 0.625 1.11
Commentsd
2.3
10.1
280
146
2.4
10.2
280
146
pH 6, 0.1 M NaAc, MW = 23,000 do.
227 276 276
147 148 148
0.01 do.
10.7
280
149
See Footnote s.
5.3
11.8
280
150
6.2
12.9
278
10.9
280
pH 7.0, 0.02 M Ph containing 2 mM MgSO,, Dry wt, MW = 45,000 (150) 151 pH 7.3, 0.1 M Ph. Refr., MW = 48,000 (151) 152 Dry wt
18.0
280
153
AA
14.8 14.8 13.9 14.1
280 280 280 280 282 280 280
154 154 154 155 156 157 157
pH 8.0, 0.05 do. do.
5.6
277
158
5.2 4.0 6.0
277 277 277
159 159 159
4.3 0.5950 0.6835
stearorhermophilus
Isoleucyl t-RNA synthetase [EC 6.1.1.5] E. coli MRE600 Kallikrein Canine pancreas I II 111 Human urinary Porcine pancreas A B a-Keratin Bovine epidermal Polypeptide chain la lb
‘4 l%lc,” nm”
5.1 5.06’ 5.06’
N
pH 6 pH 6
HCI
M
Tris
236
DONALD
M. KIRSCHENBAUM
TABLE
1 (Continued)
E$
Protein
x IO-4
3 4 5 6 3-Keto-5-aminohexanoate cleavage enzyme Clostridium SB4 2-Ketogluconate reductase [EC 1.1.1.691 Acetobacter Gluconobacter
rancens liyuefaciens
18 18
Al,%,”
nm”
Ref.
6.5 7.2 6.1 6.9
277 277 271 277
159 159 159 159
4.3
280
160
280 280
161 162
MW = 120,000 (161) MW = 120,000 (163)
8.5
280
164
Refr.
13.1
280
165
Lowry
3.28
280
166
3.72 3.36
277 280
166 167
Refr., pH 7, 0.03 KPh. do. AA
7.4 6.7
280 280
168 169
pH 6.5
14.3
280
170
Dry wt
16.2 15.3 20.6 19.9 16.4 16.4 16.3”
280 280 280 280 280 280 280
171 172 173 173 173 173 173
16.5
280
174
11.5
280
175
11.4 12.0
280 280
175 175
15 15
Commentsd
Ketopantoate hydroxymethyl transferase E. coli
Kinase, CAMP dependent Rabbit skeletal muscle Catalytic subunit h”-3-Ketosteroid isomerase [EC 5.3.3.11 Pseudomonas
testosteroni
Kininogen Bovine plasma High MW form Low MW form Kynureninase [EC 3.7.1.31 Pseudomonas
marginalis
cr-Lactalbumin Rat milk Bovine milk Porcine milk Baboon milk Chimpanzee milk Rabbit milk /3-Lactamase, inducible [EC 3.5.2.61 Pseudomonas
M
AA
aeruginosa
NCTC 8203 Lactate dehydrogenase [EC 1.1.1.271 Opossum A4 Chicken A4 B4
6.95
MW = 42,000 (174)
PROTEINS:
MOLAR
ABSORPTIVITY
TABLE
Protein Sardine A4 B4 Porcine, dansylated u-Lactate dehydrogenase [EC 1.1.1.28] Horseshoe crab, Limulus polyphemus DL-Lactate dehydrogenase Leuconostoc mesenteroides
AND A;:“, VALUES
237
I (Continued)
E$ x IO-4
A ;:,,,”
nm”
Ref.
10.9 12.1 0.43
280 280 337
175 175 176
5.1
280
177
Lowry
280
178
Refr.
