I
Quant. Spectrosc. gadiat. Trans/er Vol. 27, No. 1, pp. 23--38, 1982
0022-4073/82/010023-16503.00/0 Pergamon Press Ltd.
Printed in Great Britain.
M O L A R A B S O R P T I V I T Y A N D za1% s] cm V A L U E S F O R P R O T E I N S AT S E L E C T E D W A V E L E N G T H S OF T H E U L T R A V I O L E T AND VISIBLE REGIONS--XX DONALD M. KIRSCHENBAUM'J" Department of Biochemistry, College of Medicine, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, U.S.A.
(Received 8 April 1981) Abstraet--A table of molar absorptivity and Ajcm 1% values for more than 125 proteins is given. The conditions used to obtain these values and references to the original literature are also given. INTRODUCTION
The molar absorptivity, E, and ",cmA'~for more than 125 proteins and the conditions under which these values were obtained are listed in Table 1. Additional pertinent data can be found in Table 1. The method used to compile these data has been described by Kirschenbaum) This paper is part of a continuing compilation of absorption characteristics of proteins. 2 Acknowledgements--The Library of the Downstate Medical Center College of Medicine has been the major source of all publications examined. What was not available in the library was obtained from other libraries by a loan service. I thank E. Becker for assisting me with photocopying, N. E. Aroll and Z. Aroll for general assistance, and G. Hawkins for typing the reference list. This compilation project was supported, in part, by Grant No. RO1 LM 03591-01 awarded by the Nationa| Library of Medicine, DHEW. REFERENCES 1. D. M. Kirschenbaum, J. Chem. Inform. Comput. Sci. 20, 152 (1980). 2. D. M. Kirschenbaum, Int. J. Biochem. 11,487 (1980). Table 1. Molar absorptivity and A~t% cm values for proteins Protein
M 10-4
Al%b 1 cm
flavoviridis
__e
280
1
2.6
276.5
2
5.1
278
3
10.32
280
4
14 f
280
5
19.2
280
6
nm
c
Ref.
Comments d
Factor Antihemorrhagic Trimeresurus chloroplast Vicia
coupling
(CFI)
faba thylakoid
membrane Spinach
Interf.
Hemorrhagic Snake venom (A~kistrodon halls blomhoffii Snake venom (Vipera palaestinae) Nerve growth Male mouse
submandibular
gland
tFaculty Exchange Scholar--SUNY. 23
AA
D.M. KmSCHENaAUM
24
Table 1. Protein
~ ~ x 10 -4
(Contd)
Al%b 1 cm
nm
c
Ref.
Comments
Factor V Bovine plasma Factor
IX
31.64
IX
7
12.5
280
8
11.8
2a0
8
5 ~ = 329,600; Interf.
LS.
(Christmas Factor)
Human plasma F a c t o r XII,
Coagulation
factor
Bovine p l a s m a Factor
280
(Chapel Hill)
Human plasma Factor
9.6
(Hageman
factor)
13.6
280
9
12.7
280
10
278
ii
B
Human blood
F a c t o r HI, DNA b i n d i n g p r o t e i n Escherichia
coli
8.61
F a t t y acid s y n t h e t a s e As~er~illus Chicken
fumigatus
liver
16.5
4.59
9.56 g
278
12
280
13
MW
=
480,000;
Dry wt. Rabbit mammary gland Lactating
25
i0.0
280
14
MW
=
250,000;
Refr. Yeast
F a t t y acid synthetase: Rat m a m m a r y
11.5
280
15
AA
10.26
280
15
Dry wt.
280
16
AA
4.01
283
17
2.98
385
17
14.7
280
18
20
272
18
M W = 14,000.
330
18
do
thioesterase
gland
component
7.1
Ferredoxin Desulfuromonas acetoxidans
Halobacterium Apo Holo -
Nostoc
2.8 1.22
8.7
0.91
6.1
420
18
do
0.83
5.9
465
18
do
425
19
pH 7.5,
verrucosum
Type
I
1.151 h
Tris-HCI
0.02 M containing
0.33 NaCI. Type
II
1.113 h
Rhodos~irillum Type
IV l
Ferredoxin-NADP
422
19
rubrum 3.16
400
20
6.7
280
20
reductase
(EC 1.6.99.4)
do
Protein, molar absorptivity, Al~m values
25
Table 1. (Contd) G Ma
Protein
10-4
Spinach
leaves
Al%b
1 cm
1.04
nm c
458
Ref.
21
Comments
Dry wt.
and FAD
content. Ferritin Porcine spleens
10.3
280
22
4.6
280
23
MW = 66,500;
6.0
280
24
Dry wt.
15.4
280
25
pH 5.0.
~-Fetoprotein Fetal calf serum
3.08
Rat serum Fibrinogen Rat plasma
5.2
NaAc.
0.01M MW = 340,000
AA. Flagellin Rhizobium
2.4
280
26
pH 3; Lowry.
3.30 j
280
27
pH 7
1.07
5.1
464
28
MW = 21,000.
1.07
5.1
275
28
do
280
29
280
30
lupini H13-3
Salmonella Flavodoxin Chondrus
cris~is
Azotobacter ApoFructose
3.2
1,6-biphosphatase
(~C 3.1.3.11)
Chicken breast muscle
11.66
8.1
MW = 144,000. Dry wt.
