Nuclear Data Sheets for 199Pb

Nuclear Data Sheets for 199Pb

Nuclear Data Sheets 94, 397 (2001) doi:10.1006/ndsh.2001.0020 Nuclear Data Sheets for 199 Pb * BALRAJ SINGH AND GEORGE REED Department of Physics a...

189KB Sizes 2 Downloads 90 Views

Nuclear Data Sheets 94, 397 (2001) doi:10.1006/ndsh.2001.0020

Nuclear Data Sheets for

199 Pb *

BALRAJ SINGH AND GEORGE REED Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada, L8S 4M1 (Received July 20, 2001; Revised October 10, 2001) Abstract: The experimental nuclear structure data for

199Pb

have been compiled and evaluated. Extensive

revisions to the adopted levels, gammas and high–spin data sets for this nuclide have been made based on the new high–spin studies of 1999Po13, 1997Cl03, 1995Ne09, 1994Ba43 (also 1997Hu12,1997Fa15,1997Di03), and 1989Su12. The decay data sets and (α,3nγ) dataset have been revised but no new references are added. values are now adopted from 1995Au04. This revision supersedes earlier by 1994Ar13 (A.

1 9 9 Pb

The Q

data contained in the A=199 update

Artna–Cohen, Nuclear Data Sheets 72, 297 (1994)), with literature coverage up to May 25,

1994. Cutoff Date: Literature available up to October 10, 2001 has been included. General Policies and Organization of Material: See the introductory pages.

* Research sponsored by the Natural Sciences and Engineering Research Council of Canada and by the Nuclear Physics Division of the U.S. Department of Energy. 0090–3752/01 $35.00 Copyright  2001 by Academic Press. All rights of reproduction in any form reserved.

397

NUCLEAR DATA SHEETS

Ind ex for Nuclide 199Pb

Data Type

Page

Adopted Levels, Gammas

399

199Pb

IT Decay (12.2 min)

408

199Bi

ε Decay: 27 min+24.70 min

408

203Po

α Decay (36.7 min)

413

186W(18O,5nγ)

413

198Hg(α,3nγ)

424

398

1 9 9 Pb

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

Adop te d L e ve ls, Gammas Q(β–)=–4.35×103 12; S(n)=7206 SY; S(p)=5010 100; Q(α)=3416 83

1995Au04.

∆(S(n))=114 (syst,1995Au04). 199Pb

Levels

Cross Reference (XREF) Flags

E(level)† 0.0

Jπ‡ 3 / 2–

199Bi

B

199Pb

IT Decay (12.2 min)

C

203Po

α Decay (36.7 min)

D

186W(18O,5nγ)

E

198Hg(α,3nγ)

T1/2§

XREF ABC

ε Decay: 27 min+24.70 min

A

Comments %ε+%β+=100.

90 mi n 10

µ=–1.0742 12 (1989Ra17,1986An06). Q=+0.08 9 (1989Ra17,1986An06). µ,Q: atomic–beam with LASER fluorescence spectroscopy (1986An06). ∆(199Pb–208Pb)=–0.516 fm2 4 (1986An06) from isotope shift measurements. The large change in radius from

201Pb

to

199Pb

is

ascribed to a change from f5/2 to p3/2 g.s. configurations in the two nuclides. Jπ: spin from hyperfine structure, π: µ and Q are consistent with ν 3p3/2 assignment (1983Th03). µ,Q: measured with LASER induced fluorescence spectroscopy. T1/2: from 1955An01; other: ≈80 min (1950Ne77). 0+x

( 5 / 2– )

ABCDE

E(level): x<9.3 keV (1962Ju05,1957An53) from

199Pb

IT decay.

Jπ: See comment for 424.8+x level. Probable ν 2f5/2 orbital. 424 . 8+x 2

( 13 / 2+ )

AB DE

12 . 2 mi n 3

%IT<100; %ε+%β+>0. Jπ: M4 γ to 0+x level; the only possible shell model states available for an M4 transition in the N=117 nucleus are the i13/2 and f5/2 states. The i13/2 probably corresponds to 424.8+x and f5/2 to 0+x level. T1/2: from 1955An01. Other: 13 min 1 (1956St05). Jπ: ν i13/2 orbital. %IT,%ε+%β+: 1978LeZA (Table of Isotopes 1978) list %IT=93, %ε+β+=7 from a priv. comm. (from authors of 1973JoZF,1974JoZX) in 1974. But a copy of this communication is no longer available from the Table of Isotopes group. E–mail queries (in July 2001) by the evaluators from two of the authors of 1973JoZF produced no response. Inspection of the gamma–ray spectrum from the decay of

199Pb

isomer

presented in 1973JoZF shows a dominant 425γ and a weak 382γ, the latter assigned to 9/2– isomer in

199Tl,

suggesting that %IT branch

is much stronger than the %ε+β+ branch. But in the absence of definitive information, the evaluators consider the decay branches as undetermined. E(level): others: 430 3 (1997Au04) based on x<9.3 (1962Ju05), 444 (1994Ba43,1999Po13) based on a proposed 19.6 level by 1978Ri04. But the existence of 19.6 level is considered as suspect since the γγ coin evidence presented by 1978Ri04 is very tentative. 1351 . 4+x 3

( 13 / 2+ )

D

1402 . 5+x 3

( 17 / 2+ )

DE

1437 . 5+x 3

( 15 / 2+ )

1677 . 8+x 4

DE D

1803 . 3+x 3

( 17 / 2+ )

1826 . 0+x 3

( 19 / 2+ )

D DE

1842 . 1+x 3

( 21 / 2+ )

DE

1904 . 8+x 3

( 17 / 2+ )

D

1971 . 8+x 3

( 19 / 2+ )

DE

2082 . 1+x 3

( 21 / 2+ )

DE

2127 . 5+x 3

( 21 / 2– )

DE

2129 . 4+x 3

( 19 / 2 )

D

2306 . 2+x 3

( 21 / 2+ )

DE

2451 . 6+x 4

( 23 / 2– )

DE

T1/2: from (α,3nγ).

<2 ns

3 . 85 ns

16

Continued on next page (footnotes at end of table)

399

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

Ad op te d L e ve ls, Gammas (conti nue d ) 199Pb

E(level)† 2499 . 9+x 4

Jπ‡ ( 25 / 2– )

T1/2§

XREF DE

Levels (continued )

7 . 9 ns

6

Comments T1/2: weighted average of 9.3 ns 6 (1988Pa12), 7.5 ns 3 (1988Ro08), 11 ns 3 (1985St16). Other: 33 ns 3 (1981He07) is discrepant (1981He07).

2501 . 7+x 3

( 21 / 2+ )

D

2559 . 1+x 4

( 29 / 2– )

DE

10 . 1 µs

2

µ=–1.076 3 (1989Ra17,1988Ro08). Configuration=((ν i13/2)–212+(ν f5/2)–1). Jπ: E2 γ to 25/2– level; measured g–factor agrees with proposed configuration. µ: TDPAD method (1988Ro08,1987Ca23). Other: –1.07 7 (1985St16). T1/2: weighted average of 10.6 µs 5 (1989Su12,1988Pa12,1981He07), 10.0 µs 2 (1988Ro08).

2560 . 2+x 4

( 25 / 2 )

D

2571 . 1+x 4

( 27 / 2– )

D

2748 . 0+x 4

( 25 / 2+ )

D

2841 . 2+x 4

( 25 / 2 )

D

2921 . 1+x 3

( 21 / 2+ )

D

2982 . 9+x 4

( 25 / 2+ )

D

2984 . 2+x 4

( 23 / 2+ )

D

3134 . 1+x 4

( 25 / 2+ )

D

3210 . 3+x 4

( 29 / 2 )

D

3359 . 0+x 4

( 29 / 2 )

D

3386 . 2+x 4

( 27 / 2+ )

D

3401 . 3+x 4

( 29 / 2+ )

DE

3490 . 1+x 4

( 33 / 2+ )

DE

63 ns

4

µ=–2.39 15 (1989Ra17,1988Ro08). µ: TDPAD method (1988Ro08). Other: –2.51 5 (1985St16). Configuration=(ν i13/2)–3. T1/2: weighted average of 63 ns 4 (1989Su12), 71 ns 4 (1988Pa12). 55 ns 5 (1988Ro08), 58 ns 6 (1985St16), 55 ns 8 (1981He07).

