Molar absorptivity and A1 cm1% values for proteins at selected wavelengths of the ultraviolet and visible regions. XV

Molar absorptivity and A1 cm1% values for proteins at selected wavelengths of the ultraviolet and visible regions. XV

ANALYTICAL BIOCHEMISTRY 87, 223-242 (1978) Molar Absorptivity and A:Frn Values for Proteins Selected Wavelengths of the Ultraviolet and Visible Reg...

819KB Sizes 0 Downloads 41 Views

ANALYTICAL

BIOCHEMISTRY

87, 223-242 (1978)

Molar Absorptivity and A:Frn Values for Proteins Selected Wavelengths of the Ultraviolet and Visible Regions. XV. DONALD

at

M. KIRSCHENBAUM’

Department of Biochemistry, College of Medicine. Downstate Medical Center, 450 Clarkson Avenue, Brooklyn. Net<, York 11203 Received October 31, 1977: accepted January 27, 1978

Table 1 lists the molar absorptivity and A:‘%, values at the indicated wavelengths for approximately 200 proteins. Literature citations are given for all the proteins. For many of these proteins the molecular weights and the conditions used to obtain these values are also given, as is additional information in the footnotes to the table. The last published paper in this series is Ref. (1) and the contents of the first 10 papers of the series can be found in Ref. (2). ACKNOWLEDGMENTS I have collected the data in this paper over the past several years. I did the major portion of the library work using the facilities of the Library of the College of Medicine, Downstate Medical Center. During the summer months I used the Library of the Marine Biological Laboratory, Woods Hole, Massachusetts, and more recently, February-July 1976, the Library of the University of Sussex, Falmer, England. 1 thank the librarians of each of these libraries for their kind assistance. Mr. Edward Becker assisted me in checking references.

REFERENCESTOTEXT 1. Kirschenbaum, D. M. (1977) Anal. Biochem. 82, 83-100. 2. Kirschenbaum, D. M. (1975) in Handbook of Biochemistry and Molecular Biology: Vol. 2: Proteins (Fasman, G. D., ed.). 3rd ed., pp. 385-545, Chemical Rubber Co., Cleveland. Ohio. ’ Faculty Exchange Scholar, State University of New York.

223

0003-2697/78/0871-0223$02.00/O Copyright All rights

0 1978 by Academic Press, Inc. of reproduction in any form reserved.

DONALD

224

M. KIRSCHENBAUM TABLE

MOLAR

ABSORPTIVITY

AND

1

A :Trn VALUES

FOR PROTEINS

Ey 0

Protein Desulforedoxin Desulfovibrio

x 10-a

A :Tmo,”

nm”

Comments”

Ref.

(oxidized) gigas

0.9934 0.9437 0.6540 1.1960 0.7029

278 285 310 370 507

1 I 1 1 1

280

2

280

3

pH 7.8, 0.1 Refr.

16.5

281.5

4

Dry wt MW = 50,000 (4) pH7.3,O.l M KPh

14.0

280

5

AA

7.29

19.61 24.9 26.6

280 280 280

6 7 8

pH 8.8, 0.2 M Tris Inter. pH 5.0, 0.01 M AC, MW = 27,422 (8)

9.11

13.8’

280

9

pH 8.1, 0.05 M Tris-Cl, MW = 66,000 (9)

280

10

11.9 13.5

280 280

11 12

9.4

280

13

12.6

nc

14.2

280

Diamine oxidase Pig kidney Dihydrofolate reductase Chicken liver

2.8970

Dihydropteridine reductase [EC 1.6.99.71 Beef liver

8.25

1.7

Dipeptidase [EC 3.4.13.21 Pig intestinal mucosa 14.6 Elastase Pig Human pancreas

AA do. do. do. do.

M

KPh,

Exotoxin Pseudomonas

aeruginosa

Factors Factor G, EF-G, Elongation factor Escherichia

co/i

5.9

Factor V Bovine Factor X, Bovine Factor XI, plasma thromboplastin antecedent Bovine Factor XII, Hageman factor Bovine plasma

16.6

14 Refr. MW = 132,000 (14) 15

pH 7.5, 0.02 M Tris-HCI containing 0.2 M NaCI, corrected for light scattering, Refr.

PROTEINS:

MOLAR

ABSORPTIVITY TABLE

Protein

Sambucus racemosal

Blue-green alga, Nostoc verrucosum Desulfovibrio desulfuricans Oxidized

225

VALUES

I (Contini&)

E,$J N x 10-a

Ai9grnb

nmr

13.2

280

16 Inter., pH 7.2, 0.02 M morpholinopropanesulfonic acid

11.6 12.0

280 280

16 do. 17

12.3

280

18

2.42

32.76

280

19

1.68 0.023l

22.74

390 466

19 20

0.01’ 0.015’ 0.02’

423 331 277

20 20 20

1.1512 1.1127

425 422

21 21

1.7500 2.0588

390 305

22 22

Factor IX Human

Factor X Human Factor IX, Christmas factor Fatty acid synthetase Pig liver Ferredoxin Clostridium thermoaceticum

AND A$

Ref.

Comment&

pH 7.6, 0.1 M Tris-HCI, MW = 7387 (19) do. From Fe analysis, assuming 2 Feimol do. do. do.

Ferritin, apoCorbicula sandai coelomic fluid

13.4

280

23

Corrected for absorbance of hydrated ferric oxide crystallite

Fibrinogen Chicken

12.1

280

24

13.5

282

24

pH 7.0,O.Ol M NaPh in saline. 6 M urea, 0.1 N NaOH

6.8

280

25

13.1 8.3 14.3 9.5 9.0

280 260 280 260 280

26 KN 26 do. 26 2% SDS 26 do. 27 Dry wt

12.93

280

28

Filamin Chicken gizzard Fumarylacetoacetate fumarylhydrolase [EC 3.7.1.21 Beef liver

mdo-@-Galactosidase n-Glucosidase Buckwheat seeds

Lowry

Dry wt

226

DONALD

M. KIRSCHENBAUM

TABLE

1 (Continued) EM”

x lo-’

Protein Porcine serum P-D-Glucosidase [EC 3.2.1.211 Almond

nmp

Ref.

8.1

280

29

1.25 7.06 4.0

217 280 290

30 30 30

7.6

280

31

From Fig. 2 of Ref. (31)

4.14

278

32

5 mM NaB, pH 6.4, Dry wt, MW = 63,000 (32)

17.8

280

33

Refr., SO mM Tris, 10% glycerol, pH 7.4, containing 0.2 mM PMSF and 1 mivt DTT

13.4

280

34

Refr.

