Molar absorptivity and A1cm1% values for proteins at selected wavelengths of the ultraviolet and visible regions—XX

Molar absorptivity and A1cm1% values for proteins at selected wavelengths of the ultraviolet and visible regions—XX

I Quant. Spectrosc. gadiat. Trans/er Vol. 27, No. 1, pp. 23--38, 1982 0022-4073/82/010023-16503.00/0 Pergamon Press Ltd. Printed in Great Britain. ...

532KB Sizes 1 Downloads 44 Views

I

Quant. Spectrosc. gadiat. Trans/er Vol. 27, No. 1, pp. 23--38, 1982

0022-4073/82/010023-16503.00/0 Pergamon Press Ltd.

Printed in Great Britain.

M O L A R A B S O R P T I V I T Y A N D za1% s] cm V A L U E S F O R P R O T E I N S AT S E L E C T E D W A V E L E N G T H S OF T H E U L T R A V I O L E T AND VISIBLE REGIONS--XX DONALD M. KIRSCHENBAUM'J" Department of Biochemistry, College of Medicine, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, U.S.A.

(Received 8 April 1981) Abstraet--A table of molar absorptivity and Ajcm 1% values for more than 125 proteins is given. The conditions used to obtain these values and references to the original literature are also given. INTRODUCTION

The molar absorptivity, E, and ",cmA'~for more than 125 proteins and the conditions under which these values were obtained are listed in Table 1. Additional pertinent data can be found in Table 1. The method used to compile these data has been described by Kirschenbaum) This paper is part of a continuing compilation of absorption characteristics of proteins. 2 Acknowledgements--The Library of the Downstate Medical Center College of Medicine has been the major source of all publications examined. What was not available in the library was obtained from other libraries by a loan service. I thank E. Becker for assisting me with photocopying, N. E. Aroll and Z. Aroll for general assistance, and G. Hawkins for typing the reference list. This compilation project was supported, in part, by Grant No. RO1 LM 03591-01 awarded by the Nationa| Library of Medicine, DHEW. REFERENCES 1. D. M. Kirschenbaum, J. Chem. Inform. Comput. Sci. 20, 152 (1980). 2. D. M. Kirschenbaum, Int. J. Biochem. 11,487 (1980). Table 1. Molar absorptivity and A~t% cm values for proteins Protein

M 10-4

Al%b 1 cm

flavoviridis

__e

280

1

2.6

276.5

2

5.1

278

3

10.32

280

4

14 f

280

5

19.2

280

6

nm

c

Ref.

Comments d

Factor Antihemorrhagic Trimeresurus chloroplast Vicia

coupling

(CFI)

faba thylakoid

membrane Spinach

Interf.

Hemorrhagic Snake venom (A~kistrodon halls blomhoffii Snake venom (Vipera palaestinae) Nerve growth Male mouse

submandibular

gland

tFaculty Exchange Scholar--SUNY. 23

AA

D.M. KmSCHENaAUM

24

Table 1. Protein

~ ~ x 10 -4

(Contd)

Al%b 1 cm

nm

c

Ref.

Comments

Factor V Bovine plasma Factor

IX

31.64

IX

7

12.5

280

8

11.8

2a0

8

5 ~ = 329,600; Interf.

LS.

(Christmas Factor)

Human plasma F a c t o r XII,

Coagulation

factor

Bovine p l a s m a Factor

280

(Chapel Hill)

Human plasma Factor

9.6

(Hageman

factor)

13.6

280

9

12.7

280

10

278

ii

B

Human blood

F a c t o r HI, DNA b i n d i n g p r o t e i n Escherichia

coli

8.61

F a t t y acid s y n t h e t a s e As~er~illus Chicken

fumigatus

liver

16.5

4.59

9.56 g

278

12

280

13

MW

=

480,000;

Dry wt. Rabbit mammary gland Lactating

25

i0.0

280

14

MW

=

250,000;

Refr. Yeast

F a t t y acid synthetase: Rat m a m m a r y

11.5

280

15

AA

10.26

280

15

Dry wt.

280

16

AA

4.01

283

17

2.98

385

17

14.7

280

18

20

272

18

M W = 14,000.

330

18

do

thioesterase

gland

component

7.1

Ferredoxin Desulfuromonas acetoxidans

Halobacterium Apo Holo -

Nostoc

2.8 1.22

8.7

0.91

6.1

420

18

do

0.83

5.9

465

18

do

425

19

pH 7.5,

verrucosum

Type

I

1.151 h

Tris-HCI

0.02 M containing

0.33 NaCI. Type

II

1.113 h

Rhodos~irillum Type

IV l

Ferredoxin-NADP

422

19

rubrum 3.16

400

20

6.7

280

20

reductase

(EC 1.6.99.4)

do

Protein, molar absorptivity, Al~m values

25

Table 1. (Contd) G Ma

Protein

10-4

Spinach

leaves

Al%b

1 cm

1.04

nm c

458

Ref.

21

Comments

Dry wt.

and FAD

content. Ferritin Porcine spleens

10.3

280

22

4.6

280

23

MW = 66,500;

6.0

280

24

Dry wt.

15.4

280

25

pH 5.0.

~-Fetoprotein Fetal calf serum

3.08

Rat serum Fibrinogen Rat plasma

5.2

NaAc.

0.01M MW = 340,000

AA. Flagellin Rhizobium

2.4

280

26

pH 3; Lowry.