D-Fructose
1,6-biphosphate
aldolase
Insect (Ceratitis capitata)
15.8
I0
280
31
MW = 158,000; Dry wt. and AA.
Galactosylhydroxylysyl
glucosyltransferase
Chick embryo
225
32
6.5
435
33
Sesame seed ( Sesamum indicum ~i0.8
280
34
Gelatin,
74
DNP-
Calf skin
pH 3
-Globulin
endo-l,4-~-D-Glucanase Trichoderma
(~C 3.2.1.4)
viride
Type II
4.5
12.0
280
35
MW = 37,200.
Type III
5.4
10.3
280
35
MW ~ 52,000.
Type IV
6.5
13.1
280
35
MW = 49,500.
Type 1
13.2
280
36
Type 2
13.7
280
36
Type 3
13.4
280
36
Glucoamylase Rhizopus
(EC 3.2.1.3) sp.
D. M. KIRSCHENBAUM
26
Table 1.
(Contd)
a
Protein
Glucose
xE M10 -4
6-phosphate
A 1l%bcm
dehydrogenase
Human leukocytes Hyperanodic Brewer's
forms
yeast
(Saccharom[ces
Dimer
nmC
Ref.
Comments
(EC i.i.1.49)
10
280
37
12.6
280
37
carlbergensis) 9.65
278
38
pH 7.0, 0.05 M NaPh.
Neuros~ora
crassa
ll.1
280
39
pH 7.4, 0.i M TrisHCI ; AA
Bakers'
yeast (Saccharom[ces
cerevisiae) fl -D-Glueosidase Stachybotr~s Glutamate
9.5
278
40
14.86
280
41
Dry wt., LB.
12.4
2B0
42
pH 6.5,
(EC 3.2.1.21) atra
dehydrogenase
Halobacterium
NaPh, Glutamate
synthase,
Lupin nodules
4 M NaCI:
N.
NADH dependent
(Lupinus
an~ustifolius
16
Glutamine phosphoriboSylpyrophosphate Bacillus
50 m M
subtilis
276
43
amidotransferase
9.6
278
44
Lowry EC 2.4.2.14 pH 7.9,
50 mM
Tris-HCl
or i0 mM
NaHCO3; dry wt. Glutamine
synthetase
Neuros~ora Azotobacter
crassa
(EC 6.3.1.2) 33.5
9.3
278
45
MW = 360,000.
8.2
278
46
Data from Fig.
7.7
280
46
do
8.71
280
47
13.1
279
48
10.0
280
49
12.8
280
50
15.8
280
51
vinelandii
Deadenylated Glutamyl-tRNA Escherichia -Glutamyl
4k.
synthetase coli
cyclotransferase
Rat kidney pI 5.1 and pI 4.6 forms Glutaredoxin Escherichia
coli
Glutathione-S-epoxide
1.16
transferase
Guinea pig liver Glutathione
MW = 11,600.
reductase
Escherichia
coli
pH 7.6,
50 mM Ph,
3 mM EDTA. from Fig. Glutathione
transferase p
Human erythrocytes Glyceraldehyde
5.5
3-phosphate
Data 6~
(Ec 2.5.1.18) ll.9 dehydrogeDase
280
52
(~C 1.2.1.12)
MW = 46,500.
9. ./
Protein, molar absorptivity, A~~cm values Table 1. Protein
~ x 10-4
Bacillus
coa~ulans
sn-Glycerol
KU
3-phosphate
Escherichia
A l%b 1 cm
rrmc
Ref.
275-6
53
7.8 m
280
54
7.8 m
280
54
280
55
450
56
280
57
277
58
280
59
8.0
Comments
dehydrogenase
coli
Wild type Feedback Glycerol
(Contd)
resistant
3-phosphate
Escherichia
dehydrogenase
coli
i1.5
Rabbit Skeletal muscle Mitochondria Liver,
muscle,
0.56 mammary gland
Isozymes Glycine
4.8
reductase
Clostridium
Sticklandii
Glycogen phosphorylase Rabbit
2.2
B (EC 2.4.1.1)
liver
13.0
pH 7.0,
4 ~4 Trls,
I ~.1 EDTA and i m~M ME. Chicken breast muscle
From Fig.
13.2
280
60
8.1
280
61
pH 7.
6.6
13.7
280
62
MW = 48,000.
i.13
19.3
278
63
~
1.29
ll.8
278
63
do
13.62
280
(;4
< 60S
14.4
278.5
65
60S
15.5
278.5
65
100S
16.5
278.5
65
130S
6 k.
Refr., AA.
~l-Glycoprotein Sheep plasma Glycoxalase
I (EC 4.4.1.5)
Pig erythrocytes Guanyl-Ribonuclease As~er~illus
C2
clavatus
= ii,000.
Penicillium chr[so@enum Hemagglutinin
152A
A
Castor bean
(Ricinus
communis) Hemocyanin
Bus[con
canaliculatum
Native
17.6
278.5
65
Alkylated
13.83
276
65
6 M GHCI;
Unreduced
13.89
276
65
do
SDS complex
13.6
277
66
1.8 g SDS/g protein
13.8
278
67
pH 9.6, ETA-HC1.
Panulirus Hemerythrin
interru~tus
LS.
D.M. KIRSCHENBAUM
28
Table I. (Contd) Protein
x~ 10 -4
Phascolosoma Oxygen
Azide
lurco
ligand
ligand
Al%b 1 cm
nmC
Ref.