6.67
Comments”
” l i,, is the molar absorptivity expressed as MS’ cm-’ and is either the value reported in the reference cited or that calculated from the Ai9&, value and the molecular weight. b Aiq&,,is the absorption for a 1% solution in a l-cm cuvette and is either the value reported in the reference cited or that calculated from the en and the molecular weight. The relationship between E,,,,At?,, and molecular weight (MW) is 106, = (Ai”/&( r Refers to the wavelength cited and may not be the peak of the absorption band. d Abbreviations used: NaB, sodium bicarbonate; TRIS, tris(hydroxymethyl)aminomethane; PMSF, phenylmethylsulfonyl fluoride; DTT. dithiothreitol; Ph, phosphate; AC, acetate; GHCI, guanidine-HCl; ME, 2-mercaptoethanol; EDTA, ethylenediaminetetraacetic acid; AmB, ammonium bicarbonate; do., same as above; nc. not cited. Methods of protein determination: Dry wt, dry weight; Refr., refractometry; Inter.. interferometry; AA, amino acid analysis; Lowry, calorimetric method. * Although an Al?,,, value of 12 is given in Ref. (9), I have reported that value as 13.8 here in response to a personal communication from Dr. Leppla. f From OD,,,:OD,,,:OD,,,:OD,,, = 0.44:0.49:0.67: 1 (20). g A;?,,, value are given from 520 to 590 nm (20). h From Ragatz, B. H. (1969) M. S. thesis, Indiana University. i See also Refs. (59,60). j Extinction coefficients as a function of pH are given in Table 2 of Ref. (57). k Extinction coefficients as a function of pH are given in Table 2 of Ref. (60). i Range: 8.6-10.6. m For additional extinction coefficients of human IgG see Refs. (97- 100). n For extinction coefficients of IgG, and IgG, of bovine and rabbit origin see Refs. (104, 105). 0 The visible and ultraviolet absorption characteristics of fluorescein isothiocyanatemodified IgGs of various species can be found in Table 1 of Ref. (106). ZJExtinction coefficients for other human IgM and fragments may be found in Ref. (107). q Extinction coefficients for additional cr-amylase inhibitors may be found in Ref. (127). r Lysine-15 is found in virgin inhibitor. s Protein determined by isoabsorbance at two wavelengths. ’ A weight of 25,300, the protein portion, used to calculate l u. u 16.2 also reported in (173).
238
DONALD
M. KIRSCHENBAUM
REFERENCES TO TABLE 1 1. Moura, I., Bruschi, M., Le Gall. J., Moura, J. J. G., and Xavier, A. V. (1977) Biochem. Biophys. Res. Commun. 75, 1037-1044. 2. Kluetz, M. D., and Schmidt, P. G. (1977)Biochem. Biophys. Res. Commun. 76,40-45. 3. Kaufman, B. T., and Kemerer, V. F. (1977) Arch. Biochem. Biophys. 179, 420-431. 4. Hasegawa, H. (1977) J. Biochem. (Tokyo) 81, 169-177. 5. Noren, O., and Sjostrom, H. (1974) Actu Chem. Stand. 28B, 787-792. 6. Huebner, P. F. (1976) Anal. Biochem. 74, 419-429. 7. Tyndall, M., Largman, C. Brodrick, J. W., and Geokas, M. C. (1977)Biochem. Biophys. Res. Commun. 74, 857-861. 8. Ohlsson, K., and Olsson, A. S. (1976) Hoppe-Seyler’s Z. Physiol. Chem. 357, 1153-1161. 9. Leppla, S. H. (1976) Infec. Immunity 14, 1077-1086. 10. Arai, N., Arai, K., Maeda, T., Ohnishi, S., and Kaziro, Y. (1976)5. Biochem. (Tokyo) 80, 1057-1065. Il. Kandall, C. L., Akinbami, T. K., and Colman, R. W. (1972) Brit. J. Haematol. 23, 6.55-668. 12. Dombrose, F. A., and Seegers, W. H. (1974) Thromb. Diuth. Haemorrh. Suppl. 57, 241-254. 13. Jesty, J., and Esnouf, M. P. (1973) B&hem. J. 131, 791-799. 14. Koide, T., Kato, H., and Davie, E. W. (1976) Methods Enzymol. 45B, 65-73. 15. Fujikawa, K., Walsh, K. A., and Davie, E. W. (1977) Biochemistry 16, 2270-2278. 16. DiScipio, R. G., Hermodson, M. A., Yates, S. G., andDavie, E. W. (1977)Biochemistry 16, 698-706.