10.2

nc

35

Dry wt

9.7

277

36

14.1

403

37

1.08 0.96 0.62 0.31 12.2 0.837 0.649

505 540 568 620 423 550 587

37 37 37 37 37 37 37

10 mM Ph buffer, PH 7 do. do. do. do. do. do. do.

411 416 412 428 384 410 414 416

38 38 38 38 38 38 38 38

pH pH pH pH pH pH pH pH

Ai9&,,*

Comments” Dry wt

Glutamate synthase Thiobacillus

thioparus

L-Glycerol-3-phosphate dehydrogenase [EC 1.1.1.81 Mediterranean fruit fly, Ceratitis

2.61

capitata

Glycogen debranching enzyme [EC 2.4.1.25 + 3.2.1.331 Squalus

acanthias

Glycogen synthase [EC 2.4. I. 1l] Rabbit muscle Glycoprotein, Cat+ binding Human urine cr,-Glycoprotein Human placenta Hemoglobin Protoporphyrin globin

Zinc protoporphyrin

globin

Horse erythrocytes Methemoglobin Cyanmethemoglobin Hemoglobin + cyanide Green hemoglobin reduced in CO

9.0 10.4 9.2 13.5 6.1 7.7 7.6 7.7

10.8 4.77 10.8 9.2 1.16 4.7 10.6 9.8

PROTEINS:

MOLAR

ABSORPTIVITY TABLE

Tadpole and adult Rana catesbeiana Reduced

tubifex

Limnodrilus HbO, Hb HbCO Hbferri HbCNferri Nine-banded Dasypus Polychaete, Pallas HbO,

1.26 0.705

Comment@

17.3 22.2 22 19.4

280 280 280

41 42 43

1.2

540

44

1.48 I .25 1.42 0.912 10.4

575 588 569 405 420

45 45 45 45 45

540

46

For HbCO at pH 7.4 in Ph buffer.

MW do.

= 68,000.

345 418 541 576 280 431 555 397 504 280 357 421 545 280 280

47 47 47 47 47 47 47 47 47 47 47 47 47 47 47

pH 7.7, NaPh do. do. do. do. do. do. do. do. do. do. do. do. do.

410.5 546 581

48 48 48

Inter. pH 5.0, 0.04 M AC containing 0. I6 mmol of NaCl + 0.001 mol of NaCN/liter This is CN derivative MetHb, l hl is cm-’ valine-’

aphroditois, 3.29 11.89 1.49 1.47 19.5 11.97 1.25 10.85 1.3

MetHb

18.7 CyanMetHb

4.17 12.02 1.35 19.0 11.3 Mermis

Ref.

39 39 40

7.70’

Hb

Globin Nematode, HbO,

nmc

560 560 280

armadillo, novemcintus Eunice

A;“&,,6

bullfrog,

OXY Mollusc, Helisoma trivolvis Horse leech, Huemopsis sanguisuga Polychaete, Vista pac$ca Snail, Biomphalaria glabruta

Tubifex

227

A:2m VALUES

1 (Continued)

%.I” x 10-a

Protein

AND

nigrescens 11.3 1.36 1.0

228

DONALD

M.

KIRSCHENBAUM

TABLE EM(’ x lo-”

Protein Hb

Aiv:,”

8.7 1.19 15.8 1.62 1.62

HbCO

Trout ApoHb Earthworm, HbCN, HbO,

I (Continued)

Ref.

421 557 418.5 541 567

48 48 48 48 48

280

49

11.4 10.5 10.6 11.2 9.7 10.4 10.8 5.6 4.0

540 417 417 417 417 417 417 417 417 417

50 51

3.0

417

51

0.519 1.50 0.888 1.59 0.0064 0.0274 0.550 1.50 1.19 1.50 0.0004

510 540 560 576.5 680 920 500 537.5 5.55 568 920

52 52 52 52 52 52 52 52 52 52 52

3.10 11.0 1.07”

280 540 276 420 540 540 276 420 540

53 54 54 54 54 54 54 54 54

1.3

571

55

IV Lumbricus ferri-

nm”

11

Comments”

terrestris

Calf HbO,

HbCO

Human Globin tetramer a-Chain CNMet

P-Chain CNMet

Cobalt-apoHb complexes + protoporphyrin IX

4.42

8.0 6.99* 2.74 11.8 1.12y 6.67n

1.0 M NaCl NaCl 1.0 M NaClO, 0.4 M MgClp 1.0 M M&l, 1.0 M NaI 1.0 M GHCI 2.0 M GHCI 2.0 M GHCI + 0.1 MME 6.0 M GHCI

51 2.0 M 51 51 51 51 51 51 51

Oxy, 0.1 M Ph, pH 7.0, ST, 0, pressure = 750 Torr

PROTEINS:

MOLAR

ABSORPTIVITY

TABLE

+ mesoporphyrin

+ deuteroporphyrin

Oxy-HbA Oxy-Hb’

Oxy-Hb Zurich Deoxy-HbA Deoxy-Hb’

Deoxy-Hb Zurich Hb-Ferrij

IX

229

1 (Continued)

%I” x 10-q

Protein

AND A::,, VALUES

nm”

Ref.

Comments”

1.3 12.0 1.7

538 402 552

55 55 55

11.0 1.2

422 561

55 55

1.3 12.0 1.5

530 412 542

55 55 55

13.0 0.83

392 559

55 55

12.0 1.2

412 541

55 55

12.0 1.4399 1.5285 1.53 0.906 1.23 1.65 0.015 1.4283 I .4595 1.3373 1.08 1.34 1.16 1.01 0.115 1.3373 0.609

393 541 576 540 560 570 576 630 541 576 555 540 560 570 576 630 555 540

55 56 56 57 57 57 57 57 56 56 56 57 57 57 57 57 56 57

do. do. Deoxy, 0.1 M Ph. pH 7.0. + sodium dithionite do. Oxy. 0.1 M Ph, pH 7.0, 5°C 0, pressure = 750 Torr. do. do. Deoxy, 0.1 M Ph, pH 7.0, + sodium dithionite do. Oxy, 0.1 M Ph, pH 7.0, 5°C 0, pressure = 750 Torr do. Deoxy, 0.1 M Ph. pH 7.0, + sodium dithionite do.

0.373 0.355 0.358 0.412

560 570 576 630

57 57 57 57

A :9&b

Value per heme do. do. do. do.

Value per heme do. do. do. do. do. Value per heme, pH 6.2 do. do. do. do.

230

DONALD

M. KIRSCHENBAUM

TABLE

1 (Continued) Ey”

Protein

x 10-q

A:Srnb

0.583 0.357 0.340 0.342 0.394

HemoglobinA

nm’

Ref.

Comments”

540 560 570 576 630

60 60 60 60 60

pH 6.2 do. do. do. do.

