Nuclear Data Sheets 94, 397 (2001) doi:10.1006/ndsh.2001.0020
Nuclear Data Sheets for
199 Pb *
BALRAJ SINGH AND GEORGE REED Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada, L8S 4M1 (Received July 20, 2001; Revised October 10, 2001) Abstract: The experimental nuclear structure data for
199Pb
have been compiled and evaluated. Extensive
revisions to the adopted levels, gammas and high–spin data sets for this nuclide have been made based on the new high–spin studies of 1999Po13, 1997Cl03, 1995Ne09, 1994Ba43 (also 1997Hu12,1997Fa15,1997Di03), and 1989Su12. The decay data sets and (α,3nγ) dataset have been revised but no new references are added. values are now adopted from 1995Au04. This revision supersedes earlier by 1994Ar13 (A.
1 9 9 Pb
The Q
data contained in the A=199 update
Artna–Cohen, Nuclear Data Sheets 72, 297 (1994)), with literature coverage up to May 25,
1994. Cutoff Date: Literature available up to October 10, 2001 has been included. General Policies and Organization of Material: See the introductory pages.
* Research sponsored by the Natural Sciences and Engineering Research Council of Canada and by the Nuclear Physics Division of the U.S. Department of Energy. 0090–3752/01 $35.00 Copyright 2001 by Academic Press. All rights of reproduction in any form reserved.
397
NUCLEAR DATA SHEETS
Ind ex for Nuclide 199Pb
Data Type
Page
Adopted Levels, Gammas
399
199Pb
IT Decay (12.2 min)
408
199Bi
ε Decay: 27 min+24.70 min
408
203Po
α Decay (36.7 min)
413
186W(18O,5nγ)
413
198Hg(α,3nγ)
424
398
1 9 9 Pb
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
Adop te d L e ve ls, Gammas Q(β–)=–4.35×103 12; S(n)=7206 SY; S(p)=5010 100; Q(α)=3416 83
1995Au04.
∆(S(n))=114 (syst,1995Au04). 199Pb
Levels
Cross Reference (XREF) Flags
E(level)† 0.0
Jπ‡ 3 / 2–
199Bi
B
199Pb
IT Decay (12.2 min)
C
203Po
α Decay (36.7 min)
D
186W(18O,5nγ)
E
198Hg(α,3nγ)
T1/2§
XREF ABC
ε Decay: 27 min+24.70 min
A
Comments %ε+%β+=100.
90 mi n 10
µ=–1.0742 12 (1989Ra17,1986An06). Q=+0.08 9 (1989Ra17,1986An06). µ,Q: atomic–beam with LASER fluorescence spectroscopy (1986An06). ∆(199Pb–208Pb)=–0.516 fm2 4 (1986An06) from isotope shift measurements. The large change in radius from
201Pb
to
199Pb
is
ascribed to a change from f5/2 to p3/2 g.s. configurations in the two nuclides. Jπ: spin from hyperfine structure, π: µ and Q are consistent with ν 3p3/2 assignment (1983Th03). µ,Q: measured with LASER induced fluorescence spectroscopy. T1/2: from 1955An01; other: ≈80 min (1950Ne77). 0+x
( 5 / 2– )
ABCDE
E(level): x<9.3 keV (1962Ju05,1957An53) from
199Pb
IT decay.
Jπ: See comment for 424.8+x level. Probable ν 2f5/2 orbital. 424 . 8+x 2
( 13 / 2+ )
AB DE
12 . 2 mi n 3
%IT<100; %ε+%β+>0. Jπ: M4 γ to 0+x level; the only possible shell model states available for an M4 transition in the N=117 nucleus are the i13/2 and f5/2 states. The i13/2 probably corresponds to 424.8+x and f5/2 to 0+x level. T1/2: from 1955An01. Other: 13 min 1 (1956St05). Jπ: ν i13/2 orbital. %IT,%ε+%β+: 1978LeZA (Table of Isotopes 1978) list %IT=93, %ε+β+=7 from a priv. comm. (from authors of 1973JoZF,1974JoZX) in 1974. But a copy of this communication is no longer available from the Table of Isotopes group. E–mail queries (in July 2001) by the evaluators from two of the authors of 1973JoZF produced no response. Inspection of the gamma–ray spectrum from the decay of
199Pb
isomer
presented in 1973JoZF shows a dominant 425γ and a weak 382γ, the latter assigned to 9/2– isomer in
199Tl,
suggesting that %IT branch
is much stronger than the %ε+β+ branch. But in the absence of definitive information, the evaluators consider the decay branches as undetermined. E(level): others: 430 3 (1997Au04) based on x<9.3 (1962Ju05), 444 (1994Ba43,1999Po13) based on a proposed 19.6 level by 1978Ri04. But the existence of 19.6 level is considered as suspect since the γγ coin evidence presented by 1978Ri04 is very tentative. 1351 . 4+x 3
( 13 / 2+ )
D
1402 . 5+x 3
( 17 / 2+ )
DE
1437 . 5+x 3
( 15 / 2+ )
1677 . 8+x 4
DE D
1803 . 3+x 3
( 17 / 2+ )
1826 . 0+x 3
( 19 / 2+ )
D DE
1842 . 1+x 3
( 21 / 2+ )
DE
1904 . 8+x 3
( 17 / 2+ )
D
1971 . 8+x 3
( 19 / 2+ )
DE
2082 . 1+x 3
( 21 / 2+ )
DE
2127 . 5+x 3
( 21 / 2– )
DE
2129 . 4+x 3
( 19 / 2 )
D
2306 . 2+x 3
( 21 / 2+ )
DE
2451 . 6+x 4
( 23 / 2– )
DE
T1/2: from (α,3nγ).
<2 ns
3 . 85 ns
16
Continued on next page (footnotes at end of table)
399
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
Ad op te d L e ve ls, Gammas (conti nue d ) 199Pb
E(level)† 2499 . 9+x 4
Jπ‡ ( 25 / 2– )
T1/2§
XREF DE
Levels (continued )
7 . 9 ns
6
Comments T1/2: weighted average of 9.3 ns 6 (1988Pa12), 7.5 ns 3 (1988Ro08), 11 ns 3 (1985St16). Other: 33 ns 3 (1981He07) is discrepant (1981He07).
2501 . 7+x 3
( 21 / 2+ )
D
2559 . 1+x 4
( 29 / 2– )
DE
10 . 1 µs
2
µ=–1.076 3 (1989Ra17,1988Ro08). Configuration=((ν i13/2)–212+(ν f5/2)–1). Jπ: E2 γ to 25/2– level; measured g–factor agrees with proposed configuration. µ: TDPAD method (1988Ro08,1987Ca23). Other: –1.07 7 (1985St16). T1/2: weighted average of 10.6 µs 5 (1989Su12,1988Pa12,1981He07), 10.0 µs 2 (1988Ro08).
2560 . 2+x 4
( 25 / 2 )
D
2571 . 1+x 4
( 27 / 2– )
D
2748 . 0+x 4
( 25 / 2+ )
D
2841 . 2+x 4
( 25 / 2 )
D
2921 . 1+x 3
( 21 / 2+ )
D
2982 . 9+x 4
( 25 / 2+ )
D
2984 . 2+x 4
( 23 / 2+ )
D
3134 . 1+x 4
( 25 / 2+ )
D
3210 . 3+x 4
( 29 / 2 )
D
3359 . 0+x 4
( 29 / 2 )
D
3386 . 2+x 4
( 27 / 2+ )
D
3401 . 3+x 4
( 29 / 2+ )
DE
3490 . 1+x 4
( 33 / 2+ )
DE
63 ns
4
µ=–2.39 15 (1989Ra17,1988Ro08). µ: TDPAD method (1988Ro08). Other: –2.51 5 (1985St16). Configuration=(ν i13/2)–3. T1/2: weighted average of 63 ns 4 (1989Su12), 71 ns 4 (1988Pa12). 55 ns 5 (1988Ro08), 58 ns 6 (1985St16), 55 ns 8 (1981He07).
3530 . 0+x 4 3584 . 9+x# 4
( 33 / 2 ) ( 25 / 2– )
3603 . 7+x 5 3657 . 5+x 4 3674 . 8+x# 5
D D D
( 29 / 2+ )
D
( 27 / 2– )
D
3742 . 6+x 5
D
3745 . 7+x 4
( 29 / 2+ )
3791 . 9+x 4 3848 . 7+x# 6
( 33 / 2 )
D
( 29 / 2– )
D
3850 . 9+x 4
( 31 / 2 )
3859 . 3+x 5 3876 . 5+x 4
D D
( 33 / 2 )
3966 . 7+x 5
D D
4006 . 3+x 4
( 29 / 2+ )
4086 . 0+x 4
( 31 / 2+ )
4108 . 1+x 4 4124 . 1+x# 7
D
D D D
( 31 / 2– )
4143 . 3+x 5
D D
4228 . 3+x 5
( 35 / 2 )
4257 . 5+x 5
( 37 / 2+ )
4292 . 6+x 4
D D D
4339 . 4+x 5
( 37 / 2 )
D
4348 . 8+x 4
( 31 / 2 )
D
4363 . 6+x 4
( 31 / 2 )
D
4367 . 6+x 5
( 37 / 2 )
D
4474 . 7+x 5 4483 . 5+x# 7
( 41 / 2+ )
D
( 33 / 2– )
D
4543 . 3+x 4
( 37 / 2 )
D
4769 . 0+x 4
( 33 / 2+ )
D
4770 . 0+x 4
( 33 / 2+ )
D
4777 . 2+x 5
( 41 / 2 )
40 ns
10
D
4778 . 6+x 4 4884 . 8+x# 7
D ( 35 / 2– )
D
5067 . 1+x 5
( 41 / 2 )
D
5129 . 4+x 5
( 41 / 2 )
D Continued on next page (footnotes at end of table)
400
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
Ad op te d L e ve ls, Gammas (conti nue d ) 199Pb
E(level)†
Jπ‡
XREF
5222 . 6+x 5
( 41 / 2 )
D
5282 . 4+x 5 5305 . 6+x# 7
( 43 / 2 )
D
( 37 / 2– )
D
5314 . 9+x 5
( 41 / 2 )
D
5338 . 9+x 5
( 41 / 2 )
D
5478 . 7+x 4
( 43 / 2 )
5495 . 4+x 6 5554 . 2+x 6 5727 . 2+x# 7
T1/2§
Comments
D D D
( 39 / 2– )
D
6055 . 7+x# 7 6290 . 3+x# 8 6530 . 4+x# 8
( 41 / 2– )
D
( 43 / 2– )
D
0 . 26 p s +35–20
( 45 / 2– )
D
0 . 21 p s +21–17
6804 . 2+x# 9
( 47 / 2– )
D
0 . 118 p s +42–28
6986 . 7+x 6 7120 . 5+x# 9 7483 . 7+x# 9 7895 . 1+x# 9 8354 . 5+x# 9
Levels (continued )
D ( 49 / 2– )
D
( 51 / 2– )
D
0 . 090 p s +28–21 0 . 139 ps
( 53 / 2– )
D
0 . 111 p s +35–28
35
( 55 / 2– )
D
0 . 104 p s +35–28
8862 . 8+x# 9 9417 . 5+x# 9 10022 . 4+x# 9
( 57 / 2– )
D
0 . 146 p s +42–35
( 59 / 2– )
D
( 61 / 2– )
D
10659 . 5+x# 9 0 . 0 + y@
( 63 / 2– )
D
( 35 / 2+ )
D
9 8 . 2 + y@ 3 2 2 3 . 2 + y@ 4 3 8 8 . 8 + y@ 5
( 37 / 2+ )
D
( 39 / 2+ )
D
( 41 / 2+ )
D
5 8 9 . 2 + y& 4 6 0 3 . 3 + y@ 5 7 2 6 . 8 + y& 5
( 39 / 2+ )
D
( 43 / 2+ )
D
( 41 / 2+ )
D
8 7 1 . 1 + y@ 6 8 9 1 . 4 + y& 5 1 0 9 9 . 8 + y& 5
( 45 / 2+ )
D
( 43 / 2+ )
D
( 45 / 2+ )
D
1 1 9 4 . 2 + y@ 6 1 3 7 0 . 7 + y& 6 1 5 7 1 . 2 + y@ 6
( 47 / 2+ )
D
( 47 / 2+ )
D
E(level): y>4784+x since the level decays to triplet of states at 4775+x, 4776+x and 4784+x.
1 7 1 2 . 7 + y& 6 2 0 0 1 . 4 + y@ 6 2 1 2 9 . 8 + y& 6
( 49 / 2+ )
D
( 49 / 2+ )
D
( 51 / 2+ )
D
( 51 / 2+ )
D
2 4 8 3 . 5 + y@ 7
( 53 / 2+ )
D
2 6 1 2 . 6 + y& 6 3 0 1 5 . 5 + y@ 7 3 1 4 9 . 4 + y& 7
( 53 / 2+ )
D
3164 . 8+y 7 3 5 8 9 . 1 + y@ 7
( 55 / 2+ )
D
( 55 / 2+ )
D
0 . 097 p s +42–28 0 . 146 p s +28–21 0 . 111 p s +35–21 0 . 090 p s +28–21
D ( 57 / 2+ )
D
3 6 0 8 . 4 + y@ 7 3 7 3 4 . 6 + y& 8 3 9 6 7 . 6 + y@ 8
( 57 / 2+ )
D
( 57 / 2+ )
D
( 59 / 2+ )
D
4 1 9 7 . 5 + y@ 7 4 2 0 7 . 5 + y@ 7 4 5 4 6 . 7 + y@ 7
( 59 / 2+ )
D
( 59 / 2+ )
D
( 61 / 2+ )
D
4 9 3 2 . 6 + y@ 8 5 3 5 3 . 6 + y@ 8 5 8 0 7 . 0 + y@ 9
( 63 / 2+ )
D
( 65 / 2+ )
D
( 67 / 2+ )
D
6 3 0 3 . 5 + y@ 9 6 8 4 6 . 0 + y@ 1 0 7 4 3 3 . 7 + y@ 1 0
( 69 / 2+ )
D
( 71 / 2+ )
D
0 . 0+z a
0 . 13 p s +10–6
( 73 / 2+ )
0 . 097 p s +21–14
D D
E(level): z>5135+x, since the level decays into states between 4234+x and 5135+x. Jπ: possibly 37/2, since the bandhead feeds levels near 33/2.