3.30 j

280

27

pH 7

1.07

5.1

464

28

MW = 21,000.

1.07

5.1

275

28

do

280

29

280

30

lupini H13-3

Salmonella Flavodoxin Chondrus

cris~is

Azotobacter ApoFructose

3.2

1,6-biphosphatase

(~C 3.1.3.11)

Chicken breast muscle

11.66

8.1

MW = 144,000. Dry wt.

D-Fructose

1,6-biphosphate

aldolase

Insect (Ceratitis capitata)

15.8

I0

280

31

MW = 158,000; Dry wt. and AA.

Galactosylhydroxylysyl

glucosyltransferase

Chick embryo

225

32

6.5

435

33

Sesame seed ( Sesamum indicum ~i0.8

280

34

Gelatin,

74

DNP-

Calf skin

pH 3

-Globulin

endo-l,4-~-D-Glucanase Trichoderma

(~C 3.2.1.4)

viride

Type II

4.5

12.0

280

35

MW = 37,200.

Type III

5.4

10.3

280

35

MW ~ 52,000.

Type IV

6.5

13.1

280

35

MW = 49,500.

Type 1

13.2

280

36

Type 2

13.7

280

36

Type 3

13.4

280

36

Glucoamylase Rhizopus

(EC 3.2.1.3) sp.

D. M. KIRSCHENBAUM

26

Table 1.

(Contd)

a

Protein

Glucose

xE M10 -4

6-phosphate

A 1l%bcm

dehydrogenase

Human leukocytes Hyperanodic Brewer's

forms

yeast

(Saccharom[ces

Dimer

nmC

Ref.

Comments

(EC i.i.1.49)

10

280

37

12.6

280

37

carlbergensis) 9.65

278

38

pH 7.0, 0.05 M NaPh.

Neuros~ora

crassa

ll.1

280

39

pH 7.4, 0.i M TrisHCI ; AA

Bakers'

yeast (Saccharom[ces

cerevisiae) fl -D-Glueosidase Stachybotr~s Glutamate

9.5

278

40

14.86

280

41

Dry wt., LB.

12.4

2B0

42

pH 6.5,

(EC 3.2.1.21) atra

dehydrogenase

Halobacterium

NaPh, Glutamate

synthase,

Lupin nodules

4 M NaCI:

N.

NADH dependent

(Lupinus

an~ustifolius

16

Glutamine phosphoriboSylpyrophosphate Bacillus

50 m M

subtilis

276

43

amidotransferase

9.6

278

44

Lowry EC 2.4.2.14 pH 7.9,

50 mM

Tris-HCl

or i0 mM

NaHCO3; dry wt. Glutamine

synthetase

Neuros~ora Azotobacter

crassa

(EC 6.3.1.2) 33.5

9.3

278

45

MW = 360,000.

8.2

278

46

Data from Fig.

7.7

280

46

do

8.71

280

47

13.1

279

48

10.0

280

49

12.8

280

50

15.8

280

51

vinelandii

Deadenylated Glutamyl-tRNA Escherichia -Glutamyl

4k.

synthetase coli

cyclotransferase

Rat kidney pI 5.1 and pI 4.6 forms Glutaredoxin Escherichia

coli

Glutathione-S-epoxide

1.16

transferase

Guinea pig liver Glutathione

MW = 11,600.

reductase

Escherichia

coli

pH 7.6,

50 mM Ph,

3 mM EDTA. from Fig. Glutathione

transferase p

Human erythrocytes Glyceraldehyde

5.5

3-phosphate

Data 6~

(Ec 2.5.1.18) ll.9 dehydrogeDase

280

52

(~C 1.2.1.12)

MW = 46,500.

9. ./

Protein, molar absorptivity, A~~cm values Table 1. Protein

~ x 10-4

Bacillus

coa~ulans

sn-Glycerol

KU

3-phosphate

Escherichia

A l%b 1 cm

rrmc

Ref.

275-6

53

7.8 m

280

54

7.8 m

280

54

280

55

450

56

280

57

277

58

280

59

8.0

Comments

dehydrogenase

coli

Wild type Feedback Glycerol

(Contd)

resistant

3-phosphate

Escherichia

dehydrogenase

coli

i1.5

Rabbit Skeletal muscle Mitochondria Liver,

muscle,

0.56 mammary gland

Isozymes Glycine

4.8

reductase

Clostridium

Sticklandii

Glycogen phosphorylase Rabbit

2.2

B (EC 2.4.1.1)

liver

13.0

pH 7.0,

4 ~4 Trls,

I ~.1 EDTA and i m~M ME. Chicken breast muscle

From Fig.

13.2

280

60

8.1

280

61

pH 7.

6.6

13.7

280

62

MW = 48,000.

i.13

19.3

278

63

~

1.29

ll.8

278

63

do

13.62

280

(;4

< 60S

14.4

278.5

65

60S

15.5

278.5

65

100S

16.5

278.5

65

130S

6 k.

Refr., AA.

~l-Glycoprotein Sheep plasma Glycoxalase

I (EC 4.4.1.5)

Pig erythrocytes Guanyl-Ribonuclease As~er~illus

C2

clavatus

= ii,000.

Penicillium chr[so@enum Hemagglutinin

152A

A

Castor bean

(Ricinus

communis) Hemocyanin

Bus[con

canaliculatum

Native

17.6

278.5

65

Alkylated

13.83

276

65

6 M GHCI;

Unreduced

13.89

276

65

do

SDS complex

13.6

277

66

1.8 g SDS/g protein

13.8

278

67

pH 9.6, ETA-HC1.