11.6

279

61

16.7

280

62

414 280

63 64

280 428 550

65 65 65

258

66

20.6

278

67

8.85 9.47 10.5 5.53

280 280 278 280

68 68 69 70

6.0

278

71

7.62

280

72

5.70

280

73

Lowry

9.97

278

74

pH 7.0, 10 mM KPh, MW = 80,000 (74), Dry wt

215 230 275 230 275 230 210

75 75 75 75 75 75 76

Water do. Water do. Water do.

Hemoglobin reductase, ferrBlue-white dolphin, Srenella caeruleo-alba

Hemopexin Rat plasma

1.15

Human plasma Hemoptotein Pig liver

11.0 18.5

H-450 26.1 26.3 4.26

Hepatocuprein Horse liver Hevamine

11.97 12.06 1.95

1.04

Hevea brasiliensis latex Hexokinase [EC 2.7.1.11 Yeast PI Pi1 Wheat germ Bovine brain

Pig heart Human heart, Type 1 Histidine ammonia-lyase [EC 4.3.1.31 Achromobacter

liyuidum

Dry wt MW = 69,000 (62)

MW = 218,000(65) do. do.

AA AA Refr. pH 7.8, 0.05 M KPh. 0.002 M EDTA pH 7, y/2 = 0.1 Ph containing 1 mM EDTA

Histidyl transfer ribonucleic acid synthetase Salmonella

typhimurium

Histone Calf thymus LAK [f2a2] GRK [f2al] KAS [f2b] H-l

8.0

0.405 4.3 0.54 4.2 0.67 5.4 0.16

PROTEINS:

MOLAR

ABSORPTIVITY

TABLE

231

AND A:Tm VALUES

1 (Continued) EM<’

Protein

x 10-d

Hormone Luteinizing Human pituitary Component Component Component Component Sexual Vu/vo.r

c’arteri

I 11 III IV

1.8975 1.8958 2.0340 1.9161

(male) spheroids

A ; 9&,,b

nm”

Ref.

Comments”

5.4

277

77

5.9 5.9 5.8 6.1

280 280 280 280

78 78 78 78

Corrected for light scattering pH 7, 0.001 M Ph do. do. do.

3.3 2.7

273 283

79 79

pH 8, 0.1 M Tris-Cl pH 13, 0.1 M NaOH

400

80

pH 7.2, reduced protein

280 410 280 400

81 81 82 82

19 338 15.5 328 0.86 13 319

280 205 280 205 450 280 20.5

83 83 83 83 83 83 83

19 338 17 332 2.1 15 320 11.4

280 205 280 205 450 280 205 280

83 83 83 83 83 83 83 84

4.39

278

85

Dry wt

7.24

280

86

MW = 85,000 (87)

280

88

0.625 416

88

From Fig. 1 of Ref. (88) do.

Hydrogenase [EC 1.12.2. l] Clostridium

pasieurianum

9.6 1.4 16.4 4.7

Chromarium Desulfovibrio

2.53

w&w-is

L-cy-Hydroxyacid oxidase Rat liver A, fresh A. stored A, apoRat kidney B. fresh B, stored B, apoRat kidney L-3-Hydroxyacyl-CoA dehydrogenase [EC 1.1,1.35] Pig heart muscle D-3-Hydroxybutyrate dehydrogenase Rhodopseudomonas

spheraides

6.15

1.84 0.53

MW = 89,000 (82) do.

w-Hydroxylase Pseudomonas

oleovorans

27.5

232

DONALD

M. KIRSCHENBAUM

TABLE

Protein

1 (Continued)

EM” x IO-’

A, ,$

nm”

Ref.

II.4

280

89

Refr.

9.4’

280

90

0.19 11.4 11.3

595 278 280

90 91 91

pH 6.7, 0.2 M NaCl in 10 mM KPh do. Water do.

6.39

6.4

280

92

pH 7.5, 5 mM KPh, 1 mM EDTA, Refr. MW = 99,886 (92)

5.56

17. I

280

93

0.65

2.0 I5

470 280

93 94

pH 7.0, 0.1 M Ph. MW = 32,500 (93) do. Water, data from Fig. 4 of Ref. (94)

15

278

95

10.8 11.2 9.47 13.8 14.5 12.5

280 280 280 280 280 280

96 96 96 96 96 96

3-Hydroxy-3-methylglutaryl-CoA synthetase Chicken liver mitochondria 4-Hydroxyphenylpyruvate dioxygenase [EC 1.13. I 1.271 Pseudomonas sp. PJ874 Human liver

Comment@

3[ 17]@-Hydroxysteroid dehydrogenase Pseudomonas

testosteroni

3/3-Hydroxysteroid [EC 1.1.3.61 Brevibacterium

Streptomyces

oxidase sterolicum

violascens

Immunoglobulin IgA, secretory Human colostrum IgG, Human”’ Sac H chain L chain En H chain L chain IgG, Bovine serum”

17.72

12.22

280

101

Bovine colostrum

18.88

12.1

280

101

13.5

280

103

15.0

280

102

Ovine colostrum

MW = 145,000(101), pH 8.0, 0.32 M NaCl-0.01 M Tris-HCI MW = 156,000(101), pH 8.0, 0.32 M NaCI-0.01 M Tris-HCI pH 7.2, 0.1 M Ph, Dry wt do.

PROTEINS:

MOLAR

ABSORPTIVITY TABLE

AND A;:“,

233

VALUES

1 (Continued) CM(l

Protein

I&

x IO-’

A:q;,”

nmc

Ref. 101

Bovine serum”

17.96

12.3

280

Bovine colostrum

17.67

12.1

280

13.9

280

Ovine colostrum yG, conjugated with fluorescein isothiocyanate W Human, McE Fab, Y [Fcl,~ Bovine, IgM subunit Fab I@ Human, myeloma IgA, J chain Human Mouse Indoleamine-2,3-dioxygenase Rabbit small intestines Indolyl-3-alkane a-hydroxylase Pseudomonas xA Inhibitor Protease, VII, bromelain acetone powder Protease, double bean, Faha

(Phase&s

106 PH 9

280 280 280 280 280

107 107 107 108 108

17.0

280

109

6.53 7.0 6.5

275 278 280

110 95 Ill

406

I12

280

113 pH 5.5

9.7

280

114

pH 4.6

24.0 7.52 10.67

nc 280 276

115 116 I17

MW = 14,500 (116)

10.32

276

118

1.42 10.03

280 276

119 119

MW = 7,894 (119) MW = 8,620 (119)

5.3 5.5 12.60

280 280 280

120 120 121

pH 7.5, 0.1

21

1.09

MW = 146,000(101). pH 8.0. 0.089 M NaCl-0.01 M Tris- HCI 101 pH 6.0, 0.01 M Ph0.14 M NaCI, MW = 146.000 (101) 102 pH 7.2, 0.1 M Ph

12.2 12.7 11.2 12.6 14.0

16.8

vulgaris

Protease, potato Protease, IIb, potato Protease, Ha, potato active fragment Protease, adzaki beans

pH 7.0, 0.15 do. do.