17. Fujikawa, K., and Davie, E. W. (1976) Methods Enzymol. 45B, 74-83. 18. Kim, I. C., Unkefer, C. J., and Deal, W. C., Jr. (1977) Arch. Biochem. Biophys. 178, 475-485. 19. Yang, S. S., Ljungdahl, L. G., and Le Gall, J. (1977) J. Bacterial. 129, 1084-1090. 20. Altosaar, I., Bohm, B. A., and Taylor, I. E. P. (1977) Canad. J. Biochem. 55, 159-164. 21. Shin, M., Sukenobu, M., Oshino, R., and Kitazume, Y. (1977)Biochim. Biophys. Acta 460, 85-93. 22. Bruschi, M., Hatchikian, C. F., Golovleva, L. A., and Le Gall, J. (1977)J. Bacterial. 129, 30-38.
23. Baba, A., May, M. B., and Fish, W. W. (1977) Biochim. Biophys. Acta 491, 491-496. 24. Pindyck. J., Mosesson, M.. Bannerjee, D., and Galanakis. D. (1977)Biochim. Biophys. Acta
492, 377-386.
25. Wang, K. (1977) Biochemistry 16, 1857-1865. 26. Mahuran. D. J.. Angus, R. H., Braun, C. V., Sim, S. S., and Schmidt, D. E. (1977) Canad. J. Biochem. 55, l-8. 27. Hirano. S., and Meyer, K. (1973) Corm. Tissue Res. 2, l-10. 28. Kanaya, K., Chiba, S., Shimomura, T., and Nishi, K. (1976) Agr. Biol. Chem. 40, 1929- 1936. 29. Hibi, N., Chiba, S., and Shimomura, T. (1976) Agr. Biol. Chem. 40, 1805-1812. 30. Grover, A. K., Macmurchie, D. D., and Cushley, R. J. (1977)Biochim. Biophys. Acta 482, 98- 108. 31. Adachi, K., and Suzuki, I. (1977) J. Bacterial. 129, 1173- 1182. 32. Femandez-Sousa, J. M., Gavilanes, J. G., Municio, A. M., and Perez-Aranda, A. (1977) Biochim.
Biophys.
Acfa
481, 6-24.
33. Becker, J. U., Long, T. J., and Fischer, E. H. (1977) Biochemistry 16, 291-297. 34. Nimmo, H. G., Proud, C. G., and Cohen, P. (1976) Eur. J. Biochem. 68, 21-30. 35. Bobrzecka, K., Konieczny, L., Rybarska, J., and Krzeminska, E. (1977) Biochim. Biophys.
Acta
497, 377-385.
PROTEINS:
MOLAR
ABSORPTIVITY
AND Ai&
VALUES
239
36. Bohn, H., and Winckler, W. (1976) Blur 33, 377-388. 37. Leonard, J. J., Yonetani, T., and Callis, J. B. (1974) Biochemistry 13, 1460-1464. 38. Holden, H. F. (1944) Ausf. J. Exp. Biol. Med. Sci. 21, 159-168. 39. Riggs, A. (195l)J. Gen. Physiol. 35, 23-40. 40. Terwilliger, N. B., Terwilliger, R. C.. and Schabtach. E. (1976)Biochim. Biophys. Actu 453, 101-110. 41. Wood, E. J., Mosby, L. J., and Robinson, M. S. (1976) Biochem. J. 153, 589-596. 42. Terwilliger, R. C., Terwilliger, N. B., and Roxby, R. (1975) Camp. Eiochem. Physiul. 50B, 225-232. 43. Almeida, A. P., and Neves, A. G. A. (1974) Biochim. Biophys. Acta 371, 140- 146. 44. Scheler, W., and Schneiderat, L. (1959) Acta Biol. Med. Ger. 3, 588-597. 45. Okada, Y., and Okunuki, K. (1973) J. Biochem. (Tokyo) 73, 959-963. 46. Seab, J. C., and Bums, T. A. (1976) Comp. Biochem. Physiol. 54B, 351-356. 47. Bannister, J. V., Bannister, W. H., Anastasi, A., and Wood. E. J. (1976)Biochem. J. 159,35-42. 48.
49. 50. 51. 52.
53. 54. 55. 56. 57. 58. 59. 60. 61.