Panulirus Hemerythrin

interru~tus

LS.

D.M. KIRSCHENBAUM

28

Table I. (Contd) Protein

x~ 10 -4

Phascolosoma Oxygen

Azide

lurco

ligand

ligand

Al%b 1 cm

nmC

Ref.

2.75 n

280

68

0.2150

500

68

0.6370

330

68

0.3640

480

68

Comments

Oxidation

product

in pH 8.2 T r i s - A c buffer ligand. 0.7360 SeCN-

ligand

N~N72-

ligand

Phascolopsis

326

68

do

0.3850 n

508

68

do

0.6440 n

331

68

do

0.0880 n

480

68

do

0.6040 n

380

68

do

0.6220 n

328

68

do

(Golfin~ia)

9ouldii

3.4800 n

280

68

Oxy-

3.5400 n

280

69

0.6900 n

326

69

0.2300 n

500

69

0.7200 n

327

69

0.3800 n

446

69

Metazido-

Themiste

(Dendrostomum)

Oxy-

Metazido-

Themiste

280

68

3.3000 n

280

69

0.6700 n

329

69

0.2350 n

500

69

0.7750 n

325

69

0.3600 n

446

69

280

68

fDendrostomum)

zostericola Themiste

3.2800 n

3.2800 n

~endrostomum)

pyroides Oxy-

3.2800 n

280

69

0.2050 n

500

69

0.7400 n

326

69

0.3500 n

446

69

a~assizii

2.8700 n

280

68

Oxy-

2.9200 n

280

69

0.6100 n

328

69

0.2000 n

500

69

0.6700 n

327

69

0.3500 n

446

69

1.48 °

567

70

1.48 °

538

70

Metazido-

Phascolosoma

Metazido-

Hemoglobin,

Horse

CO def.

Hemoglobin Horse MetHb-NH 3

MetHb-CH3NH 2

MetHb-C2H5NH 2

1.08 p

535

71

12.63 p

411

71 71

1.14 p

534.5

12.60 p

411.5

71

1.05 p

537.5

71

12.20 p M e t H b - ( C H 3 ) 2NH

1.00 p i0.18 p

410.5

71

535

71

411.5

71

0.i M in

Protein, molar absorptivity, A[~m values

29

Table 1. (Contd)

Protein

MetHb-F-

0-4

nmC

Re f.

1.09 p

605

72

1.03 p

482.5

72

403

72

0.58 p

620

72

0.53 p

570

72

0.92 p

496

72

404

72

0.55 p

620

72

1.05 P

497

72

14.4 p MetHb-HCO0-

17.2 p MetHb-CH3COO-

17.8 p MetHb-H20

404

72

0.44 p

631

72

1.0 P

500

72

404.5

72

17.9 p MetHb-OCN-

0.68 p

625

72

0.67 p

573

72

1.05 p

501

72

407.5

72

0.92 p

575

72

1.09 p

540

72

409.5

72

0.33 p

635

72

1.08 p

523

72

410

72

15.8 p MetHb-OH-

12.0 p MetHb-SCN-

ii.i p MetHb-Imidazol

1.25 p

560

72

1.47 p

534

72

411

72

--q

72

536

72

414

72

0.99 p

575

72

1.28 p

540

72

417

72

540

72

419

72

1.09 p

606

72

0.78 p

553

72

1.08 p

488

72

404.5

72

622

72

10.5 p MetHb-NO 2 MetHb-SeCN-

1.02 p i0.3 p

MetHb-N~

13.4 p MetHb-CN-

1 cm

1.25 p 12.4 p

qhironomusplumosis MetHb-F-

14.1 P MetHb-HCO0-

0.71 p 0.63 p

573

72

1.05 p

497

72

15.3 p

MetHb-CH3CO0

405

72

0.75 p

620

72

0.61 p

573

72

1.07 P 15.6 p MetHb-H20

0.38 p

496

72

405

72

632

72

Comments

D.M. KIRSCHENBAUM

30

Table 1. (Contd) Protein

E~ x 10 -4

Al%b 1 cm

1.30 p 11.6 p MetHb-OCN-

72

412.5

72

0.93 p

580

72

1.03 p

540

72

409

72

0.53 p

635

72

1.26 p

519

72

411

72

532.5

72

1.22 p

413

72

0.41 p

627.5

72

0.86 p

498

72

409

72

0.39 p

630

72

1.18 p

532

72

12.3 p MetHb-N~

412

72

0.96 p

575

72

1.21 p

542

72

12.9 p MetHb-CN-

1.28 P 12.9 p

Artemia

72

72

13.3 p MetHb-SeCN-

404 628

12.2 p MetHb-NO 2

72

498

14.1 p MetHb-Imidazol

501

0.57 P

ii.4 p MetHb-SCN-

Ref.

0.96 p 12.7 p MetHb-OH-

nm c

417

72

538

72

420

72

Comments

salina

Hb 2 and 3

17,0

277

73

48,5

412

73

5,0

540

73

4,5

577

73

15.27

260

74

17,09

280

74

47.71

412

74

4.87

540

74

4.30

575

74

Hemoglobin Human erythrocytes HbMet

HbCO

8.63

541

75

4.89

518

76

4.71

520.5

76

do

3.92

538

76

do

2.35

568

76

do

2.32

576

76

do

2.44

636

76

do

pH 6.86.