M

NaCl

Value per heme

angularis)

I II Protease, Russell’s viper venom, Vipera

-1’

Comments”

0.112 0.865

russelli

T

f1 Protease, horse leukocytes

M

Tris

DONALD

234

M. KIRSCHENBAUM

TABLE

1 (Continued)

E&q<’

Protein

x 10-d

Al&‘)

nm”

Ref.

Comment@

Protease, sea anemone, Anemonia

sulsata

0.49

7.24 4.7

280 280

122 123

MW = 6,800 (122) Dry wt

0.245

2.8

275

124

pH 7, MW = 8,757

Protease, human plasma Protease, Saccharomyces cerevisiae

(124) Protease, Streptomyces 1.91

albogriseolus

276

125

pH 7, MW = 23,000

12.6

278

126

MW = 25,000 (126)

8.8 70.1

275 225

128 128

5.56 5.54 5.31 5.46 7.03

280 280 280 280 280

129 129 129 129 130

MW MW MW MW

1.3

276

131

pH 7.8, 50 mM AmB

10.2

280

132

13.0

278

133

280 280 275 275 275 275

134 135 136 136 136 136

280

134

12.6 10.3

280 280

137 138

3.5

280

139

6.88 5.0 5.3 8.4 8.4 5.1

280 140 280 141 280 142 275.5 143 275.5 143 280 144

8.29

(12% o-Amylase, wheat kernels” Papain and ficin Chicken egg white Pepsin, Ascaris

3.15

lumbricoides

0.965 0.86 0.86 1.72

I I1 III

IV a,-Plasmin, human plasma Protein kinase, rabbit skeletal muscle Subtilopeptidase, neutral Pig serum Subtilisin, barley, Hordeum

vulgare

TrypsiniChymotrypsin Blackeyed peas Chick peas, Cicer ariefinum Protein P3 Protein P4 Protein P5 Protein P6 Trypsin Blackeyed peas Barley, Hordeum disfichum var. Emend Lamark Potato. So/unum ruberosum

0.277 2.5 5.31 5.39 5.39 5.40 0.344

= = = =

17,359 15,533 16,207 31,505

pH 6.0, 0.1

M

(129) (129) (129) (129)

NaAc

L. 2.32

pH 7.0, 0.05 M Ph, MW = 22,500 (138), Dry wt

Hakuhenzu bean, Dolichos

cY-Trypsin Human Bl B2 Bovine

lablad

3.99 0.595 0.595

Water, 0.1

N

NaOH

PROTEINS:

MOLAR

ABSORPTIVITY

TABLE

AND A;&

235

VALUES

1 (Conrincfed)

EM ”

Protein Trypsin-Kallikrein Bovine’ Arg-15 modified Phe- 15 modified Try-15 modified Kallikrein Potato PKl-56 PK2-64 Insulin Bovine MonoiodoIsocitrate dehydrogenase, TPN specific Human heart Isocitrate dehydrogenase, NADP dependent [EC 1.1.1.421 Bovine heart Mitochondria

Bovine liver

Bacillus

x 10-J

Ref.

280 280 280 280

145 145 145 145

0.625 0.625 0.625 1.11

Commentsd

2.3

10.1

280

146

2.4

10.2

280

146

pH 6, 0.1 M NaAc, MW = 23,000 do.

227 276 276

147 148 148

0.01 do.

10.7

280

149

See Footnote s.

5.3

11.8

280

150

6.2

12.9

278

10.9

280

pH 7.0, 0.02 M Ph containing 2 mM MgSO,, Dry wt, MW = 45,000 (150) 151 pH 7.3, 0.1 M Ph. Refr., MW = 48,000 (151) 152 Dry wt

18.0

280

153

AA

14.8 14.8 13.9 14.1

280 280 280 280 282 280 280

154 154 154 155 156 157 157

pH 8.0, 0.05 do. do.

5.6

277

158

5.2 4.0 6.0

277 277 277

159 159 159

4.3 0.5950 0.6835

stearorhermophilus

Isoleucyl t-RNA synthetase [EC 6.1.1.5] E. coli MRE600 Kallikrein Canine pancreas I II 111 Human urinary Porcine pancreas A B a-Keratin Bovine epidermal Polypeptide chain la lb

‘4 l%lc,” nm”

5.1 5.06’ 5.06’

N

pH 6 pH 6

HCI

M

Tris

236

DONALD

M. KIRSCHENBAUM

TABLE

1 (Continued)

E$

Protein

x IO-4

3 4 5 6 3-Keto-5-aminohexanoate cleavage enzyme Clostridium SB4 2-Ketogluconate reductase [EC 1.1.1.691 Acetobacter Gluconobacter

rancens liyuefaciens

18 18

Al,%,”

nm”

Ref.

6.5 7.2 6.1 6.9

277 277 271 277

159 159 159 159

4.3

280

160

280 280

161 162

MW = 120,000 (161) MW = 120,000 (163)

8.5

280

164

Refr.

13.1

280

165

Lowry

3.28

280

166

3.72 3.36

277 280

166 167

Refr., pH 7, 0.03 KPh. do. AA

7.4 6.7

280 280

168 169

pH 6.5

14.3

280

170

Dry wt

16.2 15.3 20.6 19.9 16.4 16.4 16.3”

280 280 280 280 280 280 280

171 172 173 173 173 173 173

16.5

280

174

11.5

280

175

11.4 12.0

280 280

175 175

15 15

Commentsd

Ketopantoate hydroxymethyl transferase E. coli

Kinase, CAMP dependent Rabbit skeletal muscle Catalytic subunit h”-3-Ketosteroid isomerase [EC 5.3.3.11 Pseudomonas

testosteroni

Kininogen Bovine plasma High MW form Low MW form Kynureninase [EC 3.7.1.31 Pseudomonas

marginalis

cr-Lactalbumin Rat milk Bovine milk Porcine milk Baboon milk Chimpanzee milk Rabbit milk /3-Lactamase, inducible [EC 3.5.2.61 Pseudomonas

M

AA

aeruginosa

NCTC 8203 Lactate dehydrogenase [EC 1.1.1.271 Opossum A4 Chicken A4 B4

6.95

MW = 42,000 (174)

PROTEINS:

MOLAR

ABSORPTIVITY

TABLE

Protein Sardine A4 B4 Porcine, dansylated u-Lactate dehydrogenase [EC 1.1.1.28] Horseshoe crab, Limulus polyphemus DL-Lactate dehydrogenase Leuconostoc mesenteroides

AND A;:“, VALUES

237

I (Continued)

E$ x IO-4

A ;:,,,”

nm”

Ref.