Burr, A. H., Schiefke, R., and Bollerup, G. (1975)Biachim. Biophys. Acta 405,404-411. Fioretti, E., Ascoli, F., and Brunori, M. (1976) Biochem. Biophys. Res. Commun. 68, 1169-1173. Shlom, J. M., and Vinogradov, S. N. (1973) J. Biol. Chem. 248, 7904-7912. Harrington, J. P., and Herskovits, T. T. (1975) Biochemistry 14, 4972-4976. Horecker, B. L. (1943) J. Biol. Chem. 148, 173-183. Currell, D. L., and Ioppolo, C. (1974) Experientio 30, 1371-1373. Waks, M., Yip, Y. K., and Beychok, S. (1973) J. Biol. Chem. 248, 6462-6470. Yonetani, T., Yamamoto, H., and Woodrow, Cl. V. (1974) J. Biol. Chem. 249,682-690. Winterhalter, K. H., Di Iorio, E. E., Beetlestone, J. G., Kushimo, J. B., Uebelhack. H.. Either, H., and Mayer, A. (1972) J. Mol. Biol. 70, 665-674. Benesch, R. E., Benesch, R., and Yung, S. (1973) Anal. Biochem. 55, 245-248. Benesch, R., MacDuff, G., and Benesch, R. (1965) Anal. Biochem. 11, 81-87. Kiese, M., Kurz, H., and Schneider, C. (1958) K/in. Wochenschr. 34, 957-961. Von Assendelft, 0. W., and Zijlstra, W. G. (1975) Arm/. Biochem. 69, 43-48. Matsui, T., Shim& C., and Matsuura, R. A. (1975) Bull. Japan. Sot. Sci. Fish. 41, 771-777.
Bernard, N., Lombart, C.. and Jayle, M. F. (1975) Biochimie 57, 551-557. 63. Aisen, P., Leibman, A., Harris, D. C., and Moss, T. (1974) J. Biol. Chem. 249,
62.
6824-6827. 64.
65. 66. 67. 68. 69. 70. 71. 72.
Hrkal, Z., Vodrazka, Z., and Kalousek, I. (1974) Eur. J. Biochem. 43, 73-74. Kim, I. C., and Deal, W. C., Jr. (1976) Biochemisfty 15, 4925-4930. Finazzi-Agro, A., Albergoni, V., and Cassini. A. (1974) FEES Left. 39, 164-166. Archer, B. L. (1976) Phytochemistry 15, 297-300. Schmidt, J. J., and Colowick, S. P. (1973) Arch. Eiochem. Biophys. 158, 458-470. Higgins, T. .I. C., and Easterby. J. S. (1974) Eur. J. Biochem. 45, 147-160. Schwartz, G. P., and Basford, R. E. (1967) Biochemistry 6, 1070-1079. Easterby, J. S., and O’Brien, M. J. (1973) Eur. J. Biochem. 38, 201-211. Heumann, S., Falkenberg, F., and Pileiderer, G. (1974) Biochim. Biophys. Acta 334, 328-342.
73.
74. 75. 76. 77.
Shibatani, T., Kakimoto, T., and Chibata, I. (1975) Eur. J. Biochem. 55, 263-269. De Lorenzo, F.. DiNatale, P., and Schechter, A. N. (1974) J. Biol. Chem. 249,908-913. D’Anna, .I. A., Jr., and Isenberg, I. (1974) Biochemistry 13, 2099-2104. Bradbury, E. M., Danby, S. E., Rattle, H. W. E., and Giancotti, V. (1975) Eur. J. Biochem. 57, 97-105. Puett, D., Nureddin, A.. and Holladay, L. A. (1976) Int. J. Peptide Protein Res. 8, 183-191.
