Notes on “Soliton solutions by Darboux transformation and some reductions for a new Hamiltonian lattice hierarchy” [Phys. Scr. 82 (2010) 015008]

Notes on “Soliton solutions by Darboux transformation and some reductions for a new Hamiltonian lattice hierarchy” [Phys. Scr. 82 (2010) 015008]

Results in Physics 6 (2016) 982–984 Contents lists available at ScienceDirect Results in Physics journal homepage: www.journals.elsevier.com/results...

224KB Sizes 0 Downloads 19 Views

Results in Physics 6 (2016) 982–984

Contents lists available at ScienceDirect

Results in Physics journal homepage: www.journals.elsevier.com/results-in-physics

Microarticle

Notes on ‘‘Soliton solutions by Darboux transformation and some reductions for a new Hamiltonian lattice hierarchy” [Phys. Scr. 82 (2010) 015008] Xi-Xiang Xu College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China

a r t i c l e

i n f o

a b s t r a c t

Article history: Received 24 September 2016 Received in revised form 8 November 2016 Accepted 11 November 2016 Available online 16 November 2016

We demonstrate that the Darboux transformation in the paper ‘‘Soliton solutions by Darboux transformation and some reductions for a new Hamiltonian lattice hierarchy” [Phys. Scr. 82 (2010) 015008] is incorrect, and establish a correct Darboux transformation. Ó 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Integrable lattice equation Lax pair Gauge transformation Darboux transformation

It is well-known that the Darboux transformation (DT) provide us a purely algebraic, powerful tool to generate solutions for the soliton equations. It is not only applicable to continuous integrable systems [1,2], but also can be applied to discrete integrable systems [3–5]. In [6] the authors introduce a discrete matrix spectral problem

Ewn ¼ U n ðun ; kÞwn ;

U n ðun ; kÞ ¼

0

rn

sn

k þ pkn

! ð1Þ

ð1Þ U n;t ¼ ðEV ð1Þ n ÞU n  U n V n

derive an integrable lattice equation:

8 > < r nt ¼ r n ðpn  r n1 sn þ r n snþ1 Þ; snt ¼ sn ðpn þ rn1 sn  r n sn1 Þ; > : pnt ¼ pn ðr n1 sn  r n snþ1 Þ:

Eqs. (1) and (2) form a Lax pair of Eq. (4). In Ref. [6], for two different values k1 ; k2 , we have two solution T

and the auxiliary spectral problems associated with the spectral problem (1):

wn;t ¼ V nð1Þ ðun ; kÞwn ;

V ð1Þ n ðun ; kÞ ¼

 12 k2 þ r n1 sn

rn1 k 1 2 k 2

sn k

 rn1 sn

! ; ð2Þ

in

Eqs.

(1)

and

(2),

r n ; sn

and

pn

are

potentials,

r n ¼ rðn; tÞ; sn ¼ sðn; tÞ; pn ¼ pðn; tÞ; un ¼ ðrn ; sn ; pn ÞT . Let f ¼ f ðnÞ be a lattice function. The shift operator E, the inverse of E are defined by

ðEf ÞðnÞ ¼ f ðn þ 1Þ;

ðE1 f ÞðnÞ ¼ f ðn  1Þ:

ð3Þ

The compatibility condition between Eqs. (1) and (2), i.e., the discrete zero curvature equation

ð4Þ

T

wn ¼ ðw1n ; w2n Þ ; /n ¼ ð/1n ; /2n Þ of Eqs. (1) and (2). Let us denote

gi ðnÞ ¼

/2n ðki Þ  di w2n ðki Þ /1n ðki Þ  di w1n ðki Þ

;

i ¼ 1; 2;

ð5Þ

where di ; i ¼ 1; 2, are properly selected. In Ref. [6] authors introduce a gauge transformation of the spectral problems (1) and (2),

!

~ n ¼ T n un ; u

un ¼

u1n ; Tn ¼ u2n

k þ t 11 ðnÞ

t 12

ðnÞt 21 ðnÞ

k þ t22kðnÞ

where 2 g1 ðnÞ t11 ðnÞ ¼ k1 gg2 ðnÞk ; ðnÞg ðnÞ 1

t21 ðnÞ ¼

2

ðg1 ðnÞg2 ðnÞÞðk22 k21 Þ ; k1 g2 ðnÞk2 g1 ðnÞ

E-mail address: [email protected] http://dx.doi.org/10.1016/j.rinp.2016.11.020 2211-3797/Ó 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

t 12 ðnÞ ¼ g

k2 k1

1 ðnÞg2 ðnÞ

t22 ðnÞ ¼

;

k1 k2 ðk1 g1 ðnÞk2 g2 ðnÞÞ : k1 g2 ðnÞk2 g1 ðnÞ

!