97 . 7+z a 3
D
232 . 9+z a 5 426 . 1+z a 6
D D Continued on next page (footnotes at end of table)
401
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
Ad op te d L e ve ls, Gammas (conti nue d ) 199Pb
E(level)†
Levels (continued )
XREF
673 . 5+z a 6 967 . 5+z a 6 1349 . 7+z a 6
D
1743 . 8+z a 6 2227 . 4+z a 7 2738 . 0+z a 7
D
3256 . 8+z a 7 3595 . 0+z a 8 0 . 0+ub
D
2 4 2 . 9+ub 3 5 5 0 . 3+ub 4 8 6 3 . 3+ub 4
D
1 2 4 7 . 9+ub 5 1 6 6 2 . 0+ub 5 2 1 4 9 . 2+ub 5
D
Comments
D D D D D D
E(level): u>4149+x, since the level decays into states between 3216+x and 4149+x. Jπ: possibly 45/2, since the bandhead feeds levels near 41/2.
D D D D
2 6 2 0 . 9+ub 6
D
0+v
D
602 . 6+v 3
D
938 . 8+v 4
D
1088 . 6+v 4
D
1336 . 1+v 3
D
1795 . 8+v 5
D
1813 . 0+v 5
D
2157 . 2+v 5
D
2171 . 5+v 5
D
†
E(level): v>5484+x from possible decay to 5484+x.
From (18O,5nγ) for excited states. The levels proposed from the
199Bi
ε decay have not been adopted because of tentative nature
of the decay scheme. ‡
From γγ, γγ(θ)(DCO), ce in (18O,5nγ), γ(θ) in (α,3nγ), and associated band structures. It is assumed that J(initial)≥J(final) for observed transitions. All spin assignments are placed in parentheses (by evaluators) since the assignment for the 424.8+x is based on model arguments, rather than on measurement by direct methods.
§
From (18O,5nγ), unless otherwise stated. Methods used are are: γ(t) and/or ce(t) in the nanosecond region and Doppler–shift
attenuation method in the picosecond region. –1 below the band crossing and # (A): Magnetic rotational band #1. Band based on 25/2–. Configuration=π(h i 9/2 13/2) ν(i13/2) π(h9/2i13/2)ν(i13/2)–3 above the crossing near 41/2. –2 f –1 @ (B): Magnetic rotational band #2. Band based on 35/2+. Configuration=π(h i 9/2 13/2)ν(i13/2 5/2 ) below the band crossing and π(h9/2i13/2) ν(i13/2–4f5/2–1) above the crossing near & (C): Magnetic–rotational band #3. Band based on a (D): Magnetic–rotational band #4. Band probably b (E): Magnetic–rotational band #5. Band probably
61/2. 39/2+. Configuration=π(h9/2i13/2)ν(i13/2–2 f5/2–1). based on 37/2. Tentative configuration=π(h9/2)2 νi13/2–3. based on 45/2. Tentative configuration=π(h9/2)2 ν(i13/2–4p3/2–1).
γ( 1 9 9 Pb)
E(level)
Eγ†
0+x
(x)
424 . 8+x
424 . 8 2
Iγ†
Mult.†
M4
4 . 11
1351 . 4+x
926 . 6 3
100
977 . 7 2
100
E2
1437 . 5+x
1012 . 8 3
100
E 2 ( +M1 )
1677 . 8+x
1253 . 1 4
100
1803 . 3+x
400 . 8 4
1826 . 0+x
α
Comments Eγ: x<9.3 from
100
1402 . 5+x
451 . 9 3
δ
199Pb
IT decay (1962Ju05,1957An53).
B(M4)(W.u.)<3.2.
43 23 26 7
1378 . 5 3
100 17
22 . 7 3
0 . 21
[ M1 ]
134
B(M1)(W.u.)>0.0011.
148 . 2‡ 4 388 . 5 2
36 6
423 . 4 2
100 14
1842 . 1+x
439 . 5 2
100
1904 . 8+x
502 . 2
100 33
E2 M1 +E 2
–1 . 0 4
0 . 0563
B(E2)(W.u.)>0.094.
0 . 11 3
δ: from (α,3nγ). B(M1)(W.u.)>2.4×10–5; B(E2)(W.u.)>0.050.
( E2 )
0 . 0408
Continued on next page (footnotes at end of table)
402
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
Ad op te d L e ve ls, Gammas (conti nue d ) γ( 1 9 9 P b) (continued )
E(level) 1904 . 8+x
Eㆠ553 . 4 1480 . 1
1971 . 8+x
Iγ†
Mult.†
α
Comments
71 24 14 5
129 . 7 2
90 15
569 . 4 3
100 20
M1 +E 2
2082 . 1+x
239 . 9 2
100
M1 ( +E 2 )
0.5 3
2127 . 5+x
155 . 7 2
E1
0 . 147
B(E1)(W.u.)=1.32×10–6 16.
E1
0 . 0294
B(E1)(W.u.)=1.63×10–6 15.
301 . 4 2 2129 . 4+x
11 . 2 11 100 6
303 . 4
25 25
727 . 0
100 50
2306 . 2+x
903 . 8
100
2451 . 6+x
324 . 2 2
100
2499 . 9+x
48 . 2 4
2501 . 7+x
372 . 4 2
100 15
596 . 9
100 43
1099 . 2 2559 . 1+x 2560 . 2+x 2571 . 1+x 2748 . 0+x 2841 . 2+x 2921 . 1+x
2982 . 9+x
59 . 1 3 108 . 7
<0 . 5 100 17
389 . 5
64 32 100 24
419 . 4
63 54
614 . 9
100 30
791 . 7
20 9
838 . 7
15 9
1016 . 3
59 24
1079 . 0
24 9
1095 . 1
48 13
1117 . 7
46 13
676 . 9
100 29
63 . 1
3134 . 1+x
3359 . 0+x
E2
72 . 3
[D]
92 86
M1
M1
6 . 95
M1
3 . 07
828 . 0
29 15
0 . 717
369 . 2 4
55 27
639 . 1
27 7
651 . 2
100 16
710 . 5
13 4
787 . 8
100 23 M1
3401 . 3+x
830 . 2 2
100 22
E1
17 5 100
450 . 8
27 7 100 20
3603 . 7+x
469 . 6
100
3657 . 5+x
271 . 3
90 52
674 . 6
100 29
89 . 9
100
3742 . 6+x
212 . 7
100
3791 . 9+x
359 . 5
100 28
762 . 8
86 31
997 . 6
21 14
432 . 8
22 8
581 . 6
100 16
1232 . 8
10 . 5
M1
13 . 3
B(E2)(W.u.)=2.06 15.
33 14
3674 . 8+x 3745 . 7+x
( E1 ) E2
100
600 . 7
909 . 5
Mult.: from DCO ratio and intensity balance.
58 15 100
970 . 9
B(E2)(W.u.)=0.0154 7.
29 7 100 39
88 . 7 2
B(E2)(W.u.)=0.117 25.
4 . 94
150 . 0
842 . 0 4
B(M1)(W.u.)=0.00022 4.
Q
252 . 0
3584 . 9+x
0 . 0631
100
799 . 0
3530 . 0+x
15 . 3
E2
3386 . 2+x
3490 . 1+x
0 . 360
[ M1 ]
100
713 . 8
1140 . 8
M1
100
11 . 8 3 905 . 9
4 . 64
38 14 100
70 . 9 3
2984 . 2+x
3210 . 3+x
1.1
M1
9 3
3848 . 7+x
173 . 9
100
3850 . 9+x
1291 . 8
100
3859 . 3+x
369 . 2
100
M1
2 . 02
Continued on next page (footnotes at end of table)
403
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
Ad op te d L e ve ls, Gammas (conti nue d ) γ( 1 9 9 P b) (continued )
E(level) 3876 . 5+x
Eγ†
Iγ†
517 . 6
38 15
666 . 1
100 50
3966 . 7+x
224 . 1
100
4006 . 3+x
620 . 1
100
4086 . 0+x
340 . 4
64 36
428 . 5
100 29
699 . 9 617 . 9
100
4124 . 1+x
275 . 4
100
4143 . 3+x
932 . 9
100
4228 . 3+x
738 . 2
100
4257 . 5+x
767 . 3 4 1733 . 5
100
4339 . 4+x
809 . 4
100
4348 . 8+x
342 . 4
100 55
M1
0 . 562
1789 . 7
30 15
357 . 3
67 33
1804 . 3
100 44
110 . 3
29 8
139 . 4
10 6
877 . 4
100 18
4474 . 7+x
217 . 2 3
100
E 2 , M1
0.7 4
4483 . 5+x
359 . 4
100 11
M1
0 . 272
634 . 8 4543 . 3+x
4769 . 0+x
4770 . 0+x
100 50
751 . 4
95 15
1013 . 4
48 28
660 . 8
100 31
1278 . 9
56 13
1367 . 7
19 13
406 . 3
48 13
421 . 2
100 23
477 . 3
19 6
684 . 0
52 13
1112 . 5 4777 . 2+x 4778 . 6+x
4884 . 8+x 5067 . 1+x 5129 . 4+x
302 . 5
100 24 16 8
486 . 0
75 25
670 . 4
56 25
919 . 3
81 25
927 . 7
100 44
401 . 3
100 15
760 . 8
11 . 8 26
289 . 8
65 26
592 . 3
100 22
352 . 1
24 6
654 . 6
51 11
761 . 8
100 19 100
965 . 0
100
807 . 8
100
5305 . 6+x
420 . 7
100 15
822 . 1
16 4
771 . 7
100 16
5338 . 9+x 5478 . 7+x
795 . 6
M1
0 . 203
( E2 )
0 . 0117
16 6
748 . 1
975 . 6
0 . 0171
1 . 9 19
5282 . 4+x
5314 . 9+x
[ E2 ]
B(M1)(W.u.)=1.6×10–5 6; B(E2)(W.u.)=0.12 5.
13 6
519 . 7
872 . 0 5222 . 6+x
2.5 7
666 . 8
763 . 8
Comments
100
4292 . 6+x
4367 . 6+x
α
7 7
4108 . 1+x
4363 . 6+x
Mult.†
M1
0 . 179
( E2 )
0 . 0099
33 8 100
139 . 9
16 4
163 . 8
21 5
196 . 3
13 7
256 . 1
12 4
349 . 3
100 15 Continued on next page (footnotes at end of table)
404
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
Ad op te d L e ve ls, Gammas (conti nue d ) γ( 1 9 9 P b) (continued )
E(level) 5478 . 7+x
Eγ†
Iγ†
411 . 5
53 21
701 . 5
34 6
1004 . 1
18 4
1512 . 0
α
Comments
23 4
5495 . 4+x
180 . 5
100
5554 . 2+x
1079 . 5
100
5727 . 2+x
421 . 5
100 15
842 . 4
20 5
328 . 6
100 13
750 . 1
12 3
6055 . 7+x
Mult.†
M1
0 . 178
( E2 ) M1
0 . 347
( E2 )
0 . 0120
6290 . 3+x
234 . 6
100
M1
0 . 87
B(M1)(W.u.)=4 +4–3.
6530 . 4+x
240 . 1
100
M1
0 . 820
B(M1)(W.u.)=4 +4–3.
6804 . 2+x
273 . 8
100
M1
0 . 571
B(M1)(W.u.)=5.8 21.
6986 . 7+x
1432 . 5
100 M1
0 . 385
B(M1)(W.u.)=5.4 20.
7120 . 5+x
316 . 3 590 . 1
7483 . 7+x
363 . 1 679 . 5
7895 . 1+x
411 . 3
100 13 4 . 3 13 100 16 8 3
[ E2 ] M1
0 . 0201
B(E2)(W.u.)=38 18.
0 . 265
B(M1)(W.u.)=2.5 9.
[ E2 ]
0 . 0148
B(E2)(W.u.)=24 12.
100 18
( M1 )
0 . 190
B(M1)(W.u.)=2.2 9.
774 . 6
11 4
[ E2 ]
0 . 0112
B(E2)(W.u.)=22 12.
8354 . 5+x
459 . 3
100 23
( M1 )
0 . 141
B(M1)(W.u.)=1.8 9.
870 . 9
10 5
[ E2 ]
8862 . 8+x
508 . 3
100 25
( M1 )
0 . 108
B(M1)(W.u.)=0.9 4.
967 . 7
22 8
[ E2 ]
9417 . 5+x
554 . 8
B(E2)(W.u.)=13 9. B(E2)(W.u.)=11 6.
1063 . 0‡ 10022 . 4+x
604 . 7 1159 . 6
10659 . 5+x
636 . 9 1242 . 1
98 . 2+y
98 . 2
100
223 . 2+y
125 . 0
100
M1
5 . 16
388 . 8+y
165 . 6
100
M1
2 . 32
589 . 2+y
491 . 0
100
603 . 3+y
214 . 6
100
M1
1 . 12
726 . 8+y
137 . 7
100 29
503 . 7
14 5
871 . 1+y
267 . 8
100
891 . 4+y
164 . 6
100 29
502 . 6 1099 . 8+y
208 . 3 496 . 5
100 24
323 . 1
100
271 . 0
100 19
377 . 1 700 . 1
1712 . 7+y
342 . 0 518 . 5
2001 . 4+y
430 . 3 807 . 1
2129 . 8+y
417 . 0 558 . 6
2483 . 5+y
481 . 9 912 . 4
2612 . 6+y 3015 . 5+y
482 . 7
0 . 606
[ M1 ]
2 . 36
[ M1 ]
1 . 22
M1
0 . 363
[ M1 ]
6 . 4 17 100 8
[ M1 ]
0 . 239
B(M1)(W.u.)=3.2 16.
[ E2 ]
0 . 0139
B(E2)(W.u.)=25 13.
[ M1 ]
0 . 311
2.2 4 100 15 7 . 7 26 100 13
M1
0 . 168
B(M1)(W.u.)=1.5 5.
( E2 )
0 . 0103
B(E2)(W.u.)=10 5.
[ M1 ]
0 . 183
1.3 3 100 18 7 . 1 21 100 20
M1
0 . 124
( E2 ) 0 . 123 0 . 096
13 5 100 19
( M1 )
18 5
( E2 )
100 25
( M1 )
B(M1)(W.u.)=1.5 6. B(E2)(W.u.)=7 4.
[ M1 ]
532 . 0 536 . 8
B(M1)(W.u.)=4 3.
0 . 59
2.5 4 100 15
900 . 0 1014 . 2 3149 . 4+y
M1
3 . 91
4.0 8
1194 . 2+y
499 . 6
[ M1 ]
10 . 3
9 . 6 16
1370 . 7+y 1571 . 2+y
[ M1 ]
B(M1)(W.u.)=1.3 6. B(E2)(W.u.)=12 6.
1019 . 6 3164 . 8+y
552 . 2
100
3589 . 1+y
573 . 6
100 21
[ M1 ]
0 . 079
B(M1)(W.u.)=0.9 4.