240
DONALD
M. KIRSCHENBAUM
78. Roos, P., Nyberg, L., Wide, L., and Gemzell, G. (1975) Biochim. Biophys. Acta 405, 363-379. 79. Starr, R. C., and Jaenicke, L. (1974) Proc. Nat. Acad. Sci. USA 71, 1050-1054. 80. Chen, J. S., Mortenson, L. E., and Palmer, Cl. (1976)Advan. Exp. Med. Biol. 74,68-82. 81. Gitlitz, P. H., and Krasna, A. 1. (1975) Biochemistry 14, 2561-2568. 82. Yagi, T., Kimura. K., Daidoji, H., Sakai, F., Tamura. S., and Inokuchi, H. (1976) J. Biochem. (Tokyo) 79, 661-671. 83. Duley, J. A., and Holmes, R. S. (1976) Eur. J. Biochem. 63, 163-173. 84. Cromartie, T. H., and Walsh, C. T. (1975) Biochemistry 14, 2588-2596. 85. Noyes, B. E., and Bradshaw, R. A. (1973) J. Biol. Chem. 248, 3052-3059. 86. Preuveneers, M. 3.. Peacock, D., Crook, E. M., Clark, J. B., and Brocklehurst, K. (1973) Biochem. .Z. 133, 133-157. 87. Bergmeyer, H. U., Gawehn, K., Klotzsch, H., Krebs, H. A., and Williamson, D. H. (1967) Biochem. J. 102, 423-431. 88. Ruettinger, R. T., Olson, S. T., Boyer, R. F., and Coon, M. J. (1974)Biochem. Biophys. Res. Commun. 57, 1011-1017. 89. Reed, W. D., Clinkenbeard, K. D., and Lane, M. D. (1975) J. Biol. Chem. 250, 3117-3123. 90. Lindstedt, S., Odelhog, B., and Rundgren, M. (1977) Biochemistry 16, 3369-3377. 91. Lindblad, B., Lindstedt, G., Lindstedt, S., and Rundgren, M. (1977)J. Biol. Chem. 252, 5073-5084. 92. Schultz, R. M., Groman, E. V., and Engel, L. L. (1977)J. Biol. Chem. 252,3775-3783. 93. Uwajima, T., Yagi, H. and Terada, 0. (1974) Agr. Biol. Chem. 38, 1149-1156. 94. Tomioka, H., Kagawa, M., and Nakamura, S. (1976)J. Biochem. (Tokyo) 79,903-915. 95. Wilde III, C. E., and Koshland, M. E. (1973) Biochemistry 12, 3218-3224. 96. Percy, M. E., and Dorrington, K. J. (1974) Canad. J. Biochem. 52, 610-619. 97. Azuma, T., Isobe, T., and Hamaguchik (1975) .Z.Biochem. (Tokyo) 77, 473-479. 98. Azuma, T., and Hamaguchi, K. (1976) J. Biochem. (Tokyo) SO, 1023-1038. 99. Bobrzecka, K., Konieczny, L., Rybarska, J., Bogdal, J., and Urasinski, I. (1973) Biochim. Biophys. Acta 295, 564-575. 100. Eisenberg, R. (1976) Immunochemistry 13, 355-359. 101. Tewari, U. J., and Mukkur, T. K. S. (1975) Zmmunochemistry 12, 925-930. 102. Lisowski, J., Janusz, M., Tyran, B., Morawiecki, A., Golab, S., and Bialkowska, H. (1975) Immunochemistry 12, 159- 166. 103. Lisowski, J.. Janusz, M., Tyran, B., Morawiecki, A., Golab, S., and Bialkowska, H. (1975) Immunochemistry 12, 167- 172. 104. Kickhofen, B., Hammer, D. K., and Scheel, D. (1968) Hoppe-Seyler’s Z. PhysioZ. Chem. 349, 1755-1773. 105. Steiner, L. A., and Lowey, S. (1966) J. Biol. Chem. 241, 231-240. 106. Johnson, E. A.. and Brighton, W. D. (1971) J. Zmmunol. Methods 1, 91-99. 107. Middaugh, C. R., Thomas, G. J., Jr., Prescott, B., Aberlin, M. E., and Litman, G. W. (1977) Biochemistry 16, 2986-2994. 108. Mikkur, T. K. S., and Tewari, U. J. (1973) Immunochemistry 10, 477-479. 109. Jefferis, R., Matthews, J. B., and Bayley, P. M. (1977)Zmmunochemistt-y 14,393-396. 110. Mestecky, J., Hammack, W., Schrohenloher, R., and Bennett, J. (1973) Protides Biol. Fluids 20, 279-283. 111. Barger, B. O., and Inman, F. P. (1976) Immunochemistry 13, 165-171. 112. Brady, F. O., and Udom, A. U. (1976) Advan. Exp. Med. Biol. 74, 343-353. 113. Roberts, J., and Rosenfeld, H. J. (1977)J. Biol. Chem. 252, 2640-2647. 114. Perlstein, S. H., and Kezdy, F. S. (1973) .Z. Supramol. Struct. 1, 249-254. 115. Sohome, K., and Bhandarkar, A. P. (1954) J. Sci. Znd. Res. (India) 138, 500-504. 116. Mosdov, V. V., Malova, E. L., Valueva, I. A., and Shulmina, A. I. (1975)Bioorg. Khim. 1, 1449- 1456.