2.75 n
280
68
0.2150
500
68
0.6370
330
68
0.3640
480
68
Comments
Oxidation
product
in pH 8.2 T r i s - A c buffer ligand. 0.7360 SeCN-
ligand
N~N72-
ligand
Phascolopsis
326
68
do
0.3850 n
508
68
do
0.6440 n
331
68
do
0.0880 n
480
68
do
0.6040 n
380
68
do
0.6220 n
328
68
do
(Golfin~ia)
9ouldii
3.4800 n
280
68
Oxy-
3.5400 n
280
69
0.6900 n
326
69
0.2300 n
500
69
0.7200 n
327
69
0.3800 n
446
69
Metazido-
Themiste
(Dendrostomum)
Oxy-
Metazido-
Themiste
280
68
3.3000 n
280
69
0.6700 n
329
69
0.2350 n
500
69
0.7750 n
325
69
0.3600 n
446
69
280
68
fDendrostomum)
zostericola Themiste
3.2800 n
3.2800 n
~endrostomum)
pyroides Oxy-
3.2800 n
280
69
0.2050 n
500
69
0.7400 n
326
69
0.3500 n
446
69
a~assizii
2.8700 n
280
68
Oxy-
2.9200 n
280
69
0.6100 n
328
69
0.2000 n
500
69
0.6700 n
327
69
0.3500 n
446
69
1.48 °
567
70
1.48 °
538
70
Metazido-
Phascolosoma
Metazido-
Hemoglobin,
Horse
CO def.
Hemoglobin Horse MetHb-NH 3
MetHb-CH3NH 2
MetHb-C2H5NH 2
1.08 p
535
71
12.63 p
411
71 71
1.14 p
534.5
12.60 p
411.5
71
1.05 p
537.5
71
12.20 p M e t H b - ( C H 3 ) 2NH
1.00 p i0.18 p
410.5
71
535
71
411.5
71
0.i M in
Protein, molar absorptivity, A[~m values
29
Table 1. (Contd)
Protein
MetHb-F-
0-4
nmC
Re f.
1.09 p
605
72
1.03 p
482.5
72
403
72
0.58 p
620
72
0.53 p
570
72
0.92 p
496
72
404
72
0.55 p
620
72
1.05 P
497
72
14.4 p MetHb-HCO0-
17.2 p MetHb-CH3COO-
17.8 p MetHb-H20
404
72
0.44 p
631
72
1.0 P
500
72
404.5
72
17.9 p MetHb-OCN-
0.68 p
625
72
0.67 p
573
72
1.05 p
501
72
407.5
72
0.92 p
575
72
1.09 p
540
72
409.5
72
0.33 p
635
72
1.08 p
523
72
410
72
15.8 p MetHb-OH-
12.0 p MetHb-SCN-
ii.i p MetHb-Imidazol
1.25 p
560
72
1.47 p
534
72
411
72
--q
72
536
72
414
72
0.99 p
575
72
1.28 p
540
72
417
72
540
72
419
72
1.09 p
606
72
0.78 p
553
72
1.08 p
488
72
404.5
72
622
72
10.5 p MetHb-NO 2 MetHb-SeCN-
1.02 p i0.3 p
MetHb-N~
13.4 p MetHb-CN-
1 cm
1.25 p 12.4 p
qhironomusplumosis MetHb-F-
14.1 P MetHb-HCO0-
0.71 p 0.63 p
573
72
1.05 p
497
72
15.3 p
MetHb-CH3CO0
405
72
0.75 p
620
72
0.61 p
573
72
1.07 P 15.6 p MetHb-H20
0.38 p
496
72
405
72
632
72
Comments
D.M. KIRSCHENBAUM
30
Table 1. (Contd) Protein
E~ x 10 -4
Al%b 1 cm
1.30 p 11.6 p MetHb-OCN-
72
412.5
72
0.93 p
580
72
1.03 p
540
72
409
72
0.53 p
635
72
1.26 p
519
72
411
72
532.5
72
1.22 p
413
72
0.41 p
627.5
72
0.86 p
498
72
409
72
0.39 p
630
72
1.18 p
532
72
12.3 p MetHb-N~
412
72
0.96 p
575
72
1.21 p
542
72
12.9 p MetHb-CN-
1.28 P 12.9 p
Artemia
72
72
13.3 p MetHb-SeCN-
404 628
12.2 p MetHb-NO 2
72
498
14.1 p MetHb-Imidazol
501
0.57 P
ii.4 p MetHb-SCN-
Ref.
0.96 p 12.7 p MetHb-OH-
nm c
417
72
538
72
420
72
Comments
salina
Hb 2 and 3
17,0
277
73
48,5
412
73
5,0
540
73
4,5
577
73
15.27
260
74
17,09
280
74
47.71
412
74
4.87
540
74
4.30
575
74
Hemoglobin Human erythrocytes HbMet
HbCO
8.63
541
75
4.89
518
76
4.71
520.5
76
do
3.92
538
76
do
2.35
568
76
do
2.32
576
76
do
2.44
636
76
do
pH 6.86.
4.89
518
76
do
5.52
520.5
76
do
8.99
538
76
do
Protein, molar absorptivity, Ate ~1%values Table I. (Contd) Ca x M10 -4
Protein
or
cells,
Fe II
Fe III
Recrst.