Continued on next page (footnotes at end of table)
405
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
Ad op te d L e ve ls, Gammas (conti nue d ) γ( 1 9 9 P b) (continued )
Eγ†
Iγ†
3589 . 1+y
1105 . 7
21 6
( E2 )
3608 . 4+y
593 . 1
100 23
[ M1 ]
E(level)
Mult.†
α
Comments B(E2)(W.u.)=8 4.
1124 . 6 3734 . 6+y
585 . 2 1122 . 0
3967 . 6+y 4197 . 5+y
359 . 2 608 . 5 1181 . 8
4207 . 5+y
618 . 2 1192 . 1
4546 . 7+y
0 . 065
16 4
339 . 2 349 . 3
4932 . 6+y
385 . 9
5353 . 6+y
421 . 0
5807 . 0+y
453 . 4
6303 . 5+y
496 . 5
6846 . 0+y
542 . 5
7433 . 7+y
587 . 7
97 . 7+z
97 . 7
100
232 . 9+z
135 . 2
100
M1
4 . 12
426 . 1+z
193 . 2
100
M1
1 . 50
673 . 5+z
247 . 4
100
M1
0 . 755
967 . 5+z
294 . 1
100 7
M1
0 . 469
541 . 4
15 4
1349 . 7+z 1743 . 8+z 2227 . 4+z 2738 . 0+z 3256 . 8+z
382 . 1
100 20
676 . 2
13 4
394 . 2
100 26
776 . 4
36 9
483 . 5
100 23
877 . 6
27 11
510 . 5
100 28
994 . 2
24 9
[ M1 ]
0 . 231
[ M1 ]
0 . 213
[ M1 ]
0 . 123
[ M1 ]
0 . 107
[ M1 ]
0 . 396
[ M1 ]
0 . 227
[ M1 ]
0 . 187
[ M1 ]
0 . 121
518 . 8 1029 . 4
3595 . 0+z
338 . 2
2 4 2 . 9+u
242 . 9
100
5 5 0 . 3+u
307 . 3
100
8 6 3 . 3+u
313 . 0
100 16
620 . 5
24 7
1 2 4 7 . 9+u 1 6 6 2 . 0+u 2 1 4 9 . 2+u
384 . 6
100 20
697 . 6
11 4
414 . 0
100 23
798 . 7
23 6
487 . 0
100 25
901 . 4
26 10
2 6 2 0 . 9+u
471 . 7
100
602 . 6+v
602 . 6
100
938 . 8+v
336 . 3
100
1088 . 6+v
149 . 8
52 26
485 . 9
100 20
1336 . 1+v
1336 . 1
100
1795 . 8+v
1193 . 2
100
1813 . 0+v
724 . 4
100
2157 . 2+v
1068 . 6
100
2171 . 5+v
1568 . 9
100
†
Based on data from (18O,5nγ).
‡
Placement of transition in the level scheme is uncertain.
406
407
10022.4+x
9417.5+x
8862.8+x
8354.5+x
7895.1+x
7483.7+x
7120.5+x
6804.2+x
6530.4+x
6290.3+x
6055.7+x
5727.2+x
5305.6+x
4884.8+x
4483.5+x
4124.1+x
3848.7+x
3674.8+x
3584.9+x
(61/2–)
(59/2–)
(57/2–)
(55/2–)
(53/2–)
(51/2–)
(49/2–)
(47/2–)
(45/2–)
(43/2–)
(41/2–)
(39/2–)
(37/2–)
(35/2–)
(33/2–)
(31/2–)
(29/2–)
(27/2–)
(25/2–)
(23/2+)
(25/2+)
10659.5+x
2001.4+y 1571.2+y 1194.2+y 871.1+y 603.3+y 388.8+y 223.2+y 98.2+y 0.0+y
(51/2+) (49/2+) (47/2+) (45/2+) (43/2+) (41/2+) (39/2+) (37/2+) (35/2+)
3589.1+y
2483.5+y
3608.4+y
(57/2+)
(53/2+)
3967.6+y
(57/2+)
3015.5+y
4197.5+y
(59/2+)
(55/2+)
4207.5+y
(59/2+)
4546.7+y
(59/2+)
4932.6+y
(63/2+)
5353.6+y
(65/2+)
(61/2+)
5807.0+y
6303.5+y
6846.0+y
7433.7+y
(67/2+)
(69/2+)
(71/2+)
(73/2+)
band #2.
band #1.
(63/2–)
(B) magnetic rotational
(A) magnetic rotational
2612.6+y 2129.8+y 1712.7+y
(53/2+) (51/2+) (49/2+)
(B)(37/2+)
(B)(39/2+)
(B)(41/2+)
(39/2+)
(B)(43/2+)
(41/2+)
589.2+y
726.8+y
891.4+y
(43/2+) (B)(45/2+)
1099.8+y
(45/2+)
(B)(47/2+)
(47/2+)
1370.7+y
3149.4+y
(55/2+)
(B)(49/2+)
3734.6+y
(57/2+)
19 9 Pb 117 82
(C) magnetic–rotational band #3.
0.0+z
97.7+z
232.9+z
426.1+z
673.5+z
967.5+z
1349.7+z
1743.8+z
2227.4+z
2738.0+z
3256.8+z
3595.0+z
0.0+u
242.9+u
550.3+u
863.3+u
1247.9+u
1662.0+u
2149.2+u
2620.9+u
band #5.
band #4.
(E) magnetic–rotational
(D) magnetic–rotational
19 9 P b 117 82
NUCLEAR DATA SHEETS 19 9 P b 82 117
Ad op te d L e ve ls, Gammas (conti nue d )
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
199Pb
1 9 5 7 An5 3 ,1 9 5 6 S t0 5 ,1 9 6 2 Ju0 5
E=424.1+x; Jπ=(13/2+); T1/2=12.2 min 3; %IT decay<100.
199Pb:
Parent
IT De cay (1 2 .2 mi n)
1957An53, 1955An01, 1962Ju05: source produced by Tl(p,xn) followed by chem separation. Measured T1/2, γ, ce. 1956St05: source produced by Pb(d,xn) followed by chem separation. Measured γ, x rays, ce. Others: 1973JoZF, 1974JoZX: measured γ spectrum. 199Pb
Jπ†
E(level)
T1/2
0.0
3 / 2–
0+x
( 5 / 2– )
424 . 1+x
Levels
Comments
90 mi n 10
( 13 / 2+ )
12 . 2 mi n 3
%IT<100; %ε+%β+>0. T1/2: from 1957An53; other: 13 min 1 (1956St05).
†
From adopted levels.
γ( 1 9 9 Pb) Branching: it branch is much stronger than the ε+β+ branch, but the branching ratio is unknown. Eγ
E(level)
Iγ†
Mult.
α
Comments Eγ: x<9.3 (1962Ju05). Unobserved γ in cascade with 424γ has E<30 (1957An53);
(x)
0+x
424 . 1 8
424 . 1+x
9.3>E>46.4 (1962Ju05). 100
M4
4 . 11
Mult.: from exp. K/L=1.9, (L1+L2)/L3=3.2 (1957An53), α(K)exp=2.4 10 (K x ray/γ 1956St05). Theory: K/L=1.95, (L1+L2)/L3=2.80, α(K)=2.42.
For absolute intensity per 100 decays, multiply by <0.196. Decay Scheme Intensities: I(γ+ce) per 100 parent decays
(13/2+)
42
4.1
M4
<1
00
%IT<100
424.1+x
(5/2–) 3/2–
12.2 min
0+x x
†
0.0
90 min
19 9 Pb 117 82
1 9 9 Bi
ε De cay: 2 7 mi n+2 4 .7 0 mi n
1 9 7 8 Ri 0 4
Parent
199Bi:
E=0; Jπ=9/2–; T1/2=27 min 1; Q(g.s.)=4350 120; %ε+%β+ decay=100.
Parent
199Bi:
E=680 syst; Jπ=(1/2+); T1/2=24.70 min 15; Q(g.s.)=4350 120; %ε+%β+ decay=99 1.
199Bi–T
1/2:
27 min 1 (1964Si11).
199Bi–T
1/2:
24.70 min 15 (1966Ma51).
1978Ri04: produced by Pb(p,xnγ); mass, ion chem; measured Eγ, Iγ, ce, γγ. Others: 1964Si11, 1950Ne77, 1948Te01: measured T1/2(199Bi g.s.). 1966Ma51, 1964Si11, 1948Te01, 1970DaZM: measured T1/2(199Bi isomer) and α decay. The partial decay scheme is that proposed by 1978Ri04 with the following changes: 1) the 3/2– state is the ground state and not at 19.58 keV as proposed by 1978Ri04; and 2) the 5/2– state is at 0+x keV (x≤9.3 keV) and not the g.s. All level energies of 1978Ri04 are therefore raised by x keV. These changes are indicated by the results of 1983Th03 (J(g.s.)=3/2–) and 1962Ju05, 1957An53 (E(5/2– level)≤9.3). For tentative γγ–coin results see table 6 of 1978Ri04. None of the excited states and γ rays above the 425+x isomer are included in the adopted levels due to the tentative nature of the decay scheme from 1978Ri04.
408
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
1 9 9 Bi
ε D ecay: 2 7 mi n+2 4 .7 0 mi n 199Pb
Levels
T1/2‡
Jπ†
E(level)
1 9 7 8 Ri 0 4 (conti nue d)
0.0
3 / 2–
0+x
( 5 / 2– )
Comments
90 mi n 10
%ε+%β+=100. E(level): x≤9.3 from
19 . 5+x ?
199Pb
it decay.
E(level): This level energy is inconsistent with results of 1962Ju05, who concluded that the energy difference between the f5/2 and p3/2 levels is less than 9.3 keV. The placement of the two γ's feeding this first excited state may be inconsistent with some of the γγ–coin results of 1978Ri04.
425 . 3+x
( 13 / 2+ )
12 . 2 mi n 3
%IT<100; %ε+%β+>0.
946 . 0+x ?
Jπ: (7/2)– (1978Ri04).
1022 . 8+x ?
Jπ: (7/2)– (1978Ri04).
1052 . 8+x ? 1262 . 7+x ?
Jπ: (9/2,11/2)+ (1978Ri04).
1266 . 8+x ?
Jπ: (9/2,11/2)+ (1978Ri04).
1305 . 6+x ?
Jπ: (7/2)– (1978Ri04).
1337 . 2+x ?
Jπ: (7/2,9/2)– (1978Ri04).
1505 . 9+x ? 1743 . 0+x ? 1799 . 9+x ? Jπ: (9/2+,11/2) (1978Ri04).
2069 . 1+x ? 2083 . 0+x ? 2108 . 3+x ? 2186 . 2+x ? †
Assignments proposed by 1978Ri04 are given under comments. These assignments are based on γ multipolarities and on the assumption that all the placed γ's are from the ε decay of 9/2–
‡
199Bi
g.s. (see comment on Iγ for a possible problem).
From adopted levels.
γ( 1 9 9 Pb) I(γ±)=18.1 9 (relative to I(841γ)=100) corresponds to %β+≈1.0. Iγ normalization: ≈0.11 based on the following considerations: 1. I(ce+β+)(to 425.3+x level)<16% (from log f1ut>8.5); 2. ∑Iγ(unplaced)/∑Iγ(total)=0.44; 3. the proposed partial level scheme. Setting the total γ
intensity from E(level)>425.3+x to E(level)≤425.3+x as 70 20, one obtains normalization factor of 0.11 3. The
intensity of 425γ has been omitted from this calculation since the measured relative intensity is uncertain due to long T1/2=12 min and lack of reliable %IT decay from the 12.2–min 425.3+x level. Branching: %IT<2, %α=0.01. Eγ
E(level)
(x)
0+x
Iγ†
x126
. 6 10
1.0 2
x183
.6 7
1.5 2
x195
.5 7
2.0 2
x216
.3 7 237 . 9b 7
x240
.3 7
x245
.4 7
253 . 3 7 x279
α(K)exp=0.71 12.
5.8 6
M1 +E 2
2.1 2
M1 +E 2
0.5 3
α(K)exp=0.48 24.
0 . 707
α(K)exp=0.7 4.
1337 . 2+x ?
1.8 2
M1 +E 2
2.0 2
M1
4.5 5
M1 +E 2
0 . 515
α(K)exp=0.36 18.
M1 &
0 . 470
α(K)exp=0.55 30.
α(K)exp=0.72 40.
3.5 4 1799 . 9+x ?
7.8 8
x300
.1 7
4.0 4
x302
.6 7
1.2 2
x316
.2 7
1.5 2
x320
. 3 10
0.5 1
x338
.4 7
1.9 2
x341
.6 7
1.9 2
x350
.9 7
1.8 2
x370
.7 7
4.9 5
x382
.7 7
391 . 3 7
Comments
2.0 2 1305 . 6+x ?
.4 7
294 . 0 7
α
1.7 2
.2 7
284 . 3 7 x288
1743 . 0+x ?
Mult.‡
M1 +E 2
α(K)exp=0.13 6.
1.3 2 1337 . 2+x ?
7.2 7
x416
.1 7
1.9 2
x420
.2 7
4.5 5 Continued on next page (footnotes at end of table)
409
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
1 9 9 Bi
ε D ecay: 2 7 mi n+2 4 .7 0 mi n
1 9 7 8 Ri 0 4 (conti nue d)
γ( 1 9 9 P b) (continued )
Eγ
E(level)
425 . 3 5
425 . 3+x
x444
.4 7
x451
.8 7
462 . 6b 7 x473
1743 . 0+x ? 1505 . 9+x ?
.6 7
533 . 1 5 x539
M4
4 . 10
5.4 5
E 2 +M1
0 . 0359
α(K)exp=0.039 2.
0 . 06 4
α(K)exp=0.055 32.
3.7 4 5.0 5 6.0 6 2.1 2
1799 . 9+x ?
.3 7
10 . 3 5
α(K)exp=0.08 4.
M1 +E 2 M1 +E 2 &
6.1 6
x546
.9 7 560 . 1b 7 563 . 2b 7
Comments
1.1 2
480 . 4 7
x521
α
2.8 3 1799 . 9+x ?
483 . 3b 7 .3 7
≈200a
Mult.‡
3.0 3
.0 7
x507
Iγ†
4.2 4 1505 . 9+x ?
2.4 2
M1 +E 2 &
0 . 084
α(K)exp=0.061 3.
2069 . 1+x ?
1.6 2
M1 , E 2
0 . 0826
α(K)exp=0.009 4.
x584
.1 7
1.4 2
x590
.8 7
2.3 2
x596
.6 7
1.5 2
x606
.0 7
1.9 2
x610
.1 7
2.5 3
x627
.6 7
4.6 5
x646
.5 7
3.0 3
x658
.5 7
x663
.1 7
x674
M1 +E 2
α(K)exp=0.06 3.