PROTEINS:
MOLAR
ABSORPTIVITY
AND A;?, VALUES
241
117. Iwasaki, T., Wada, J., Kiyohara, T., and Yoshikawa, M. (1975)J. Biochem. (Tokyo) 78, 1267- 1274. 118. Iwasaki, T., Kiyohara, T., and Yoshikawa, M. (1974)J. Biochem. (Tokyo) 75,843-851. 119. Yoshida, C., and Yoshikawa, M. (1975) J. Biochem. (Tokyo) 78, 935-945. 120. Takahashi, H., Iwanaga, S., and Suzuki, T. (1974) J. Biochem. (Tokyo) 76, 709-719. 121. Dubin, A. (1977) Eur. J. Biochem 73, 429-435. 122. Wunderer, G.. Beress, L.. Machleidt. W.. and Fritz, H. (1975) Methods Enzymol. 45B, 881-888. 123. Saklatvala, J., Wood, G. C., and White, D. D. (1976) Biochem. J. 157, 339-351. 124. Ulane, R. E., and Cabib, E. (1974) J. Biol. Chem. 249, 3418-3422. 125. Uehara, Y., Tonomura, B., Hiromi, K.. Sato, S., and Murao, S. (1976) Biochim. Biophys. Acta 453, 513-520. 126. Petrucci. T., Rab, A., Tomasi, M., and Silano, V. (1976) Biochim. Biophys. Acta 420, 288-297.
127. Silano, V., Pocchiari, F., and Kasarda. D. D. (1973) Biochim. Biophys. Acra 317, 139-148. 128. Fossum, K., and Whitaker, J. R., (1968) Arch. Biochem. Biophys. 125, 367-375. 129. Abu-Erreish, G. M., and Peanasky, R. J. (1974)J. Biol. Chem. 249, 1558-1565. 130. Moroi, M., and Aoki, N. (1976) J. Biol. Chem. 251, 5956-5965. 131. Demaille, J. G., Peters, K. A., and Fischer, E. N. (1977) Biochemistry 16, 3080-3086. 132. Tsuru, D., Tomimatsu, M.. Fujiwara, K., and Kawahara, K. (1975)J. Biochem. (Tokyo) 77, 1305-1312.
133. Yoshikawa, M., Iwasaki, T., Fujii, M., and Oogaki, M. (1976) J. Biochem. (Tokyo) 79, 765-773.
Gennis, L. S., and Cantor, C. R. (1976) J. Biol. Chem. 251, 741-746. 135. Smimoff, P., Khalef, S., Birk, Y., and Applebaum. S. W. (1976) Biochem. J. 157, 134.
745-751.
136. Belew, N., Porath, J., and Sundberg, L. (1975) Eur. J. Biochem. 60, 247-258. 137. Ogiso, T., Noda. T., Sako, Y., Kato. Y., and Aoyama, M. (1975)J. Biochem. (Tokyo) 78, 9-17. 138.
139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149. 150.
151. 152. 153.
154.
Rouleau, M., and Lamy, F. (1974) Canad. J. Biochem. 53, 958-974. Furusawa, Y., Kurosawa, Y., and Chuman, I. (1974)Agr. Biol. Chem. 38, 1157-1164. Travis, J., Johnson, D., and Pannell, R. (1974) in Bayer Symposium V-Proteinase Inhibitors (Fritz, H., Tschesche, H., Greene, L., and Truscheit. E., eds.). pp. 31-39. Springer-Verlag, Berlin/New York. Kress, L. F., and Laskowski, M., Sr. (1974) in Bayer Symposium V-Proteinase Inhibitors (Fritz, H., Tschesche, H., Greene, L., and Truscheit, E.. eds.), pp. 23-30. Springer-Verlag, Berlin/New York. Schultze, H., Heide, K., and Haupt, H. (1962) Klin. Wochenschr. 40, 427-430. Pubols, M. H., Bartelt, D. C., and Greene, L. J. (1974) J. Biol. Chem. 249, 2235-2243. Wu, F. C., and Laskowski, M. (1960) J. Biol. Chem. 235, 1680-1685. Jering, H.. and Tschesche, H. (1976) Eur. J. Biochem. 61, 453-463. Hojima, Y., Moriwaki, C., and Moriya, H. (1973) J. Biochem. (Tokyo) 73, 923-932. Mercola, D. A., Morris, J. W. S., Arquilla, E. R., and Bromer, W. A. (1967) Biochim. Biophys. Acta 133, 224-232. Hamlin, J. J., and Arquilla, E. R. (1974) J. Biol. Chem. 249, 21-32. Seelig, G. F., and Colman, R. F. (1977) J. Biol. Chem. 252, 3671-3678. Macfarlane, N., Mathews, B., and Dalziel, K. (1977) Eur. J. Biochem. 74, 553-559. Carlier, M. F., and Pantaloni, D. (1973) Eur. J. Biochem. 37, 341-354. Hibino, Y., Nosoh, Y., and Samejima, T. (1974) J. Biochem. (Tokyo) 75, 553-561. Durekovic, A., Flossdorf, J., and Kula, M. R., (1973) Eur. J. Biochem. 36, 528-533. Hojima, Y., Yamashita, M., Ochi, N.. Moriwaki, C., and Moriya, H. (1977) J. Biochem. (Tokyo) 81, 599-610.