Fe II
FeO 2
Fe III
Comments
568
76
6.78
576
76
do do
0.17
636
76
do
3.47
518
76
do
3.88
520.5
76
do
8.55
538
76
do
6.85
568
76
do
9.53
576
76
do
0.ii
636
76
do
0.950 r
577
77
1.20 r
560
77
1.06 r
542
77
1.5 r
577
77
0.880 r
560
77
1.40 r
542
77
0.380 r
577
?7
0.348 r
560
77
0.60 r
542
77
0.990 r
575
77
1.31 r
558
77
1.12 r
540
77
1.50 r
575
77
0.917 r
558
77
1.44 r
540
77
0.475 r
575
77
0.480 r
558
77
0.675 r
540
77
1.25
555
erythrocytes
Hb
HbO 2
HbCO
HbNO
Hb-MIC s
Hb-E IC s
Hb-IPIC s
D e o x y ~-PI4B s
78
2.92
274
78
1.38
541
78
1.46
577
78
12.5
415
78
2.7
344
78
3.44
276
78
i. 34
540
78
1.34
569
78
19.1
419
78
2.8
344
78
1 • 26
545
78
1.30
575
78
427
79
0.2 N KPh,
1.69
559
79
do
1.42
530
79
do
428
79
do
1.73
559
79
do
1.44
53O
79
do
428
79
do
1.72
531
79
do
1.43
531
79
do
429
79
do
558
79
do
427
79
do
1.63
558
79
do
1.39
529
79
do
18.6
19.3
18.6
ii. 6 1.23
~_PMB_MIC s
78
430
13.3
QSRT VoL 27,No. I--C
Ref.
lysed
FeO 2
Human
nmC
9.11
HbO 2
Whole
A1 l%bcm
18.2
pH
7.0.
D. M. KIRSCHENBAUM
32
Table 1. Protein x 10 -4
~
-PMB-EIC s
(Contd)
Al%b 1 cm
529
79
do
558
79
do
428
79
do
1.42
530
79
do
1.74
559
79
do
428
79
do
1.23
557
79
do
431
79
do
17.7
429
79
do
17.5
429
79
do
17.7
430
79
do
560
79
do
11.6
429
79
do
11.6
~ -PMB-MIC s
~ -PMB-EIC s ~-PMB-IPIC s
1.68 ~-SH-Deoxy
~ ~
~
s
Comments
1.73
18.5 Deoxy ~-PMB s
Re f.
1.41
17.7 ~-PMB-IPIC s
nm c
-SH-MIC s
18.3
427
79
do
-SH-EIC s
18.1
428
79
do
-SH-IPIC s
18.0
428
79
do
-SH-Deoxy s
11.6
429
79
do
-SH-MIC s
17.8
429
79
do
17.2
429
79
do
17.6
429
79
do
563.5
80
pH
-SH-EIC s
~-SH-IPIC
s
Hb-Nitrosobenzene
1.50 P
7.2-7.4
4% alcohol. 15.4 p
422
80
do
563.5
80
do
423
80
do
560.5
80
do
423
80
do
560
80
do
422
80
do
563
80
do
423
80
do
1.55 p
576.5
80
Ph,
1.50 p
542
80
do
415
80
do
Hb-o-Nitrosotoluene
1.54 p 15.9 p
Hb-m-Nitrosotoluene
1.54 p 14.9 p
Hb-p-Nitroso toluene
1.46 p 14.4 p
Hb-l-Nitroso-2,5xylol
1.54 p 18.7 p
HbO 2
13.2 p Sulfhemoglobin Deoxy
2.14
619
81
do
Oxy
2.53
623
81
do
CO
2.79
613
81
do
Hemopexin Human
blood
Apo
19.7
280
82
Heme-hemopexin
21.8
280
82
19.2
414
82
Hemoprotein, Bovine
green
tissue
Form
I, Fe III
Plus
CN-
9.3
416.5
83
5.1
268
83
0.95
569
83
8.1
427.5
83
pH
7.0.
with
Protein, molar absorptivity, •
Table 1.
0-4
Protein
F o r m I, Fe II
•
A 1% I¢ m
values
33
(Contd)
1 cm
nmC
Ref.
0.89
573
83
9.6
439
83
1.08
596
83
1.08
563
83
10.6
426.5
83
1.93
580.5
83
1.33
544
83
434
83
0.41
610
83
8.7
418
83
4.4
268
83
0.9
563
83
8.2
429
83
2.3
360
83
1.01
572
83
9.5
439
83
1.03
589
83
Plus CO
Plus p y r i d i n e
14.7 F o r m II, Fe III
Plus CN-
F o r m II, Fe II
Plus CO
Comments
i.i
558
83
11.3
426
83
2.8
339
S3
1.65
573
83
1.29
53&
83
431
83
290
84
0.i M NaOH.
Plus p y r i d i n e
13.0 Hexokinase 10.8
Yeast Hormone Follicle-stimulating Human pituitary
3.55
280
85
AA
Human urine
i. 74
280
85
do
400
86
MW
19.0
280
86
do
9.0
277
87
MW
0.31
0.7
408
87
do
2.28 t
7.6 t
280
88
MW
0.4430 t
1.48 t
408
88
do
4.6
400
89
12.8
280
89
Hydrogenase Desulfovibrio
g i q a s 4.65 17.0
5.20
=
89,500.
=
45,000.
=
30,000.