8.0 8
M1 +E 2
α(K)exp=0.09 3.
3.2 3
M1 +E 2
α(K)exp=0.067 4.
.6 7
3.2 3
M1 +E 2
α(K)exp=0.065 3.
x678
.6 7
2.1 2
M1 +E 2
α(K)exp=0.078 3.
x703
.0 7
2.3 2
x709
.1 7
2.5 3
x713
. 9 10
720 . 3 5
1743 . 0+x ?
12 . 2 6
x779
.4 5
11 . 9 6
x786
.0 7
2.1 2
797 . 0 7
1743 . 0+x ?
3.0 3
802 . 1 7
2069 . 1+x ?
5.9 6
806 . 4 7 820 . 5b 7
2069 . 1+x ?
8.7 9
837 . 4 5
1262 . 7+x ?
841 . 7 5
1266 . 8+x ?
x859
2083 . 0+x ?
.5 7
α(K)exp=0.050 26.
( M1 +E 2 )
α(K)exp=0.037 2.
M1 +E 2
2.8 3 86 5 100
E 2 +M1
0 . 0096
α(K)exp=0.0098 20.
E 2 +M1
0 . 0095
α(K)exp=0.010 4.
2.4 3
x914
.1 5 926 . 4§b 5
13 . 7 7 946 . 0+x ?
48 3
M1 +E 2
0 . 015 7
α(K)exp=0.011 6.
946 . 0 5
946 . 0+x ?
98 5
E2
0 . 0075
α(K)exp=0.0088 23.
x955
. 6 10
x961
.2 7
2.1 2
x966
.1 5
17 . 7 8
M1 , E 2
α(K)exp=0.014 9.
x977
.5 5
14 . 6 7
M1 , E 2
α(K)exp=0.015 1.
x985
.0 5
11 . 0 6
M1 , E 2
α(K)exp=0.023 16.
x991
.6 7
4.6 5
x998
.5 7
3.7 4
x1004
.3 7
2.4 2
x1013
.5 7
6.3 6
α(K)exp=0.010 6.
1052 . 8+x ?
53 3
E 2 , M1
α(K)exp=0.0045 22.
1052 . 8+x ?
67 4
E 2 , M1
α(K)exp=0.0046 17.
2.9 3 2108 . 3+x ?
2.1 3
x1089
. 0 10
0.8 2
x1097
.8 7
2.3 2
x1102
.9 7
3.4 3
x1110
.2 7
2.6 3
x1121
.1 7
1137 . 0 5 x1146
.4 5
0 . 012 6
3.8 4
x1076
.2 7 1 0 8 5 . 8@b 7
M1 , E 2
α(K)exp=0.011 5.
1052 . 8 5 .1 7
40 2
M1 , E 2
1022 . 8 5 1034 . 0#b 5 x1069
1022 . 8+x ?
α(K)exp=0.051 29.
( M1 )
4.2 4 2083 . 0+x ?
50 3
M1 , E 2
40 . 9 20
M1 +E 2
0 . 009 4
α(K)exp=0.0047 23. α(K)exp=0.009 4.
Continued on next page (footnotes at end of table)
410
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
1 9 9 Bi
ε D ecay: 2 7 mi n+2 4 .7 0 mi n
1 9 7 8 Ri 0 4 (conti nue d)
γ( 1 9 9 P b) (continued )
Eγ x1153
.2 7
x1156
. 9 10
1162 . 4 7
E(level)
Iㆠ7.8 8
2108 . 3+x ?
.5 7
2.4 2
x1179
.4 7
5.1 5
x1188
.2 7
5.2 5
x1206
.6 7
9.1 9
x1212
.2 5
39 . 6 20
x1221
. 8 10 2186 . 2+x ?
x1255
.6 7
6.1 6
x1268
.2 5
10 . 1 5
x1274
.1 7
1.7 2
x1300
. 1 10 1305 . 6+x ?
64 3
.9 7
4.1 4
x1325
.5 7
3.1 3
x1343
.6 7
1.9 2
x1347
2.7 3
x1402
.4 7
1.3 2
x1410
.9 7
4.7 5
x1424
.1 7
7.8 8
x1432
.1 7
2.3 2
x1435
.3 7
6.2 6
x1448
.6 5
16 . 2 8
x1461
.5 7
8.5 9
x1480
.3 7 .3 5
13 . 2 7
.9 7
4.3 4
x1540
.5 7
8.4 8
x1550
.7 7
2.9 3
x1575
.2 7
5.9 6
x1588
.7 7
2.0 2
x1622
.3 7
x1679
.1 7
1683 . 2b 7
5.6 6
2083 . 0+x ?
2.8 3 7.0 7 4.6 5
2108 . 3+x ?
2.3 2
.5 7
3.9 4
x1707
.9 7
4.5 5
x1716
.0 7
4.9 5
x1725
.3 7
3.8 4
x1757
.6 7
4.4 4
x1775
2.3 2 1799 . 9+x ?
x1785
.3 7 1799 . 0b 7
α(K)exp=0.0045 20.
4.0 4
x1696
.5 7 1780 . 8b 7
0 . 007 3
7.1 7 2069 . 1+x ?
.0 7 .4 7
M1 +E 2
50 3
x1529
1658 . 3 7
α(K)exp=0.0057 3.
1.5 2 1505 . 9+x ?
x1517
x1668
α(K)exp=0.014 7.
E 2 ( +M1 )
6.2 6
.3 7
x1647
M1 , E 2
6.9 7 1799 . 9+x ?
x1398
1643 . 8 7
α(K)exp=0.011 9.
3.5 4
x1312
1505 . 9 5
M1 , E 2
7.4 7
.8 7
.4 7 1374 . 3b 7
Comments
1.0 2
x1243
1305 . 6 5
α
7.1 7
x1172
1240 . 3 7
Mult.‡
8.6 9 3.6 4
1799 . 9+x ?
4.3 4
x1803
.5 7
2.1 2
x1807
.5 7
7.0 7
x1839
.0 7
2.5 3
x1841
.8 7
2.5 3
x1853
.5 7
3.4 3
x1866
.1 7
4.1 4
x1872
.0 7
5.2 5
x1874
.8 7
1.6 2
x1921
.6 7
8.1 8
x1928
.8 7
1.6 2 Continued on next page (footnotes at end of table)
411
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
ε D ecay: 2 7 mi n+2 4 .7 0 mi n
1 9 9 Bi
1 9 7 8 Ri 0 4 (conti nue d)
γ( 1 9 9 P b) (continued )
Iγ†
Eγ
Iγ†
Eγ
Iγ†
Eγ
x1951
.4 7
1.7 2
x2354
.4 7
2.6 3
x3102
.1 7
1.8 2
x1989
.2 7
5.1 5
x2391
.7 7
1.6 2
x3190
. 2 10
0.4 1
x2021
.5 7
9 . 7 10
x2416
. 0 10
0.8 2
x3194
. 4 10
0.6 2
x2048
.4 7
1.0 2
x2454
. 9 10
0.6 2
x3205
. 1 10
0.6 2
x2058
.7 5
12 . 0 6
x2459
.0 7
2.6 3
x3214
. 5 10
0 . 20 4
x2065
.0 7
1.5 2
x2616
.0 7
1.7 2
x3235
. 2 10
0 . 20 4
x2070
.7 7
1.1 2
x2643
.9 7
1.9 2
x3239
. 0 10
0 . 20 4
x2124
.5 7
1.3 2
x2666
.9 7
5.8 6
x3244
. 2 10
0.7 2
x2155
.5 7
1.5 3
x2799
.3 7
1.8 2
x3246
. 0 10
0 . 20 4
. 0 10
0.9 2
x3598
. 5 10
0 . 20 4
x2182
.0 7
1.3 2
x2869
x2202
.2 7
1.7 2
x2877
.3 7
1.7 2
x2222
.9 7
1.2 2
x2887
.4 7
1.7 2
†
The
199Bi
source was produced by 1978Ri04 in (p,xn) reactions on natural lead followed by mass and radio–chemical separation.
1978Ri04 assumed that all the γ's are from the 9/2– from ε decay of the 25–min 1/2+ isomer of 1/2+ isomer may populate the 3/2– g.s. of
199Bi. 199Pb
199Bi
g.s. ε decay; however, the evaluators expect some of the γ rays to be
Some of the γ's deexciting levels of
199Pb
fed directly from the ε decay of the
rather than the 5/2– first excited state.
‡
Based on α(K)exp of 1978Ri04 (425.3 M4 transition was used for normalization). The experimental precision did not allow a
§
1978Ri04 list two γ's in coin with 926.4γ and five γ's in coin with 945.96γ; only the 391.28γ is in coin with both of the above
meaningful extraction of δ. γ's. This result may be inconsistent with the decay scheme. # 1978Ri04 list seven γ's possibly in coin with the 1034.0γ; none of these γ's is the same as the three γ's in coin with the 1052.8γ, and the coin with the 720.3γ is inconsistent with the decay scheme proposed by 1978Ri04. @ Listed as 1086.79 in figure 7 of 1978Ri04. & The multipolarities of the 294.0γ, 533.1γ and 560.1γ lead to contradictory π assignments for the 1804 level according to the proposed level scheme. a The uncertainty could be greater than 20% because of the long half–life of the isomeric state (1978Ri04). b Placement of transition in the level scheme is uncertain. γ ray not placed in level scheme. Decay Scheme Intensities: relative Iγ
(1/2+)
680
9/2–
0.0
%ε+%β+=99 1
19 9 Bi 116 83
%ε+%β+=100 Q+=4350120
(13/2+)
12 16 40.3 7.4 1183.2 1062.4 2.3 16 85.8 7.1 1158.3 2.1 8237.0 2.8 16 0.5 M1, 8043.8 2.8 E2 50 806.4 5.6 562.1 8.7 3.2 5. 17 9 M1 1799.0 ,E 2 1380.8 4.3 1.6 7 4 53 .3 8.6 463.1 M 6.2 2 . 29 6 E 1+E 79 4.0 M2+M2 1 1 10.3 727.0 480.3 3.0 7.8 5.4 0 1 . 23 4 2.2 7.9 3. 15 M17 5605.9 +E 0 2 48 .1 M 50 2.1 3.3 1 39 +E 1 5.0 2 28 .3 2 4 7 . . 4 13 3 M .2 2505.6 1+E 84 3.3 MM1+ 2 4 1 83 .7 E 1+EE2 .5 7.4 2 2 6 10 E2 +M1 1. 4 1052.8 +M 1 8 3 E 0 1 4 10 .0 2,M 86 0 94 22.8 E2,M1 6 6 M . 7 1 92 0 E 6.4 2 1,E2 53 42 M1 98 5.3 40 +E M4 2 48 ≈2 00
2186.2+x 2108.3+x 2083.0+x 2069.1+x 1799.9+x 1743.0+x 1505.9+x 1337.2+x 1305.6+x 1266.8+x 1262.7+x 1052.8+x 1022.8+x 946.0+x 425.3+x
1 2.2 m in
19.5+x (5/2–)
0+x x
x
3/2– 19 9 Pb 117 82
412
0.0
9 0 m in
24.70 m in 27 m in
19 9 P b 117 82
203Po
Parent
α De cay (3 6 .7 mi n)
Levels
T1/2†
Jπ†
E(level)
1 9 6 7 L e 2 1 ,1 9 7 0 Jo2 6
E=0; Jπ=5/2–; T1/2=36.7 min 5; Q(g.s.)=5496 5; %α decay=0.11 2.
203Po:
199Pb
0.0
3 / 2–
0+x
( 5 / 2– )
†
19 9 P b 82 117
NUCLEAR DATA SHEETS
Comments %ε+%β+=100.
90 mi n 10
E(level): x<9.3 from adopted levels.
From adopted levels.
α rad iations Branching: %α=0.11 2 (1967Le21). Others: 0.00025 3 (1970Jo26), 0.0018 2 (1970DaZM). Eα
Iᆇ
E(level)
5383 3
0+x
HF
100
Comments
1.2 2
HF: r0=1.468 5. Eα: from 1991Ry01 (based on measurements by 1967Ti04,1968Go12,1970Jo26). Others: 1970Ra14.
( 5388 8 ) †
≈1
0.0
9 0 SY
Only one α–group has been observed. The main α–transition from 5/2–
203Po
is expected to populate the 5/2– level in
systematics of HF (1980Sc26) one expects ≈1% of the α–decay to populate the close–lying 3/2– g.s. of ‡
199Pb.
From
199Pb.
For α intensity per 100 decays, multiply by 0.0011 2.
1 8 6 W( 1 8 O,5 n γ )
Includes
192Os(13C,6nγ)
and
1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2
192Os(12C,5nγ).
1994Ba43 (also 1993Ba01,1992Ba13,1997Hu12,1997Fa15,1997Di03): E=94 MeV.
192Os(12C,5nγ)
E=82 MeV;
192Os(13C,6nγ)
E=81 MeV; , measured Eγ, Iγ, γγ, DCO ratio; OSIRIS spectrometer array. 1999Po13 (also 1994Du19,1996Bu26,1997Jo15): E=94, 97 MeV; measured prompt and delayed ce, ce–ce coin, ce–γ coin. 1988Pa12: E=81 MeV; measured Eγ, Iγ, I(ce), γγ, γ(ce), γγ(t), γ(ce)(t); γ: intrinsic Ge detectors; ce: magnetic lens, cooled Si(Li) detectors. 1997Cl03: E=99, 104 MeV. Measured lifetimes for members of magnetic–rotational bands using GAMMASPHERE array with 60 Ge detectors. 1995Ne09: E=92 MeV. Measured lifetimes for members of magnetic–rotational bands using an 11 Ge detector array. 1989Su12: E=85 MeV. Measured ce, (ce)(ce), γ(ce), ce(t). Theoretical description of magnetic–rotational bands: 2001Cl02, 1999Cl04, 1998Ma43, 1998Ma09. Level scheme is that proposed by 1994Ba43 with some of the higher levels from 1999Po13. Tentative levels of 1261+x and 1266+x decaying by 837.4γ and 841.7γ, respectively (1988Pa12) are omitted for lack of confirmation. 199Pb
E(level)‡ 0+x 424 . 8+x 2
Jπ†
T1/2§
Comments
5 / 2– 13 / 2+
Levels
E(level): x<9.3 keV (1962Ju05,1957An53) in 12 . 2 mi n 3
199Pb
IT decay.
E(level): others: 430 3 (1997Au04) based on x<9.3 (1962Ju05), 444 (1994Ba43,1999Po13) based on a proposed 19.6 level by 1978Ri04. But the existence of 19.6 level is considered as suspect since the γγ coin evidence presented by 1978Ri04 is very tentative. T1/2: from adopted levels.