3530 . 0+x 4 3584 . 9+x# 4

( 33 / 2 ) ( 25 / 2– )

3603 . 7+x 5 3657 . 5+x 4 3674 . 8+x# 5

D D D

( 29 / 2+ )

D

( 27 / 2– )

D

3742 . 6+x 5

D

3745 . 7+x 4

( 29 / 2+ )

3791 . 9+x 4 3848 . 7+x# 6

( 33 / 2 )

D

( 29 / 2– )

D

3850 . 9+x 4

( 31 / 2 )

3859 . 3+x 5 3876 . 5+x 4

D D

( 33 / 2 )

3966 . 7+x 5

D D

4006 . 3+x 4

( 29 / 2+ )

4086 . 0+x 4

( 31 / 2+ )

4108 . 1+x 4 4124 . 1+x# 7

D

D D D

( 31 / 2– )

4143 . 3+x 5

D D

4228 . 3+x 5

( 35 / 2 )

4257 . 5+x 5

( 37 / 2+ )

4292 . 6+x 4

D D D

4339 . 4+x 5

( 37 / 2 )

D

4348 . 8+x 4

( 31 / 2 )

D

4363 . 6+x 4

( 31 / 2 )

D

4367 . 6+x 5

( 37 / 2 )

D

4474 . 7+x 5 4483 . 5+x# 7

( 41 / 2+ )

D

( 33 / 2– )

D

4543 . 3+x 4

( 37 / 2 )

D

4769 . 0+x 4

( 33 / 2+ )

D

4770 . 0+x 4

( 33 / 2+ )

D

4777 . 2+x 5

( 41 / 2 )

40 ns

10

D

4778 . 6+x 4 4884 . 8+x# 7

D ( 35 / 2– )

D

5067 . 1+x 5

( 41 / 2 )

D

5129 . 4+x 5

( 41 / 2 )

D Continued on next page (footnotes at end of table)

400

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

Ad op te d L e ve ls, Gammas (conti nue d ) 199Pb

E(level)†

Jπ‡

XREF

5222 . 6+x 5

( 41 / 2 )

D

5282 . 4+x 5 5305 . 6+x# 7

( 43 / 2 )

D

( 37 / 2– )

D

5314 . 9+x 5

( 41 / 2 )

D

5338 . 9+x 5

( 41 / 2 )

D

5478 . 7+x 4

( 43 / 2 )

5495 . 4+x 6 5554 . 2+x 6 5727 . 2+x# 7

T1/2§

Comments

D D D

( 39 / 2– )

D

6055 . 7+x# 7 6290 . 3+x# 8 6530 . 4+x# 8

( 41 / 2– )

D

( 43 / 2– )

D

0 . 26 p s +35–20

( 45 / 2– )

D

0 . 21 p s +21–17

6804 . 2+x# 9

( 47 / 2– )

D

0 . 118 p s +42–28

6986 . 7+x 6 7120 . 5+x# 9 7483 . 7+x# 9 7895 . 1+x# 9 8354 . 5+x# 9

Levels (continued )

D ( 49 / 2– )

D

( 51 / 2– )

D

0 . 090 p s +28–21 0 . 139 ps

( 53 / 2– )

D

0 . 111 p s +35–28

35

( 55 / 2– )

D

0 . 104 p s +35–28

8862 . 8+x# 9 9417 . 5+x# 9 10022 . 4+x# 9

( 57 / 2– )

D

0 . 146 p s +42–35

( 59 / 2– )

D

( 61 / 2– )

D

10659 . 5+x# 9 0 . 0 + y@

( 63 / 2– )

D

( 35 / 2+ )

D

9 8 . 2 + y@ 3 2 2 3 . 2 + y@ 4 3 8 8 . 8 + y@ 5

( 37 / 2+ )

D

( 39 / 2+ )

D

( 41 / 2+ )

D

5 8 9 . 2 + y& 4 6 0 3 . 3 + y@ 5 7 2 6 . 8 + y& 5

( 39 / 2+ )

D

( 43 / 2+ )

D

( 41 / 2+ )

D

8 7 1 . 1 + y@ 6 8 9 1 . 4 + y& 5 1 0 9 9 . 8 + y& 5

( 45 / 2+ )

D

( 43 / 2+ )

D

( 45 / 2+ )

D

1 1 9 4 . 2 + y@ 6 1 3 7 0 . 7 + y& 6 1 5 7 1 . 2 + y@ 6

( 47 / 2+ )

D

( 47 / 2+ )

D

E(level): y>4784+x since the level decays to triplet of states at 4775+x, 4776+x and 4784+x.

1 7 1 2 . 7 + y& 6 2 0 0 1 . 4 + y@ 6 2 1 2 9 . 8 + y& 6

( 49 / 2+ )

D

( 49 / 2+ )

D

( 51 / 2+ )

D

( 51 / 2+ )

D

2 4 8 3 . 5 + y@ 7

( 53 / 2+ )

D

2 6 1 2 . 6 + y& 6 3 0 1 5 . 5 + y@ 7 3 1 4 9 . 4 + y& 7

( 53 / 2+ )

D

3164 . 8+y 7 3 5 8 9 . 1 + y@ 7

( 55 / 2+ )

D

( 55 / 2+ )

D

0 . 097 p s +42–28 0 . 146 p s +28–21 0 . 111 p s +35–21 0 . 090 p s +28–21

D ( 57 / 2+ )

D

3 6 0 8 . 4 + y@ 7 3 7 3 4 . 6 + y& 8 3 9 6 7 . 6 + y@ 8

( 57 / 2+ )

D

( 57 / 2+ )

D

( 59 / 2+ )

D

4 1 9 7 . 5 + y@ 7 4 2 0 7 . 5 + y@ 7 4 5 4 6 . 7 + y@ 7

( 59 / 2+ )

D

( 59 / 2+ )

D

( 61 / 2+ )

D

4 9 3 2 . 6 + y@ 8 5 3 5 3 . 6 + y@ 8 5 8 0 7 . 0 + y@ 9

( 63 / 2+ )

D

( 65 / 2+ )

D

( 67 / 2+ )

D

6 3 0 3 . 5 + y@ 9 6 8 4 6 . 0 + y@ 1 0 7 4 3 3 . 7 + y@ 1 0

( 69 / 2+ )

D

( 71 / 2+ )

D

0 . 0+z a

0 . 13 p s +10–6

( 73 / 2+ )

0 . 097 p s +21–14

D D

E(level): z>5135+x, since the level decays into states between 4234+x and 5135+x. Jπ: possibly 37/2, since the bandhead feeds levels near 33/2.

97 . 7+z a 3

D

232 . 9+z a 5 426 . 1+z a 6

D D Continued on next page (footnotes at end of table)

401

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

Ad op te d L e ve ls, Gammas (conti nue d ) 199Pb

E(level)†

Levels (continued )

XREF

673 . 5+z a 6 967 . 5+z a 6 1349 . 7+z a 6

D

1743 . 8+z a 6 2227 . 4+z a 7 2738 . 0+z a 7

D

3256 . 8+z a 7 3595 . 0+z a 8 0 . 0+ub

D

2 4 2 . 9+ub 3 5 5 0 . 3+ub 4 8 6 3 . 3+ub 4

D

1 2 4 7 . 9+ub 5 1 6 6 2 . 0+ub 5 2 1 4 9 . 2+ub 5

D

Comments

D D D D D D

E(level): u>4149+x, since the level decays into states between 3216+x and 4149+x. Jπ: possibly 45/2, since the bandhead feeds levels near 41/2.

D D D D

2 6 2 0 . 9+ub 6

D

0+v

D

602 . 6+v 3

D

938 . 8+v 4

D

1088 . 6+v 4

D

1336 . 1+v 3

D

1795 . 8+v 5

D

1813 . 0+v 5

D

2157 . 2+v 5

D

2171 . 5+v 5

D



E(level): v>5484+x from possible decay to 5484+x.

From (18O,5nγ) for excited states. The levels proposed from the

199Bi

ε decay have not been adopted because of tentative nature

of the decay scheme. ‡

From γγ, γγ(θ)(DCO), ce in (18O,5nγ), γ(θ) in (α,3nγ), and associated band structures. It is assumed that J(initial)≥J(final) for observed transitions. All spin assignments are placed in parentheses (by evaluators) since the assignment for the 424.8+x is based on model arguments, rather than on measurement by direct methods.

§

From (18O,5nγ), unless otherwise stated. Methods used are are: γ(t) and/or ce(t) in the nanosecond region and Doppler–shift

attenuation method in the picosecond region. –1 below the band crossing and # (A): Magnetic rotational band #1. Band based on 25/2–. Configuration=π(h i 9/2 13/2) ν(i13/2) π(h9/2i13/2)ν(i13/2)–3 above the crossing near 41/2. –2 f –1 @ (B): Magnetic rotational band #2. Band based on 35/2+. Configuration=π(h i 9/2 13/2)ν(i13/2 5/2 ) below the band crossing and π(h9/2i13/2) ν(i13/2–4f5/2–1) above the crossing near & (C): Magnetic–rotational band #3. Band based on a (D): Magnetic–rotational band #4. Band probably b (E): Magnetic–rotational band #5. Band probably

61/2. 39/2+. Configuration=π(h9/2i13/2)ν(i13/2–2 f5/2–1). based on 37/2. Tentative configuration=π(h9/2)2 νi13/2–3. based on 45/2. Tentative configuration=π(h9/2)2 ν(i13/2–4p3/2–1).