Desul fovibrio vulgaris strain NCIB
8303 4.1
strain Hi i d e n b o r o u g h
strain Hildenborough N C I B 8303
D. M. KIRSCHENBAUM
34
(Contd)
Table 1. a ~M
Protein
x 10 -4
strain Miyazaki
Hydrogenomonas
m-Hydroxybenzoate Aspergillus
A l%b
1 cm
nmC
Comments
Re f.
16.4
18.4
280
90
MW = 89,000.
4.7
5.3
400
90
do
280
91
6.9
400
91
15.5
278
92
HI6
69 u
4-hydroxylase
niger
From Fig.
1.k
0.125 M NaPh. pH 7. ~-Hydroxy-~-carboxymuconic Pseudomonas
~-semialdehyde
ochraceae
Hydroxyoctadecanoate
14.6
dehydrogenase 278
93
LS; From Fig. 5. k
280
94
AA, MW = 57,000.
61.0
280
95
0.05 M Ph, pH 7.5.
200.0 v
408
95
do
23.0
534
95
do
280.0 w
418
95
do
32.0
463
95
do
33.0
525
95
do
48.0 x
553
95
do
280
96
278
97
dehydrogenase
Pseudomonas S~ NRRL B3266 Hydroxylamine
2.9
5
oxidoreductase
Nitrosomonas
euro~ae
Schmidt strain Oxidized
Reduced
Immunoglobulin Goat antihuman Hb Fab monomer
7.5
15
Rabbit antibody to calf muscle myokinase
Rabbit Y M
15.0
13.2
280
98
50 mM Tris,
0.02 M
NaCI,
1.0 mM
EDTA,
pB 7.4.
10% borate buffer. pH 7.85.
Human ~ M Subunit Human ~ M
Human light chain Wes
11.85
280
99
Dry wt.
12.0
280
99
Dry wt. Refr.
11.8
280
i00
12.7
280
i00
do
12.4
280
i00
do do
12.5
280
100
12.2
nc y
i01
N, interf.
10.7
278
102
Dry
wt.
0.i M
NaCI, pH 6; LS.
Human IgM McE
10.5
277
102
12.2
280
103
Below pH 3; LS. Dry wt.
0.15 M
Tris-HCl,
pH 8.0.
Protein, molar absorptivity, Al~m values
35
Table I. (Contd) Protein
~ x l0 -4
Al%b 1 cm
12.0
nmC
280
Ref.
103
Comments
0.15 M NaCI, 20 mM NaPh. 2 mM EDTA, pH 7.35.
Dry wt.
12.0
280
103
6 M GHC1, pH 4.5.
Heavy chain
12.0
280
103
Dry wt.
Light chain
12.5
280
103
Dry wt.
Human IgM Pel
12.2
280
104
0.15 M NaCI, pH 7.0.
Human IgM Gre
12.1
280
104
do
Human IgM Ger
13.5
280
104
do
12.66
280
105
MW = 75,000.
11.9
280
104
0.15 M NaCI, pH 7.0.
Human IgA secretory piece, Colostrum
9.5
Canine IgM Mel
free
Inhibitor Protease Strept0m[ces @riseoincarnatus str. KTo-250 ApI-2b
2.84
7.9
280
106
MW = 36,000.
ApI-2c
2.78
8.7
280
106
MW = 32,000.
Adzuki beans
(Phaseolus an~ularis)
I II Bauhinia seeds
1.42
280
107
10.03
276
107
1.6
280
108
0.39
Japanese radish seeds
MW = 24,300.
(Ra~hanus sativus)
I
9.80
280
109
0.05 M NaAc, pH 5.5.
III
9.59
280
109
do
5.56
280
110
MW = 12,000
Streptom~ces ni@rescens
0.67
Dry wt. Human urine
5.70
280
lll
Dry wt.
Trypsin inhibitor Winged bean seeds
(Pso~hocar~us tetra~onolobus)
No.
2
10.5
280
112
No.
3
14.4
280
112
No.
1
8.3
280
112
280
113
320
114
T r y p s i n / C h y m o t r y p s i n inhibitor
Black-eyed pea
(Vi~na sinensis)