10.9 12.1 0.43

280 280 337

175 175 176

5.1

280

177

Lowry

280

178

Refr.

6.67

Comments”

” l i,, is the molar absorptivity expressed as MS’ cm-’ and is either the value reported in the reference cited or that calculated from the Ai9&, value and the molecular weight. b Aiq&,,is the absorption for a 1% solution in a l-cm cuvette and is either the value reported in the reference cited or that calculated from the en and the molecular weight. The relationship between E,,,,At?,, and molecular weight (MW) is 106, = (Ai”/&( r Refers to the wavelength cited and may not be the peak of the absorption band. d Abbreviations used: NaB, sodium bicarbonate; TRIS, tris(hydroxymethyl)aminomethane; PMSF, phenylmethylsulfonyl fluoride; DTT. dithiothreitol; Ph, phosphate; AC, acetate; GHCI, guanidine-HCl; ME, 2-mercaptoethanol; EDTA, ethylenediaminetetraacetic acid; AmB, ammonium bicarbonate; do., same as above; nc. not cited. Methods of protein determination: Dry wt, dry weight; Refr., refractometry; Inter.. interferometry; AA, amino acid analysis; Lowry, calorimetric method. * Although an Al?,,, value of 12 is given in Ref. (9), I have reported that value as 13.8 here in response to a personal communication from Dr. Leppla. f From OD,,,:OD,,,:OD,,,:OD,,, = 0.44:0.49:0.67: 1 (20). g A;?,,, value are given from 520 to 590 nm (20). h From Ragatz, B. H. (1969) M. S. thesis, Indiana University. i See also Refs. (59,60). j Extinction coefficients as a function of pH are given in Table 2 of Ref. (57). k Extinction coefficients as a function of pH are given in Table 2 of Ref. (60). i Range: 8.6-10.6. m For additional extinction coefficients of human IgG see Refs. (97- 100). n For extinction coefficients of IgG, and IgG, of bovine and rabbit origin see Refs. (104, 105). 0 The visible and ultraviolet absorption characteristics of fluorescein isothiocyanatemodified IgGs of various species can be found in Table 1 of Ref. (106). ZJExtinction coefficients for other human IgM and fragments may be found in Ref. (107). q Extinction coefficients for additional cr-amylase inhibitors may be found in Ref. (127). r Lysine-15 is found in virgin inhibitor. s Protein determined by isoabsorbance at two wavelengths. ’ A weight of 25,300, the protein portion, used to calculate l u. u 16.2 also reported in (173).

238

DONALD

M. KIRSCHENBAUM

REFERENCES TO TABLE 1 1. Moura, I., Bruschi, M., Le Gall. J., Moura, J. J. G., and Xavier, A. V. (1977) Biochem. Biophys. Res. Commun. 75, 1037-1044. 2. Kluetz, M. D., and Schmidt, P. G. (1977)Biochem. Biophys. Res. Commun. 76,40-45. 3. Kaufman, B. T., and Kemerer, V. F. (1977) Arch. Biochem. Biophys. 179, 420-431. 4. Hasegawa, H. (1977) J. Biochem. (Tokyo) 81, 169-177. 5. Noren, O., and Sjostrom, H. (1974) Actu Chem. Stand. 28B, 787-792. 6. Huebner, P. F. (1976) Anal. Biochem. 74, 419-429. 7. Tyndall, M., Largman, C. Brodrick, J. W., and Geokas, M. C. (1977)Biochem. Biophys. Res. Commun. 74, 857-861. 8. Ohlsson, K., and Olsson, A. S. (1976) Hoppe-Seyler’s Z. Physiol. Chem. 357, 1153-1161. 9. Leppla, S. H. (1976) Infec. Immunity 14, 1077-1086. 10. Arai, N., Arai, K., Maeda, T., Ohnishi, S., and Kaziro, Y. (1976)5. Biochem. (Tokyo) 80, 1057-1065. Il. Kandall, C. L., Akinbami, T. K., and Colman, R. W. (1972) Brit. J. Haematol. 23, 6.55-668. 12. Dombrose, F. A., and Seegers, W. H. (1974) Thromb. Diuth. Haemorrh. Suppl. 57, 241-254. 13. Jesty, J., and Esnouf, M. P. (1973) B&hem. J. 131, 791-799. 14. Koide, T., Kato, H., and Davie, E. W. (1976) Methods Enzymol. 45B, 65-73. 15. Fujikawa, K., Walsh, K. A., and Davie, E. W. (1977) Biochemistry 16, 2270-2278. 16. DiScipio, R. G., Hermodson, M. A., Yates, S. G., andDavie, E. W. (1977)Biochemistry 16, 698-706.

17. Fujikawa, K., and Davie, E. W. (1976) Methods Enzymol. 45B, 74-83. 18. Kim, I. C., Unkefer, C. J., and Deal, W. C., Jr. (1977) Arch. Biochem. Biophys. 178, 475-485. 19. Yang, S. S., Ljungdahl, L. G., and Le Gall, J. (1977) J. Bacterial. 129, 1084-1090. 20. Altosaar, I., Bohm, B. A., and Taylor, I. E. P. (1977) Canad. J. Biochem. 55, 159-164. 21. Shin, M., Sukenobu, M., Oshino, R., and Kitazume, Y. (1977)Biochim. Biophys. Acta 460, 85-93. 22. Bruschi, M., Hatchikian, C. F., Golovleva, L. A., and Le Gall, J. (1977)J. Bacterial. 129, 30-38.

23. Baba, A., May, M. B., and Fish, W. W. (1977) Biochim. Biophys. Acta 491, 491-496. 24. Pindyck. J., Mosesson, M.. Bannerjee, D., and Galanakis. D. (1977)Biochim. Biophys. Acta

492, 377-386.

25. Wang, K. (1977) Biochemistry 16, 1857-1865. 26. Mahuran. D. J.. Angus, R. H., Braun, C. V., Sim, S. S., and Schmidt, D. E. (1977) Canad. J. Biochem. 55, l-8. 27. Hirano. S., and Meyer, K. (1973) Corm. Tissue Res. 2, l-10. 28. Kanaya, K., Chiba, S., Shimomura, T., and Nishi, K. (1976) Agr. Biol. Chem. 40, 1929- 1936. 29. Hibi, N., Chiba, S., and Shimomura, T. (1976) Agr. Biol. Chem. 40, 1805-1812. 30. Grover, A. K., Macmurchie, D. D., and Cushley, R. J. (1977)Biochim. Biophys. Acta 482, 98- 108. 31. Adachi, K., and Suzuki, I. (1977) J. Bacterial. 129, 1173- 1182. 32. Femandez-Sousa, J. M., Gavilanes, J. G., Municio, A. M., and Perez-Aranda, A. (1977) Biochim.