4.89

518

76

do

5.52

520.5

76

do

8.99

538

76

do

Protein, molar absorptivity, Ate ~1%values Table I. (Contd) Ca x M10 -4

Protein

or

cells,

Fe II

Fe III

Recrst.

Fe II

FeO 2

Fe III

Comments

568

76

6.78

576

76

do do

0.17

636

76

do

3.47

518

76

do

3.88

520.5

76

do

8.55

538

76

do

6.85

568

76

do

9.53

576

76

do

0.ii

636

76

do

0.950 r

577

77

1.20 r

560

77

1.06 r

542

77

1.5 r

577

77

0.880 r

560

77

1.40 r

542

77

0.380 r

577

?7

0.348 r

560

77

0.60 r

542

77

0.990 r

575

77

1.31 r

558

77

1.12 r

540

77

1.50 r

575

77

0.917 r

558

77

1.44 r

540

77

0.475 r

575

77

0.480 r

558

77

0.675 r

540

77

1.25

555

erythrocytes

Hb

HbO 2

HbCO

HbNO

Hb-MIC s

Hb-E IC s

Hb-IPIC s

D e o x y ~-PI4B s

78

2.92

274

78

1.38

541

78

1.46

577

78

12.5

415

78

2.7

344

78

3.44

276

78

i. 34

540

78

1.34

569

78

19.1

419

78

2.8

344

78

1 • 26

545

78

1.30

575

78

427

79

0.2 N KPh,

1.69

559

79

do

1.42

530

79

do

428

79

do

1.73

559

79

do

1.44

53O

79

do

428

79

do

1.72

531

79

do

1.43

531

79

do

429

79

do

558

79

do

427

79

do

1.63

558

79

do

1.39

529

79

do

18.6

19.3

18.6

ii. 6 1.23

~_PMB_MIC s

78

430

13.3

QSRT VoL 27,No. I--C

Ref.

lysed

FeO 2

Human

nmC

9.11

HbO 2

Whole

A1 l%bcm

18.2

pH

7.0.

D. M. KIRSCHENBAUM

32

Table 1. Protein x 10 -4

~

-PMB-EIC s

(Contd)

Al%b 1 cm

529

79

do

558

79

do

428

79

do

1.42

530

79

do

1.74

559

79

do

428

79

do

1.23

557

79

do

431

79

do

17.7

429

79

do

17.5

429

79

do

17.7

430

79

do

560

79

do

11.6

429

79

do

11.6

~ -PMB-MIC s

~ -PMB-EIC s ~-PMB-IPIC s

1.68 ~-SH-Deoxy

~ ~

~

s

Comments

1.73

18.5 Deoxy ~-PMB s

Re f.

1.41

17.7 ~-PMB-IPIC s

nm c

-SH-MIC s

18.3

427

79

do

-SH-EIC s

18.1

428

79

do

-SH-IPIC s

18.0

428

79

do

-SH-Deoxy s

11.6

429

79

do

-SH-MIC s

17.8

429

79

do

17.2

429

79

do

17.6

429

79

do

563.5

80

pH

-SH-EIC s

~-SH-IPIC

s

Hb-Nitrosobenzene

1.50 P

7.2-7.4

4% alcohol. 15.4 p

422

80

do

563.5

80

do

423

80

do

560.5

80

do

423

80

do

560

80

do

422

80

do

563

80

do

423

80

do

1.55 p

576.5

80

Ph,

1.50 p

542

80

do

415

80

do

Hb-o-Nitrosotoluene

1.54 p 15.9 p

Hb-m-Nitrosotoluene

1.54 p 14.9 p

Hb-p-Nitroso toluene

1.46 p 14.4 p

Hb-l-Nitroso-2,5xylol

1.54 p 18.7 p

HbO 2

13.2 p Sulfhemoglobin Deoxy

2.14

619

81

do

Oxy

2.53

623

81

do

CO

2.79

613

81

do

Hemopexin Human

blood

Apo

19.7

280

82

Heme-hemopexin

21.8

280

82

19.2

414

82

Hemoprotein, Bovine

green

tissue

Form

I, Fe III

Plus

CN-

9.3

416.5

83

5.1

268

83

0.95

569

83

8.1

427.5

83

pH

7.0.

with

Protein, molar absorptivity, •

Table 1.

0-4

Protein

F o r m I, Fe II



A 1% I¢ m

values

33

(Contd)

1 cm

nmC

Ref.

0.89

573

83

9.6

439

83

1.08

596

83

1.08

563

83

10.6

426.5

83

1.93

580.5

83

1.33

544

83

434

83

0.41

610

83

8.7

418

83

4.4

268

83

0.9

563

83

8.2

429

83

2.3

360

83

1.01

572

83

9.5

439

83

1.03

589

83

Plus CO

Plus p y r i d i n e

14.7 F o r m II, Fe III

Plus CN-

F o r m II, Fe II

Plus CO

Comments

i.i

558

83

11.3

426

83

2.8

339

S3

1.65

573

83

1.29

53&

83

431

83

290

84

0.i M NaOH.

Plus p y r i d i n e

13.0 Hexokinase 10.8

Yeast Hormone Follicle-stimulating Human pituitary

3.55

280

85

AA

Human urine

i. 74

280

85

do

400

86

MW

19.0

280

86

do

9.0

277

87

MW

0.31

0.7

408

87

do

2.28 t

7.6 t

280

88

MW

0.4430 t

1.48 t

408

88

do

4.6

400

89

12.8

280

89

Hydrogenase Desulfovibrio

g i q a s 4.65 17.0

5.20

=

89,500.