Native
8.23
2-Methoxy-5-nitrobenzylderivative
15
0.05 M KPh, 0.2M NaCI, pH 7.0. Data from Fig. i.
f
36
D.M. KIRSCHENBAUM
aeM is the molar absorptivity with units of M-~ cm -~ and is either the value reported in the reference cited or calculated from the AI~,~ value and the molecular weight. bA~ ~ll cra is the absorption for a I% solution in a 1 cm cuvet and is either the value reported in the reference cited or calculated from the ~M and the molecular weight. The relationship between eM, AI~,,, and molecular weight, MW, is IO~M = (A 1'~ zcm) (MW). CRefers to the wavelength cited and may not be the peak of the absorption band. dAbbreviations used and methods of protein determination: Abbreviations: Tris, trishydroxymethylaminomethane;; NaAc, sodium acetate; NaPh, sodium phosphate; EDTA, ethylene-diamine tetraacetic acid; ME,/3-mercaptoethanol; GHC1, guanidine hydrochloride; SDS, sodium dodecylsulfate; ETA, ethanolamine. Methods of Protein Determination: Interf., interferometry; AA, amino acid analysis; Dry wt., dry weight; Refr., refractometry; N, nitrogen determination; LS, corrected for light scattering. eTo determine protein in mg use 0.88 as a factor at 280 nm (70). rSame value for the three isolated factors. SWhen the concentration of the protein is determined by amino acid analysis a value of 9.43 at 280 nm is obtained. hPer two atoms of Fe per molecule. iContains 8 atoms of Fe and 8 atoms of sulfur. JThis value is given in (26) referring to (27) as the source for it. Examination of (27) reveals no such value. gFrom figure in reference cited. tin (47) given as 0.87. A personal communication from Dr. Lapointe changed value to 8.7 "Reported as E, 1.0%, 280 nm. Actually what was reported was E, 0.1%, 280 nm. "Per 2 iron atoms per subunit. °Reported as 14.8 meq/L. PReported as ~ × l(P/cm/valine. qAbsorbs at 627 nm, 576 nm, 538 nm and 412 nm but no values for the absorption are given. 'Value per heme of tetramer. 'Reported as ¢ × 104/cm2 mole heine. MIC, methylisocyanide; EIC, ethylisocyanide; IPIC, isopropylisocyanide;; deoxy a-PMB, p-chloromercuri derivative of the a chain; deoxy a-PMB, p-chloromercuri derivative of the fl chain; ~-SH, ot chain in the thiol form; fl-SH, fl chain in the thiol form. tPer Fe atom. "Cited in (91). 11.3 based on heine content. w16.0 based on heine content. ~2.7 based on heme content. ~nc, not cited.
R E F E R E N C E S FOR TABLE 1 1. T. Omori-Satoh, Biochim. Biophys. Acta 495, 93 (197). 2. K-H. Suss, H. Damaschun, G. Damaschun, and D. Zirwer, FEBS Lett. 87, 265 (1978). 3. H. S. Paradies, J. Zimmerman, and U. D. Schmidt, J. Biol. Chem. 253, 8972 (1978). 4. G. Oshima, T. Omori-Satoh, S. Iwanaga, and T. Suzuki, J. Biochem. Tokyo 72, 1483 (1972). 5. M. Ovadia, Toxicon 16, 479 (1972). 6. M. Young, J. D. Saide, R. A. Murphy, and M. H. Blanchard, Biochemistry 17, 1490 (1978). 7. M. E. Nesheim, K. H. Myrmel, L. Hibbard, and K. G. Mann, J. Biol. Chem. 254, 508 (1979). 8. K-S. Chung, D. A. Madar, J. C. Goldsmith, H. S. Kingdon, and H. R. Roberts, Z Clin. Invest. 62, 1078 (1978). 9. H. Claeys and D. Collen. Eur. J. Biochem. 87, 69 (1978). 10. B. Curman, L. Sandberg-Tragardh, and P. A. Peterson, Biochemistry 16, 5368 (1977). 11. A. Spassky and H. C. Buc, Fur. J. Biochem. gl, 79 (1977). 12. P. Giompres and N. M. Packer, Biochim. Biophys. Acta 529, 189 (1978). 13. J. K. Stoops, M. J. Arslanian, K. C. Aune, and S. J. Wakil, Arch. Biochem. Biophys. 188, 348 (1978). 14. D. G. Hardie and P. Cohen, Fur. J. Biochem. 92, 25 (1978). 15. J. K. Stoops, E. S. Awad, M. J. Arslanian, S. Gunsbery, S. J. Wakil, and R. M. Oliver, J. Biol. Chem. 253, 4464 (1978). 16. C. Y. Lin and S. Smith, J. Biol. Chem. 253, 1954 (1978). 17. I. Probst, J. J. G. Moura, I. Moura, M. Brishi, and J. Le Gall, Biochim. Biophys. Acta 502, 38 (1978). 18. M. M. Werber and M. Mevarech, Arch. Biochem. Biophys. 187, 447 (1978). 19. M. Shin, M. Sukenobu, R. Oshino, and Y. Kitazume, Biochim. Biophys. Acta 460, 85 (1977). 20. D. C. Yoch, R. P. Carithers, and D. I. Arnon, J. Biol. Chem. 252, 7453 (1977). 21. H. Hasumi and S. Nakamura, J. Biochem. Tokyo 84, 707 (1978). 22. M. May and W. W. Fish, Arch. Biochem. Biophys. 182, 396 (1977). 23. S. Aliau, J. Marti, and J. Moretti, Biochimie 60, 663 (1978). 24. A-M. Grigorova, N. Cittanova, and M. F. Jayle, Biochimie 59, 217 (1977). 25. I. A. M. Van Ruijen-Vermeer and W. Nieuwenhuizen, Biochem. J. 169, 653 (1978). 26. M. Maruyama, G. Lodderstaedt, and R. Schmitt, Biochim. Biophys. Acta 535, I10 (1978). 27. Y. Uratani, S. Asakura, and K. Imahori, J. Mol. Biol. 67, 85 (1972). 28. M. P. Fitzgerald, A. Husain, and L. J. Rogers, Biochem. Biophys. Res. Comm. 81,630 (1978). 29. D. J. Steenkamp, W. C. Kenney, and T. P. Singer, Y.. Biol. Chem. 253, 2812 (1978). 30. A. E. Anamalai, O. Tsolas, and B. L. Horecker, Arch. Biochem. Biophys. 153, 48 (1977). 31. J. M. Farnandez-Sousa, F. G. Gavilanes, J. G. Gavilanes, and J. A. Paredes, Arch. Biochem. Biophys. 188, 456 (1978). 32. H. Anttinen, R. Myllyla, and K. I. Kivirikko, Biochem. J. 175, 737 (1978). 33. J. P. Van Buren and W. B. Robinson, J. Agr. Food. Chem. 17, 772 (1969). 34. V. Prakash and P. K. Nandi, Int. J. Pep. Prot. Res. 9, 97 (1977). 35. S. P. Shoemaker and R. D. Brown, Jr., Biochim. Biophys. Acta 523, 147 (1978). 36. T. Takahashi, Y. Tsuchida, and M. Irie, J. Biochem. Tokyo 84, 1183 (1978).