Biophys.

Acfa

481, 6-24.

33. Becker, J. U., Long, T. J., and Fischer, E. H. (1977) Biochemistry 16, 291-297. 34. Nimmo, H. G., Proud, C. G., and Cohen, P. (1976) Eur. J. Biochem. 68, 21-30. 35. Bobrzecka, K., Konieczny, L., Rybarska, J., and Krzeminska, E. (1977) Biochim. Biophys.

Acta

497, 377-385.

PROTEINS:

MOLAR

ABSORPTIVITY

AND Ai&

VALUES

239

36. Bohn, H., and Winckler, W. (1976) Blur 33, 377-388. 37. Leonard, J. J., Yonetani, T., and Callis, J. B. (1974) Biochemistry 13, 1460-1464. 38. Holden, H. F. (1944) Ausf. J. Exp. Biol. Med. Sci. 21, 159-168. 39. Riggs, A. (195l)J. Gen. Physiol. 35, 23-40. 40. Terwilliger, N. B., Terwilliger, R. C.. and Schabtach. E. (1976)Biochim. Biophys. Actu 453, 101-110. 41. Wood, E. J., Mosby, L. J., and Robinson, M. S. (1976) Biochem. J. 153, 589-596. 42. Terwilliger, R. C., Terwilliger, N. B., and Roxby, R. (1975) Camp. Eiochem. Physiul. 50B, 225-232. 43. Almeida, A. P., and Neves, A. G. A. (1974) Biochim. Biophys. Acta 371, 140- 146. 44. Scheler, W., and Schneiderat, L. (1959) Acta Biol. Med. Ger. 3, 588-597. 45. Okada, Y., and Okunuki, K. (1973) J. Biochem. (Tokyo) 73, 959-963. 46. Seab, J. C., and Bums, T. A. (1976) Comp. Biochem. Physiol. 54B, 351-356. 47. Bannister, J. V., Bannister, W. H., Anastasi, A., and Wood. E. J. (1976)Biochem. J. 159,35-42. 48.

49. 50. 51. 52.

53. 54. 55. 56. 57. 58. 59. 60. 61.

Burr, A. H., Schiefke, R., and Bollerup, G. (1975)Biachim. Biophys. Acta 405,404-411. Fioretti, E., Ascoli, F., and Brunori, M. (1976) Biochem. Biophys. Res. Commun. 68, 1169-1173. Shlom, J. M., and Vinogradov, S. N. (1973) J. Biol. Chem. 248, 7904-7912. Harrington, J. P., and Herskovits, T. T. (1975) Biochemistry 14, 4972-4976. Horecker, B. L. (1943) J. Biol. Chem. 148, 173-183. Currell, D. L., and Ioppolo, C. (1974) Experientio 30, 1371-1373. Waks, M., Yip, Y. K., and Beychok, S. (1973) J. Biol. Chem. 248, 6462-6470. Yonetani, T., Yamamoto, H., and Woodrow, Cl. V. (1974) J. Biol. Chem. 249,682-690. Winterhalter, K. H., Di Iorio, E. E., Beetlestone, J. G., Kushimo, J. B., Uebelhack. H.. Either, H., and Mayer, A. (1972) J. Mol. Biol. 70, 665-674. Benesch, R. E., Benesch, R., and Yung, S. (1973) Anal. Biochem. 55, 245-248. Benesch, R., MacDuff, G., and Benesch, R. (1965) Anal. Biochem. 11, 81-87. Kiese, M., Kurz, H., and Schneider, C. (1958) K/in. Wochenschr. 34, 957-961. Von Assendelft, 0. W., and Zijlstra, W. G. (1975) Arm/. Biochem. 69, 43-48. Matsui, T., Shim& C., and Matsuura, R. A. (1975) Bull. Japan. Sot. Sci. Fish. 41, 771-777.

Bernard, N., Lombart, C.. and Jayle, M. F. (1975) Biochimie 57, 551-557. 63. Aisen, P., Leibman, A., Harris, D. C., and Moss, T. (1974) J. Biol. Chem. 249,

62.

6824-6827. 64.

65. 66. 67. 68. 69. 70. 71. 72.

Hrkal, Z., Vodrazka, Z., and Kalousek, I. (1974) Eur. J. Biochem. 43, 73-74. Kim, I. C., and Deal, W. C., Jr. (1976) Biochemisfty 15, 4925-4930. Finazzi-Agro, A., Albergoni, V., and Cassini. A. (1974) FEES Left. 39, 164-166. Archer, B. L. (1976) Phytochemistry 15, 297-300. Schmidt, J. J., and Colowick, S. P. (1973) Arch. Eiochem. Biophys. 158, 458-470. Higgins, T. .I. C., and Easterby. J. S. (1974) Eur. J. Biochem. 45, 147-160. Schwartz, G. P., and Basford, R. E. (1967) Biochemistry 6, 1070-1079. Easterby, J. S., and O’Brien, M. J. (1973) Eur. J. Biochem. 38, 201-211. Heumann, S., Falkenberg, F., and Pileiderer, G. (1974) Biochim. Biophys. Acta 334, 328-342.

73.

74. 75. 76. 77.

Shibatani, T., Kakimoto, T., and Chibata, I. (1975) Eur. J. Biochem. 55, 263-269. De Lorenzo, F.. DiNatale, P., and Schechter, A. N. (1974) J. Biol. Chem. 249,908-913. D’Anna, .I. A., Jr., and Isenberg, I. (1974) Biochemistry 13, 2099-2104. Bradbury, E. M., Danby, S. E., Rattle, H. W. E., and Giancotti, V. (1975) Eur. J. Biochem. 57, 97-105. Puett, D., Nureddin, A.. and Holladay, L. A. (1976) Int. J. Peptide Protein Res. 8, 183-191.