γ( 1 9 9 Pb)

E(level)

Eγ†

0+x

(x)

424 . 8+x

424 . 8 2

Iγ†

Mult.†

M4

4 . 11

1351 . 4+x

926 . 6 3

100

977 . 7 2

100

E2

1437 . 5+x

1012 . 8 3

100

E 2 ( +M1 )

1677 . 8+x

1253 . 1 4

100

1803 . 3+x

400 . 8 4

1826 . 0+x

α

Comments Eγ: x<9.3 from

100

1402 . 5+x

451 . 9 3

δ

199Pb

IT decay (1962Ju05,1957An53).

B(M4)(W.u.)<3.2.

43 23 26 7

1378 . 5 3

100 17

22 . 7 3

0 . 21

[ M1 ]

134

B(M1)(W.u.)>0.0011.

148 . 2‡ 4 388 . 5 2

36 6

423 . 4 2

100 14

1842 . 1+x

439 . 5 2

100

1904 . 8+x

502 . 2

100 33

E2 M1 +E 2

–1 . 0 4

0 . 0563

B(E2)(W.u.)>0.094.

0 . 11 3

δ: from (α,3nγ). B(M1)(W.u.)>2.4×10–5; B(E2)(W.u.)>0.050.

( E2 )

0 . 0408

Continued on next page (footnotes at end of table)

402

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

Ad op te d L e ve ls, Gammas (conti nue d ) γ( 1 9 9 P b) (continued )

E(level) 1904 . 8+x

Eㆠ553 . 4 1480 . 1

1971 . 8+x

Iγ†

Mult.†

α

Comments

71 24 14 5

129 . 7 2

90 15

569 . 4 3

100 20

M1 +E 2

2082 . 1+x

239 . 9 2

100

M1 ( +E 2 )

0.5 3

2127 . 5+x

155 . 7 2

E1

0 . 147

B(E1)(W.u.)=1.32×10–6 16.

E1

0 . 0294

B(E1)(W.u.)=1.63×10–6 15.

301 . 4 2 2129 . 4+x

11 . 2 11 100 6

303 . 4

25 25

727 . 0

100 50

2306 . 2+x

903 . 8

100

2451 . 6+x

324 . 2 2

100

2499 . 9+x

48 . 2 4

2501 . 7+x

372 . 4 2

100 15

596 . 9

100 43

1099 . 2 2559 . 1+x 2560 . 2+x 2571 . 1+x 2748 . 0+x 2841 . 2+x 2921 . 1+x

2982 . 9+x

59 . 1 3 108 . 7

<0 . 5 100 17

389 . 5

64 32 100 24

419 . 4

63 54

614 . 9

100 30

791 . 7

20 9

838 . 7

15 9

1016 . 3

59 24

1079 . 0

24 9

1095 . 1

48 13

1117 . 7

46 13

676 . 9

100 29

63 . 1

3134 . 1+x

3359 . 0+x

E2

72 . 3

[D]

92 86

M1

M1

6 . 95

M1

3 . 07

828 . 0

29 15

0 . 717

369 . 2 4

55 27

639 . 1

27 7

651 . 2

100 16

710 . 5

13 4

787 . 8

100 23 M1

3401 . 3+x

830 . 2 2

100 22

E1

17 5 100

450 . 8

27 7 100 20

3603 . 7+x

469 . 6

100

3657 . 5+x

271 . 3

90 52

674 . 6

100 29

89 . 9

100

3742 . 6+x

212 . 7

100

3791 . 9+x

359 . 5

100 28

762 . 8

86 31

997 . 6

21 14

432 . 8

22 8

581 . 6

100 16

1232 . 8

10 . 5

M1

13 . 3

B(E2)(W.u.)=2.06 15.

33 14

3674 . 8+x 3745 . 7+x

( E1 ) E2

100

600 . 7

909 . 5

Mult.: from DCO ratio and intensity balance.

58 15 100

970 . 9

B(E2)(W.u.)=0.0154 7.

29 7 100 39

88 . 7 2

B(E2)(W.u.)=0.117 25.

4 . 94

150 . 0

842 . 0 4

B(M1)(W.u.)=0.00022 4.

Q

252 . 0

3584 . 9+x

0 . 0631

100

799 . 0

3530 . 0+x

15 . 3

E2

3386 . 2+x

3490 . 1+x

0 . 360

[ M1 ]

100

713 . 8

1140 . 8

M1

100

11 . 8 3 905 . 9

4 . 64

38 14 100

70 . 9 3

2984 . 2+x

3210 . 3+x

1.1

M1

9 3

3848 . 7+x

173 . 9

100

3850 . 9+x

1291 . 8

100

3859 . 3+x

369 . 2

100

M1

2 . 02

Continued on next page (footnotes at end of table)

403

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

Ad op te d L e ve ls, Gammas (conti nue d ) γ( 1 9 9 P b) (continued )

E(level) 3876 . 5+x

Eγ†

Iγ†

517 . 6

38 15

666 . 1

100 50

3966 . 7+x

224 . 1

100

4006 . 3+x

620 . 1

100

4086 . 0+x

340 . 4

64 36

428 . 5

100 29

699 . 9 617 . 9

100

4124 . 1+x

275 . 4

100

4143 . 3+x

932 . 9

100

4228 . 3+x

738 . 2

100

4257 . 5+x

767 . 3 4 1733 . 5

100

4339 . 4+x

809 . 4

100

4348 . 8+x

342 . 4

100 55

M1

0 . 562

1789 . 7

30 15

357 . 3

67 33

1804 . 3

100 44

110 . 3

29 8

139 . 4

10 6

877 . 4

100 18

4474 . 7+x

217 . 2 3

100

E 2 , M1

0.7 4

4483 . 5+x

359 . 4

100 11

M1

0 . 272

634 . 8 4543 . 3+x

4769 . 0+x

4770 . 0+x

100 50

751 . 4

95 15

1013 . 4

48 28

660 . 8

100 31

1278 . 9

56 13

1367 . 7

19 13

406 . 3

48 13

421 . 2

100 23

477 . 3

19 6

684 . 0

52 13

1112 . 5 4777 . 2+x 4778 . 6+x

4884 . 8+x 5067 . 1+x 5129 . 4+x

302 . 5

100 24 16 8

486 . 0

75 25

670 . 4

56 25

919 . 3

81 25

927 . 7

100 44

401 . 3

100 15

760 . 8

11 . 8 26

289 . 8

65 26

592 . 3

100 22

352 . 1

24 6

654 . 6

51 11

761 . 8

100 19 100

965 . 0

100

807 . 8

100

5305 . 6+x

420 . 7

100 15

822 . 1

16 4

771 . 7

100 16

5338 . 9+x 5478 . 7+x

795 . 6

M1

0 . 203

( E2 )

0 . 0117

16 6

748 . 1

975 . 6

0 . 0171

1 . 9 19

5282 . 4+x

5314 . 9+x

[ E2 ]

B(M1)(W.u.)=1.6×10–5 6; B(E2)(W.u.)=0.12 5.

13 6

519 . 7

872 . 0 5222 . 6+x

2.5 7

666 . 8

763 . 8

Comments

100

4292 . 6+x

4367 . 6+x

α

7 7

4108 . 1+x

4363 . 6+x

Mult.†

M1

0 . 179

( E2 )

0 . 0099

33 8 100

139 . 9

16 4

163 . 8

21 5

196 . 3

13 7

256 . 1

12 4

349 . 3

100 15 Continued on next page (footnotes at end of table)

404

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

Ad op te d L e ve ls, Gammas (conti nue d ) γ( 1 9 9 P b) (continued )

E(level) 5478 . 7+x

Eγ†

Iγ†

411 . 5

53 21

701 . 5

34 6

1004 . 1

18 4

1512 . 0

α

Comments

23 4

5495 . 4+x

180 . 5

100

5554 . 2+x

1079 . 5

100

5727 . 2+x

421 . 5

100 15

842 . 4

20 5

328 . 6

100 13

750 . 1

12 3

6055 . 7+x

Mult.†

M1

0 . 178

( E2 ) M1

0 . 347

( E2 )

0 . 0120

6290 . 3+x

234 . 6

100

M1

0 . 87

B(M1)(W.u.)=4 +4–3.

