New methods of measuring the rate of aqueous flow in man with fluorescein

New methods of measuring the rate of aqueous flow in man with fluorescein

Eze2tl Eye Res. (1966) 5, 208-220 N e w M e t h o d s o f measuring the R a t e o f Aqueous F l o w in M a n with Fluorescein ]-~. F . JON-ES AND D ,...

823KB Sizes 24 Downloads 46 Views

Eze2tl Eye Res. (1966) 5, 208-220

N e w M e t h o d s o f measuring the R a t e o f Aqueous F l o w in M a n with Fluorescein ]-~. F . JON-ES AND D , M. MAURICE

De2ag't,ncnt of Physiology, I~stztute of Ophth.almology, J~ald Street, Lon~ton IV.O.1, En!Ila.nd (Received d A't),il .1966) Two methods of dete,'lniaing the rate of loss of fluorescein from the ~queous humour in lno~n are described. The dye is introduced into the cornee~ by mesas of iontophoresis ~md estimated in the eye with the slit.lamp fiuorophotomoter. In the first mcthod'l, he time course of the fluorescein coneen~rat[oll .in the ,%ntcrior chaunter is obse~wed, from which its turnover rate in t h e ehr~mber is derived.-.] n the second me,,hod measurements of/the ratio of the total fluorescence of tl~e eye to tha.t of the aqueous humo~,r le~d to a direct, evMudtion of the aqueous flow r~te. The errors and limibr~gions of t.he methods arc discussed and it is cottelucled that. the seemtd method, though generally more reliable, is inapplicable to blue-eyed s u b j e c t . In ot.her cases vhcre is good accordance b e t w e e n t,l~e results obtained by t.he gwo metho(Ls. I n a smMt group of young norm,M volunteers the mean turnover rate found by l,hc first method wan 0-015 rain and t h e niean rate o f flow by the second, method 2.5 td~tnin.

I. Introduction T h e idea of using t i l e changes with time of the concentration of fluorescein in the anterior chamber as s. Ineasure of the rate of flow of the aque0u.s hltmour has had a long currency; It-was first 13ut on ~ sound theoretic~d ba~is by O o l d m m ~ n (1950), w h o injected iluorescein intravenously Jn r~bbits and man, and measured the time course of th.e.fluorescence in t/he blood" a.ud t~|m a,tterio~ chamber using his slit-lamp flu0rophotometer. This ,nethod, though it results in satisfactory estimates of the flow rate in man, suffers from two disadvant;tges--frequent blood samples have to be obtained f r o m the patient, and a rather complex nlathematical treatment of the results is necessary to derive-the required value. A shnilar method published by L a n g h a m and Taylor (1960)is. open t.o the same objections. L a n g l e y a n d M a c D o n a l d (1952) a p p e a r t o b e t h e f i r s t to ]lave s u g g e s t e d s t a i n i n g t h e c o r n e a so t h a t %he d y e e n t e r e d t h e a q u e o u s h u m o u r a c r o s s t h e c o r n e a l e n d o t b e l h n n . T h o u g h t h e y s h o w e d t h a t q u a l i t a t i v e l y , t h e f l u o r e s e e n 0 e o f tile a q u e o u s h u m o u r c h a n g e d in t h e m a n n e r t o b e e x p e c t e d , t h e y d i d n o t i n v e s t i g a t e t,h e p o t e n t i alit.ies o f t h e i n e t h o d v e r y i n t e ~ s i v e t y n o r d i d t h e y a t t e m p t t o p u t it o n a q u a n t i t a t i v e basis. ~ V e e k e r s a n d D e l m a r c e l l e ( 1 9 5 3 ) a t t e m p J c e d a q u a n t i t a t i v e t r e a t m e n t b u t - l e f t i t v e r y i n c o m p l e t e . A m o r e t h o r o u g h st.udy s h o w s t h a t t h e v a l u e s t h e y e x t r a c t e d r e l a t e m o r e t o t h e P e r m e a b i l i t y o f t h e . e n d o t b e l l u m t h a n t o t h e r a t e o f tlm a q u e o u s f l o w . I n t h i s p a p e r , t w o d i s t i n c ~ m e t h o d s o f m e a s u r i n g t h e r a t e Of a q u e o u s f l o w i n m a n b y m e a n s o f f l u o r e s c e i n a p p l i e d t o p i c a l l y a r e d e s c r i b e d . B o t h d e t e r m i n a t i o n s m a y be c a r r i e d o u t in. t h e c o u r s e o f a s i n g l e e x p e r i m e n t ; One g-ires t h e t~urnover r a t e o f f l u o r e s r e i n in t h e a n t e r i o r c l m m b e r , a n d t h e o t h e r l e a d s d i r e c t l y t o t h e flow r a t e o f t h e a q u e o u s h u m o u r . T h e i n v e s t i g a t i o n h a s b e e n c o n c e r n e d so f a r o n l y i n e s t a b l i s h i n g t h e va.l~ditv and limitations of the methods, and has been restricted to normal vohmteers. 208

A Q U E O U S F L O W I N MAN

209

2. Theory

Method .1 I t will be assumed that, t h e excha.nges of fluorescein b e t w e e n t h e c o r s e s a n d tlie blood at the l i m b u s . a r e ,egligib]e, and t h a t the e x c h a n g e s b e t w e e n the c o r n e a and a q u e o u s h u m o u r and b e t w e e n Qle aqueous h u l u o u r ~md t h e blood obey simple first-order d y n a m i c s . Then we m a y write for t h e e x c h a n g e b e t w e e n t h e cornea and "aqueous h u m o u r : dC° - - l%.c,,(Ca - C~) dt

(l)

where k c,~,. is tile transfer coefficient fi'Olll the c o r n e a ~o the aqueous, referred to the v o l u m e of the cornea [ D u k e - E i d e r a.nd Mauriee, 1957), a.nd C a a~ld Cc a r e . t h e effective a q u e o u s and corneal c o n c e n t r a t i o n s of fluorescein. If it is assumed t h e c o n c e n t r a t i o n in t h e blood is negligible, t h e c o r r e s p o n d i n g e q u a t i o n for t h e aqueous h u m o u r is: cl C~,£

.,

-

--

l

t

.