=

45,000.

=

30,000.

Desul fovibrio vulgaris strain NCIB

8303 4.1

strain Hi i d e n b o r o u g h

strain Hildenborough N C I B 8303

D. M. KIRSCHENBAUM

34

(Contd)

Table 1. a ~M

Protein

x 10 -4

strain Miyazaki

Hydrogenomonas

m-Hydroxybenzoate Aspergillus

A l%b

1 cm

nmC

Comments

Re f.

16.4

18.4

280

90

MW = 89,000.

4.7

5.3

400

90

do

280

91

6.9

400

91

15.5

278

92

HI6

69 u

4-hydroxylase

niger

From Fig.

1.k

0.125 M NaPh. pH 7. ~-Hydroxy-~-carboxymuconic Pseudomonas

~-semialdehyde

ochraceae

Hydroxyoctadecanoate

14.6

dehydrogenase 278

93

LS; From Fig. 5. k

280

94

AA, MW = 57,000.

61.0

280

95

0.05 M Ph, pH 7.5.

200.0 v

408

95

do

23.0

534

95

do

280.0 w

418

95

do

32.0

463

95

do

33.0

525

95

do

48.0 x

553

95

do

280

96

278

97

dehydrogenase

Pseudomonas S~ NRRL B3266 Hydroxylamine

2.9

5

oxidoreductase

Nitrosomonas

euro~ae

Schmidt strain Oxidized

Reduced

Immunoglobulin Goat antihuman Hb Fab monomer

7.5

15

Rabbit antibody to calf muscle myokinase

Rabbit Y M

15.0

13.2

280

98

50 mM Tris,

0.02 M

NaCI,

1.0 mM

EDTA,

pB 7.4.

10% borate buffer. pH 7.85.

Human ~ M Subunit Human ~ M

Human light chain Wes

11.85

280

99

Dry wt.

12.0

280

99

Dry wt. Refr.

11.8

280

i00

12.7

280

i00

do

12.4

280

i00

do do

12.5

280

100

12.2

nc y

i01

N, interf.

10.7

278

102

Dry

wt.

0.i M

NaCI, pH 6; LS.

Human IgM McE

10.5

277

102

12.2

280

103

Below pH 3; LS. Dry wt.

0.15 M

Tris-HCl,

pH 8.0.

Protein, molar absorptivity, Al~m values

35

Table I. (Contd) Protein

~ x l0 -4

Al%b 1 cm

12.0

nmC

280

Ref.

103

Comments

0.15 M NaCI, 20 mM NaPh. 2 mM EDTA, pH 7.35.

Dry wt.

12.0

280

103

6 M GHC1, pH 4.5.

Heavy chain

12.0

280

103

Dry wt.

Light chain

12.5

280

103

Dry wt.

Human IgM Pel

12.2

280

104

0.15 M NaCI, pH 7.0.

Human IgM Gre

12.1

280

104

do

Human IgM Ger

13.5

280

104

do

12.66

280

105

MW = 75,000.

11.9

280

104

0.15 M NaCI, pH 7.0.

Human IgA secretory piece, Colostrum

9.5

Canine IgM Mel

free

Inhibitor Protease Strept0m[ces @riseoincarnatus str. KTo-250 ApI-2b

2.84

7.9

280

106

MW = 36,000.

ApI-2c

2.78

8.7

280

106

MW = 32,000.

Adzuki beans

(Phaseolus an~ularis)

I II Bauhinia seeds

1.42

280

107

10.03

276

107

1.6

280

108

0.39

Japanese radish seeds

MW = 24,300.

(Ra~hanus sativus)

I

9.80

280

109

0.05 M NaAc, pH 5.5.

III

9.59

280

109

do

5.56

280

110

MW = 12,000

Streptom~ces ni@rescens

0.67

Dry wt. Human urine

5.70

280

lll

Dry wt.

Trypsin inhibitor Winged bean seeds

(Pso~hocar~us tetra~onolobus)

No.

2

10.5

280

112

No.

3

14.4

280

112

No.

1

8.3

280

112

280

113

320

114

T r y p s i n / C h y m o t r y p s i n inhibitor

Black-eyed pea

(Vi~na sinensis)