6530 . 4+x

240 . 1

100

M1

0 . 820

B(M1)(W.u.)=4 +4–3.

6804 . 2+x

273 . 8

100

M1

0 . 571

B(M1)(W.u.)=5.8 21.

6986 . 7+x

1432 . 5

100 M1

0 . 385

B(M1)(W.u.)=5.4 20.

7120 . 5+x

316 . 3 590 . 1

7483 . 7+x

363 . 1 679 . 5

7895 . 1+x

411 . 3

100 13 4 . 3 13 100 16 8 3

[ E2 ] M1

0 . 0201

B(E2)(W.u.)=38 18.

0 . 265

B(M1)(W.u.)=2.5 9.

[ E2 ]

0 . 0148

B(E2)(W.u.)=24 12.

100 18

( M1 )

0 . 190

B(M1)(W.u.)=2.2 9.

774 . 6

11 4

[ E2 ]

0 . 0112

B(E2)(W.u.)=22 12.

8354 . 5+x

459 . 3

100 23

( M1 )

0 . 141

B(M1)(W.u.)=1.8 9.

870 . 9

10 5

[ E2 ]

8862 . 8+x

508 . 3

100 25

( M1 )

0 . 108

B(M1)(W.u.)=0.9 4.

967 . 7

22 8

[ E2 ]

9417 . 5+x

554 . 8

B(E2)(W.u.)=13 9. B(E2)(W.u.)=11 6.

1063 . 0‡ 10022 . 4+x

604 . 7 1159 . 6

10659 . 5+x

636 . 9 1242 . 1

98 . 2+y

98 . 2

100

223 . 2+y

125 . 0

100

M1

5 . 16

388 . 8+y

165 . 6

100

M1

2 . 32

589 . 2+y

491 . 0

100

603 . 3+y

214 . 6

100

M1

1 . 12

726 . 8+y

137 . 7

100 29

503 . 7

14 5

871 . 1+y

267 . 8

100

891 . 4+y

164 . 6

100 29

502 . 6 1099 . 8+y

208 . 3 496 . 5

100 24

323 . 1

100

271 . 0

100 19

377 . 1 700 . 1

1712 . 7+y

342 . 0 518 . 5

2001 . 4+y

430 . 3 807 . 1

2129 . 8+y

417 . 0 558 . 6

2483 . 5+y

481 . 9 912 . 4

2612 . 6+y 3015 . 5+y

482 . 7

0 . 606

[ M1 ]

2 . 36

[ M1 ]

1 . 22

M1

0 . 363

[ M1 ]

6 . 4 17 100 8

[ M1 ]

0 . 239

B(M1)(W.u.)=3.2 16.

[ E2 ]

0 . 0139

B(E2)(W.u.)=25 13.

[ M1 ]

0 . 311

2.2 4 100 15 7 . 7 26 100 13

M1

0 . 168

B(M1)(W.u.)=1.5 5.

( E2 )

0 . 0103

B(E2)(W.u.)=10 5.

[ M1 ]

0 . 183

1.3 3 100 18 7 . 1 21 100 20

M1

0 . 124

( E2 ) 0 . 123 0 . 096

13 5 100 19

( M1 )

18 5

( E2 )

100 25

( M1 )

B(M1)(W.u.)=1.5 6. B(E2)(W.u.)=7 4.

[ M1 ]

532 . 0 536 . 8

B(M1)(W.u.)=4 3.

0 . 59

2.5 4 100 15

900 . 0 1014 . 2 3149 . 4+y

M1

3 . 91

4.0 8

1194 . 2+y

499 . 6

[ M1 ]

10 . 3

9 . 6 16

1370 . 7+y 1571 . 2+y

[ M1 ]

B(M1)(W.u.)=1.3 6. B(E2)(W.u.)=12 6.

1019 . 6 3164 . 8+y

552 . 2

100

3589 . 1+y

573 . 6

100 21

[ M1 ]

0 . 079

B(M1)(W.u.)=0.9 4.

Continued on next page (footnotes at end of table)

405

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

Ad op te d L e ve ls, Gammas (conti nue d ) γ( 1 9 9 P b) (continued )

Eγ†

Iγ†

3589 . 1+y

1105 . 7

21 6

( E2 )

3608 . 4+y

593 . 1

100 23

[ M1 ]

E(level)

Mult.†

α

Comments B(E2)(W.u.)=8 4.

1124 . 6 3734 . 6+y

585 . 2 1122 . 0

3967 . 6+y 4197 . 5+y

359 . 2 608 . 5 1181 . 8

4207 . 5+y

618 . 2 1192 . 1

4546 . 7+y

0 . 065

16 4

339 . 2 349 . 3

4932 . 6+y

385 . 9

5353 . 6+y

421 . 0

5807 . 0+y

453 . 4

6303 . 5+y

496 . 5

6846 . 0+y

542 . 5

7433 . 7+y

587 . 7

97 . 7+z

97 . 7

100

232 . 9+z

135 . 2

100

M1

4 . 12

426 . 1+z

193 . 2

100

M1

1 . 50

673 . 5+z

247 . 4

100

M1

0 . 755

967 . 5+z

294 . 1

100 7

M1

0 . 469

541 . 4

15 4

1349 . 7+z 1743 . 8+z 2227 . 4+z 2738 . 0+z 3256 . 8+z

382 . 1

100 20

676 . 2

13 4

394 . 2

100 26

776 . 4

36 9

483 . 5

100 23

877 . 6

27 11

510 . 5

100 28

994 . 2

24 9

[ M1 ]

0 . 231

[ M1 ]

0 . 213

[ M1 ]

0 . 123

[ M1 ]

0 . 107

[ M1 ]

0 . 396

[ M1 ]

0 . 227

[ M1 ]

0 . 187

[ M1 ]

0 . 121

518 . 8 1029 . 4

3595 . 0+z

338 . 2

2 4 2 . 9+u

242 . 9

100

5 5 0 . 3+u

307 . 3

100

8 6 3 . 3+u

313 . 0

100 16

620 . 5

24 7

1 2 4 7 . 9+u 1 6 6 2 . 0+u 2 1 4 9 . 2+u

384 . 6

100 20

697 . 6

11 4

414 . 0

100 23

798 . 7

23 6

487 . 0

100 25

901 . 4

26 10

2 6 2 0 . 9+u

471 . 7

100

602 . 6+v

602 . 6

100

938 . 8+v

336 . 3

100

1088 . 6+v

149 . 8

52 26

485 . 9

100 20

1336 . 1+v

1336 . 1

100

1795 . 8+v

1193 . 2

100

1813 . 0+v

724 . 4

100

2157 . 2+v

1068 . 6

100

2171 . 5+v

1568 . 9

100



Based on data from (18O,5nγ).



Placement of transition in the level scheme is uncertain.

406

407

10022.4+x

9417.5+x

8862.8+x

8354.5+x

7895.1+x

7483.7+x

7120.5+x

6804.2+x

6530.4+x

6290.3+x

6055.7+x

5727.2+x

5305.6+x

4884.8+x

4483.5+x

4124.1+x

3848.7+x

3674.8+x

3584.9+x

(61/2–)

(59/2–)

(57/2–)

(55/2–)

(53/2–)

(51/2–)

(49/2–)

(47/2–)

(45/2–)

(43/2–)

(41/2–)

(39/2–)

(37/2–)

(35/2–)

(33/2–)

(31/2–)

(29/2–)

(27/2–)

(25/2–)

(23/2+)

(25/2+)

10659.5+x

2001.4+y 1571.2+y 1194.2+y 871.1+y 603.3+y 388.8+y 223.2+y 98.2+y 0.0+y

(51/2+) (49/2+) (47/2+) (45/2+) (43/2+) (41/2+) (39/2+) (37/2+) (35/2+)

3589.1+y

2483.5+y

3608.4+y

(57/2+)

(53/2+)

3967.6+y

(57/2+)

3015.5+y

4197.5+y

(59/2+)

(55/2+)

4207.5+y

(59/2+)

4546.7+y

(59/2+)

4932.6+y

(63/2+)

5353.6+y

(65/2+)

(61/2+)

5807.0+y

6303.5+y

6846.0+y

7433.7+y

(67/2+)

(69/2+)

(71/2+)

(73/2+)

band #2.

band #1.

(63/2–)

(B) magnetic rotational

(A) magnetic rotational

2612.6+y 2129.8+y 1712.7+y

(53/2+) (51/2+) (49/2+)

(B)(37/2+)

(B)(39/2+)

(B)(41/2+)

(39/2+)

(B)(43/2+)

(41/2+)

589.2+y

726.8+y

891.4+y

(43/2+) (B)(45/2+)

1099.8+y

(45/2+)

(B)(47/2+)

(47/2+)

1370.7+y

3149.4+y

(55/2+)

(B)(49/2+)

3734.6+y

(57/2+)

19 9 Pb 117 82

(C) magnetic–rotational band #3.