242
DONALD
M. KIRSCHENBAUM
155. Matsuda, Y., Miyazaki, K., Moriya, H., Fujimoto, Y., Hojima, Y., and Moriwaki, C. (1976) J. Biochem. (Tokyo) 80, 671-679. 156. Fritz, H., Eckert, I., and Werle, E. (1967) Hoppe-Seyler’s Z. Physiol. Chem. 348, 1120-1132. 157. Fiedler, F., Hirschaner, C., and Werle, E. (1975)Hoppe-SeyLr’sZ. Physiol. Chem. 356, 1879-1891. 158. Steinert, P. M. (1975) Biochem. J. 149, 39-48. 159. Steinert, P. M., and Idler, W. W. (1975) Biochem. J. 151, 603-614. 160. Yorifuji, T., Jeng, I. M., and Barker, H. A. (1977) J. Biol. Chem. 252, 20-31. 161. Chiyonobu, T., Shinagawa, E., Adachi, O., and Ameyama, M. (1976)Agr. Biol. Chem. 40, 175-184. 162. Chiyonobu, T., Adachi, O., and Ameyama, M. (1974)Agr. Biol. Chem. 37,2871-2875. 163. Chiyonobu, T., Shinagawa, E., Adachi, O., and Ameyama, M. (1975)Agr. Biol. Chem. 39, 2263-2264.
164. 165. 166. 167. 168.
Powers, S. G., and Snell, E. E. (1976) J. Biol. Chem. 251, 3786-3793. Bechtel, P. J., Beavo, J. A., and Krebs, E. G. (1977)J. Biol. Chem. 252, 2691-2697. Weintraub, H., Vincent, F., Baulieu, E. E., and Alfsen, A. (1973)FEBS Let?. 37,82-88. Benson, A. M., Suruda, A. J., and Talalay, P. (1975) J. Biol. Chem. 250, 276-280. Komiya, M., Kato, H., and Suzuki, T. (1974) J. Biochem. (Tokyo) 76, 811-822. 169. Kato, H., Suzuki, T., Ikeda, K., and Hamaguclii, K. (1967) J. Biochem. (Tokyo) 62, 591-598. 170. Moriguchi. M., Yamamoto, T., and Soda, K. (1973) Biochemistry 12, 2969-2974. 171. Brown, R. C., Fish, W. W., Hudson, B. G., and Ebner, K. E. (1972) Biochim. Biophys. Acta
172. 173. 174. 175. 176. 177. 178.
491, 82-92.
Barman, T. E. (1973) Eur. J. Biochem. 37, 86-89. Quarfoth, G. J., and Jenness, R. (1975) Biochim. Biophys. Acta 379, 476-487. McPhail, M., and Furth, A. J. (1973) Biochem. Sot. Trans. 1, 1260-1263. Holmes, R. S., and Scopes, R. K. (1974) Eur. J. Biochem. 43, 167-177. Anderson, S., and Weber, G. (1966) Arch. Biochem. Biophys. 116, 207-223. Long, G. L., and Kaplan, N. 0. (1973) Arch. Biochem. Biophys. 154, 696-710. Garland, R. C. (1973) Arch. Biochem. Biophys. 157, 37-43.