~.oC,,+.k~.~,,(O~-- C,)

,

dz

(2)

-where/"o is t h e loss coetficient from tile a n t e r i o r c h a m b e r and k,.c~~ is t h e corneM trafisfer coefficieut referred to t h e x-olume of *.Ira a n t e r i o r c h a m b e r . If the a q u e o u s h u m o u r is free of fluorescein at. zero ~ilne, the solution of these differential equations has t h e form:

C',

=

C.~(e.--"'--e-~")

(31

where t is the time, C.~ is a. c o n s t a n t d e p e n d i n g on the initial degree of s t a i n i n g of t h e cornea, and A and B are given by: (4).

A ÷ B = k o . , . + ~;,. ~,,'. ko

and

A.B = Z-o I,,~.~.

(5)

For the c o r n e a t}l~ e q u i v a l e n t e q u a t i o n is:

C~--

Ca ~tl J O.¢t

~(B_k~.,,.o)e_.,,_(A_kc.c,,)e_n,~.

[

(6)

J

The shape of these curves: ,as plo~ted, on semi-logarithmi 0 paper, is shown in Fig.-i. The

C,, curve is built "up of two s t r a i g h t lines of slopes A and B in t h e nit%Ill-tot SllOWlI. i long time a R e r beginning of t h e e x p e r i m e n t , w h e n t h e effect of the B e x p o n e n t i a l has died out, the s l o p e A is g i v e s by: A - - --,.lO~ _ C6dt

-d6'~ (?odg

(7)

At, the s a m e t i m e t h e ratio Ce/C,,~ becomes c o n s t a n t a n d will b e d e n o t e d d~a. D i v i d i n g -equation (1) b y Cc t h e n , i t follows: A k.c.c~- 1--(1./de.)' Finally, from e q u ~ i o n s (5) a n d (8):

(8)

,.o--O(,-;)

If B ariel a~c~ can be experimentally d e t e r m i n e d it,-is possible to find

k o,

L e t F a and F c

210

R.F.

JONES

AND

D.

M.

MAURICE

be the actuM fluorometer readings corresponding to Ca and C~. At equilibrium when C, = Co, let the ratio F J F a be denoted rta, so t h a t

Fa__ F° ca c o "r a. On t h e d e s o e n d i n g p a r t of the curve, when Cc/C ~ takes up the value dca, let F d F a correspondingly take up t h e value go,. Then: d c~:

- -

(l;)

~ca

by equation (10). F r o m equations (11) and (9)

(12)

k o ----- B ( l _ _ r ~ . \ g*~/ I000

100

IO

%

o

t

1

t

I

I

r

,

2

3

4

5

6

Time'

F I Q . I . C u r v e s s h 0 w i n g ~ h e o r e t i c a l c h a n g e s iR f l u o r e ~ c e i n c o u o e r t S r a t i o n wi~h t i m e , a f t e r [Ls i n t r o d u c t i o n i n t o t h e c o r n e a . Ca a n d C, r e p r e s e n t e f f e c t i v e e o n c e n t r a t l o u s in t h e a q u e o u s h u m o u r mad c o r n e a a n d m t t h e t o t a l a m o u n t i n t h e e y e . Ordinate: l o g a r i t h m o f c o n c e n t r a t i o n o r m a s s o f f l u o r e s c e i n in a r b i g r - r y u n i t s . Abscissa: t i m e a f t e r d y e e n t e r s c o r n e a . :Each c u r v e is m a d e UP o f t w o e x p o n e n t i a l c o m p o n e n t s : a s l o w o n e (A) a n d a f a s t o n e (B). T h e B c o m p o n e n ~ is r e l a t i v e l y l a r g e s t in t h e a q u e o u s h u m o u r c u r v e a n d is d e r i v e d in p r a c t i c a l b y s u b t r a c t i n g t h e c u r v e o f C,, f r o m t h e b a c k w a r d p r o l o n g a t i o n o f t h e A l i n e .

The tr~mfer coefficient out of the eye /co has two parts, one the outflow coefficient kI w h i c h represents the loss of fluorescein from the anterior c h a m b e r by drainage of aqueous humour, a n d the other, t h e diffusion coeific[ent k d which represeuts t h e exclmnge by diffusion a c r o ~ the iris, s o t h a t ko-~ k1+.k,i. (13) :FrOm t h e experiments of G o l d m a n n (1950) it appears t h a t ilx the n o r m a l eye ~:a is, at most,, o n l y o n e : t e n t h p a r t of ]co and probably a considerably smaIler fracLion. For this reason l%will be referred to as t h e flow c o n s t a n t in w h a t follows, a n d 1%V,,, where V a is the volume of the anterior chamber, will be Called the rate of flow, t h o u g h it m u s t be borne in m i n d t h a t this is an approximation.

AQUEOUS

:FLOW

IN

MAN

211

Method 2. If,m~ is t h e t o t a l m a s s o f fluorescein in t h e a q u e o u s a n d c o r n e a , t h e r a t e a t w h i c h it leaves t h e e y e is g i v e n b y dmt/dt. S i n c e it is a s s u m e d t h a t t h e d y e is lost f r o m t h e cornea 0nly b y w a y of a q u e o u s h u m o u r , a n M t e r n a t i v e e x p r e s s i o n for t h e r a t e of loss o f i~s mass is - - C , V , k o. T h e r e f o r e drn~ __ dt

(14)

. C.V.4,

D i v i d i n g b o t h sides b y m~ leads to: A

--

C

V.ko

after the B e x p o n e n t i a l has d e c a y e d . T h e n :

V~ko ~ A m t

o.

Am~

or

(15)

w h e n f is t h e a q u e o u s flow r~te, Therefore, b y m e a s u r i n g t h e slope, A, a n d t h e ratio, mffCa, t h e flow r a t e m a y be o b t a i n e d directly. I t is of i n t e r e s t f u r t k e r m o r e t h a t : mt

--~ Tr~Oa-b VcOc

(16)

where Vc is t h e effective v o l u m e of t h e c o r n e a , so t h a t f r o m e q u a t i o n s (3), (6) a n d (16), and r e m e m b e r i n g : it follows:

V,~CA (Be_A~

Ae_~: )

(17)

This c a r v e is p l o t t e d in :Fig. 1.