Native

8.23

2-Methoxy-5-nitrobenzylderivative

15

0.05 M KPh, 0.2M NaCI, pH 7.0. Data from Fig. i.

f

36

D.M. KIRSCHENBAUM

aeM is the molar absorptivity with units of M-~ cm -~ and is either the value reported in the reference cited or calculated from the AI~,~ value and the molecular weight. bA~ ~ll cra is the absorption for a I% solution in a 1 cm cuvet and is either the value reported in the reference cited or calculated from the ~M and the molecular weight. The relationship between eM, AI~,,, and molecular weight, MW, is IO~M = (A 1'~ zcm) (MW). CRefers to the wavelength cited and may not be the peak of the absorption band. dAbbreviations used and methods of protein determination: Abbreviations: Tris, trishydroxymethylaminomethane;; NaAc, sodium acetate; NaPh, sodium phosphate; EDTA, ethylene-diamine tetraacetic acid; ME,/3-mercaptoethanol; GHC1, guanidine hydrochloride; SDS, sodium dodecylsulfate; ETA, ethanolamine. Methods of Protein Determination: Interf., interferometry; AA, amino acid analysis; Dry wt., dry weight; Refr., refractometry; N, nitrogen determination; LS, corrected for light scattering. eTo determine protein in mg use 0.88 as a factor at 280 nm (70). rSame value for the three isolated factors. SWhen the concentration of the protein is determined by amino acid analysis a value of 9.43 at 280 nm is obtained. hPer two atoms of Fe per molecule. iContains 8 atoms of Fe and 8 atoms of sulfur. JThis value is given in (26) referring to (27) as the source for it. Examination of (27) reveals no such value. gFrom figure in reference cited. tin (47) given as 0.87. A personal communication from Dr. Lapointe changed value to 8.7 "Reported as E, 1.0%, 280 nm. Actually what was reported was E, 0.1%, 280 nm. "Per 2 iron atoms per subunit. °Reported as 14.8 meq/L. PReported as ~ × l(P/cm/valine. qAbsorbs at 627 nm, 576 nm, 538 nm and 412 nm but no values for the absorption are given. 'Value per heme of tetramer. 'Reported as ¢ × 104/cm2 mole heine. MIC, methylisocyanide; EIC, ethylisocyanide; IPIC, isopropylisocyanide;; deoxy a-PMB, p-chloromercuri derivative of the a chain; deoxy a-PMB, p-chloromercuri derivative of the fl chain; ~-SH, ot chain in the thiol form; fl-SH, fl chain in the thiol form. tPer Fe atom. "Cited in (91). 11.3 based on heine content. w16.0 based on heine content. ~2.7 based on heme content. ~nc, not cited.

R E F E R E N C E S FOR TABLE 1 1. T. Omori-Satoh, Biochim. Biophys. Acta 495, 93 (197). 2. K-H. Suss, H. Damaschun, G. Damaschun, and D. Zirwer, FEBS Lett. 87, 265 (1978). 3. H. S. Paradies, J. Zimmerman, and U. D. Schmidt, J. Biol. Chem. 253, 8972 (1978). 4. G. Oshima, T. Omori-Satoh, S. Iwanaga, and T. Suzuki, J. Biochem. Tokyo 72, 1483 (1972). 5. M. Ovadia, Toxicon 16, 479 (1972). 6. M. Young, J. D. Saide, R. A. Murphy, and M. H. Blanchard, Biochemistry 17, 1490 (1978). 7. M. E. Nesheim, K. H. Myrmel, L. Hibbard, and K. G. Mann, J. Biol. Chem. 254, 508 (1979). 8. K-S. Chung, D. A. Madar, J. C. Goldsmith, H. S. Kingdon, and H. R. Roberts, Z Clin. Invest. 62, 1078 (1978). 9. H. Claeys and D. Collen. Eur. J. Biochem. 87, 69 (1978). 10. B. Curman, L. Sandberg-Tragardh, and P. A. Peterson, Biochemistry 16, 5368 (1977). 11. A. Spassky and H. C. Buc, Fur. J. Biochem. gl, 79 (1977). 12. P. Giompres and N. M. Packer, Biochim. Biophys. Acta 529, 189 (1978). 13. J. K. Stoops, M. J. Arslanian, K. C. Aune, and S. J. Wakil, Arch. Biochem. Biophys. 188, 348 (1978). 14. D. G. Hardie and P. Cohen, Fur. J. Biochem. 92, 25 (1978). 15. J. K. Stoops, E. S. Awad, M. J. Arslanian, S. Gunsbery, S. J. Wakil, and R. M. Oliver, J. Biol. Chem. 253, 4464 (1978). 16. C. Y. Lin and S. Smith, J. Biol. Chem. 253, 1954 (1978). 17. I. Probst, J. J. G. Moura, I. Moura, M. Brishi, and J. Le Gall, Biochim. Biophys. Acta 502, 38 (1978). 18. M. M. Werber and M. Mevarech, Arch. Biochem. Biophys. 187, 447 (1978). 19. M. Shin, M. Sukenobu, R. Oshino, and Y. Kitazume, Biochim. Biophys. Acta 460, 85 (1977). 20. D. C. Yoch, R. P. Carithers, and D. I. Arnon, J. Biol. Chem. 252, 7453 (1977). 21. H. Hasumi and S. Nakamura, J. Biochem. Tokyo 84, 707 (1978). 22. M. May and W. W. Fish, Arch. Biochem. Biophys. 182, 396 (1977). 23. S. Aliau, J. Marti, and J. Moretti, Biochimie 60, 663 (1978). 24. A-M. Grigorova, N. Cittanova, and M. F. Jayle, Biochimie 59, 217 (1977). 25. I. A. M. Van Ruijen-Vermeer and W. Nieuwenhuizen, Biochem. J. 169, 653 (1978). 26. M. Maruyama, G. Lodderstaedt, and R. Schmitt, Biochim. Biophys. Acta 535, I10 (1978). 27. Y. Uratani, S. Asakura, and K. Imahori, J. Mol. Biol. 67, 85 (1972). 28. M. P. Fitzgerald, A. Husain, and L. J. Rogers, Biochem. Biophys. Res. Comm. 81,630 (1978). 29. D. J. Steenkamp, W. C. Kenney, and T. P. Singer, Y.. Biol. Chem. 253, 2812 (1978). 30. A. E. Anamalai, O. Tsolas, and B. L. Horecker, Arch. Biochem. Biophys. 153, 48 (1977). 31. J. M. Farnandez-Sousa, F. G. Gavilanes, J. G. Gavilanes, and J. A. Paredes, Arch. Biochem. Biophys. 188, 456 (1978). 32. H. Anttinen, R. Myllyla, and K. I. Kivirikko, Biochem. J. 175, 737 (1978). 33. J. P. Van Buren and W. B. Robinson, J. Agr. Food. Chem. 17, 772 (1969). 34. V. Prakash and P. K. Nandi, Int. J. Pep. Prot. Res. 9, 97 (1977). 35. S. P. Shoemaker and R. D. Brown, Jr., Biochim. Biophys. Acta 523, 147 (1978). 36. T. Takahashi, Y. Tsuchida, and M. Irie, J. Biochem. Tokyo 84, 1183 (1978).