0.0+z

97.7+z

232.9+z

426.1+z

673.5+z

967.5+z

1349.7+z

1743.8+z

2227.4+z

2738.0+z

3256.8+z

3595.0+z

0.0+u

242.9+u

550.3+u

863.3+u

1247.9+u

1662.0+u

2149.2+u

2620.9+u

band #5.

band #4.

(E) magnetic–rotational

(D) magnetic–rotational

19 9 P b 117 82

NUCLEAR DATA SHEETS 19 9 P b 82 117

Ad op te d L e ve ls, Gammas (conti nue d )

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

199Pb

1 9 5 7 An5 3 ,1 9 5 6 S t0 5 ,1 9 6 2 Ju0 5

E=424.1+x; Jπ=(13/2+); T1/2=12.2 min 3; %IT decay<100.

199Pb:

Parent

IT De cay (1 2 .2 mi n)

1957An53, 1955An01, 1962Ju05: source produced by Tl(p,xn) followed by chem separation. Measured T1/2, γ, ce. 1956St05: source produced by Pb(d,xn) followed by chem separation. Measured γ, x rays, ce. Others: 1973JoZF, 1974JoZX: measured γ spectrum. 199Pb

Jπ†

E(level)

T1/2

0.0

3 / 2–

0+x

( 5 / 2– )

424 . 1+x

Levels

Comments

90 mi n 10

( 13 / 2+ )

12 . 2 mi n 3

%IT<100; %ε+%β+>0. T1/2: from 1957An53; other: 13 min 1 (1956St05).



From adopted levels.

γ( 1 9 9 Pb) Branching: it branch is much stronger than the ε+β+ branch, but the branching ratio is unknown. Eγ

E(level)

Iγ†

Mult.

α

Comments Eγ: x<9.3 (1962Ju05). Unobserved γ in cascade with 424γ has E<30 (1957An53);

(x)

0+x

424 . 1 8

424 . 1+x

9.3>E>46.4 (1962Ju05). 100

M4

4 . 11

Mult.: from exp. K/L=1.9, (L1+L2)/L3=3.2 (1957An53), α(K)exp=2.4 10 (K x ray/γ 1956St05). Theory: K/L=1.95, (L1+L2)/L3=2.80, α(K)=2.42.

For absolute intensity per 100 decays, multiply by <0.196. Decay Scheme Intensities: I(γ+ce) per 100 parent decays

(13/2+)

42

4.1

M4

<1

00

%IT<100

424.1+x

(5/2–) 3/2–

12.2 min

0+x x



0.0

90 min

19 9 Pb 117 82

1 9 9 Bi

ε De cay: 2 7 mi n+2 4 .7 0 mi n

1 9 7 8 Ri 0 4

Parent

199Bi:

E=0; Jπ=9/2–; T1/2=27 min 1; Q(g.s.)=4350 120; %ε+%β+ decay=100.

Parent

199Bi:

E=680 syst; Jπ=(1/2+); T1/2=24.70 min 15; Q(g.s.)=4350 120; %ε+%β+ decay=99 1.

199Bi–T

1/2:

27 min 1 (1964Si11).

199Bi–T

1/2:

24.70 min 15 (1966Ma51).

1978Ri04: produced by Pb(p,xnγ); mass, ion chem; measured Eγ, Iγ, ce, γγ. Others: 1964Si11, 1950Ne77, 1948Te01: measured T1/2(199Bi g.s.). 1966Ma51, 1964Si11, 1948Te01, 1970DaZM: measured T1/2(199Bi isomer) and α decay. The partial decay scheme is that proposed by 1978Ri04 with the following changes: 1) the 3/2– state is the ground state and not at 19.58 keV as proposed by 1978Ri04; and 2) the 5/2– state is at 0+x keV (x≤9.3 keV) and not the g.s. All level energies of 1978Ri04 are therefore raised by x keV. These changes are indicated by the results of 1983Th03 (J(g.s.)=3/2–) and 1962Ju05, 1957An53 (E(5/2– level)≤9.3). For tentative γγ–coin results see table 6 of 1978Ri04. None of the excited states and γ rays above the 425+x isomer are included in the adopted levels due to the tentative nature of the decay scheme from 1978Ri04.

408

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

1 9 9 Bi

ε D ecay: 2 7 mi n+2 4 .7 0 mi n 199Pb

Levels

T1/2‡

Jπ†

E(level)

1 9 7 8 Ri 0 4 (conti nue d)

0.0

3 / 2–

0+x

( 5 / 2– )

Comments

90 mi n 10

%ε+%β+=100. E(level): x≤9.3 from

19 . 5+x ?

199Pb

it decay.

E(level): This level energy is inconsistent with results of 1962Ju05, who concluded that the energy difference between the f5/2 and p3/2 levels is less than 9.3 keV. The placement of the two γ's feeding this first excited state may be inconsistent with some of the γγ–coin results of 1978Ri04.

425 . 3+x

( 13 / 2+ )

12 . 2 mi n 3

%IT<100; %ε+%β+>0.

946 . 0+x ?

Jπ: (7/2)– (1978Ri04).

1022 . 8+x ?

Jπ: (7/2)– (1978Ri04).

1052 . 8+x ? 1262 . 7+x ?

Jπ: (9/2,11/2)+ (1978Ri04).

1266 . 8+x ?

Jπ: (9/2,11/2)+ (1978Ri04).

1305 . 6+x ?

Jπ: (7/2)– (1978Ri04).

1337 . 2+x ?

Jπ: (7/2,9/2)– (1978Ri04).

1505 . 9+x ? 1743 . 0+x ? 1799 . 9+x ? Jπ: (9/2+,11/2) (1978Ri04).

2069 . 1+x ? 2083 . 0+x ? 2108 . 3+x ? 2186 . 2+x ? †

Assignments proposed by 1978Ri04 are given under comments. These assignments are based on γ multipolarities and on the assumption that all the placed γ's are from the ε decay of 9/2–



199Bi

g.s. (see comment on Iγ for a possible problem).

From adopted levels.

γ( 1 9 9 Pb) I(γ±)=18.1 9 (relative to I(841γ)=100) corresponds to %β+≈1.0. Iγ normalization: ≈0.11 based on the following considerations: 1. I(ce+β+)(to 425.3+x level)<16% (from log f1ut>8.5); 2. ∑Iγ(unplaced)/∑Iγ(total)=0.44; 3. the proposed partial level scheme. Setting the total γ

intensity from E(level)>425.3+x to E(level)≤425.3+x as 70 20, one obtains normalization factor of 0.11 3. The

intensity of 425γ has been omitted from this calculation since the measured relative intensity is uncertain due to long T1/2=12 min and lack of reliable %IT decay from the 12.2–min 425.3+x level. Branching: %IT<2, %α=0.01. Eγ

E(level)

(x)

0+x

Iγ†

x126

. 6 10

1.0 2

x183

.6 7

1.5 2

x195

.5 7

2.0 2

x216

.3 7 237 . 9b 7

x240

.3 7

x245

.4 7

253 . 3 7 x279

α(K)exp=0.71 12.

5.8 6

M1 +E 2

2.1 2

M1 +E 2

0.5 3

α(K)exp=0.48 24.

0 . 707

α(K)exp=0.7 4.

1337 . 2+x ?

1.8 2

M1 +E 2

2.0 2

M1

4.5 5

M1 +E 2

0 . 515

α(K)exp=0.36 18.

M1 &

0 . 470

α(K)exp=0.55 30.

α(K)exp=0.72 40.

3.5 4 1799 . 9+x ?

7.8 8

x300

.1 7

4.0 4

x302

.6 7

1.2 2

x316

.2 7

1.5 2

x320

. 3 10

0.5 1

x338

.4 7

1.9 2

x341

.6 7

1.9 2

x350

.9 7

1.8 2

x370

.7 7

4.9 5

x382

.7 7

391 . 3 7

Comments

2.0 2 1305 . 6+x ?

.4 7

294 . 0 7

α

1.7 2

.2 7

284 . 3 7 x288

1743 . 0+x ?

Mult.‡

M1 +E 2

α(K)exp=0.13 6.

1.3 2 1337 . 2+x ?

7.2 7

x416

.1 7

1.9 2

x420

.2 7

4.5 5 Continued on next page (footnotes at end of table)

409

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

1 9 9 Bi

ε D ecay: 2 7 mi n+2 4 .7 0 mi n

1 9 7 8 Ri 0 4 (conti nue d)

γ( 1 9 9 P b) (continued )



E(level)

425 . 3 5

425 . 3+x

x444

.4 7

x451

.8 7

462 . 6b 7 x473

1743 . 0+x ? 1505 . 9+x ?