3. Methods ln~roduction of fl~m~'escein B y m e a n s of i o n t o p h o r e s i s , a d e p o t of fluorescein w i t h s h a r p l y defined b o u n d a r i e s was inl;roduced i n t o t h e cornea, o f t h e e y e to be examimed. T h e e l e c t r o d e c o n s i s t e d of a w i c k Of 2 ~/~ a g a r gel, 4 m m in d i a m e t e r , m a d e u p a s e p t i c a l l y in 10 ~/o f l u o r e s c e i n Solution a n d c o n t a i n i n g 0"1~/o m e t h y l h y d r 0 x y - b e n z o a t e as a p r e s e r v a t i v e . T h e a g a r w a s e x t r u d e d from a plastic t u b e b y c o m p r e s s i 0 g i t w i t h a c l a m p (Fig. 2). T h e e n d of t h e e l e c t r o d e was blotted w i t h sterile filter p a p e r to a b s o r b all free fluid. T h e c o r n e a w a s anaesthetized, w i t h novesine, a n d t h e e l e c t r o d e w a s a p p l i e d to t h e u p p e r h a l f of its surface, s o m e 3 m m c l e a r of the limbus. A c u r r e n t of a b o u t 200/~n w a s p a s s e d f o r 10-15 scc. Several a d v a n t a g e s a c c r u e f r o m r e s t r i c t i n g She s t a i n e d a r e a in t h i s way. :First; an u n s t a i n e d a r e a o f c o r n e a is l e f t in t h e l o w e r h a l f t h r o u g h )vhich o b s e r v a t i o n s on t h e initial weak fluorescence of t h e a n t e r i o r c h a m b e r m a y be m a d e w i t h o u t d i s t u r b a n c e f r o m t h e strong g l a r e of t h e reservoir of d y e. S e c o n d , a n y e x c h a n g e of f l u o r e s c e i n : w i t h t h e l i m b a [ circnlation will be v e r y m u c h r e s t r i c t e d i n t h e first few h o u r s of t h e e x p e r i r n e n t . T h i r d , there is no s t a i n i n g o f t h e lid m a r g i n s , a n o c c u r r e n c e which can give rise to difficulty in m e a s u r i n g t h e t o t a l fluorescence of t h e e y e i n t h e l a t e r s t a g e s .

212

g.

F.

JONES

Al~D

D.

)17. ] ~ [ A U R I C E

N o n e of t h e s u b j e c t s suffered aI~y discomfort, or h a r m f r o m t h e ~ p p l i c a t i o n of the elect r o d e . C o n c e n t r a t i o n s of fluoreseein m o r e t h a n 100 t i m e s grea~er t h a n t h o s e d e s c r i b e d h e r e h a v e r e g u l a r l y been p r o d u c e d in t h e c o r n e a s of rabbits w i t h o u t a n y e v i d e n t r e a c t i o n to t h e dye. I t was also n e c e s s a r y t o establish t h e r a t i o .of t h e tluorescein c o n c e n t r a t i o n s in t h e c o r n e a a n d a q u e o u s h u m o u r in t h e s t a t e of e q u i l i b r i u m , rc~. F l u o r e s c e i n was s w a l l o w e d in capsules of 200 rag, u s u a l l y a t b e d t i m e , on .rising, a n d e v e r y s u b s e q u e n t h o u r for several hours. To a c c e l e r a t e t h e d e t e r m i n a t i o n of t h e e q u i l i b r i u m value, a d r o p of 10 °/~ ltuorescein was i n s t i l l e d once or tWiCE i n t o one eye, so t h a t t h e c o r n e a l c o a e e a t r a t . i o n a p p r o a c h e d t h e c o r r e c t level f r o m a b o v e on one side a n d below on t h e o t h e r . T h e i n g e s t e d d y e app e a r e d to b e e x c r e t e d q u a n t i t a t i v e l y in t h e u r i n e . S

220K - - ~

45V +

1"~'io. 2 . . ~ I e c t r o d e a n d circuit u s e d for i n t r o d u c t i o n o f fluorescein into the eve by iontophorcsis. F, :Fluorescein-saturatcd a g a r gol; .S, silver wire; .[, indifferent electcode; C, c l a m p e.xbruding get f r o m plasgic tube.

Measurements of fl~oresceqace T h e determ~nut.ions w e r e m a d e w i t h t h e f l u o r o p h o t o m e t e r of M a u r i c e (19(~3), a n d r e a d i n g s t a k e n from t h e a q u e o u s h u m o u r a n d c o r n e ~ as d e s c r i b e d in that, paper. :I1~ t h e f o r m e r case t h e w i n d o w w a s placed on t.he l o w e r halt~ of tile i a l a g e of t h e c h a m b e r , m i d w a y b e t w e e n t h e c o r n e a alxd lens. F o r d e t e r m i n a t i o n s of t h e t o t a l fluorescence of t h e a n t e r i o r s e g m e n t , t h e i n s t r u m e n t was m o d i f i e d to p r o j e c t a 12 m m d i a m e t e r circle of blue light o n t o t h e eye. T h e slit of t h e l a m p was r e p l a c e d b y a c i r c u l a r a p e r t u r e a~ld t h e o b j e c t i v e by a s u i t a b l e l o w - p o w e r e d lens. C o r r c s p o n d i u g i y : t h e p h o t o m e t r i c m i c r o s c o p e was c o I l v e r t c d to a telescope b y t h e USE of a l o w - p o w e r e d o b j e c t i v e lens, a n d in this case the largc s q u a r e w i n d o w was f o u n d to be t h e c o r r e c t size, t h a t w h i c h exa.ctly f r a m e d t h e imn.ge of 5lie circle of light. T h e a n g l e b e t w e m l t h e a r m s of ).he s l i t - l a m p wa.~ r e d u c e d as far as possible so t l m t both optical s y s t e m s w e r e a l m o s t paralle], point:ing a t t.he eye. T h e s u b j e c t res~ed his h e a d a g a i n s t a n a d j u s t a b l e suplaort so t h a t t h e corneal s u r f a c e was fLxed a.t a s t a n d a r d dist, ancc, a p p r o x i m a t e l y 0-5 m, froln t h e i n s t r u m e n t . T h e e n t i r e c o r n e a was exposed, e i t h e r b y t h e s u b j e c t ' o p e n i n g his eyes v e r y ~dde or, m o r g u s u a l l y , b y t h e lids being h e l d a p a r t . T h e circle of l i g h t was t h e n s h o n e onto t h e c o r n e a an¢]~ if ii h a d p r e v i o u s l y b e e n ' b r o u g h ~ into register with I/be w i n d o w , t h e r e a d i n g could be t a k e n ill a few seconds. :Readings of t h e t o t a l fluorescence a n d t h a t o f t h e a q u e o u s h u m o u r w e r e taken, before the- i o n t o p h o r e s i s t o e s t a b l i s h t h e b a s e l i n e , t h e n g e n e r a l l y a.t e v e r y 15 mi.n for t h e f i r s t h o u r or two, a n d t h e r e a f t e r a t longer i n t e r v a l s . T h e r e a d i n g s were c o n t i n u e d u n t i l t h e e n d of t h e w o r k i n g d a y , a n d t h e r e was u s u a l l y sufficient fluorescein p r e s e n t in tlm eye for t h e m to be r e c o m m e n c e d t~he n e x t m o r n i n g a n d carried, on, a t l e a s t a s far as t h e a q u e o u s w a s c o n c e r n e d , t h r o u g h o u t t h e s e c o n d d a y . T h e d y e was n o t sufficiently u n i f o r m in dist r i b u t i o n t h r o u g h o u t t h e c o r n e a for m e a n i n g f u l r e a d i n g s to be t a k e n f r o m it u n t i l t h e end o f t h e first d a y . D e t e r m i n a t i o n s of t h e v o l u m e of ~he a n t e r i o r c}mmber w e r e m a d e by a p h o t o g r a p h i c m e t h o d ( t o n e s a n d M a u r i c e , 1963).