Protein, molar absorptivity, AI~,, values
37
37. A. Kahn, M. Vibert, D. Cottreau, H. Skala, and J-C. Dreyfus, Biochim. Biophys. Acta 526, 318 (1978). 38. R. H. Yue, E. A. Noltmann, and S. A. Kuby, Biochemistry 6, 1174 (1967). 39. W. A. Scott and E. L. Tatum, J. Biol. Chem. 246, 6347 (1971). 40. J. E. Robbins, K. D. Hapner, and S. D. Weber, Physiol. Chem. Physics 7, 555 (1975). 41. R. L. Degussem, G. M. Aerts, M. Claeyssens, and C. K. De Bruyne, Biochim. Biophys. Acta 525, 142 (1978). 42. W. Leicht, M. M. Weber, and H. Eisenberg, Biochemistry 17, 4004 (1978). 43. M. J. Boland and A. G. Benny, Fur. J. Biochem. 79, 355 (1977). 44. J. Y. Wong, E. Meyer, and R. L. Switzer, J. Biol. Chem. 252, 7424 (1977). 45. W. S. Lin and M. Kapoor, Can. J. Biochem. 10, 927 (1978). 46. J. Siedel and E. Shelton, Arch. Biochem. Biophys. 192, 214 (1979). 47. D. Kern, S. Potier, Y. Boulanger, and J. Lapointe, J. Biol. Chem. 254, 518 (1979). 48. N. Taniguchi and A. Meister, J. Biol. Chem. 253, 1799(1978). 49. A. Holmgren, J. Biol. Chem. 254, 3664 (1979). 50. T. Hayakawa, Y. Myokei, H. Yagi, and D. M. Jerina, J. Biochem. Tokyo 82, 407 (1977). 51. V. P. Pigiet and R. R. Conley, J. Biol. Chem. 252, 6367 (1977). 52. C. J. Marcus, W. H. Habig, and W. B. Jakoby, Arch. Biochem. Biophys. 188, 287 (1978). 53. J. W. Crabb, A. L. Murdock, and R. E. Amelunsen, Biochemistry 16, 4840 (1977). 54. J. R. Edgar and R. M. Bell, J. Biol. Chem. 253, 6348 (1978). 55. A. Schryvers, E. Lohmeier, and J. H. Weiner, J. Biol. Chem. 253, 783 (1978). 56. E. S. Cole, C. A. Lepp, P. D. Holohan, and T. P. Fondy, J. Biol. Chem. 253, 7952 (1978). 57. M. J. Ostro and T. P. Fondy, J. Biol. Chem. 252, 5575 (1977). 58. J. E. Cone, R. M. Del Rio, and T. C. Stadtman, 3. Biol. Chem. 252, 5337 (1977). 59. T. B. Eronina, G. U. Silonova, and N. B. Livanova, Biochemistry (Biokhimiyatrans.) 42, 197 (1977). 60. C. W. Heizmann and H. M. Eppenberger, J. Biol. Chem. 253, 270 (1978). 61. B. J. Campbell, R. J. Schlueter, G. F. Weber, and W. F. White, Biochim. Biophys. Acta 46, 279 (1%1). 62. A. C. Aronsson and B. Mannervik, Biochem. J. 165, 503 (1977). 63. S. I. Bezborodova, O. P. Beletskaya, and V. M. Grishchenko, Biochemistry (Biokhimiyatrans.) 42, 1217(1977). 64. S. Ueno, G. Funatsu, and M. Funatsu, Agric. Biol. Chem. 41, 1069(1977). 65. S. Quittner, L. A. Watts, C. Crosby, and R. Roxby, J. Biol. Chem. 253, 525 (1978). 66. S. Quittner, L. A. Watts, and R. Roxby, Anal. Biochem. 89, 187 (1978). 67. H. A. Kuiper, W. Gaastra, J. J. Beintema, E. F. J. Van Bruggen, A. M. H. Schepman, and J. Drenth, Z Mol. Biol. 99, 619 (1975). 68. A. W. Addison and R. E. Bruce, Arch. Biochem. Biophys. 183, 328 (1977). 69. J. i3. R. Dunn, A. W. Addison, R. E. Bruce, J. S. Loehr, and T. M. Loehr, Biochemistry 16, 1743 (1977). 70. B. L. Horecker, J. Biol. Chem. 148, 173 (1943). 71. W. Scheler, Biochem. Zeit. 330, 538 (1958). 72. W. Scheler, G. Schoffa, and F. Jung, Biovhem. Zeit. 329, 232 (1957). 73. S. T. Bowen, H. W. Moise, G. Waring, and M-C. Poon, Comp. Biochem. Physiol. 55B, 99 (1976). 74. L. Moens and M. Kondo, Biochem. J. 165, 111 (1977). 75. E. Antonini, Physiol Rev. 45, 123 (1965). 76. W. R. Holmquist and J. R. Vinograd, Biochim. Biophys. Acta 69, 337 (1963). 77. C. E. Castro, R. S. Wade, and N. O. ,Belser, Biochemistry 17, 225 (1978). 