1351 . 4+x 3
13 / 2+
1402 . 5+x 3
17 / 2+
1437 . 5+x 3
15 / 2+
1677 . 8+x 4
E(level): level proposed by 1988Pa12 only.
1803 . 3+x 3
17 / 2+
1826 . 0+x 3
19 / 2+
1842 . 1+x 3
21 / 2+
1904 . 8+x 3
17 / 2+
1971 . 8+x 3
19 / 2+
2082 . 1+x 3
21 / 2+
2127 . 5+x 3
21 / 2–
2129 . 4+x 3
19 / 2
3 . 85 ns# 16
Continued on next page (footnotes at end of table)
413
19 9 P b 117 82
1 8 6 W ( 1 8 O ,5n γ )
1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2 (conti nue d) 199Pb
E(level)‡ 2306 . 2+x 3
Jπ†
Levels (continued )
T1/2§
Comments
21 / 2+
2451 . 6+x 4
( 23 / 2– )
2499 . 9+x 4
25 / 2–
2501 . 7+x 3
21 / 2+
2559 . 1+x 4
29 / 2–
2560 . 2+x 4
25 / 2
2571 . 1+x 4
27 / 2–
2748 . 0+x 4
25 / 2+
2841 . 2+x 4
25 / 2
2921 . 1+x 3
21 / 2+
2982 . 9+x 4
25 / 2+
2984 . 2+x 4
( 23 / 2+ )
3134 . 1+x 4
( 25 / 2+ )
3210 . 3+x 4
29 / 2
3359 . 0+x 4
29 / 2
3386 . 2+x 4
27 / 2+
3401 . 3+x 4
29 / 2+
3490 . 1+x 4
33 / 2+
3530 . 0+x 4 3584 . 9+xb 4
33 / 2
9 . 3 ns# 6 10 . 6 µ s@ 5
63 n s@ 4
T1/2: Other: 71 ns 4 (1988Pa12).
( 25 / 2– )
3603 . 7+x 5 3657 . 5+x 4 3674 . 8+xb 5
29 / 2+ ( 27 / 2– )
3742 . 6+x 5 3745 . 7+x 4
29 / 2+
3791 . 9+x 4 3848 . 7+xb 6
33 / 2
3850 . 9+x 4
31 / 2
( 29 / 2– )
3859 . 3+x 5 3876 . 5+x 4
19 9 P b 82 117
NUCLEAR DATA SHEETS
33 / 2
3966 . 7+x 5 4006 . 3+x 4
29 / 2+
4086 . 0+x 4
31 / 2+
4108 . 1+x 4 4124 . 1+xb 7
( 31 / 2– )
4143 . 3+x 5 4228 . 3+x 5
35 / 2
4257 . 5+x 5
37 / 2+
4292 . 6+x 4 4339 . 4+x 5
37 / 2
4348 . 8+x 4
31 / 2
4363 . 6+x 4
31 / 2
4367 . 6+x 5
37 / 2
4474 . 7+x 5 4483 . 5+xb 7
41 / 2+
4543 . 3+x 4
37 / 2
4769 . 0+x 4
33 / 2+
4770 . 0+x 4
33 / 2+
4777 . 2+x 5
41 / 2
40 ns# 10
( 33 / 2– )
4778 . 6+x 4 4884 . 8+xb 7
( 35 / 2– )
5067 . 1+x 5
41 / 2
5129 . 4+x 5
41 / 2
5222 . 6+x 5
41 / 2
5282 . 4+x 5 5305 . 6+xb 7
43 / 2
5314 . 9+x 5
41 / 2
5338 . 9+x 5
41 / 2
5478 . 7+x 4
43 / 2
( 37 / 2– )
5495 . 4+x 6 5554 . 2+x 6 5727 . 2+xb 7
( 39 / 2– )
6055 . 7+xb 7
( 41 / 2– ) Continued on next page (footnotes at end of table)
414
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
1 8 6 W ( 1 8 O ,5n γ )
1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2 (conti nue d) 199Pb
E(level)‡
Jπ†
T1/2§
Comments
6290 . 3+xb 8
( 43 / 2– )
0 . 2 6 p s& + 3 5 – 2 0
6530 . 4+xb 8 6804 . 2+xb 9
( 45 / 2– ) ( 47 / 2– )
0 . 2 1 p s& + 2 1 – 1 7 0 . 1 1 8 p s& + 4 2 – 2 8
6986 . 7+x 6 7120 . 5+xb 9
( 49 / 2– )
7483 . 7+xb 9 7895 . 1+xb 9 8354 . 5+xb 9
( 51 / 2– )
8862 . 8+xb 9 9417 . 5+xb 9 10022 . 4+xb 9
( 57 / 2– )
10659 . 5+xb 9 0 . 0+y c
( 63 / 2– )
98 . 2+y c 223 . 2+y c
3
( 37 / 2+ )
4
( 39 / 2+ )
388 . 8+y c 5 589 . 2+yd 4 603 . 3+y c 5
( 39 / 2+ )
( 53 / 2– ) ( 55 / 2– )
Levels (continued )
0 . 0 9 0 p s& + 2 8 – 2 1 0 . 139 psa 35 0 . 111 p s a +35–28
T1/2:
other: 0.111 ps +21–14 (1995Ne09). other: 0.090 ps +35–21 (1995Ne09).
0 . 104 p s a +35–28 0 . 146 p s a +42–35
T1/2: T1/2:
other: 0.069 ps +21–14 (1995Ne09).
( 59 / 2– ) ( 61 / 2– ) ( 35 / 2+ )
E(level): y>4784+x since the level decays to triplet of states at 4775+x, 4776+x and 4784+x.
( 41 / 2+ ) ( 43 / 2+ )
726 . 8+yd 5 871 . 1+y c 6 891 . 4+yd 5
( 43 / 2+ )
1099 . 8+yd 5
( 45 / 2+ )
1194 . 2+y c 6 1370 . 7+yd 6 1571 . 2+y c 6
( 47 / 2+ )
1712 . 7+yd 6 2001 . 4+y c 6 2129 . 8+yd 6
( 41 / 2+ ) ( 45 / 2+ )
( 47 / 2+ ) ( 49 / 2+ )
0 . 0 9 7 p s& + 4 2 – 2 8
( 49 / 2+ ) ( 51 / 2+ )
0 . 146 p s a +28–21
T1/2: other: 0.069 ps +21–14 (1995Ne09).
0 . 111 p s a +35–21
T1/2:
other: 0.042 ps 14 (1995Ne09).
0 . 090 p s a +28–21
T1/2:
other: 0.076 ps 14 (1995Ne09).
( 51 / 2+ )
2483 . 5+y c 7 2612 . 6+yd 6 3015 . 5+y c 7
( 53 / 2+ )
3149 . 4+yd 7
( 55 / 2+ )
3164 . 8+y 7 3589 . 1+y c 7
( 57 / 2+ )
3608 . 4+y c 7 3734 . 6+yd 8 3967 . 6+y c 8
0 . 1 3 p s& + 1 0 – 6
( 53 / 2+ ) ( 55 / 2+ )
0 . 097 p s a +21–14
( 57 / 2+ ) ( 57 / 2+ ) ( 59 / 2+ )
4197 . 5+y c 4207 . 5+y c
7
( 59 / 2+ )
7
( 59 / 2+ )
4546 . 7+y c 4932 . 6+y c
7
( 61 / 2+ )
8
( 63 / 2+ )
5353 . 6+y c 5807 . 0+y c
8
( 65 / 2+ )
9
( 67 / 2+ )
6303 . 5+y c 6846 . 0+y c
9
( 69 / 2+ )
10
( 71 / 2+ )
7433 . 7+y c 10 0 . 0+z e
( 73 / 2+ ) E(level): z>5135, since the level decays into states between 4234 and 5135. Jπ: possibly 37/2, since the bandhead feeds levels near 33/2.
97 . 7+z e 3 232 . 9+z e 5 426 . 1+z e 6 673 . 5+z e 6 967 . 5+z e 6 1349 . 7+z e 6 1743 . 8+z e 6 2227 . 4+z e 7 2738 . 0+z e 7 3256 . 8+z e 7 3595 . 0+z e 8 0 . 0+u f
E(level): u>4149+x, since the level decays into states between 3216+x and 4149+x. Jπ: possibly 45/2, since the bandhead feeds levels near 41/2. Continued on next page (footnotes at end of table)
415
19 9 P b 117 82
1 8 6 W ( 1 8 O ,5n γ )
1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2 (conti nue d) 199Pb
Levels (continued )
E(level)‡
Comments
2 4 2 . 9+u f
3
5 5 0 . 3+u f 8 6 3 . 3+u f
4
1 2 4 7 . 9+u f 1 6 6 2 . 0+u f 2 1 4 9 . 2+u f 2 6 2 0 . 9+u f 0+v
19 9 P b 82 117
NUCLEAR DATA SHEETS
4 5 5 5 6 E(level): v>5484+x from possible decay to 5484+x.
602 . 6+v 3 938 . 8+v 4 1088 . 6+v 4 1336 . 1+v 3 1795 . 8+v 5 1813 . 0+v 5 2157 . 2+v 5 2171 . 5+v 5 †
From 1994Ba43 and 1999Po13 based on γγ(θ)(DCO) and ce data.
‡
From least–squares fit to Eγ's, assuming ∆(Eγ)=0.3 keV, when not given.
§
From γ(t) and/or ce(t) for lifetimes in the nanosecond region (1988Pa12,1989Su12), from Doppler shift attenuation methods for
lifetimes in the picosecond region (1997Cl03,1995Ne09). # From 1988Pa12. @ From 1989Su12. & From 1995Ne09. a From 1997Cl03. –1 below the band crossing and b (A): Magnetic rotational band #1. Band based on 25/2–. Configuration=π(h i 9/2 13/2) ν(i13/2) c
π(h9/2i13/2)ν(i13/2)–3 above the crossing near 41/2. (B): Magnetic rotational band #2. Band based on 35/2+. Configuration=π(h9/2i13/2)ν(i13/2–2 f5/2–1) below the band crossing and
π(h9/2i13/2) ν(i13/2–4f5/2–1) above the crossing near d (C): Magnetic–rotational band #3. Band based on e (D): Magnetic–rotational band #4. Band probably f (E): Magnetic–rotational band #5. Band probably
61/2. 39/2+. Configuration=π(h9/2i13/2)ν(i13/2–2 f5/2–1). based on 37/2. Tentative configuration=π(h9/2)2 ν(i13/2)–3. based on 45/2. Tentative configuration=π(h9/2)2 ν(i13/2–4p3/2–1).
γ( 1 9 9 Pb)
E(level)
Iγ†
Eγ
424 . 8+x
4 2 4 . 8@ 2
1351 . 4+x
9 2 6 . 6@ 3
100
α
Mult. M4
I(γ+ce)‡
Comments
4 . 11 I(γ+ce): other: 2.3 5 (1988Pa12).
4 . 9 12
DCO=0.61 10. 1402 . 5+x
9 7 7 . 7@ 2
100 12
E2
DCO=0.98 13. α(K)exp=0.0055 9; α(L1)exp+α(L2)exp=0.0018 4; α(L3)exp=0.00080 30 (1988Pa12).
1437 . 5+x
1 0 1 2 . 8@ 3
1677 . 8+x
1 2 5 3 . 1@ 4 4 0 0 . 8@ 4 4 5 1 . 9@ 3
2.9 8
1 3 7 8 . 5@ 3
11 . 0 19
26 6
I(γ+ce): other: 37.5 15 (1988Pa12).
E 2 ( +M1 )
DCO=0.65 15. 1803 . 3+x
2 . 5& 5 4 . 7 25 I(γ+ce): other: 2.6 4 (1988Pa12). I(γ+ce): other: 11.2 16 (1988Pa12). DCO=0.93 14.
1826 . 0+x
2 2 . 7@ 3 1 4 8 . 2@a 4 3 8 8 . 5@ 2
[ M1 ]
134
1 4& Eγ: from 1988Pa12 only.
15 4
E2
0 . 0563
DCO=0.98 17. α(K)exp=0.046 9; α(L1)exp+α(L2)exp=0.014 4; α(L3)exp=0.0042 18 (1988Pa12). I(γ+ce): other: 33.6 6 (1988Pa12).
4 2 3 . 4@ 2
49 7
M1 +E 2
δ: –1.0 4.
0 . 11 3
DCO=0.39 9. α(K)exp=0.052 12; α(L1)exp+α(L2)exp=0.0174 22; α(L3)exp=0.063 15 (1988Pa12). I(γ+ce): other: 75 10 (1988Pa12). δ: from (α,3nγ). Continued on next page (footnotes at end of table)
416
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
1 8 6 W ( 1 8 O ,5n γ )
1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2 (conti nue d) γ( 1 9 9 P b) (continued )
E(level)
Eγ
1842 . 1+x
4 3 9 . 5@ 2
Iㆠ25 4
Mult. ( E2 )
α
I(γ+ce)‡
0 . 0408
Comments DCO=1.04 19. α(K)exp=0.0551 18 (1988Pa12). α(K)exp: mixed with transitions from
199Tl
and
200Hg.
I(γ+ce): other: 16.8 5 (1988Pa12). 1904 . 8+x
1971 . 8+x
502 . 2
2.1 7
DCO=0.96 17.
553 . 4
1.5 5
DCO=0.89 19.
1480 . 1
0.3 1
1 2 9 . 7@ 2
1.6 7
DCO=0.76 26. M1
4 . 64
DCO=0.8 3. α(K)exp=3.5 3; α(L1)exp+α(L2)exp=0.69 12 (1988Pa12). I(γ+ce): other: 16 3 (1988Pa12).
2082 . 1+x
5 6 9 . 4@ 3
1 . 7 14
M1 +E 2
2 3 9 . 9@ 2
7 . 9 33
M1 ( +E 2 )
I(γ+ce): other: 9 2 (1988Pa12). 0.5 3
DCO=0.77 25. α(K)exp=0.56 9 (1988Pa12). I(γ+ce): other: 3.8 5 (1988Pa12).
2127 . 5+x
1 5 5 . 7@ 2
9 . 0 18
E1
0 . 147
DCO=0.65 19. α(L)exp=0.0235 12 (1988Pa12). I(γ+ce): other: 18.7 18 (1988Pa12).
3 0 1 . 4@ 2
73 9
E1
0 . 0294
DCO=0.72 9. α(K)exp=0.0228 7; α(L)exp=0.0030 10 (1988Pa12). I(γ+ce): other: 145 7 (1988Pa12).