Protein, molar absorptivity, AI~,, values

37

37. A. Kahn, M. Vibert, D. Cottreau, H. Skala, and J-C. Dreyfus, Biochim. Biophys. Acta 526, 318 (1978). 38. R. H. Yue, E. A. Noltmann, and S. A. Kuby, Biochemistry 6, 1174 (1967). 39. W. A. Scott and E. L. Tatum, J. Biol. Chem. 246, 6347 (1971). 40. J. E. Robbins, K. D. Hapner, and S. D. Weber, Physiol. Chem. Physics 7, 555 (1975). 41. R. L. Degussem, G. M. Aerts, M. Claeyssens, and C. K. De Bruyne, Biochim. Biophys. Acta 525, 142 (1978). 42. W. Leicht, M. M. Weber, and H. Eisenberg, Biochemistry 17, 4004 (1978). 43. M. J. Boland and A. G. Benny, Fur. J. Biochem. 79, 355 (1977). 44. J. Y. Wong, E. Meyer, and R. L. Switzer, J. Biol. Chem. 252, 7424 (1977). 45. W. S. Lin and M. Kapoor, Can. J. Biochem. 10, 927 (1978). 46. J. Siedel and E. Shelton, Arch. Biochem. Biophys. 192, 214 (1979). 47. D. Kern, S. Potier, Y. Boulanger, and J. Lapointe, J. Biol. Chem. 254, 518 (1979). 48. N. Taniguchi and A. Meister, J. Biol. Chem. 253, 1799(1978). 49. A. Holmgren, J. Biol. Chem. 254, 3664 (1979). 50. T. Hayakawa, Y. Myokei, H. Yagi, and D. M. Jerina, J. Biochem. Tokyo 82, 407 (1977). 51. V. P. Pigiet and R. R. Conley, J. Biol. Chem. 252, 6367 (1977). 52. C. J. Marcus, W. H. Habig, and W. B. Jakoby, Arch. Biochem. Biophys. 188, 287 (1978). 53. J. W. Crabb, A. L. Murdock, and R. E. Amelunsen, Biochemistry 16, 4840 (1977). 54. J. R. Edgar and R. M. Bell, J. Biol. Chem. 253, 6348 (1978). 55. A. Schryvers, E. Lohmeier, and J. H. Weiner, J. Biol. Chem. 253, 783 (1978). 56. E. S. Cole, C. A. Lepp, P. D. Holohan, and T. P. Fondy, J. Biol. Chem. 253, 7952 (1978). 57. M. J. Ostro and T. P. Fondy, J. Biol. Chem. 252, 5575 (1977). 58. J. E. Cone, R. M. Del Rio, and T. C. Stadtman, 3. Biol. Chem. 252, 5337 (1977). 59. T. B. Eronina, G. U. Silonova, and N. B. Livanova, Biochemistry (Biokhimiyatrans.) 42, 197 (1977). 60. C. W. Heizmann and H. M. Eppenberger, J. Biol. Chem. 253, 270 (1978). 61. B. J. Campbell, R. J. Schlueter, G. F. Weber, and W. F. White, Biochim. Biophys. Acta 46, 279 (1%1). 62. A. C. Aronsson and B. Mannervik, Biochem. J. 165, 503 (1977). 63. S. I. Bezborodova, O. P. Beletskaya, and V. M. Grishchenko, Biochemistry (Biokhimiyatrans.) 42, 1217(1977). 64. S. Ueno, G. Funatsu, and M. Funatsu, Agric. Biol. Chem. 41, 1069(1977). 65. S. Quittner, L. A. Watts, C. Crosby, and R. Roxby, J. Biol. Chem. 253, 525 (1978). 66. S. Quittner, L. A. Watts, and R. Roxby, Anal. Biochem. 89, 187 (1978). 67. H. A. Kuiper, W. Gaastra, J. J. Beintema, E. F. J. Van Bruggen, A. M. H. Schepman, and J. Drenth, Z Mol. Biol. 99, 619 (1975). 68. A. W. Addison and R. E. Bruce, Arch. Biochem. Biophys. 183, 328 (1977). 69. J. i3. R. Dunn, A. W. Addison, R. E. Bruce, J. S. Loehr, and T. M. Loehr, Biochemistry 16, 1743 (1977). 70. B. L. Horecker, J. Biol. Chem. 148, 173 (1943). 71. W. Scheler, Biochem. Zeit. 330, 538 (1958). 72. W. Scheler, G. Schoffa, and F. Jung, Biovhem. Zeit. 329, 232 (1957). 73. S. T. Bowen, H. W. Moise, G. Waring, and M-C. Poon, Comp. Biochem. Physiol. 55B, 99 (1976). 74. L. Moens and M. Kondo, Biochem. J. 165, 111 (1977). 75. E. Antonini, Physiol Rev. 45, 123 (1965). 76. W. R. Holmquist and J. R. Vinograd, Biochim. Biophys. Acta 69, 337 (1963). 77. C. E. Castro, R. S. Wade, and N. O. ,Belser, Biochemistry 17, 225 (1978). 