.6 7

533 . 1 5 x539

M4

4 . 10

5.4 5

E 2 +M1

0 . 0359

α(K)exp=0.039 2.

0 . 06 4

α(K)exp=0.055 32.

3.7 4 5.0 5 6.0 6 2.1 2

1799 . 9+x ?

.3 7

10 . 3 5

α(K)exp=0.08 4.

M1 +E 2 M1 +E 2 &

6.1 6

x546

.9 7 560 . 1b 7 563 . 2b 7

Comments

1.1 2

480 . 4 7

x521

α

2.8 3 1799 . 9+x ?

483 . 3b 7 .3 7

≈200a

Mult.‡

3.0 3

.0 7

x507

Iγ†

4.2 4 1505 . 9+x ?

2.4 2

M1 +E 2 &

0 . 084

α(K)exp=0.061 3.

2069 . 1+x ?

1.6 2

M1 , E 2

0 . 0826

α(K)exp=0.009 4.

x584

.1 7

1.4 2

x590

.8 7

2.3 2

x596

.6 7

1.5 2

x606

.0 7

1.9 2

x610

.1 7

2.5 3

x627

.6 7

4.6 5

x646

.5 7

3.0 3

x658

.5 7

x663

.1 7

x674

M1 +E 2

α(K)exp=0.06 3.

8.0 8

M1 +E 2

α(K)exp=0.09 3.

3.2 3

M1 +E 2

α(K)exp=0.067 4.

.6 7

3.2 3

M1 +E 2

α(K)exp=0.065 3.

x678

.6 7

2.1 2

M1 +E 2

α(K)exp=0.078 3.

x703

.0 7

2.3 2

x709

.1 7

2.5 3

x713

. 9 10

720 . 3 5

1743 . 0+x ?

12 . 2 6

x779

.4 5

11 . 9 6

x786

.0 7

2.1 2

797 . 0 7

1743 . 0+x ?

3.0 3

802 . 1 7

2069 . 1+x ?

5.9 6

806 . 4 7 820 . 5b 7

2069 . 1+x ?

8.7 9

837 . 4 5

1262 . 7+x ?

841 . 7 5

1266 . 8+x ?

x859

2083 . 0+x ?

.5 7

α(K)exp=0.050 26.

( M1 +E 2 )

α(K)exp=0.037 2.

M1 +E 2

2.8 3 86 5 100

E 2 +M1

0 . 0096

α(K)exp=0.0098 20.

E 2 +M1

0 . 0095

α(K)exp=0.010 4.

2.4 3

x914

.1 5 926 . 4§b 5

13 . 7 7 946 . 0+x ?

48 3

M1 +E 2

0 . 015 7

α(K)exp=0.011 6.

946 . 0 5

946 . 0+x ?

98 5

E2

0 . 0075

α(K)exp=0.0088 23.

x955

. 6 10

x961

.2 7

2.1 2

x966

.1 5

17 . 7 8

M1 , E 2

α(K)exp=0.014 9.

x977

.5 5

14 . 6 7

M1 , E 2

α(K)exp=0.015 1.

x985

.0 5

11 . 0 6

M1 , E 2

α(K)exp=0.023 16.

x991

.6 7

4.6 5

x998

.5 7

3.7 4

x1004

.3 7

2.4 2

x1013

.5 7

6.3 6

α(K)exp=0.010 6.

1052 . 8+x ?

53 3

E 2 , M1

α(K)exp=0.0045 22.

1052 . 8+x ?

67 4

E 2 , M1

α(K)exp=0.0046 17.

2.9 3 2108 . 3+x ?

2.1 3

x1089

. 0 10

0.8 2

x1097

.8 7

2.3 2

x1102

.9 7

3.4 3

x1110

.2 7

2.6 3

x1121

.1 7

1137 . 0 5 x1146

.4 5

0 . 012 6

3.8 4

x1076

.2 7 1 0 8 5 . 8@b 7

M1 , E 2

α(K)exp=0.011 5.

1052 . 8 5 .1 7

40 2

M1 , E 2

1022 . 8 5 1034 . 0#b 5 x1069

1022 . 8+x ?

α(K)exp=0.051 29.

( M1 )

4.2 4 2083 . 0+x ?

50 3

M1 , E 2

40 . 9 20

M1 +E 2

0 . 009 4

α(K)exp=0.0047 23. α(K)exp=0.009 4.

Continued on next page (footnotes at end of table)

410

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

1 9 9 Bi

ε D ecay: 2 7 mi n+2 4 .7 0 mi n

1 9 7 8 Ri 0 4 (conti nue d)

γ( 1 9 9 P b) (continued )

Eγ x1153

.2 7

x1156

. 9 10

1162 . 4 7

E(level)

Iㆠ7.8 8

2108 . 3+x ?

.5 7

2.4 2

x1179

.4 7

5.1 5

x1188

.2 7

5.2 5

x1206

.6 7

9.1 9

x1212

.2 5

39 . 6 20

x1221

. 8 10 2186 . 2+x ?

x1255

.6 7

6.1 6

x1268

.2 5

10 . 1 5

x1274

.1 7

1.7 2

x1300

. 1 10 1305 . 6+x ?

64 3

.9 7

4.1 4

x1325

.5 7

3.1 3

x1343

.6 7

1.9 2

x1347

2.7 3

x1402

.4 7

1.3 2

x1410

.9 7

4.7 5

x1424

.1 7

7.8 8

x1432

.1 7

2.3 2

x1435

.3 7

6.2 6

x1448

.6 5

16 . 2 8

x1461

.5 7

8.5 9

x1480

.3 7 .3 5

13 . 2 7

.9 7

4.3 4

x1540

.5 7

8.4 8

x1550

.7 7

2.9 3

x1575

.2 7

5.9 6

x1588

.7 7

2.0 2

x1622

.3 7

x1679

.1 7

1683 . 2b 7

5.6 6

2083 . 0+x ?

2.8 3 7.0 7 4.6 5

2108 . 3+x ?

2.3 2

.5 7

3.9 4

x1707

.9 7

4.5 5

x1716

.0 7

4.9 5

x1725

.3 7

3.8 4

x1757

.6 7

4.4 4

x1775

2.3 2 1799 . 9+x ?

x1785

.3 7 1799 . 0b 7

α(K)exp=0.0045 20.

4.0 4

x1696

.5 7 1780 . 8b 7

0 . 007 3

7.1 7 2069 . 1+x ?

.0 7 .4 7

M1 +E 2

50 3

x1529

1658 . 3 7

α(K)exp=0.0057 3.

1.5 2 1505 . 9+x ?

x1517

x1668

α(K)exp=0.014 7.

E 2 ( +M1 )

6.2 6

.3 7

x1647

M1 , E 2

6.9 7 1799 . 9+x ?

x1398

1643 . 8 7

α(K)exp=0.011 9.

3.5 4

x1312

1505 . 9 5

M1 , E 2

7.4 7

.8 7

.4 7 1374 . 3b 7

Comments

1.0 2

x1243

1305 . 6 5

α

7.1 7

x1172

1240 . 3 7

Mult.‡

8.6 9 3.6 4

1799 . 9+x ?

4.3 4

x1803

.5 7

2.1 2

x1807

.5 7

7.0 7

x1839

.0 7

2.5 3

x1841

.8 7

2.5 3

x1853

.5 7

3.4 3

x1866

.1 7

4.1 4

x1872

.0 7

5.2 5

x1874

.8 7

1.6 2

x1921

.6 7

8.1 8

x1928

.8 7

1.6 2 Continued on next page (footnotes at end of table)

411

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

ε D ecay: 2 7 mi n+2 4 .7 0 mi n

1 9 9 Bi

1 9 7 8 Ri 0 4 (conti nue d)

γ( 1 9 9 P b) (continued )

Iγ†



Iγ†



Iγ†



x1951

.4 7

1.7 2

x2354

.4 7

2.6 3

x3102

.1 7

1.8 2

x1989

.2 7

5.1 5

x2391

.7 7

1.6 2

x3190

. 2 10

0.4 1

x2021

.5 7

9 . 7 10

x2416

. 0 10

0.8 2

x3194

. 4 10

0.6 2

x2048

.4 7

1.0 2

x2454

. 9 10

0.6 2

x3205

. 1 10

0.6 2

x2058

.7 5

12 . 0 6

x2459

.0 7

2.6 3

x3214

. 5 10

0 . 20 4

x2065

.0 7

1.5 2

x2616

.0 7

1.7 2

x3235

. 2 10

0 . 20 4

x2070

.7 7

1.1 2

x2643

.9 7

1.9 2

x3239

. 0 10

0 . 20 4

x2124

.5 7

1.3 2

x2666

.9 7

5.8 6

x3244

. 2 10

0.7 2

x2155

.5 7

1.5 3

x2799

.3 7

1.8 2

x3246

. 0 10

0 . 20 4

. 0 10

0.9 2

x3598

. 5 10

0 . 20 4

x2182

.0 7

1.3 2

x2869

x2202

.2 7

1.7 2

x2877

.3 7

1.7 2

x2222

.9 7

1.2 2

x2887

.4 7

1.7 2



The

199Bi

source was produced by 1978Ri04 in (p,xn) reactions on natural lead followed by mass and radio–chemical separation.