A Q U E O U S :FLOW I1N" M:AN

°13

Sta~dardization The ratio of t h e fluorometer readings obtaialed for t h e total a n d aqueous fluorescence at any m o m e n t , Ft and Fo, must, be converted to the ratio of the values of ,nt and Ca for use in equation (15) of t h e second m e t h o d . A conversion factor S is introduced So t h a t

mt C~,

S Ft -if-,"

To obtain the value of ,~, readings are t a k e n by the ~taad.ard procedure on a solution of fluorescein c o n t a i n e d in an artificiM anterior c h a m b e r formed anteriorly by a ~ra~sparent plastic contact lens of 8 m m radius of cuxvature arid l I m m diameter, and posteriorly by a sheet of black plastic. For such a shell ~n' __dt_.= lrs Co where V~ is the volume contained within it, which can readiiy be d e t e r m i n e d by weiglfing. Then:

for the readings, F,~ and F~, taker, on the shell. Two chambers were constructed, one with a flat, a n d one with a hollowed o u t rear wall, t.hat c o n t a i n e d 115 and 180/xl. They were filled with fluorescein solutious of various concentrations and, after subtracting the background fluorescence when filled with water, S was found to be the same for both shells and c o n s t a n t up to a concentration of nearly 10 -s g/ml. A~y difference in the distribution of the dye within the artificial c h a m b e r and the eye should not be important, for it is found t h a t the reading given by a fluorescen6 spot does not. vary m a r k e d l y according to its position within the illuminated circle. Again, different refract.ire indices of the plastic a n d the cornea should n o t create arx error in c,q as was shown both by theoretical considerations, a n d b y wetting the outer surface of the artificial chamber when no changes in F~ or F~ tool< place. 4. Results

Ge~wral The p r o c e d u r e h a s been t e s t e d on n u m e r o u s subjects, n o n e of w h o m has f o u n d i t troublesome. Occasionally, diffieulby has b e e n e x p e r i e n c e d in o b t a i a l n g r e a d i n g s when t h e r e was a v e r y n a r r o w p a l p e b r a t fissure or p o o r m a i n t e n a n c e of fixation. I n t h e b c s t cases (Fig. 3) t h e con s! s t e u c y of t h e re~ulgs was r e m a r k a b l e ; irt ttm worst, the readings, p a r t i c u l a r l y o f t h e a q u e o u s fluorescence, w e r e so v a r i a b l e t h a t t h e r e s u l t s were Unusabte--Zin o n e s u b j e c t F , : d o u b l e d i t s v a l u e ia 5 rain. T h e i m p r e s s i o n was gah~ed, t h o u g h ' i t is b y n o m e a n s c e r t a i n , t h a t t h e b e t t e r c u r v e s w e r e o b t a i n e d w i t h subjects of p!a:cid t e m p e r a m e n t a n d w i t h eyes h a v i n g d e e p a n t e r i o r chambers.

Method J The a q u e o u s c u r v e in t h e b e s t c a s e s c o n f o r m e d v e r y w e t l to t h e d o u b l e e x p o n e n t i a l e q u a t i o n (3), as s h o w n b y t h e fig of t h e s t r a i g h t lines to t h e ~TMues Of/7~ (Fig. 3(a)). This s u p p o r t s t h e v a t i d i t y of t h e assuxnptiorm m a d e i n d e r i v i n g tiffs equatioll, a n d justifies t h e a p p l i c a t i o n of t h e s a m e a n a l y s i s to leas p e r f e c t e x p e r i m e n t a l d a t a . .Mos t s u b j e c t s s h o w e d a r a t h e r e r r a t i c cou~.se in F~, p a r t i c u l a r l y i n t h e earl)5 m o r e ~mportant, stages. MucJa of t h i s was d u e t o u n e q u a l d i s t r i b u t i o n of t h e d y e - - w h i c h

214

1%. F .

JONES

AND

D.

3f. R ' [ A U I ~ I C E

was seen to be more concentrated in the aqueous humour failing down the inner face of the cornea through convection. I n some subjecLs, Vigorous shaldng of the head, or side to side movements of the eyes, produced a more uniform distribution and ~ better reading. E v e n when this was successful, unexplained variations from the smooth theoretical curve frequently occurred. To carry out the exponential analysis, it was effort better to obtain the value of ~he slope A from the//'t curve and adjust the line t o / i v among the/P~ points. The point of intersection of the two straight lines, A and B, may be fixed without difficulvy, and

(~.1 =n

::L

I-0 ...,,,...

v

(b)

"".:M..

I~;

--

,..-7.

x~.oo ,.3 o ,3 :..,-..... .¢

iO-,S

.,'2,

~

0

Q

~]

~

r.5

;::

..}

--..<

o...,. ~ g

II

\ \

I~,,.

o 10-~

-~ 1

\ ,

I

'kxl

r

i

l

r

. [

:~ •

~3.e

EO

i

I LO

Time

! II

':

I

I,~

J.~

7• : t4

:~.