78. E. Antonini and M. Brunori, The Red Cell, 2nd Edn, Vol. 2, p. 754. Academic Press, New York (1975). 79. B. Talbot, M. Brunori, E. Antonini, and J. Wyman, J. Mol. Biol. 58, 161 (1971). 80. W. Scheler, Acta Biol. Med, Germ. 5, 382 (1960). 81. R. J. Carrico, J. Peisach, and J. O. Alban, 3". Biol. Chem. 253, 2386 (1978). 82. Z. Hrkal, M. B. Kodicek, and Z. Vodrazka, Syrup. on Protein Structure and Evolution (I.U.B.), p. 493. Marcel Dekker, New York (1975). 83. L. J. Defilippiand D. E. Hultquist, J. Biol. Chem. 253, 2954 (1978). 84. D. B. Pho, C. Rouston, A. N. T. Tot, and L-A. Pradel, Biochemistry 16, 4533 (1977). 85. P. Roos, Acta Endocrinol. Supplement 131, 1 (1968). 86. E. C. Hatchikan, M. Bruschi, and J. Le Gall, Biochem. Biophys. Res. Comm. 82, 451 (1978). 87. R. H. Haschke and L. L. Campbell, J. Bacteriol. 105, 249 (1971). 88. J. Le Gall, D. V. Dervartanian, E. Spilker, J-P. Lee, and H. D. Peck Jr., Biochim. Biophys. Acta 234, 525 (1971). 89. H. M. Van den Westen, S. 13. Mayhew, and C. Veeger, FEBS Lett. 86, 122 (1978). 90. T. Yagi, K. Kimura, H. Daidoji, F. Sakai, S. Tamura, and H. Inokuchi, J. Biochem. Tokyo 79, 661 (1976). 91. T. Pfitzuer, H. A. B. Linke, and H. C. Schlegel, Arch. Mikrobiol. 71, 67 (1970). 92. R. P. Kumar, P. V. S. Rao, and C. S. Vaidyanathan, Ind. J. Biochem. Biophys. 10, 184 (1973). 93. K. Maruyama, N. Ariga, M. Tsuda, and K. Deguchi, J. Biochem. Tokyo 83, 1125(1978). 94. W. G. Niehaus Jr., T. Frielle, and E. A. Kingsley Jr., J. Bacteriol. 134, 177 (1978). 95. A. B. Hooper, P. C. Maxwell, and K. R. Terry, Biochemistry 17, 2984 (1978). 96. A. L. Tan-Wilson,M. Reichlin, and R. W. Noble, Immunochemistry 13, 491 (1976). 97. S. A. Kuby, M. Hamada, D. Gerber, W-C. Tsai, H. K. Jacobs, M. C. Cress, G. K. Chua, G. Fleming,L. H. Wu, A. H. Fischer, A. Frischat, and L. Maland, Arch. Biochem. Biophys. 187, 34 (1978). 98. L. W. Hoyer, T. Boros, H. J. Rapp, and W. E. Vannier, J. Exp. Med. 127, 589 (1968). 99. F. Miller and H. Metzger, J. Biol. Chem. 240, 3325 (1965). 100. H. Metzger, Adv. lmmunol. 12, 57 (1970). 101. E. Merler, L. Kadin, and S. Matsumoto, J. Biol. Chem. 243, 386 (1%8). 102. R. W. Green, Biochemistry 12, 3225 (1973). 103. C. R. Middaugh, J. M. Kehoe, M. B. Prystowsky, B. Gerber-Jenson, J. C. Jenson, and G. W. Litman, lmmunochemistry 15, 171 (1978). 104. C. R. Middaugh, B. Gerber-Jenson, A. Hurvitz, A. Paluszek, C. Scheffel, and G. W. Litman, Proc. Nat. Acad. Sci. U.S.A. 75, 3440 (1978). 105. K. Kobayashi, Immunochemistry 8, 785 (1971).
38
D.M. KIRSCItENBAUM
106. K, Suzuki, M. Uyeda, and M. Shibata, Agr. Biol. Chem. 42, 1539(1978). 107. M. Yoshikawa, S. Ogura, and M. Tatsumi, Agr. Biol. Chem. 41, 2235 (1977). 108. Z. Goldstein, M. Trop, and Y. Birk, Nature, New Biology 246, 29 (1973). 109. T. Ogawa, T. Higasa, and T. Hata, Agric, Biol. Chem. 32, 484 (1968). 110. K, Oda, T. Koyama, and S. Murao, Biochim. Biophys. Acta 571, 147 (1979). 111. V. Barthelemy-Clavey,E. A. Yapo, G. Vanitoutte, A. Hayem, and J. Mizon, Biochim. Biophys. Acta $$0, 154 (1979). 112. A. A. Kortt, Biochim. Biophys. Acta 577, 371 (1979). 113. M. M. Ventura and R. A. Moreira, An. Acad. Brasil Cienc. 43, 243 (1971). 114. K. Mizuta and M. M. Ventura, An. Acad. Brasil. Cienc. 51,349 (1979).