1978Ri04 assumed that all the γ's are from the 9/2– from ε decay of the 25–min 1/2+ isomer of 1/2+ isomer may populate the 3/2– g.s. of

199Bi. 199Pb

199Bi

g.s. ε decay; however, the evaluators expect some of the γ rays to be

Some of the γ's deexciting levels of

199Pb

fed directly from the ε decay of the

rather than the 5/2– first excited state.



Based on α(K)exp of 1978Ri04 (425.3 M4 transition was used for normalization). The experimental precision did not allow a

§

1978Ri04 list two γ's in coin with 926.4γ and five γ's in coin with 945.96γ; only the 391.28γ is in coin with both of the above

meaningful extraction of δ. γ's. This result may be inconsistent with the decay scheme. # 1978Ri04 list seven γ's possibly in coin with the 1034.0γ; none of these γ's is the same as the three γ's in coin with the 1052.8γ, and the coin with the 720.3γ is inconsistent with the decay scheme proposed by 1978Ri04. @ Listed as 1086.79 in figure 7 of 1978Ri04. & The multipolarities of the 294.0γ, 533.1γ and 560.1γ lead to contradictory π assignments for the 1804 level according to the proposed level scheme. a The uncertainty could be greater than 20% because of the long half–life of the isomeric state (1978Ri04). b Placement of transition in the level scheme is uncertain. γ ray not placed in level scheme. Decay Scheme Intensities: relative Iγ

(1/2+)

680

9/2–

0.0

%ε+%β+=99 1

19 9 Bi 116 83

%ε+%β+=100 Q+=4350120

(13/2+)

12 16 40.3 7.4 1183.2 1062.4 2.3 16 85.8 7.1 1158.3 2.1 8237.0 2.8 16 0.5 M1, 8043.8 2.8 E2 50 806.4 5.6 562.1 8.7 3.2 5. 17 9 M1 1799.0 ,E 2 1380.8 4.3 1.6 7 4 53 .3 8.6 463.1 M 6.2 2 . 29 6 E 1+E 79 4.0 M2+M2 1 1 10.3 727.0 480.3 3.0 7.8 5.4 0 1 . 23 4 2.2 7.9 3. 15 M17 5605.9 +E 0 2 48 .1 M 50 2.1 3.3 1 39 +E 1 5.0 2 28 .3 2 4 7 . . 4 13 3 M .2 2505.6 1+E 84 3.3 MM1+ 2 4 1 83 .7 E 1+EE2 .5 7.4 2 2 6 10 E2 +M1 1. 4 1052.8 +M 1 8 3 E 0 1 4 10 .0 2,M 86 0 94 22.8 E2,M1 6 6 M . 7 1 92 0 E 6.4 2 1,E2 53 42 M1 98 5.3 40 +E M4 2 48 ≈2 00

2186.2+x 2108.3+x 2083.0+x 2069.1+x 1799.9+x 1743.0+x 1505.9+x 1337.2+x 1305.6+x 1266.8+x 1262.7+x 1052.8+x 1022.8+x 946.0+x 425.3+x

1 2.2 m in

19.5+x (5/2–)

0+x x

x

3/2– 19 9 Pb 117 82

412

0.0

9 0 m in

24.70 m in 27 m in

19 9 P b 117 82

203Po

Parent

α De cay (3 6 .7 mi n)

Levels

T1/2†

Jπ†

E(level)

1 9 6 7 L e 2 1 ,1 9 7 0 Jo2 6

E=0; Jπ=5/2–; T1/2=36.7 min 5; Q(g.s.)=5496 5; %α decay=0.11 2.

203Po:

199Pb

0.0

3 / 2–

0+x

( 5 / 2– )



19 9 P b 82 117

NUCLEAR DATA SHEETS

Comments %ε+%β+=100.

90 mi n 10

E(level): x<9.3 from adopted levels.

From adopted levels.

α rad iations Branching: %α=0.11 2 (1967Le21). Others: 0.00025 3 (1970Jo26), 0.0018 2 (1970DaZM). Eα

Iᆇ

E(level)

5383 3

0+x

HF

100

Comments

1.2 2

HF: r0=1.468 5. Eα: from 1991Ry01 (based on measurements by 1967Ti04,1968Go12,1970Jo26). Others: 1970Ra14.

( 5388 8 ) †

≈1

0.0

9 0 SY

Only one α–group has been observed. The main α–transition from 5/2–

203Po

is expected to populate the 5/2– level in

systematics of HF (1980Sc26) one expects ≈1% of the α–decay to populate the close–lying 3/2– g.s. of ‡

199Pb.

From

199Pb.

For α intensity per 100 decays, multiply by 0.0011 2.

1 8 6 W( 1 8 O,5 n γ )

Includes

192Os(13C,6nγ)

and

1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2

192Os(12C,5nγ).

1994Ba43 (also 1993Ba01,1992Ba13,1997Hu12,1997Fa15,1997Di03): E=94 MeV.

192Os(12C,5nγ)

E=82 MeV;

192Os(13C,6nγ)

E=81 MeV; , measured Eγ, Iγ, γγ, DCO ratio; OSIRIS spectrometer array. 1999Po13 (also 1994Du19,1996Bu26,1997Jo15): E=94, 97 MeV; measured prompt and delayed ce, ce–ce coin, ce–γ coin. 1988Pa12: E=81 MeV; measured Eγ, Iγ, I(ce), γγ, γ(ce), γγ(t), γ(ce)(t); γ: intrinsic Ge detectors; ce: magnetic lens, cooled Si(Li) detectors. 1997Cl03: E=99, 104 MeV. Measured lifetimes for members of magnetic–rotational bands using GAMMASPHERE array with 60 Ge detectors. 1995Ne09: E=92 MeV. Measured lifetimes for members of magnetic–rotational bands using an 11 Ge detector array. 1989Su12: E=85 MeV. Measured ce, (ce)(ce), γ(ce), ce(t). Theoretical description of magnetic–rotational bands: 2001Cl02, 1999Cl04, 1998Ma43, 1998Ma09. Level scheme is that proposed by 1994Ba43 with some of the higher levels from 1999Po13. Tentative levels of 1261+x and 1266+x decaying by 837.4γ and 841.7γ, respectively (1988Pa12) are omitted for lack of confirmation. 199Pb

E(level)‡ 0+x 424 . 8+x 2

Jπ†

T1/2§

Comments

5 / 2– 13 / 2+

Levels

E(level): x<9.3 keV (1962Ju05,1957An53) in 12 . 2 mi n 3

199Pb

IT decay.

E(level): others: 430 3 (1997Au04) based on x<9.3 (1962Ju05), 444 (1994Ba43,1999Po13) based on a proposed 19.6 level by 1978Ri04. But the existence of 19.6 level is considered as suspect since the γγ coin evidence presented by 1978Ri04 is very tentative. T1/2: from adopted levels.

1351 . 4+x 3

13 / 2+

1402 . 5+x 3

17 / 2+

1437 . 5+x 3

15 / 2+

1677 . 8+x 4

E(level): level proposed by 1988Pa12 only.

1803 . 3+x 3

17 / 2+

1826 . 0+x 3

19 / 2+

1842 . 1+x 3

21 / 2+

1904 . 8+x 3

17 / 2+

1971 . 8+x 3

19 / 2+

2082 . 1+x 3

21 / 2+

2127 . 5+x 3

21 / 2–

2129 . 4+x 3

19 / 2

3 . 85 ns# 16

Continued on next page (footnotes at end of table)

413

19 9 P b 117 82

1 8 6 W ( 1 8 O ,5n γ )

1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2 (conti nue d) 199Pb

E(level)‡ 2306 . 2+x 3

Jπ†

Levels (continued )

T1/2§

Comments

21 / 2+

2451 . 6+x 4

( 23 / 2– )

2499 . 9+x 4

25 / 2–

2501 . 7+x 3

21 / 2+

2559 . 1+x 4

29 / 2–

2560 . 2+x 4

25 / 2

2571 . 1+x 4

27 / 2–

2748 . 0+x 4

25 / 2+

2841 . 2+x 4

25 / 2

2921 . 1+x 3

21 / 2+

2982 . 9+x 4

25 / 2+

2984 . 2+x 4

( 23 / 2+ )

3134 . 1+x 4

( 25 / 2+ )

3210 . 3+x 4

29 / 2

3359 . 0+x 4

29 / 2

3386 . 2+x 4

27 / 2+

3401 . 3+x 4

29 / 2+

3490 . 1+x 4

33 / 2+

3530 . 0+x 4 3584 . 9+xb 4

33 / 2

9 . 3 ns# 6 10 . 6 µ s@ 5

63 n s@ 4

T1/2: Other: 71 ns 4 (1988Pa12).