240

DONALD

M. KIRSCHENBAUM

78. Roos, P., Nyberg, L., Wide, L., and Gemzell, G. (1975) Biochim. Biophys. Acta 405, 363-379. 79. Starr, R. C., and Jaenicke, L. (1974) Proc. Nat. Acad. Sci. USA 71, 1050-1054. 80. Chen, J. S., Mortenson, L. E., and Palmer, Cl. (1976)Advan. Exp. Med. Biol. 74,68-82. 81. Gitlitz, P. H., and Krasna, A. 1. (1975) Biochemistry 14, 2561-2568. 82. Yagi, T., Kimura. K., Daidoji, H., Sakai, F., Tamura. S., and Inokuchi, H. (1976) J. Biochem. (Tokyo) 79, 661-671. 83. Duley, J. A., and Holmes, R. S. (1976) Eur. J. Biochem. 63, 163-173. 84. Cromartie, T. H., and Walsh, C. T. (1975) Biochemistry 14, 2588-2596. 85. Noyes, B. E., and Bradshaw, R. A. (1973) J. Biol. Chem. 248, 3052-3059. 86. Preuveneers, M. 3.. Peacock, D., Crook, E. M., Clark, J. B., and Brocklehurst, K. (1973) Biochem. .Z. 133, 133-157. 87. Bergmeyer, H. U., Gawehn, K., Klotzsch, H., Krebs, H. A., and Williamson, D. H. (1967) Biochem. J. 102, 423-431. 88. Ruettinger, R. T., Olson, S. T., Boyer, R. F., and Coon, M. J. (1974)Biochem. Biophys. Res. Commun. 57, 1011-1017. 89. Reed, W. D., Clinkenbeard, K. D., and Lane, M. D. (1975) J. Biol. Chem. 250, 3117-3123. 90. Lindstedt, S., Odelhog, B., and Rundgren, M. (1977) Biochemistry 16, 3369-3377. 91. Lindblad, B., Lindstedt, G., Lindstedt, S., and Rundgren, M. (1977)J. Biol. Chem. 252, 5073-5084. 92. Schultz, R. M., Groman, E. V., and Engel, L. L. (1977)J. Biol. Chem. 252,3775-3783. 93. Uwajima, T., Yagi, H. and Terada, 0. (1974) Agr. Biol. Chem. 38, 1149-1156. 94. Tomioka, H., Kagawa, M., and Nakamura, S. (1976)J. Biochem. (Tokyo) 79,903-915. 95. Wilde III, C. E., and Koshland, M. E. (1973) Biochemistry 12, 3218-3224. 96. Percy, M. E., and Dorrington, K. J. (1974) Canad. J. Biochem. 52, 610-619. 97. Azuma, T., Isobe, T., and Hamaguchik (1975) .Z.Biochem. (Tokyo) 77, 473-479. 98. Azuma, T., and Hamaguchi, K. (1976) J. Biochem. (Tokyo) SO, 1023-1038. 99. Bobrzecka, K., Konieczny, L., Rybarska, J., Bogdal, J., and Urasinski, I. (1973) Biochim. Biophys. Acta 295, 564-575. 100. Eisenberg, R. (1976) Immunochemistry 13, 355-359. 101. Tewari, U. J., and Mukkur, T. K. S. (1975) Zmmunochemistry 12, 925-930. 102. Lisowski, J., Janusz, M., Tyran, B., Morawiecki, A., Golab, S., and Bialkowska, H. (1975) Immunochemistry 12, 159- 166. 103. Lisowski, J.. Janusz, M., Tyran, B., Morawiecki, A., Golab, S., and Bialkowska, H. (1975) Immunochemistry 12, 167- 172. 104. Kickhofen, B., Hammer, D. K., and Scheel, D. (1968) Hoppe-Seyler’s Z. PhysioZ. Chem. 349, 1755-1773. 105. Steiner, L. A., and Lowey, S. (1966) J. Biol. Chem. 241, 231-240. 106. Johnson, E. A.. and Brighton, W. D. (1971) J. Zmmunol. Methods 1, 91-99. 107. Middaugh, C. R., Thomas, G. J., Jr., Prescott, B., Aberlin, M. E., and Litman, G. W. (1977) Biochemistry 16, 2986-2994. 108. Mikkur, T. K. S., and Tewari, U. J. (1973) Immunochemistry 10, 477-479. 109. Jefferis, R., Matthews, J. B., and Bayley, P. M. (1977)Zmmunochemistt-y 14,393-396. 110. Mestecky, J., Hammack, W., Schrohenloher, R., and Bennett, J. (1973) Protides Biol. Fluids 20, 279-283. 111. Barger, B. O., and Inman, F. P. (1976) Immunochemistry 13, 165-171. 112. Brady, F. O., and Udom, A. U. (1976) Advan. Exp. Med. Biol. 74, 343-353. 113. Roberts, J., and Rosenfeld, H. J. (1977)J. Biol. Chem. 252, 2640-2647. 114. Perlstein, S. H., and Kezdy, F. S. (1973) .Z. Supramol. Struct. 1, 249-254. 115. Sohome, K., and Bhandarkar, A. P. (1954) J. Sci. Znd. Res. (India) 138, 500-504. 116. Mosdov, V. V., Malova, E. L., Valueva, I. A., and Shulmina, A. I. (1975)Bioorg. Khim. 1, 1449- 1456.

PROTEINS:

MOLAR

ABSORPTIVITY

AND A;?, VALUES

241

117. Iwasaki, T., Wada, J., Kiyohara, T., and Yoshikawa, M. (1975)J. Biochem. (Tokyo) 78, 1267- 1274. 118. Iwasaki, T., Kiyohara, T., and Yoshikawa, M. (1974)J. Biochem. (Tokyo) 75,843-851. 119. Yoshida, C., and Yoshikawa, M. (1975) J. Biochem. (Tokyo) 78, 935-945. 120. Takahashi, H., Iwanaga, S., and Suzuki, T. (1974) J. Biochem. (Tokyo) 76, 709-719. 121. Dubin, A. (1977) Eur. J. Biochem 73, 429-435. 122. Wunderer, G.. Beress, L.. Machleidt. W.. and Fritz, H. (1975) Methods Enzymol. 45B, 881-888. 123. Saklatvala, J., Wood, G. C., and White, D. D. (1976) Biochem. J. 157, 339-351. 124. Ulane, R. E., and Cabib, E. (1974) J. Biol. Chem. 249, 3418-3422. 125. Uehara, Y., Tonomura, B., Hiromi, K.. Sato, S., and Murao, S. (1976) Biochim. Biophys. Acta 453, 513-520. 126. Petrucci. T., Rab, A., Tomasi, M., and Silano, V. (1976) Biochim. Biophys. Acta 420, 288-297.