2129 . 4+x
303 . 4
0.1 1
727 . 0
0.4 2
2306 . 2+x
903 . 8
12 . 1 19
2451 . 6+x
3 2 4 . 2@ 2
7 . 0 16
DCO=0.8 4. DCO=0.98 13. M1
0 . 360
DCO=1.31 32. α(K)exp=0.23 3 (1988Pa12). I(γ+ce): other: 8.8 6 (1988Pa12).
2499 . 9+x
4 8 . 2@ 4 3 7 2 . 4@ 2
[ M1 ] 65 10
E2
15 . 3
1 2&
0 . 0631
DCO=1.04 15. α(K)exp=0.0378 20; α(L1)exp=0.0063 5; α(L2)exp=0.0089 6; α(L3)exp=0.0036 4 (1988Pa12). I(γ+ce): other: 143 6 (1988Pa12).
2501 . 7+x 2559 . 1+x
596 . 9
2.1 9
1099 . 2
0.8 3
5 9 . 1@ 3
DCO=0.99 25. DCO=0.86 21. E2
72 . 3
1 3 5& 2 9
Eγ: other: 56.6 3 (1989Su12,1992Ba13). The value 56.6 was not accepted by 1993Ba01. (L1+L2)/L3=1.2 4 (1988Pa12).
2560 . 2+x 2571 . 1+x
108 . 7
0.5 2
1 1 . 8@ 3 7 0 . 9@ 3
DCO=0.55 31. [D] M1
92 86 4 . 94
< 3 . 5& 4 6& 8
2748 . 0+x
905 . 9
1.7 7
2841 . 2+x
389 . 5
1.6 8
713 . 8
2.5 6
DCO=1.05 24.
419 . 4
2 . 9 25
DCO=1.84 99 (from 1993Ba01).
614 . 9
4 . 6 14
DCO=0.93 16.
791 . 7
0.9 4
DCO=0.57 14.
838 . 7
0.7 4
DCO=0.72 26.
1016 . 3
2 . 7 11
DCO=0.94 24.
1079 . 0
1.1 4
DCO=0.88 19.
1095 . 1
2.2 6
DCO=0.54 10.
1117 . 7
2.1 6
676 . 9
2.8 8
1140 . 8
0.8 2
2921 . 1+x
DCO=1.02 25.
Mult.: ∆J=0 or 1 (1993Ba01). 2982 . 9+x 2984 . 2+x
63 . 1
2 . 6 15
Q
DCO=1.06 19. DCO=0.92 17. DCO=0.9 3.
M1
6 . 95
DCO=0.74 24. Mult.: DCO ratio compatible with mixed ∆J=0 or ∆J=1 transition; M1+E2 inferred from intensity balance. α(L)exp=6.9 18 (1999Po13).
3134 . 1+x
150 . 0
4 . 1 16
828 . 0
1.2 6
M1
3 . 07
DCO=0.64 10. Mult.: from DCO ratio and intensity balance. DCO=0.7 3. α(K)exp=0.0032 4 (1988Pa12).
Continued on next page (footnotes at end of table)
417
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
1 8 6 W ( 1 8 O ,5n γ )
1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2 (conti nue d) γ( 1 9 9 P b) (continued )
E(level)
Eγ
3210 . 3+x
3 6 9 . 2@ 4
Iγ†
Mult.
α
I(γ+ce)‡
Comments 1988Pa12 placed this γ from 2452+x.
5 . 0 25
I(γ+ce): other: 3.5 5 (1988Pa12). DCO=0.87 17. 639 . 1
2.5 6
DCO=1.1 5.
651 . 2
9 . 1 15
DCO=0.67 31.
710 . 5
1.2 4
DCO=1.1 3.
787 . 8
2.6 6
DCO=0.37 19.
799 . 0
1.5 4
3386 . 2+x
252 . 0
4 . 2 10
3401 . 3+x
8 3 0 . 2@ 2
3359 . 0+x
45 10
DCO=0.92 28. M1
0 . 717
DCO=0.62 11.
E1
DCO=0.65 20. α(K)exp=0.0032 4 (1988Pa12). I(γ+ce): other: 63 3 (1988Pa12).
8 4 2 . 0@ 4
7 . 5 24
α(K)exp very small (1988Pa12).
( E1 )
I(γ+ce): other: 8.2 9 (1988Pa12). 3490 . 1+x
8 8 . 7@ 2
E2
3530 . 0+x
970 . 9
14 . 9 21
3584 . 9+x
450 . 8
4 . 6 11
600 . 7
10 . 5
8 2& 5
(L1+L2)/L3=1.12 10, L/M=4.1 3 (1988Pa12). DCO=0.98 16. DCO=1.11 18.
17 3
DCO=0.66 10. Mult.: stretched D or D+Q ∆J=0 transition from DCO ratio (1993Ba01).
3603 . 7+x 3657 . 5+x
469 . 6
1.5 5
DCO=0.69 15.
271 . 3
1 . 9 11
DCO=0.63 14.
674 . 6
2.1 6
DCO=0.97 20.
909 . 5
0.7 3
3674 . 8+x
89 . 9
3742 . 6+x
212 . 7
DCO=1.2 4. M1
13 . 3
49 26
DCO=0.62 15. α(L)exp=2.0 9 (1999Po13).
3745 . 7+x
3791 . 9+x
3.8 8
DCO=0.79 18.
359 . 5
2.9 8
DCO=0.63 14.
762 . 8
2.5 9
DCO=1.0 6.
997 . 6
0.6 4
DCO=0.9 4.
432 . 8
1.4 5
DCO=1.1 3.
581 . 6
6 . 4 10
DCO=1.03 19.
1232 . 8
0.6 2
DCO=0.65 27.
3848 . 7+x
173 . 9
M1
3850 . 9+x
1291 . 8
0.9 2
DCO=0.6 4.
3859 . 3+x
369 . 2
0.8 4
DCO=1.4 8.
3876 . 5+x
517 . 6
3 . 0 12
DCO=0.96 26.
666 . 1
8 4
DCO=0.86 32.
3966 . 7+x
224 . 1
3.5 8
DCO=1.3 3.
4006 . 3+x
620 . 1
1 . 9 13
DCO=0.40 14.
4086 . 0+x
340 . 4
1 . 8 10
DCO=0.54 20.
428 . 5
2.8 8
DCO=0.58 13.
699 . 9
0.2 2
DCO=1.0 5.
4108 . 1+x
617 . 9
0.9 8
4124 . 1+x
275 . 4
M1
2 . 02
0 . 562
91 13
98 13
DCO=0.63 9.
α(K)exp:
for 275.4+273.8.
DCO=0.62 8. 4143 . 3+x
932 . 9
4228 . 3+x
738 . 2
4257 . 5+x
7 6 7 . 3@ 4
1.2 4 7 . 9 13
DCO=0.29 20.
36 5
DCO=0.98 13. I(γ+ce): other: 0.8 3 (1988Pa12).
4292 . 6+x
1733 . 5
0.6 3
4339 . 4+x
809 . 4
2.8 6
DCO=1.0 3.
4348 . 8+x
342 . 4
3 . 3 18
DCO=0.66 20.
4363 . 6+x 4367 . 6+x
1789 . 7
1.0 5
357 . 3
0.6 3
1804 . 3
0.9 4
110 . 3
1.4 4
139 . 4
0.5 3
877 . 4 4474 . 7+x
2 1 7 . 2@ 3
DCO=0.7 3.
4.9 9 19 3
DCO=0.94 22. E 2 , M1
0.7 4
DCO=0.99 17. α(L)exp=0.123 20 (1988Pa12). I(γ+ce): other: 1.0 3 (1988Pa12).
4483 . 5+x
359 . 4
M1
0 . 272
100 12
DCO=0.59 7.
Continued on next page (footnotes at end of table)
418
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
1 8 6 W ( 1 8 O ,5n γ )
1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2 (conti nue d) γ( 1 9 9 P b) (continued )
E(level)
Eγ
Iγ†
Mult.
I(γ+ce)‡
634 . 8
4543 . 3+x
666 . 8
8 4
DCO=0.99 29.
751 . 4
7 . 6 12
DCO=0.93 16.
1013 . 4
4770 . 0+x
4777 . 2+x 4778 . 6+x
4884 . 8+x
2.0 7
3 . 8 22
DCO=0.93 23.
660 . 8
1.6 5
DCO=0.82 26.
1278 . 9
0.9 2
DCO=0.8 3.
1367 . 7
0.3 2
DCO=1.2 7.
406 . 3
2.5 7
DCO=0.59 15.
421 . 2
5 . 2 12
DCO=0.56 13.
477 . 3
1.0 3
684 . 0
2.7 7
763 . 8
0.1 1
DCO=0.8 4.
1112 . 5
0.7 3
DCO=0.8 4.
DCO=0.40 10.
302 . 5
6 . 3 15
DCO=1.09 21.
519 . 7
1.0 5
DCO=0.9 4.
486 . 0
1.2 4
670 . 4
0.9 4
DCO=0.5 4.
919 . 3
1.3 4
DCO=1.1 4.
927 . 7
1.6 7
401 . 3
M1
760 . 8 5067 . 1+x
0 . 0171
Comments
4483 . 5+x
4769 . 0+x
[ E2 ]
α
( E2 )
0 . 203
87 13
0 . 0117
8 . 6 19
DCO=0.58 7. DCO=1.06 14.
289 . 8
1.5 6
DCO=0.94 24.
592 . 3
2.3 5
DCO=0.85 19.
352 . 1
1.7 4
DCO=1.1 3.
654 . 6
3.6 8
DCO=1.07 20.
761 . 8
7 . 0 13
DCO=1.01 18.
872 . 0
1.1 4
DCO=0.83 23.
748 . 1
1.9 4
DCO=0.27 17.
965 . 0
1.1 3
DCO=0.9 3.
5282 . 4+x
807 . 8
2.3 6
5305 . 6+x
420 . 7
5129 . 4+x
5222 . 6+x
DCO=0.34 20. M1
0 . 179
87 18
0 . 0099
12 3
α(K)exp: for 420.7+421.5. DCO=0.56 12.
822 . 1 5314 . 9+x
( E2 )
DCO=0.96 11.
771 . 7
8 . 9 14
DCO=1.01 19.
975 . 6
2.9 7
DCO=0.94 29.
5338 . 9+x
795 . 6
7 . 9 12
DCO=1.01 20.
5478 . 7+x
139 . 9
1.8 5
DCO=0.57 19.
163 . 8
2.4 6
DCO=0.67 19.
196 . 3
1.4 8
DCO=1.0 4.
256 . 1
1.3 4
DCO=0.79 21.
349 . 3
11 . 2 17
DCO=0.66 15.
411 . 5
5 . 9 24
DCO=0.65 19.
701 . 5
3.8 7
DCO=0.62 17.
1004 . 1
2.0 5
DCO=0.63 21.
1512 . 0
2.6 5
5495 . 4+x
180 . 5
0.9 3
5554 . 2+x
1079 . 5
5727 . 2+x
421 . 5
DCO=1.2 4.
3 . 4 11
DCO=1.09 23. M1
0 . 178
87 13
α(K)exp: for 420.7+421.5. DCO=0.56 12.
842 . 4 6055 . 7+x
( E2 )
328 . 6
M1
750 . 1
( E2 )
0 . 347
15 4
DCO=0.96 12.
65 8
DCO=0.61 8.
0 . 0120
5 . 9 13
DCO=1.01 16.
6290 . 3+x
234 . 6
M1
0 . 87
60 8
DCO=0.64 9.
6530 . 4+x
240 . 1
M1
0 . 820
57 12
DCO=0.68 13.
6804 . 2+x
273 . 8
M1
0 . 571
51 9
α(K)exp: for 273.8+275.4.
6986 . 7+x
1432 . 5
7120 . 5+x
316 . 3
DCO=0.66 9.
590 . 1 7483 . 7+x
363 . 1 679 . 5
7895 . 1+x
1.0 3
DCO=0.75 23. M1 [ E2 ] M1 [ E2 ]
0 . 385
41 6
0 . 0201 0 . 265
32 5
0 . 0148
411 . 3
( M1 )
0 . 190
774 . 6
[ E2 ]
0 . 0112
DCO=0.63 9.
1.3 4 DCO=0.57 9.
2.0 7 20 4
DCO=0.53 11.
1.8 6
Continued on next page (footnotes at end of table)
419
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
1 8 6 W ( 1 8 O ,5n γ )
1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2 (conti nue d) γ( 1 9 9 P b) (continued )
E(level) 8354 . 5+x 8862 . 8+x 9417 . 5+x
Eγ
Iγ†
Mult.
459 . 3
( M1 )
870 . 9
[ E2 ]
508 . 3
( M1 )
967 . 7
[ E2 ]
α 0 . 141
I(γ+ce)‡ 13 3
10022 . 4+x 10659 . 5+x
1159 . 6§ 636 . 9§
DCO=0.49 14.
1.1 5 0 . 108
8 2
DCO=0.42 18.
1.6 6
554 . 8 1063 . 0§a 604 . 7§
Comments
3 2
1242 . 1§ 98 . 2+y
98 . 2
34 14
DCO=0.8 4.
223 . 2+y
125 . 0
M1
5 . 16
72 17
DCO=0.65 14.
388 . 8+y
165 . 6
M1
2 . 32
95 14
DCO=0.71 11.
589 . 2+y
491 . 0
603 . 3+y
214 . 6
M1
1 . 12
100 13
DCO=0.71 11.
726 . 8+y
137 . 7
3 . 91
34 10
DCO=0.52 17.
0 . 606
82 11
DCO=0.65 10.
[ M1 ]
2 . 36
42 12
DCO=0.56 17.
[ M1 ]
1 . 22
56 14
0 . 363
70 10
DCO=0.66 10.
[ M1 ]
0 . 59
75 15
DCO=0.75 27.
377 . 1
[ M1 ]
0 . 239
57 9
700 . 1
[ E2 ]
0 . 0139
[ M1 ]
0 . 311
100 8
0 . 168
46 7
503 . 7 871 . 1+y
267 . 8
891 . 4+y
164 . 6 502 . 6
1099 . 8+y 1194 . 2+y
323 . 1
1370 . 7+y
271 . 0 499 . 6
10 . 3
0.8 3 [ M1 ] 1.0 3
DCO=0.54 26. M1
1.2 2
208 . 3 496 . 5
1571 . 2+y
[ M1 ]
DCO=0.60 22.
1.0 2
DCO=0.62 15. DCO=0.52 19.
M1 1.2 2
DCO=0.75 33. DCO=0.57 9. Iγ: I(377.10γ)/I(700.10γ)=7.7 25 (1992Ba13).
1712 . 7+y
342 . 0 518 . 5
2001 . 4+y
2.3 8
1.7 3
430 . 3
DCO=0.54 11. DCO=0.63 31.