78. E. Antonini and M. Brunori, The Red Cell, 2nd Edn, Vol. 2, p. 754. Academic Press, New York (1975). 79. B. Talbot, M. Brunori, E. Antonini, and J. Wyman, J. Mol. Biol. 58, 161 (1971). 80. W. Scheler, Acta Biol. Med, Germ. 5, 382 (1960). 81. R. J. Carrico, J. Peisach, and J. O. Alban, 3". Biol. Chem. 253, 2386 (1978). 82. Z. Hrkal, M. B. Kodicek, and Z. Vodrazka, Syrup. on Protein Structure and Evolution (I.U.B.), p. 493. Marcel Dekker, New York (1975). 83. L. J. Defilippiand D. E. Hultquist, J. Biol. Chem. 253, 2954 (1978). 84. D. B. Pho, C. Rouston, A. N. T. Tot, and L-A. Pradel, Biochemistry 16, 4533 (1977). 85. P. Roos, Acta Endocrinol. Supplement 131, 1 (1968). 86. E. C. Hatchikan, M. Bruschi, and J. Le Gall, Biochem. Biophys. Res. Comm. 82, 451 (1978). 87. R. H. Haschke and L. L. Campbell, J. Bacteriol. 105, 249 (1971). 88. J. Le Gall, D. V. Dervartanian, E. Spilker, J-P. Lee, and H. D. Peck Jr., Biochim. Biophys. Acta 234, 525 (1971). 89. H. M. Van den Westen, S. 13. Mayhew, and C. Veeger, FEBS Lett. 86, 122 (1978). 90. T. Yagi, K. Kimura, H. Daidoji, F. Sakai, S. Tamura, and H. Inokuchi, J. Biochem. Tokyo 79, 661 (1976). 91. T. Pfitzuer, H. A. B. Linke, and H. C. Schlegel, Arch. Mikrobiol. 71, 67 (1970). 92. R. P. Kumar, P. V. S. Rao, and C. S. Vaidyanathan, Ind. J. Biochem. Biophys. 10, 184 (1973). 93. K. Maruyama, N. Ariga, M. Tsuda, and K. Deguchi, J. Biochem. Tokyo 83, 1125(1978). 94. W. G. Niehaus Jr., T. Frielle, and E. A. Kingsley Jr., J. Bacteriol. 134, 177 (1978). 95. A. B. Hooper, P. C. Maxwell, and K. R. Terry, Biochemistry 17, 2984 (1978). 96. A. L. Tan-Wilson,M. Reichlin, and R. W. Noble, Immunochemistry 13, 491 (1976). 97. S. A. Kuby, M. Hamada, D. Gerber, W-C. Tsai, H. K. Jacobs, M. C. Cress, G. K. Chua, G. Fleming,L. H. Wu, A. H. Fischer, A. Frischat, and L. Maland, Arch. Biochem. Biophys. 187, 34 (1978). 98. L. W. Hoyer, T. Boros, H. J. Rapp, and W. E. Vannier, J. Exp. Med. 127, 589 (1968). 99. F. Miller and H. Metzger, J. Biol. Chem. 240, 3325 (1965). 100. H. Metzger, Adv. lmmunol. 12, 57 (1970). 101. E. Merler, L. Kadin, and S. Matsumoto, J. Biol. Chem. 243, 386 (1%8). 102. R. W. Green, Biochemistry 12, 3225 (1973). 103. C. R. Middaugh, J. M. Kehoe, M. B. Prystowsky, B. Gerber-Jenson, J. C. Jenson, and G. W. Litman, lmmunochemistry 15, 171 (1978). 104. C. R. Middaugh, B. Gerber-Jenson, A. Hurvitz, A. Paluszek, C. Scheffel, and G. W. Litman, Proc. Nat. Acad. Sci. U.S.A. 75, 3440 (1978). 105. K. Kobayashi, Immunochemistry 8, 785 (1971).

38

D.M. KIRSCItENBAUM

106. K, Suzuki, M. Uyeda, and M. Shibata, Agr. Biol. Chem. 42, 1539(1978). 107. M. Yoshikawa, S. Ogura, and M. Tatsumi, Agr. Biol. Chem. 41, 2235 (1977). 108. Z. Goldstein, M. Trop, and Y. Birk, Nature, New Biology 246, 29 (1973). 109. T. Ogawa, T. Higasa, and T. Hata, Agric, Biol. Chem. 32, 484 (1968). 110. K, Oda, T. Koyama, and S. Murao, Biochim. Biophys. Acta 571, 147 (1979). 111. V. Barthelemy-Clavey,E. A. Yapo, G. Vanitoutte, A. Hayem, and J. Mizon, Biochim. Biophys. Acta $$0, 154 (1979). 112. A. A. Kortt, Biochim. Biophys. Acta 577, 371 (1979). 113. M. M. Ventura and R. A. Moreira, An. Acad. Brasil Cienc. 43, 243 (1971). 114. K. Mizuta and M. M. Ventura, An. Acad. Brasil. Cienc. 51,349 (1979).