127. Silano, V., Pocchiari, F., and Kasarda. D. D. (1973) Biochim. Biophys. Acra 317, 139-148. 128. Fossum, K., and Whitaker, J. R., (1968) Arch. Biochem. Biophys. 125, 367-375. 129. Abu-Erreish, G. M., and Peanasky, R. J. (1974)J. Biol. Chem. 249, 1558-1565. 130. Moroi, M., and Aoki, N. (1976) J. Biol. Chem. 251, 5956-5965. 131. Demaille, J. G., Peters, K. A., and Fischer, E. N. (1977) Biochemistry 16, 3080-3086. 132. Tsuru, D., Tomimatsu, M.. Fujiwara, K., and Kawahara, K. (1975)J. Biochem. (Tokyo) 77, 1305-1312.

133. Yoshikawa, M., Iwasaki, T., Fujii, M., and Oogaki, M. (1976) J. Biochem. (Tokyo) 79, 765-773.

Gennis, L. S., and Cantor, C. R. (1976) J. Biol. Chem. 251, 741-746. 135. Smimoff, P., Khalef, S., Birk, Y., and Applebaum. S. W. (1976) Biochem. J. 157, 134.

745-751.

136. Belew, N., Porath, J., and Sundberg, L. (1975) Eur. J. Biochem. 60, 247-258. 137. Ogiso, T., Noda. T., Sako, Y., Kato. Y., and Aoyama, M. (1975)J. Biochem. (Tokyo) 78, 9-17. 138.

139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149. 150.

151. 152. 153.

154.

Rouleau, M., and Lamy, F. (1974) Canad. J. Biochem. 53, 958-974. Furusawa, Y., Kurosawa, Y., and Chuman, I. (1974)Agr. Biol. Chem. 38, 1157-1164. Travis, J., Johnson, D., and Pannell, R. (1974) in Bayer Symposium V-Proteinase Inhibitors (Fritz, H., Tschesche, H., Greene, L., and Truscheit. E., eds.). pp. 31-39. Springer-Verlag, Berlin/New York. Kress, L. F., and Laskowski, M., Sr. (1974) in Bayer Symposium V-Proteinase Inhibitors (Fritz, H., Tschesche, H., Greene, L., and Truscheit, E.. eds.), pp. 23-30. Springer-Verlag, Berlin/New York. Schultze, H., Heide, K., and Haupt, H. (1962) Klin. Wochenschr. 40, 427-430. Pubols, M. H., Bartelt, D. C., and Greene, L. J. (1974) J. Biol. Chem. 249, 2235-2243. Wu, F. C., and Laskowski, M. (1960) J. Biol. Chem. 235, 1680-1685. Jering, H.. and Tschesche, H. (1976) Eur. J. Biochem. 61, 453-463. Hojima, Y., Moriwaki, C., and Moriya, H. (1973) J. Biochem. (Tokyo) 73, 923-932. Mercola, D. A., Morris, J. W. S., Arquilla, E. R., and Bromer, W. A. (1967) Biochim. Biophys. Acta 133, 224-232. Hamlin, J. J., and Arquilla, E. R. (1974) J. Biol. Chem. 249, 21-32. Seelig, G. F., and Colman, R. F. (1977) J. Biol. Chem. 252, 3671-3678. Macfarlane, N., Mathews, B., and Dalziel, K. (1977) Eur. J. Biochem. 74, 553-559. Carlier, M. F., and Pantaloni, D. (1973) Eur. J. Biochem. 37, 341-354. Hibino, Y., Nosoh, Y., and Samejima, T. (1974) J. Biochem. (Tokyo) 75, 553-561. Durekovic, A., Flossdorf, J., and Kula, M. R., (1973) Eur. J. Biochem. 36, 528-533. Hojima, Y., Yamashita, M., Ochi, N.. Moriwaki, C., and Moriya, H. (1977) J. Biochem. (Tokyo) 81, 599-610.

242

DONALD

M. KIRSCHENBAUM

155. Matsuda, Y., Miyazaki, K., Moriya, H., Fujimoto, Y., Hojima, Y., and Moriwaki, C. (1976) J. Biochem. (Tokyo) 80, 671-679. 156. Fritz, H., Eckert, I., and Werle, E. (1967) Hoppe-Seyler’s Z. Physiol. Chem. 348, 1120-1132. 157. Fiedler, F., Hirschaner, C., and Werle, E. (1975)Hoppe-SeyLr’sZ. Physiol. Chem. 356, 1879-1891. 158. Steinert, P. M. (1975) Biochem. J. 149, 39-48. 159. Steinert, P. M., and Idler, W. W. (1975) Biochem. J. 151, 603-614. 160. Yorifuji, T., Jeng, I. M., and Barker, H. A. (1977) J. Biol. Chem. 252, 20-31. 161. Chiyonobu, T., Shinagawa, E., Adachi, O., and Ameyama, M. (1976)Agr. Biol. Chem. 40, 175-184. 162. Chiyonobu, T., Adachi, O., and Ameyama, M. (1974)Agr. Biol. Chem. 37,2871-2875. 163. Chiyonobu, T., Shinagawa, E., Adachi, O., and Ameyama, M. (1975)Agr. Biol. Chem. 39, 2263-2264.

164. 165. 166. 167. 168.

Powers, S. G., and Snell, E. E. (1976) J. Biol. Chem. 251, 3786-3793. Bechtel, P. J., Beavo, J. A., and Krebs, E. G. (1977)J. Biol. Chem. 252, 2691-2697. Weintraub, H., Vincent, F., Baulieu, E. E., and Alfsen, A. (1973)FEBS Let?. 37,82-88. Benson, A. M., Suruda, A. J., and Talalay, P. (1975) J. Biol. Chem. 250, 276-280. Komiya, M., Kato, H., and Suzuki, T. (1974) J. Biochem. (Tokyo) 76, 811-822. 169. Kato, H., Suzuki, T., Ikeda, K., and Hamaguclii, K. (1967) J. Biochem. (Tokyo) 62, 591-598. 170. Moriguchi. M., Yamamoto, T., and Soda, K. (1973) Biochemistry 12, 2969-2974. 171. Brown, R. C., Fish, W. W., Hudson, B. G., and Ebner, K. E. (1972) Biochim. Biophys. Acta

172. 173. 174. 175. 176. 177. 178.

491, 82-92.

Barman, T. E. (1973) Eur. J. Biochem. 37, 86-89. Quarfoth, G. J., and Jenness, R. (1975) Biochim. Biophys. Acta 379, 476-487. McPhail, M., and Furth, A. J. (1973) Biochem. Sot. Trans. 1, 1260-1263. Holmes, R. S., and Scopes, R. K. (1974) Eur. J. Biochem. 43, 167-177. Anderson, S., and Weber, G. (1966) Arch. Biochem. Biophys. 116, 207-223. Long, G. L., and Kaplan, N. 0. (1973) Arch. Biochem. Biophys. 154, 696-710. Garland, R. C. (1973) Arch. Biochem. Biophys. 157, 37-43.