M1
DCO=0.57 9. Iγ: I(377.10γ)/I(700.10γ)=7.7 25 (1992Ba13).
807 . 1 2129 . 8+y
417 . 0 558 . 6
2483 . 5+y
481 . 9
( E2 )
0 . 0103
3 . 0 10
[ M1 ]
0 . 183
72 13
0 . 124
37 7
0.8 2
DCO=1.05 18. DCO=0.60 14. DCO=0.64 29.
M1
DCO=0.56 10. Iγ: I(377.10γ)/I(700.10γ)=7.7 25 (1992Ba13).
2612 . 6+y
912 . 4
( E2 )
482 . 7
[ M1 ]
2.2 7 0 . 123
56 11
900 . 0 3015 . 5+y
DCO=1.16 23. DCO=0.48 14.
6 . 6 28
532 . 0
( M1 )
0 . 096
1014 . 2
( E2 )
536 . 8
( M1 )
0 . 094
0 . 079
30 5
DCO=0.50 12. Iγ: I(531.95γ)/I(1014.00γ)=16.4 50 (1992Ba13).
3149 . 4+y
5 . 5 17 16 4
DCO=0.97 20. DCO=0.44 21.
1019 . 6# 3164 . 8+y
552 . 2
3589 . 1+y
573 . 6
[ M1 ]
15 4
1105 . 7
( E2 )
15 3
DCO=0.54 18. Iγ: I(573.45γ)/I(1105.55γ)=17.8 50 (1992Ba13).
3608 . 4+y
DCO=0.82 21.
9 2
Iγ: I(618.35γ)/I(1191.95γ)=15.8 40 (1992Ba13).
593 . 1§ 1124 . 6§
3734 . 6+y
585 . 2#
3967 . 6+y
1122 . 0# 359 . 2§
4197 . 5+y
2.9 8
608 . 5§ 1181 . 8§
4207 . 5+y
618 . 2
[ M1 ]
1192 . 1
[ E2 ]
4546 . 7+y
339 . 2§
4932 . 6+y
349 . 3§ 385 . 9§
5353 . 6+y 5807 . 0+y
0 . 0647
1.4 5
421 . 0§ 453 . 4§ Continued on next page (footnotes at end of table)
420
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
1 8 6 W ( 1 8 O ,5n γ )
1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2 (conti nue d) γ( 1 9 9 P b) (continued )
E(level)
Eγ
6303 . 5+y
496 . 5§
6846 . 0+y
542 . 5§ 587 . 7§
7433 . 7+y
Iγ†
Mult.
I(γ+ce)‡
α
Comments
97 . 7+z
97 . 7
24 9
DCO=0.52 23.
232 . 9+z
135 . 2
M1
4 . 12
36 8
DCO=0.57 13.
426 . 1+z
193 . 2
M1
1 . 50
48 9
DCO=0.65 12.
673 . 5+z
247 . 4
M1
0 . 755
76 10
DCO=0.70 12.
967 . 5+z
294 . 1
M1
0 . 469
100 7
541 . 4 1349 . 7+z
382 . 1
[ M1 ]
0 . 231
55 11
676 . 2 1743 . 8+z
394 . 2
[ M1 ]
0 . 213
33 8
483 . 5
[ M1 ]
0 . 123
29 7
510 . 5 518 . 8#
3595 . 0+z
1029 . 4# 338 . 2#
DCO=0.57 18.
7 3 [ M1 ]
0 . 107
23 6
994 . 2 3256 . 8+z
DCO=0.55 11.
9 . 7 25
877 . 6 2738 . 0+z
DCO=0.58 9.
6 . 0 17
776 . 4 2227 . 4+z
DCO=0.64 10.
10 3
DCO=0.68 25.
5 . 1 19
2 4 2 . 9+u
242 . 9
52 12
DCO=0.65 16.
5 5 0 . 3+u
307 . 3
75 16
DCO=0.58 15.
8 6 3 . 3+u
313 . 0
100 17
DCO=0.59 11.
[ M1 ]
0 . 396
620 . 5 1 2 4 7 . 9+u
17 5
384 . 6
[ M1 ]
0 . 227
81 16
697 . 6 1 6 6 2 . 0+u
414 . 0
[ M1 ]
0 . 187
57 13
798 . 7 2 1 4 9 . 2+u
487 . 0 471 . 7
602 . 6+v
602 . 6
DCO=0.53 12.
11 3 [ M1 ]
0 . 121
27 7
901 . 4 2 6 2 0 . 9+u
DCO=0.54 9.
7 . 4 24
DCO=0.48 16.
6 . 2 25 12 4 20 5
DCO=0.43 18. DCO=1.00 15.
938 . 8+v
336 . 3
5.0 9
DCO=1.04 22.
1088 . 6+v
149 . 8
2 . 4 12
DCO=0.73 18.
485 . 9
4.6 9
DCO=0.60 17.
1336 . 1+v
1336 . 1
1.3 3
1795 . 8+v
1193 . 2
1.9 4
DCO=0.87 22.
1813 . 0+v
724 . 4
4 . 6 11
DCO=0.58 20.
2157 . 2+v
1068 . 6
1.8 5
2171 . 5+v
1568 . 9
1.8 6
†
Relative γ intensities (1994Ba43) within each band for transitions assigned in a band. All other intensities are relative to 100 for 977.7γ from 1402.6+x level.
‡
From 1994Ba43. Values are relative intensities within each band, unless otherwise stated.
§
From 1997Hu12.
# From 1999Po13. @ From 1988Pa12. Energy quoted by 1994Ba43 is in good agreement. & From 1988Pa12, relative to 100 for 977.7γ. a Placement of transition in the level scheme is uncertain.
421
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
1 8 6 W ( 1 8 O ,5n γ )
1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2 (conti nue d) Level Scheme
Intensities: relative γ–ray intensities for transitions not assigned to any band or for out–of–band transitions. See footnote † in table. See tables for gammas above 4108.1+x level 2171.5+v 602.6+v 1247.9+u 3256.8+z 1743.8+z 97.7+z 5353.6+y
(59/2–)
9417.5+x
(53/2–)
7895.1+x
29/2+ 33/2 31/2 (29/2–) 33/2 29/2+ (27/2–) 29/2+ (25/2–)
71 650.5 631.2 369.1 9.2 82 8 . 15 0 0.0 1. 63 M12 11 .1 M 4.1 6740.8 1 2 6.9 0 .6 11 2.8.8 1017.7 1095.1 Q 1079.0 2.22.1 8316.3 1.1 798.7 2.7 611.7 0.7 414.9 0.9 9.4 4. 6 2.9
31/2+
61 69 7.9 429.9 0.9 348.5 0.2 0.4 2. 62 8 0 1.8 .1 22 4.1 1.9 66 6 3 .5 51 .1 36 7.6 8 12 9.2 3.0 17 91.8 0.8 3.9 0 12 M1 .9 5832.8 1 43 .6 0.6 99 2.8 6.4 1.4 767.6 352.8 0.6 9 2 21 .5 .5 2.7 2. 89 9 3.8 90 .9 M 679.5 1 274.6 0.7 46 1.3 2.1 9 1.9 60 .6 450.7 1.5 0 1 . 8 7 97 4.6 88 0.9 .7 14 84 E .9 2 832.0 ( 25 0.2 EE1) 79 2.0 M 1 7.5 1 45 789.0 7.8 1. 5 4.2 2.6 1.2 9.1 2.5 5.0
(65/2+)
33/2 33/2+ 29/2+ 27/2+ 29/2 29/2 (25/2+)
4108.1+x 4086.0+x 4006.3+x 3966.7+x 3876.5+x 3859.3+x 3850.9+x 3848.7+x 3791.9+x 3745.7+x 3742.6+x 3674.8+x 3657.5+x 3603.7+x 3584.9+x 3530.0+x 3490.1+x 3386.2+x 3359.0+x 3210.3+x 3134.1+x 2984.2+x
25/2+
2982.9+x
21/2+
2921.1+x
25/2
2841.2+x
25/2+
2748.0+x
27/2–
2571.1+x
25/2
2560.2+x
29/2–
2559.1+x
21/2+
2501.7+x
25/2–
2499.9+x
21/2+
2306.2+x
19/2
2129.4+x
21/2+
2082.1+x
17/2+
1904.8+x
21/2+
1842.1+x
19/2+
1826.0+x
17/2+
1803.3+x 0+x 1 9 9 Pb 117 82
422
63 ns
3401.3+x
(23/2+)
5/2–
0.111 ps
10.6 µs 9.3 ns
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
1 8 6 W ( 1 8 O ,5n γ )
1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2 (conti nue d) Level Scheme (continued)
Intensities: relative γ–ray intensities for transitions not assigned to any band or for out–of–band transitions. See footnote † in table. See tables for gammas above 4108.1+x level 2171.5+v 602.6+v 1247.9+u 3256.8+z 1743.8+z 97.7+z (65/2+)
5353.6+y
(59/2–)
9417.5+x
(53/2–)
7895.1+x
31/2+
4086.0+x
0.111 ps
3966.7+x (29/2–)
3848.7+x 3742.6+x 3584.9+x
33/2+
3490.1+x
29/2
3359.0+x
(25/2+)
3134.1+x
27/2– 25/2 29/2– 21/2+ 25/2– (23/2–) 21/2+ 19/2 21/2– 21/2+ 19/2+ 17/2+ 21/2+ 19/2+ 17/2+
63 ns
2841.2+x 2748.0+x 2571.1+x 2560.2+x 2559.1+x 2501.7+x 2499.9+x
10.6 µs 9.3 ns
2451.6+x 2306.2+x 2129.4+x 2127.5+x
10 97 12.8 92 7.7 E E2(+ 6.6 M 2 4.9 100 1) 2 6
25/2+
90
25/2
71 383.8 9.5 2. 5 5.9 1.6 70 . 1.7 9 11 M 10 .8 [D1 598.7 ] 10 .1 E 0.5 5999.2 2 37 6.9 0.8 482.4 E2.1 32 .2 [M2 4.2 1 65 90 M1 ] 3.8 72 7 7.0 1 . 2.1 30 0 30 3.4 0.4 1 0 . 15 4 E .1 23 5.7 E1 9.9 1 73 56 M1 9.0 129.4 M (+E 9 . 7 1+ 2) 14 M1 E2 7.9 5580.1 503.4 0.3 1.6 1.7 43 2.2 1.5 42 9.5 ( 2.1 383.4 ME2) 148.5 E 1+E 25 228.2 2 2 15 49 13 .7 [M 4578.5 1] 1 . 40 9 11. 0.8 2. 0 12 9 53 4.7 .1
(25/2–)
3.85 ns
2082.1+x 1971.8+x 1904.8+x 1842.1+x 1826.0+x 1803.3+x 1677.8+x 1437.5+x
17/2+
1402.5+x
13/2+
1351.4+x
42
4.8
M4
10
0
15/2+
13/2+
5/2–
424.8+x
0+x 1 9 9 Pb 117 82
423
12.2 m in
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
1 9 8 H g( α ,3 n γ )
1 9 8 1 H e 0 7 ,1 9 8 8 Ro0 8
1981He07 (also 1977He06): E=35–45 MeV; measured Eγ, Iγ, excit, γ(θ), γγ, γγ(t). 1988Ro08: E=41 MeV; measured Eγ, Iγ, γ(θ), γ(θ,H,t), γγ(t). 1985St16: E=60 MeV; measured γ(θ,H,t), γ(t). Other: 1978Ri01. The level scheme is basically that of 1988Ro08, based on their experiments and the earlier results of 1985St16, 1981He07, 1978Ri01 and 1978Ri04. The evaluators have made the following changes: 1. All E(level) have been recalculated placing the 5/2– level at 0+x (x≤9.3 keV), rather than at 19.6. 2. The Eγ of the three proposed but unobserved low energy transitions have been replaced with the corresponding Eγ from the (18O,5nγ). 3. The placements of the 830.0γ and 903.6γ are from the (18O,5nγ). 199Pb
E(level) 0+x
Jπ†
T1/2
Comments E(level): x≤9.3 from
5 / 2–
424 . 8+x
13 / 2+
1402 . 36+x
17 / 2+
1437 . 39+x
15 / 2+
1825 . 86+x
19 / 2+
1841 . 96+x
21 / 2+
1971 . 64+x 2082 . 0+x
( 19 / 2 ) + ( 21 / 2+ ) ‡
2127 . 26+x
21 / 2–
2305 . 9+x
( 21 / 2+ ) ‡
2451 . 4+x
23 / 2–
Levels
<2 ns
199Pb
IT decay.
T1/2: from 1981He07.
3 . 6 ns
7
T1/2: from 1981He07.
2499 . 66+x
25 / 2–
7 . 5 ns
3
T1/2: from 1988Ro08. Others: 11 ns 3 (1985St16), 33 ns 3 (1981He07).
2558 . 8+x
29 / 2–
10 . 0 µs
2
g=–0.0742 2 (1988Ro08). g: other: –0.074 5 (1985St16). For pure ν(i13/2–2f5/2–1), the expected value is –0.073. T1/2: from 1988Ro08. Other: 10.6 µs 5 (1981He07).
2570 . 7+x 4
27 / 2–
3400 . 7+x
29 / 2+
3489 . 4+x
33 / 2+
E(level),Jπ: level from (18O,5nγ). 55 ns
5
g=–0.145 9 (1988Ro08). g: other: –0.152 3 (1985St16). For pure νi13/2–3, the expected value is –0.15 (1980Sc26). T1/2: from 1988Ro08. Others: 58 ns 6 (1985St16), 55 ns 8 (1981He07).
†
As proposed by 1988Ro08, unless otherwise stated.
‡
From adopted levels.
γ( 1 9 9 Pb) A2 and A4 values are from 1981He07. Eγ†
E(level)
Iγ‡
Mult.§
δ
α
Comments
2570 . 7+x
Eγ: from adopted gammas.
( 48 . 3 ) ( 5 9 . 1& 3 ) 7 0 . 9& 3
2499 . 66+x
Eγ: γ required from γγ(t) data (1988Ro08).
( 8 8 . 4& 3 )
3489 . 4+x
129 . 6 3
1971 . 64+x
1.8 3
155 . 6 2
2127 . 26+x
6.4 7
240 . 2 3
2082 . 0+x
3.8 5
301 . 4 1
2127 . 26+x
324 . 2 2
2451 . 4+x
372 . 4 1
2499 . 66+x
46 4
( E2 )
0 . 0631
A2=+0.06 2.
388 . 5 2
1825 . 86+x
16 . 2 14
( E2 )
0 . 0562
A2=+0.11 2.
423 . 5 3
1825 . 86+x
38 5
M1 +E 2
0 . 11 3
A2=–0.40 3, A4=–0.11 5.