:

:

"

i~!,

;}"

1~

Of Cl~y (hr)

F~o. 3. E x p e r i m e n t a l v a l u e s o b t a i n e d f r o m d a r k e r - e y e d subjee~ (l~.K:~ in T a b l e 1). (a) F l u o r e s e e i n i o n t o p h o r e Z s i n t o l e f t c o r n e a ~ 10.0 a.na. T r i a n g l e s r e p r e s e n t •-readings o f tot,M f l u o r e s c e n c e o f t h e e y e . Circles a n d s q u a r e s r e p r e s e n t r e a d i n g s o f fluorescemee in t h e a q u e o u s h u m o u r a n d c o r n e a l s t r o m a , r e s p e c t i v e l y , a s c o m p a r e d t o a s o l u t i o n o f S t a n d a r d c o n c e n t r a t i o n . Crosses d e r i v e d b y subtrz/c~ion o f e x p e r i m e n t a l a q u e o u s humottr, v a l u e s f r o m s t r a i g h t l i n e t h r o u g h p o i n t s a~ l a t e r t i m e s . 'Pae e u r ~ e d r a w n t h r o u g h ~he rn~ p o i n t s ha~ a . s h a p o d e t e r m i n e d b y e q u a t i o n (17) u s i n g t h e coe~t~unts d e r i v e d f r 0 m t h e _wa c u r v e . {b) C o n t i n u a t i o n o£ previoa~s e x p e r i m e n t or, s e c o n d d a y . I n o r d e r to d e t e r m i n e s t e a d y s t a t e , s u b j e c t s ~ a i . l o w e d 200 r a g . c a p s u l e s o f fltmreseeiu a p p r o x i m a t e l y hotlrl~- f r o m 8.0 a . m . F i l l e d i a s y m b o l s cortes. p o n d to v a l u e s o b t a i n e d fro m r i g h t e y e . S y m b o l s d i v i d e d h o r i z o n t a l l y represenV differer, ee o f ~ a t u e s f r e t s t w o e y e s , t h o s e d i v i d e d v e r t i c a l l y t h e a v e r a g e v a l u e o f &we. eyes. L i n e s a r e p r o l o n g a t i o n o f t h o s e d r a w n in (a). T h e y f a l l a m o n g d i f f e r e n c e p o i n t s a s w o H d b e p r e d i c t e d .

to establish the slope 13 i t is necessary only to determine one:other p o i n t upon •it with accuracy, f o r th]~ ireason; particular attention was paid t o the readings Jn t h e period 1--2 hr after the iontophoresis, I n spite of the irreb~llarities, i_n nearly every case a stra4ght tine:couldbe drawn through: the different p o i n t s ; at least t o the satisfaction of the experimen~r, and the independent:estimates of the two authors were i n good agreement.

A Q U E O U S J~'I.,OW JN 3[AN

~.15

To o b t a i n ~he value of X:o from the slope B ~t m u s t be mul~ipli6d b y the f a c t o r ( 1 - r,,/dc,,) a c c o r d i n g to e q u a t i o n (12). Since the fl'action .rc,,/g~, is f o u n d to h a v e a value, a b o u t 0'1, s m a l t c o m p a r e d w i t h u n i t y , n e i t h e r go,, nor re,, need be m e a s u r e d w k h ~neat acc, uracy. T h e formcr is o b t a i n e d d u r i n g t h e course of t|m e x p e r i m e n t ; but sops.rate d e t e r m i n a t i o n s ~re n e c e s s a r y for the latter. ~Vben the d y e is h~geste& according to the schedule described curlier, t h e p l a s m a level oscillates b u r ~he conc e n t r a t i o n in the a n t e r i o r c h a m b e r a t t a i n s a. level which does not, undecgo measur~tbt.e v~,riations. T h e a c l d e v e m e n t of c o m p l e t e e q u i l i b r i m n between aqueous ]:tttraoilr a,n d co,'ne~t is v e r y slow, b u t by a p p r o a c h i n g it .from botlt sides a sumcienzly close ~tpproximat.ion m a y be obtaitled i n a few hours (Fig. 3(b)). i n four subjects, the v a l u e of re,, was fottPxl to lie between 1-1 a n d 1.3; it was not. considered necessary to c a r r y o u t t:he d e t e r m i n a t i o n s in all cases, bu.t a value of 1..2 was d e e m e d to be appropriate.

Method 2 The b a c k g r o u n d t o t a l fluoresc, enee of l~he hun~tatl a n t e r i o r segment, was of the order of 0-02 /zg of fluoresce|n, a n d a b o u t 50 t i m e s t h i s a m o u n t was inbroduced b y iont, ophoresis. T h e aurofluorescence of t h e selera was v e r y mucia higher t,han of tim cornea, so t h a t f r e q u e n t l y t h e r e a d i n g w i t h l;he circle of l i g h t c o r r e c t l y in posit;ion o~z the eye was a m i a i m m r t x,alue r a t h e r t h a n a m a x i m u m . J?or tocsin-dark-eyed people, tam I'~ x,a.lues followed a smoovh curve thai, h a d a s h a p e am'cein_- with t h a t given by e q u a t i o n (17), ii~ which Values of A a n d B dec{veal f r o m the ~':,, c u r v e were i n s e r t e d (Fig. 300)- 'J?he d c t e r m i n a t i o ~ of t,he slope. A a n d t~he ral~io t'jF~ p r e s e n t e d tittle diffienlty i n - m o s t cases. .Be~bre t h e values of t h e flow r a t e could be c a l c u l a t e d t h e effect of three possible sources of error h a d to be assessed. These were (1) Lhe r e t u r n of t.ight f r o m t h e iris, (2) a c h a n g e in t.he fluorescence of fluoreseein caused b y t h e c o r n e a l tissue, a n d (3} t},c loss of t h e d y e d i r e c t l y from tim cornea to ~he blood a t t h e limbus. (1) Y.ris ~'ejtecta¢we. The r e a d i n g Ft m a y be increased a b o v e its t r u e v a t a e because the posterior .lace of the a n t e r i o r c h a m b e r does n o t absort? all t h e 4ight. falling a p o a it, as in the case of the c a l i b r a t i n g ch ambers. The green l i g h t e m i t t e d b y t h e fluore~seein rna.y be s e a t t e r e d by t h e iris d i r e c t l y to t h e p h o t o m e t e r , or some of the i n c i d e n t blue ligh~ m a y be .returned t h r o u g h t h e a q u e o u s h u m o u r - a n d cornea to e x e i t e f t u : t ; h e r fludreseen.ee. Whe~a t h e fluorescein is first io.troduced in.to the e y e b y iont.ophoresk% it is remote f r o m t h e iris a n d ~he influence of this bissue s h o u l d be small; as it diffases thi-oughou6 t h e a n t e r i o r c h a m b e r a n d to t h e p e r i p h e r y of t h e cornea, t h e effect of t h e s c a t t e r i n g s h o u l d rise to a maxinxtma. A n init.ial rise o r a.n e x t e n d e d flat p o r t i o n to t | i e ]~', curve is, in fact, feared irt b l u e - e y e d s u b j e c t s (Fig. 4).'Browr~ eves a n d i n t e r mediate s h a d e s (grey: green, h a z e l ) : d o n o t a p p e a r to be seriousl,,- affected b y this source of error, as show~ by" t h e eouformit.) o f t h e F~ Curves t o e q u a t i o n (17) a n d by: other evidence to be discussed later. No p r a c t i c a b | e w a y was f o u n d of e v a d i n g this source of error in pate-eyed subjects, and t h e m e t h o d , insofar as it m e a s u r e s the a.bso) lute rate of flow~ is i n a p p l i c a b l e to t h e m . {2) Corneal que.nchi~ 9. [[1~is possible ~hat t h e cornea} tissue e x e r t s a n e f f e c t on t h e fluoresce~n w h i c h p e r m e a t e s i t so ~;hat its fluorescence is s o m e w h a t quencfied, This would Iead t0. an u n d e r e s t i m a t e of t h e v a l u e of F~ a n d a c c o r d i n g l y of:/'. This., w a s invest-igated, in. a n i m a l eyes, b y c o m p a r i n g t h e t0t~al fluorescence of a s t a i n e d corneal disc w i t h t h a ~ ; of t h e fluoreseein after it h a d been le-ached Out of t h e tissue. The e x p e r i m e n t was carried o u t as folloWs (l?ig. 5). T h e f l u 0 r 0 m e t e z w a s a d a p t e d as if to measure/~'t i n t h e eye a n d was foot'sea, by" m e a n s o f reflect'lenin t~he hypot, e n a s e