:

983

X.-X. Xu / Results in Physics 6 (2016) 982–984

In what follows, it is easy to verify that T n , which is presented as the gauge transformation matrix in Ref. [6], is not suitable. Owing to the following expression is presented

ðk  k1 Þðk  k2 Þðg1 ðnÞðk1 þ kÞ  g2 ðk2 þ kÞÞ Det½T n  ¼ : kðg1 ðnÞ  g2 ðnÞÞ

with

nn ¼

n12

ð0Þ

ð1Þ

;

ð0Þ

n22 k þ n22 =k

n21 ð0Þ

!

ð0Þ

0

ð0Þ

ðiÞ

where n12 ; n21 ; n22 ; i ¼ 0; 1 are all independent of k. Thus we have

Pnþ1 U n ¼ nn Pn :

This implies

Det½T n  – ðk  k1 Þðk  k2 Þ:

ð11Þ

and the Eqs. (4.14) and (4.17) in the Ref. [6]

By comparing the coefficients of ki ; i ¼; 1; 0; 1 , in both sides of Eq. (11), we obtain that

T nþ1 U n T n ¼ Det½TnP n ;

n12 ¼ r n þ Bnþ1 ¼ ~r n ;

ð0Þ

ðT n;t þ T n V ð1Þ n Þ ¼ ðDet½T n ÞQ n

are not true. Hence the proofs in Ref. [6] are incorrect. In what follows, we will briefly give right proof process.It is the key problem to select the suitable gauge transformation matrix [3–5]. Let us consider gauge transformation matrix

Pn ¼

k 2 þ An

Bn k

Cn k

k2 þ Dn

!

:

An ¼ Cn ¼

g1 ðnÞg2 ðnÞðk21 k22 Þ ; k1 g2 ðnÞk2 g1 ðnÞ

ð0Þ

~n : n22 ¼ pn þ rn C nþ1  sn Bn  Bn C n þ Dnþ1  Dn ¼ p e n . The proof According to Eqs. (8) and (11), we obtain that nn ¼ U is completed. h

V ð1Þ n in the Eq. (2) under the transformation (9), i.e.

Bn ¼

e ð1Þ ¼ V n

k22 k21 ; k1 g1 ðnÞk2 g2 ðnÞ

1 ðnÞk2 g2 ðnÞÞ Dn ¼ k1 kk21ðkg1 gðnÞk : 2 g ðnÞ 2

1

Det½Pn  ¼ ðk2  k21 Þðk2  k22 Þ:

ð6Þ

We introduce the gauge transformation

~ n ¼ Pn w ; w n

 12 k2 þ ~r n1~sn

ð7Þ

~sn k

1 2 k 2

!

:

 ~r n1~sn

gi;t ðnÞ ¼ sn ki þ ðk2  2rn1 sn Þgi ðnÞ  rn1 ki ðgi ðnÞÞ2 ; i ¼ 1; 2: Let us denote  ðPn;t þ Pn V ð1Þ n ÞPn ¼



 g 11 ðk; nÞ g 12 ðk; nÞ : g 21 ðk; nÞ g 22 ðk; nÞ

We get by direct calculation that g 11 ðk; nÞ and g 22 ðk; nÞ are 6thorder polynomial in k; g 12 ðk; nÞ and g 21 ðk; nÞ are 5th-order polynomial in k, and

which transform two eigenvalue problems (1) and (2) into

e ð1Þ w ~n ~ n;t ¼ V w n

g 11 ðki ; nÞ;

with

e n ¼ Pnþ1 U n P1 ; V e ð1Þ ¼ ðPn;t þ Pn V ð1Þ ÞP1 : U n n n n

~r n1 k

Proof. According to the Eqs. (2) and (5), we know

Through a expatiatory direct computation or by a computer algebra system, for example, Mathematica etc. We can obtain that

e nw ~ n; ~n ¼ U Ew

ð1Þ

n22 ¼ 1;

e ð1Þ Proposition 2. The matrix V n defined by (8) has the same form as

where k1 k2 ðk1 g2 ðnÞk2 g1 ðnÞÞ ; k1 g1 ðnÞk2 g2 ðnÞ

ð0Þ

n21 ¼ sn  C n ¼ ~sn ;