424 . 9 3
424 . 8+x
30 4
M4 @
4 . 11
439 . 6 2
1841 . 96+x
25 . 0 18
E2
0 . 0408
569 . 3 3
1971 . 64+x
2.0 4
830 . 0 2
3400 . 7+x
9.2 9
11 . 8 3
2558 . 8+x
E 2&
72 . 3
2570 . 7+x
M1 & E 2&
10 . 5
63 4
4 . 94
( M1 ) # ( E1 ) #
4 . 65
A2=–0.10 4, A4=–0.10 6.
0 . 147
A2=–0.11 4, A4=–0.03 6.
E1
0 . 0294
A2=–0.10 2, A4=–0.09 4. Mult.: also from γ(θ) in g–factor experiment.
7.7 7
A2=+0.40 3.
–1 . 0 4
δ: from g–factor experiment (1985St16). A2=+0.18 3, A4=–0.06 4. A2=+0.03 11. A2=–0.11 4, A4=–0.07 6. Eγ: placement from adopted gammas, consistent with the γγ coin evidence by 1988Ro08 that this γ feeds the 2505 level through unobserved low energy transitions.
Continued on next page (footnotes at end of table)
424
19 9 P b 117 82
19 9 P b 82 117
NUCLEAR DATA SHEETS
1 9 8 Hg( α ,3 n γ )
1 9 8 1 H e 0 7 ,1 9 8 8 Ro0 8 (conti nue d) γ( 1 9 9 P b) (continued )
Eㆠ903 . 4 2
Iγ‡
E(level) 2305 . 9+x
Mult.§
9 . 6 10
Comments
E2
A2=+0.29 4, A4=–0.16 6. Eγ: placement from adopted gammas. γ assigned to a 25/2+ level at 2749 by 1981He07 and 1988Ro08.
977 . 4 1
1402 . 36+x
1012 . 4 3
1437 . 39+x
†
From 1981He07.
‡
At 125° (1981He07).
100 26 3
E2
A2=+0.15 3, A4=–0.11 4.
M1 +E 2
A2=–0.25 2, A4=0.00 4.
§ From γ(θ) (1981He07), unless otherwise indicated. # From intensity balance considerations (1981He07). @ From adopted gammas. & from adopted gammas; γ not observed in this experiment. Level Scheme
29/2– 25/2– 23/2– (21/2+) 21/2– (21/2+) (19/2)+
30
27/2–
3489.4+x
70 11.9 M 59 .8 1 37 .1 E 482.4 ( 2 32 .3 E2) 46 90 4.2 30 3.4 E 7.7 151.4 E 2 9.6 24 5.6 ( 1 6 56 0.2 E1) 3 9 3 .8 6.4 12 .3 43 9.6 ( 2.0 42 9.6 E M1) 1 383.5 M2 8.5 1 25 .8 10 (E +E2.0 2) 97 12.4 7.4 M 16 38 .2 E2 1+E 10 2 2 0 6
33/2+ 29/2+
88 83 .4 E 0.0 2 9.2
Intensities: relative Iγ
M4
21/2+ 4.9
19/2+ 42
15/2+ 17/2+ 13/2+
2570.7+x 2558.8+x 2499.66+x 2305.9+x 2127.26+x
425
3.6 ns
2082.0+x 1971.64+x 1841.96+x 1825.86+x 1437.39+x 1402.36+x 0+x
19 9 Pb 117 82
10.0 µs 7.5 ns
2451.4+x
424.8+x
5/2–
55 ns
3400.7+x
<2 ns
NUCLEAR DATA SHEETS
REFERENCES FOR
199Pb
1 9 4 8Te 0 1
D.H.Templeton, I.Perlman – Phys.Rev. 73, 1211 (1948)
1 9 5 0N e 7 7
H.M.Neumann, I.Perlman – Phys.Rev. 78, 191 (1950)
1 9 5 5 An 0 1
G.Andersson, E.Arbman, I.Bergstrom, A.H.Wapstra – Phil.Mag. 46, 70 (1955)
1956S t 05
R.Stockendal, J.A.McDonnell, M.Schmorak, I.Bergstrom – Arkiv Fysik 11, 165 (1956)
1 9 5 7 An 5 3
G.Andersson, E.Arbman, B.Jung – Arkiv Fysik 11, 297 (1957)
1962Ju05
B.Jung, G.Andersson, T.Stenstrom – Nuclear Phys. 36, 31 (1962)
1964S i 11
A.Siivola, P.Kauranen, B.Jung, J.Svedberg – Nucl.Phys. 52, 449 (1964)
1 9 6 6Ma 5 1
I.Mahunka, L.Tron, T.Fenyes, V.A.Khalkin – Izv.Akad.Nauk SSSR, Ser.Fiz. 30, 1375 (1966); Bull.Acad.Sci.USSR,
1 9 6 7Le 2 1
Y.Le Beyec, M.Lefort – Arkiv Fysik 36, 183 (1967)
Phys.Ser. 30, 1436 (1967) 1 9 6 7T i 0 4
E.Tielsch–Cassel – Nucl.Phys. A100, 425 (1967)
1 9 6 8G o 1 2
N.A.Golovkov, R.B.Ivanov, Y.V.Norseev, So Ki Kvan, V.A.Khalkin, V.G.Chumin – Contrib.Intern.Conf.Nucl.Struct.,
1 9 7 0Da ZM
J.M.Dairiki – Thesis, Univ. California (1970); UCRL–20412 (1970)
Dubna, p.54 (1968) 1970Jo26
A.G.Jones, A.H.W.Aten, Jr. – Radiochim.Acta 13, 176 (1970)
1 9 7 0Ra 1 4
K.Raichev, L.Tron – Acta Phys. 28, 263 (1970)
1 9 7 3 J o ZF
M.W.Johnson, R.A.Warner, W.C.McHarris, W.H.Kelly – Ann.Rept.Mich.State Univ.Cyclotron Lab., 1972–1973, p.63 (1973)
1 9 7 4 J o ZX
M.W.Johnson, W.C.McHarris, R.A.Warner, W.H.Kelly – Bull.Amer.Phys.Soc. 19, No.4, 598, KI3 (1974)
1 9 7 7He 0 6
H.Helppi, S.K.Saha, P.J.Daly, S.R.Faber, T.L.Khoo, F.M.Bernthal – Phys.Lett. 67B, 279 (1977)
1 9 7 8 L e ZA
C.M.Lederer, V.S.Shirley, E.Browne, J.M.Dairiki, R.E.Doebler, A.A.Shihab–Eldin, L.J.Jardine, J.K.Tuli, A.B.Buyrn –
1 9 7 8R i 0 1
H.Richel, G.Albouy, G.Auger, J.M.Lagrange, M.Pautrat, C.Roulet, H.Sergolle, J.Vanhorenbeeck – Z.Phys. A284, 425
1 9 7 8R i 0 4
H.Richel, G.Albouy, G.Auger, F.Hanappe, J.M.Lagrange, M.Pautrat, C.Roulet, H.Sergolle, J.Vanhorenbeeck – Nucl.Phys.
1980S c 26
M.R.Schmorak – Nucl.Data Sheets 31, 283 (1980)
1 9 8 1He 0 7
H.Helppi, S.K.Saha, P.J.Daly, S.R.Faber, T.L.Khoo, F.M.Bernthal – Phys.Rev. C23, 1446 (1981)
1 9 8 3Th 0 3
R.C.Thompson, M.Anselment, K.Bekk, S.Goring, A.Hanser, G.Meisel, H.Rebel, G.Schatz, B.A.Brown – J.Phys.(London) G9,
1985S t 16
C.Stenzel, H.Grawe, H.Haas, H.–E.Mahnke, K.H.Maier – Z.Phys. A322, 83 (1985)
Table of Isotopes, 7th Ed., John Wiley and Sons, Inc., New York (1978) (1978) A303, 483 (1978)
443 (1983) 1 9 8 6 An 0 6
M.Anselment, W.Faubel, S.Goring, A.Hanser, G.Meisel, H.Rebel, G.Schatz – Nucl.Phys. A451, 471 (1986)
1 9 8 7Ca 2 3
P.Carle, S.Egnell, L.O.Norlin, K.–G.Rensfelt, U.Rosengard, B.Fant, H.C.Jain, K.Johansson – Hyperfine Interactions
1 9 8 8Pa 1 2
M.Pautrat, J.M.Lagrange, J.S.Dionisio, Ch.Vieu, J.Vanhorenbeeck – Nucl.Phys. A484, 155 (1988)
1 9 8 8Ro 0 8
U.Rosengard, P.Carle, A.Kallberg, L.O.Norlin, K.–G.Rensfelt, H.C.Jain, B.Fant, T.Weckstrom – Nucl.Phys. A482, 573
1 9 8 9Ra 1 7
P.Raghavan – At.Data Nucl.Data Tables 42, 189 (1989)
1 9 8 9Su1 2
X.Sun, U.Rosengard, H.Grawe, H.Haas, H.Kluge, A.Kuhnert, K.H.Maier – Z.Phys. A333, 281 (1989)
34, 77 (1987)
(1988)
1 9 9 1Ry 0 1
A.Rytz – At.Data Nucl.Data Tables 47, 205 (1991)
1 9 9 2Ba 1 3
G.Baldsiefen, H.Hubel, D.Mehta, B.V.T.Rao, U.Birkental, G.Frohlingsdorf, M.Neffgen, N.Nenoff, S.C.Pancholi, N.Singh, W.Schmitz, K.Theine, P.Willsau, H.Grawe, J.Heese, H.Kluge, K.H.Maier, M.Schramm, R.Schubart, H.J.Maier – Phys.Lett. 275B, 252 (1992)
1 9 9 3Ba 0 1
G.Baldsiefen, U.Birkental, H.Hubel, N.Nenoff, B.V.T.Rao, P.Willsau, J.Heese, H.Kluge, K.H.Maier, R.Schubart,
1 9 9 4A r 1 3
A.Artna–Cohen – Nucl.Data Sheets 72, 297 (1994)
1 9 9 4Ba 4 3
G.Baldsiefen, H.Hubel, W.Korten, D.Mehta, N.Nenoff, B.V.T.Rao, P.Willsau, H.Grawe, J.Heese, H.Kluge, K.H.Maier,
1 9 9 4Du 1 9
J.Duprat, C.Vieu, F.Azaiez, G.Baldsiefen, C.Bourgeois, R.M.Clark, I.Deloncle, J.S.Dionisio, B.Gall, F.Hannachi,
S.Frauendorf – Phys.Lett. 298B, 54 (1993)
R.Schubart, S.Frauendorf, H.J.Maier – Nucl.Phys. A574, 521 (1994) H.Hubel, M.Kaci, A.Korichi, Y.Le Coz, M.Meyer, N.Perrin, M.G.Porquet, N.Redon, C.Schuck, H.Sergolle, R.Wadsworth – Z.Phys. A347, 289 (1994) 1 9 9 5 Au 0 4
G.Audi, A.H.Wapstra – Nucl.Phys. A595, 409 (1995)
1 9 9 5N e 0 9
M.Neffgen, G.Baldsiefen, S.Frauendorf, H.Grawe, J.Heese, H.Hubel, H.Kluge, A.Korichi, W.Korten, K.H.Maier, D.Mehta, J.Meng, N.Nenoff, M.Piiparinen, M.Schonhofer, R.Schubart, U.J.van Severen, N.Singh, G.Sletten, B.V.T.Rao, P.Willsau – Nucl.Phys. A595, 499 (1995)
1 9 9 6 Bu 2 6
P.A.Butler, P.M.Jones, K.J.Cann, J.F.C.Cocks, H.Hubel, G.D.Jones, R.Julin, W.Pohler, B.Schulze, J.F.Smith – Acta
1 9 9 7 Au 0 4
G.Audi, O.Bersillon, J.Blachot, A.H.Wapstra – Nucl.Phys. A624, 1 (1997)
1 9 9 7C l 0 3
R.M.Clark, S.J.Asztalos, G.Baldsiefen, J.A.Becker, L.Bernstein, M.A.Deleplanque, R.M.Diamond, P.Fallon, I.M.Hibbert,
Phys.Pol. B27, 463 (1996)
H.Hubel, R.Krucken, I.Y.Lee, A.O.Macchiavelli, R.W.MacLeod, G.Schmid, F.S.Stephens, K.Vetter, R.Wadsworth, S.Frauendorf – Phys.Rev.Lett. 78, 1868 (1997) 1 9 9 7D i 0 3
R.M.Diamond – Acta Phys.Pol. B28, 105 (1997)
1 9 9 7Fa 1 5
P.Fallon – Z.Phys. A358, 231 (1997)
1 9 9 7Hu 1 2
H.Hubel, G.Baldsiefen, R.M.Clark, S.J.Asztalos, J.A.Becker, L.Bernstein, M.A.Deleplanque, R.M.Diamond, P.Fallon, I.M.Hibbert, R.Krucken, I.Y.Lee, A.O.Macchiavelli, R.W.MacLeod, G.Schmid, F.S.Stephens, K.Vetter, R.Wadsworth – Z.Phys. A358, 237 (1997)
1997Jo15
P.M.Jones, P.A.Butler, K.J.Cann, J.F.C.Cocks, G.D.Jones, R.Julin, H.Kankaanpaa, W.Pohler, B.Schulze, J.F.Smith, A.N.Wilson – Z.Phys. A358, 191 (1997)
426
NUCLEAR DATA SHEETS
REFERENCES FOR
199Pb
( CONT I NUED )
1 9 9 8Ma 0 9
A.O.Macchiavelli, R.M.Clark, P.Fallon, M.A.Deleplanque, R.M.Diamond, R.Krucken, I.Y.Lee, F.S.Stephens, S.Asztalos,
1 9 9 8Ma 4 3
A.O.Macchiavelli, R.M.Clark, M.A.Deleplanque, R.M.Diamond, P.Fallon, I.Y.Lee, F.S.Stephens, K.Vetter – Phys.Rev.
1 9 9 9C l 0 4
R.M.Clark – J.Phys.(London) G25, 695 (1999)
1 9 9 9Po 1 3
W.Pohler, G.Baldsiefen, H.Hubel, W.Korten, E.Mergel, D.Rossbach, B.Aengenvoort, S.Chmel, A.Gorgen, N.Nenoff,
K.Vetter – Phys.Rev. C57, R1073 (1998) C58, R621 (1998)
R.Julin, P.Jones, H.Kankaanpaa, P.A.Butler, K.J.Cann, P.T.Greenlees, G.D.Jones, J.F.Smith – Eur.Phys.J. A 5, 257 (1999) 2 0 0 1C l 0 2
R.M.Clark, A.O.Macchiavelli – Nucl.Phys. A682, 415c (2001)
427
428