216

t%, F. J O N E S

I). M." 5 1 A U I Z I O E

AND

of a prism, u p o n the flatbottom of a 7 m m diameter tube, so thab the total fluorescence of its contents was measured. The tube stood o,i the Upper surface of Lhc prism, and

was held in ]t h. e correct p o. s i t i o n by moans of a b l a c k e n e d ring cemented to t h e sm'faee. • . . . W a t e r wad"placed w i t h i n t h e ring to r e d u c e d reflections from t h e b o t t o m of t h e 15ube. T h e tissue ~ a s o b t a i n e d from t h e eye of a rabbih whose corn.ca h a d been s t a i n e d w i t h f l u o r e s e e i n t h e pre%,ious evening. The a n i m a l was Mlled, ~he corneal e p i t h e l i u m

.%

:t

e0'[

t;

.-.%

t) vl el

I0b_

c

,

0">"~

0

.E

°°\

~

×

"'°

"~ °


\

0

i0 -~

\

X

-o

\

\ [

10

I}

l 12

~ 13

"

f

L

t4

15

[. 16

I

!

[

17

18

~9

~,, 20

i 21

Time of doy (hr)

F r o . 4. Exl)erimer~t,M v a l u e s o b t a i n e d f r o m b l n e - e y e d s u b j e c t (M.t'4. i n T ~ b l c . l ) . Dei~ails a s in .Fig, 3(a),

scraped 0ffi t h e cornea excised and ~ disc of tissue, 6 ram. in d i a m e t e r , quickly p u n c h e d f r o m it. T h i s was pliieed in .the b o t t o m of a t u b e u n d e r 0.2-0-5 ml of physiological Saline b u f f e r e d at p H 7. Measurements. of t h e t o t a l fluorescence, were m a d e immedia t e l y a n d ~fter 24 hr, w h e n t h e d y e had leached o u t i n t o t h e b a t h i n g fluid. I d e n t i c a l m e a s u r e m e n t s were c a r r i e d o u t on all u n s t a i n e d disc of cornea from ~he obher.eye, submergqd in an equal v o l u m e o f dilute buffered flu0rescein solu~;ion. T h e t o t a l fluorescence of. b o t h s p e c i m e n s w a s f o u n d to h a v e increased a~ t h e end of 24 hr, a n d this could be ascribed %o a n a v e r a g e lengtt,ening of the p a t h of the |ighg t h r o u g h t h e fluoreseentisolu~ion a.s a result of its s c a t t e r i n g b y the swollen, cloudy, cornea, l n five stained c o r n e a l discs the tots.1 fluorescence rose t o . l t 4 ° / o of its o.rigin~l vahie, and. in t h e fix;e unstrained controls to 112.%. A.s a f u r t h e r c.heck, e a c h c o r n e a was. d i s s o l v e d b y a d d i n g a small drop of c o n c e n t r a t e d t e t r a m e t h y l a m m o n h ~ m hNdroxide to t h e t u b e a n d a.llowing it to s t a n d for a f u r t h e r 24 hr. The fluorescence

AQUEO'US

]~LO]V

IN

~IAN

2t7

of t h e c l e a r s o l u t i o n o b t a i n e d in t h i s w a y was 97~/o of t h e o r i g i n a l r v a l u e in ~ h e case of t h e five s~,4ined discs, and 96~/o m t h e five cow,trois. Since t h e s t a i n e d disc l~y a~ t h e bo6torn of t h e t u b e a t t h e b e g i n n i n g of t h e experim e n t a n d t h e fluorescein s o l u t i o n l a y a b o v e t h e cornea in t h e control, a d d i t i o n a l experimei~ts Xverc c a r r i e d o u t on t h e effect of t h e dist, r i b u t i o n el" t h e d y e w i t h i n t h e t:~be on t h e r e a d i n g of t h e f l u o r o m e t e r . Some glucose was a d d e d to ~ s o l u t i o n of fluorescein to increase i t s d e n s i t y , a n d a. £ew #] were c a r e f u l l y r u n u n d e r 0-2~-D.5 mL of clear buffered saline so t h a t a t h i n l a y e r of d y e ]a.y a t t h e b o t t o m of t h e tube. T h e

Fro. 5. E x p e r i m e n t a l a r r a n g e m e n t for e s t i m a t i t l g t h e quenching of fluo,'esec~aec of fluorescein b y t h e corneal s t r o m a . C, :Disc of corneal s t r o m ~ .