ð8Þ

g 12 ðki ; nÞ;

g 21 ðki ; nÞ;

g 22 ðki ; nÞ;

i ¼ 1; 2:

are all zero.Then we have  ðPn;t þ P:V ð1Þ n ÞPn ¼ Det½Pn gn

e n defined by (8) has the same form as U n Proposition 1. The matrix U in the Eq. (1), in which the old potentials rn ; sn ; pn are mapped into ~n on the basis of new potentials ~r n ; ~sn ; p

8 > < ~r n ¼ r n þ Bnþ1 ; ~sn ¼ sn  C n ; > :~ pn ¼ pn þ r n C nþ1  sn Bn  Bn C n þ Dnþ1  Dn :

ð9Þ

Proof. Let us set Pn is adjoint matrix of Pn , from Eqs. (1), (2) and (5), we have

gi ½n þ 1 ¼

sn þ pkni gi ½n r n gi ½n

;

i ¼ 1; 2;

ð10Þ

and we obtain that

Pnþ1 U n Pn ¼



 f 11 ðk; nÞ f 12 ðk; nÞ : f 21 ðk; nÞ f 22 ðk; nÞ

We find that f 11 ðk; nÞ is a 3th-order polynomial in k; f 12 ðk; nÞ and f 21 ðk; nÞ, are all 4th-order polynomials in k; kf 22 ðk; nÞ is 6th-order polynomial in k, and through a tedious but direct computation or by computer algebra system, we get that f 11 ðk; nÞ ¼ 0; k1 and k2 are all roots of f 12 ðk; nÞ; f 21 ðk; nÞ and kf 22 ðk; nÞ. Thus, we have  n

Pnþ1 U n P ¼ Det½Pn nn

with

vn ¼

ð0Þ 2 gð2Þ gð1Þ 11 k þ g11 12 k ð2Þ 2 ð0Þ gð1Þ k g k þ g22 21 22 ð1Þ

ð1Þ

ðiÞ

!

ðiÞ

where g12 ; g21 ; g11 ; g22 ; i; j ¼ 1; 2, are all independent of k. Thus we obtain

Pn;t þ P:V ð1Þ n ¼ gn Pn :

ð12Þ j

By comparing the coefficients of k ; j ¼ 0; 1; 2, in both sides of Eq. (12), we have

1 2

ð2Þ ð0Þ ð0Þ gð2Þ ; g11 ¼ g22 ¼ ðr n þ Bnþ1 Þðsn þ C n Þ 11 ¼ g22 ¼

¼ ~r n~sn1 ;

ð0Þ ð0Þ v12 ¼ ^r n ; v21 ¼ ^sn1 :

b ð1Þ On the basis of the Eqs. (8) and (12), we get that gn ¼ V n . The proof is completed. h The transformations (6) and (9):

~ n ; ~r n ; ~sn Þ ðwn ; r n ; sn Þ > ðw constitute a Darboux transformation of Eq. (4). Based on the Propositions 1 and 2, we can obtain the following theorem.

984

X.-X. Xu / Results in Physics 6 (2016) 982–984

Theorem 1. Every solution ðr n ; sn ÞT of Eq. (4) is mapped into a new T solution ð~r n ; ~sn Þ of Eq. (4) under the transformation (9). Acknowledgement This work is supported by the Nature Science Foundation of Shandong Province of China (Grant No. ZR2014AM001).

References [1] Ma WX. Lett. Math. Phys. 1997;39:33–49. [2] VB Matveev, MA Salle. Darboux Transformations and Solitons. Verlag, Berlin: Springer; 1991. [3] Wu YT, Geng XG. J. Phys. A: Math.Gen. 1998;31. L677-84. [4] Xu XX, Yang HX, Sun YP. Mod. Phys. Lett. B. 2006;20:641–8. [5] Xu XX. Appl. Math. Comput. 2015;251:275–83. [6] Tian SF, Zhang HQ. Phys. Scr. 2010;82:015008.