total fluorescence was m e a s u r e d in t h i s eondit.ion a n d a f t e r m i x i n g t h e content, s of the tube. No difference in t h e r e a d i n g w~s n o t e d in n u m e r o u s triMs, a n d i t w a s e v i d e n t t h a t t h e effect u p o n i t o f t h e ohange ii~ d i s t r i b u t i o n m u s t b e l e s s t h a n 1 % . ]?he conclusion d r a w ~ £rom nil t h e s e o b s e r v a t i o n s w a s t h a b t h e s t r o m ~ l tissue has no m e a s u r a b l e influence on t h e fluorescence of fluorescein h~ t h e r a b b i t . No m a r k e d differences in t h e chemica.1 c o m p o s i t i o n of m a m m a l i a . u corneas h a v e been r e p o r t e d , and Jr, was considered u n l i k e l y t h a t t h e b e h a v i o u r of t h e h u m a n cornea, was different in this respect. (3) Loss at l'imbus. I f fluoi'escein passes d i r e c t l y from t h e cornea to t h e blood a t t h e limbus, t h e m e a s u r e d v a l u e of A will be h i g h e r t h a n t h a t a p p r o p r i a t e t o equatior,. (15). A ca.lcuIntioa b a s e d on t h e a s s u m p t i o n of ~ s i m p l e g e o m e t r i c a l s h a p e for t h e cornea. and a r a t e ~f s p r d a d of fluorescein w i t h i n t h e s t r o m ~ eqllM to t h a t f o u n d iu t h e r a b b i t (M~urice, :1960) suggested t h a t it m i g h t u l t i m a t e l y a m o u n t to 3 0 % of A. H o w e v e r , ignorance b o t h of t h e t r u e r~xte of diffusion a n d of t h e e x c h a n g e rela.tionships a t Vhe limbus in man~ m a k e s a n e x a c t e s t i m a t e ~mpossible. Owing to t h e i u t r o d u a t i o n of t h e fluorescein into u circumse, ribecl a.rea n e a r t h e c e n t r e of t h e cornea, i t is to be e x p e c t e d t h a t the loss across 6 h c p c r i p h e r y ~ l l be xmgligibte a t t h e b c g h m i n g o f t h e measure± n~ents, b u t i t m a y a . ~ n m e i m p o r t a n c e towa.rds t h e end of t h e initial 8 hr period over which 21 is e s t i m a t e d .

218

R.

]b'. J O N E S

AND

D.

hl. I ~ I A U R I C l g

A n at.tempt was m a d e to d e t e r m i n e e x p e r i m e n t a l l y t h e g r e a t e s t possible c h a n g e i~ A resultd~g from p e r i p h e r a l losses, b y c b m p a r i n g the value o b t a i n e d f r o m a n eye s t a i n e d eelatrally w i t h t h a t f r o m its fellow eye s t a i n e d p e r i p h e r a l l y . Ii'luoreseein was i n t r o d u c e d m the n o r m a l maxmer b y i o n t o p h o r e s i s e x a c t l y c e n t r a l l y in one c o r n e a and a t the u p p e r l i m b u s in t h e other, t~eadingg of t h e fall of t h e fluorescence in the two eyes were carried o u t from 1 or 2 hr l a t e r for a f u r t h e r 6 hr. Ilt t.he o r d i n a r y s l i t - l a m p a clear zone a p p e a r e d to rmmtin between the c e n t r a l s p o t a n d the p e r i p h e r y a t t h e e n d of this p e r i o d , suggesting t h a t no significant loss h a d occurred across the limbus. ConMstent a n d m e a n i n g ~ t l m e a s u r e m e n t s of t h e t o t a l fluorescence of the eccentricMly s t a i n e d eye were diffienlt to o b t a i n . R e c o u r s e was t h e r e f o r e h a d to c o m p a r i n g t h e a q u e o u s b u r n o u t s of t h e two eyes; five subjects with deep a n t e r i o r c h a m b e r s were c h o s e n tbr this purpose. T h e a q u e o u s h u m o a r of t h e p e r i p h e r a l l y s t a i n e d eye d r o p p e d 4 a n d l~/o/hr t~ster t h a n t h a t of t h e c e n t r a l l y st.ained in two cases, t h e y fell ~t t h e s a m e r a t e in a n o t h e r ease,, and, in t h e r e m a i n i n g two, t h e p e r i p h e r a l l y st,Mned a q u e o u s fell a t a r a t e slower by :~ a n d 1-5~/o/hr. I n each of the l a s t four cases the proba b i l i t y t h a t the r a t e of fall in the p e r i p h e r a l l y s t a i n e d eye could h a v e been gn'e,~ter by a n a m o u n t su[t~lcicnt ~o give a 10°/o or m o r e increase in A was tested s t a t i s t i c a l l y ; these p r o b a b i l i t i e s were a b o u t 5, 1, 0-5 a n d 0-15/o, ,'espeetively. This e v i d e n c e suggests that., e v e n in the e x t r e m e c o n d i t i o n s where the c o r n e a was s t a b l e d at t,}ie lirnbus, the loss f r o m t h e c o r n e a d i r e c t l y t o the blood is n o t of a n y i m p o r t a n c e in. m o s t eyes. Some u n c e r t a i n t y m u s t remMn, however, since regional va,.iations h~ cornea 1 thie.kness a n d , possibly, in e n d o t h e l i a l p e r m e a b i l i t y can r e s u l t in the d r o p in fluo,.escein conc e n t r a t i o n in t h e cornea n o t being parallel t:o t/hat in the aqueous h n m o u r .

Ea'dperimental values T h e wxlnes o b t a i n e d f r o m 16 s a t i s f a c t o r y curves are s h o w n in Table: 1, where tile 3are a r r a n g e d according to t h e co]our of the iris. T h e subjects were n o r m a l v o l u n t e e r s of b o t h sexes from 20-40 y e a r s old. T h e m e a n of t h e vatues of £'o in I 1 s u b j e c t s is 0.015/rain with a s t a n d a r d d e v i a t i o n of 0,0037/rain. This is s i g n i f i c a n t l y higher a t tile 1~/o ]ex.el t h a n the d i s t r i b u t i o n f m m d bv G o l d m a n n ia l 0 s u b j e c t s : a m e a n of 0.011/rain a n d s s t a n d a r d d e v i a t i o n of 0-0022/ mil'l. T h e m e a n of t h e v a l u e of f i n t h e 10 d a r k e r eyed subject,s is 2,5 t~l/min with a deviat i o n of 0-50/xi/min: T h e p e r c e n t a g e v a r i a t i o n o f f a p p e a r s to be slightly smaller t h a n t h a t of/co, bug n o t e n o u g h to suggest t h a t t h e f o r m e r m i g h t be t h e m o r e c o n s t a n t quantity. T h e values o f Va g i v e n b y the p h o t o g r a p h i c m e t h o d p r e v i o u s l y described a p p e a r t o be s i g n i f i c a n t l y Iower t h a n those f o u n d b y I-Ieim (1941). A g r o u p of I 8 gubjects gave a m e a n v a l u e of 175/M with a s t a n d a r d d e v i a t i o n of 33 t~l. T h e 53 of ~ e i m ' s s u b j e c t s in tt~e s a m e age group, 20-40 years, h a v e an aver~,ge v a l u e of 220 p.i w i t h a s t a n d a r d d e v i a t i o n of 51 t~l. I t Should be e m p h a s i z e d t h a t t h e t h r e e q t t a n t i t i e s f , ]%, a n d V . are estim~t~zc!, b y c o m p l e t e l y independerLt m e t h o d s , t h o u g h it has been c o n v e n i e n t to c a r r y our, the d e t e r m i n a t i o m s of t h e first two in the com~se of ~ single e x p e r i m e n t . T h e s e q u a n t i t i e s are c o n n e c t e d b y t h e t h e o r e t i c a l rela,tionship:

.f

Mean &E.M.

R.K. a b V.N. J.K. M,P~,

M.K.

I-T.K.

D.M... b

A,I,',

M, B . ~

.[~,.~,

R.L k[.8. D.J~.

Subject

Blue-grey Blue Bloc

]Lazei l[azcl Groy

Haze/ Hazel

Dark brown Dark brown Dark brou'a Brown Brown

Eye cohmr

1.55 t. 15 1.7 1.9 1.7 1.9 2,3 1.5 1.45 2-4 2,4 2,3 2.1 3. l 2.1 2'6

FdFo

0.0J53§ 0,0011

0-011 0"014 0'018

0"014

10

26 9 10

0"012 0.018 0"0ll.-14 0'023 0'032 0'017 0"013 O.OI t 0-012 0-010 0-015 0,012

k, (rain -t)

9 11.5 14 14 16 10 16 8.5 8 12 15 10

~ ~o

2-4st

0"014 0.020 0.01~15+, 0"025 0.035 0.0Ill 0.014 0.013 0.0135 0-02I 0.010 0,0t,1 0.016 0-011 0"016 0.020

il (rain-I)

0"17

2.3 t.75 2.1 3.2 2,45 2.75 2,9 t.8 1.75 2.9 2.9 2.5 2-3 3.0 2-8 4'6

,f * (/dJ)nin)

R, L, ]light and loft eyes of same subjcck a, b, Same subject on two different occasions. *Va]ue of 8 365/zl in some on.sos, 410 gl in othors. Uncertain value hecausv, of large scatbr .f oxperimental points. f I0 subjects, excluding V.N., J.K. and 51'.12, § 11 subjectS, exohlding D.R,. and M.B.

0.0032 0.0033 0.0029 0.0029 0.0030 0,0030 0,0026 0'00'37 0'0048

0'003~

0,0041 0,0042 0"0034 0.004 t 0,0035 0'0035

A Onin-1}

T:'t BI.I~ [

174 190

tg!)

')% ""

162 190 214

I89 100 153 l(i0 122 }12 200

1:~ (~.l)

1.0 1.05 0.8-1.0 1"15" 1,6 0,7 9.9 1,0 l'I 1.2 1.1 .I-1 !.4 0.75 0-9 0'75

1,'.Tr,~Jf

).J

),¢

0

0

220

1~. F, J O N E S

AND

D.M.

MAUP~ICE

:In view of this it is gratifying, though no doubt fortuitous, that the ratio k,, V,/f for the experimental values, showu in the last column of the table, is close to unity in fanny, of the cases. The low w~tue for the two blue-eyed subjects is additional evidence thatJ' is overestimated by method 2 in these cases. One m a y conclude that either method is capable of giving ,m accurate estimate of the absolute value of tim outtlow of tiuoresccin from the ~mtcrior ch~tmbcr in man. Experience has st)own that method 2 is much more reliable ~md convenient in cycs of thc darker hues to which it is applicable. I t is, in theory, ouly necessary to make readings on the subjecl~ on t,wo occasions m order to derive A and 1,',[F,, thougil additional checks are advisable. The dye may be insl;illed on tim previous evening which often adds to the convenience of t.hc experimental schedulc. By co,m'as~;, method t requires readings to bc made frequently throughout the d~):, and commonly does not permit a valae of ko to be derived to an ,~cce~,i~abic degree of precision. It is tlsually satAsfactorv in eyes wit}t (leep anterior chambers, however, and may be used with irides of anv co]otlr. ]?requcatly, when t:he effect of a drug is being ~:ested, for example, a comparison of the outflow of the two eves of one [)crson or of t;hc same eve on two different occasions is all that is required. For r.his purpose a simple modific'ltion of method 2 can be employed in which either -f~,fF,. or F,,/F~ is measured; these developments will be described elsewhere. ,.

R.J~FERENCES Duke-Elder, Sir W. S. and Mauricc. D. :~,I.(1957). Brit. J. 01fl~thalm(J, 41,702. Goldmann, H. (1950). Ophtludmologica, ]2,t,~el 119, 65. I]:eim, M. ( 1941). Ophtludmoloyica. f3(t.~el.102, 19:}. Jones. R. F. and M~urice. D. M. (19fi3). Exptl Eye Re~'. 2, 233. Ll,.ngham, 5'17.F~. and Taylor, C. B. (1960). d. Physiol. 152, 447. Langley, D. artd 3Iael)onald, R. K. (1952}. Brit. J. Ophth,dmoI. 36, 432. ~Iaurice, D. M:. (1960). Am. J. Ophthalmol. 49, I0[[. ~rctttrice: D. M. (19(;2,1. Exptl Eye Rcs. 2, 33. Weekers, K. and Dcbm, rc~tle. Y. (1953)~ Ol~hthab~wlogica, Basel 125, 425.