( 25 / 2– )

3603 . 7+x 5 3657 . 5+x 4 3674 . 8+xb 5

29 / 2+ ( 27 / 2– )

3742 . 6+x 5 3745 . 7+x 4

29 / 2+

3791 . 9+x 4 3848 . 7+xb 6

33 / 2

3850 . 9+x 4

31 / 2

( 29 / 2– )

3859 . 3+x 5 3876 . 5+x 4

19 9 P b 82 117

NUCLEAR DATA SHEETS

33 / 2

3966 . 7+x 5 4006 . 3+x 4

29 / 2+

4086 . 0+x 4

31 / 2+

4108 . 1+x 4 4124 . 1+xb 7

( 31 / 2– )

4143 . 3+x 5 4228 . 3+x 5

35 / 2

4257 . 5+x 5

37 / 2+

4292 . 6+x 4 4339 . 4+x 5

37 / 2

4348 . 8+x 4

31 / 2

4363 . 6+x 4

31 / 2

4367 . 6+x 5

37 / 2

4474 . 7+x 5 4483 . 5+xb 7

41 / 2+

4543 . 3+x 4

37 / 2

4769 . 0+x 4

33 / 2+

4770 . 0+x 4

33 / 2+

4777 . 2+x 5

41 / 2

40 ns# 10

( 33 / 2– )

4778 . 6+x 4 4884 . 8+xb 7

( 35 / 2– )

5067 . 1+x 5

41 / 2

5129 . 4+x 5

41 / 2

5222 . 6+x 5

41 / 2

5282 . 4+x 5 5305 . 6+xb 7

43 / 2

5314 . 9+x 5

41 / 2

5338 . 9+x 5

41 / 2

5478 . 7+x 4

43 / 2

( 37 / 2– )

5495 . 4+x 6 5554 . 2+x 6 5727 . 2+xb 7

( 39 / 2– )

6055 . 7+xb 7

( 41 / 2– ) Continued on next page (footnotes at end of table)

414

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

1 8 6 W ( 1 8 O ,5n γ )

1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2 (conti nue d) 199Pb

E(level)‡

Jπ†

T1/2§

Comments

6290 . 3+xb 8

( 43 / 2– )

0 . 2 6 p s& + 3 5 – 2 0

6530 . 4+xb 8 6804 . 2+xb 9

( 45 / 2– ) ( 47 / 2– )

0 . 2 1 p s& + 2 1 – 1 7 0 . 1 1 8 p s& + 4 2 – 2 8

6986 . 7+x 6 7120 . 5+xb 9

( 49 / 2– )

7483 . 7+xb 9 7895 . 1+xb 9 8354 . 5+xb 9

( 51 / 2– )

8862 . 8+xb 9 9417 . 5+xb 9 10022 . 4+xb 9

( 57 / 2– )

10659 . 5+xb 9 0 . 0+y c

( 63 / 2– )

98 . 2+y c 223 . 2+y c

3

( 37 / 2+ )

4

( 39 / 2+ )

388 . 8+y c 5 589 . 2+yd 4 603 . 3+y c 5

( 39 / 2+ )

( 53 / 2– ) ( 55 / 2– )

Levels (continued )

0 . 0 9 0 p s& + 2 8 – 2 1 0 . 139 psa 35 0 . 111 p s a +35–28

T1/2:

other: 0.111 ps +21–14 (1995Ne09). other: 0.090 ps +35–21 (1995Ne09).

0 . 104 p s a +35–28 0 . 146 p s a +42–35

T1/2: T1/2:

other: 0.069 ps +21–14 (1995Ne09).

( 59 / 2– ) ( 61 / 2– ) ( 35 / 2+ )

E(level): y>4784+x since the level decays to triplet of states at 4775+x, 4776+x and 4784+x.

( 41 / 2+ ) ( 43 / 2+ )

726 . 8+yd 5 871 . 1+y c 6 891 . 4+yd 5

( 43 / 2+ )

1099 . 8+yd 5

( 45 / 2+ )

1194 . 2+y c 6 1370 . 7+yd 6 1571 . 2+y c 6

( 47 / 2+ )

1712 . 7+yd 6 2001 . 4+y c 6 2129 . 8+yd 6

( 41 / 2+ ) ( 45 / 2+ )

( 47 / 2+ ) ( 49 / 2+ )

0 . 0 9 7 p s& + 4 2 – 2 8

( 49 / 2+ ) ( 51 / 2+ )

0 . 146 p s a +28–21

T1/2: other: 0.069 ps +21–14 (1995Ne09).

0 . 111 p s a +35–21

T1/2:

other: 0.042 ps 14 (1995Ne09).

0 . 090 p s a +28–21

T1/2:

other: 0.076 ps 14 (1995Ne09).

( 51 / 2+ )

2483 . 5+y c 7 2612 . 6+yd 6 3015 . 5+y c 7

( 53 / 2+ )

3149 . 4+yd 7

( 55 / 2+ )

3164 . 8+y 7 3589 . 1+y c 7

( 57 / 2+ )

3608 . 4+y c 7 3734 . 6+yd 8 3967 . 6+y c 8

0 . 1 3 p s& + 1 0 – 6

( 53 / 2+ ) ( 55 / 2+ )

0 . 097 p s a +21–14

( 57 / 2+ ) ( 57 / 2+ ) ( 59 / 2+ )

4197 . 5+y c 4207 . 5+y c

7

( 59 / 2+ )

7

( 59 / 2+ )

4546 . 7+y c 4932 . 6+y c

7

( 61 / 2+ )

8

( 63 / 2+ )

5353 . 6+y c 5807 . 0+y c

8

( 65 / 2+ )

9

( 67 / 2+ )

6303 . 5+y c 6846 . 0+y c

9

( 69 / 2+ )

10

( 71 / 2+ )

7433 . 7+y c 10 0 . 0+z e

( 73 / 2+ ) E(level): z>5135, since the level decays into states between 4234 and 5135. Jπ: possibly 37/2, since the bandhead feeds levels near 33/2.

97 . 7+z e 3 232 . 9+z e 5 426 . 1+z e 6 673 . 5+z e 6 967 . 5+z e 6 1349 . 7+z e 6 1743 . 8+z e 6 2227 . 4+z e 7 2738 . 0+z e 7 3256 . 8+z e 7 3595 . 0+z e 8 0 . 0+u f

E(level): u>4149+x, since the level decays into states between 3216+x and 4149+x. Jπ: possibly 45/2, since the bandhead feeds levels near 41/2. Continued on next page (footnotes at end of table)

415

19 9 P b 117 82

1 8 6 W ( 1 8 O ,5n γ )

1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2 (conti nue d) 199Pb

Levels (continued )

E(level)‡

Comments

2 4 2 . 9+u f

3

5 5 0 . 3+u f 8 6 3 . 3+u f

4

1 2 4 7 . 9+u f 1 6 6 2 . 0+u f 2 1 4 9 . 2+u f 2 6 2 0 . 9+u f 0+v

19 9 P b 82 117

NUCLEAR DATA SHEETS

4 5 5 5 6 E(level): v>5484+x from possible decay to 5484+x.

602 . 6+v 3 938 . 8+v 4 1088 . 6+v 4 1336 . 1+v 3 1795 . 8+v 5 1813 . 0+v 5 2157 . 2+v 5 2171 . 5+v 5 †

From 1994Ba43 and 1999Po13 based on γγ(θ)(DCO) and ce data.



From least–squares fit to Eγ's, assuming ∆(Eγ)=0.3 keV, when not given.

§

From γ(t) and/or ce(t) for lifetimes in the nanosecond region (1988Pa12,1989Su12), from Doppler shift attenuation methods for

lifetimes in the picosecond region (1997Cl03,1995Ne09). # From 1988Pa12. @ From 1989Su12. & From 1995Ne09. a From 1997Cl03. –1 below the band crossing and b (A): Magnetic rotational band #1. Band based on 25/2–. Configuration=π(h i 9/2 13/2) ν(i13/2) c

π(h9/2i13/2)ν(i13/2)–3 above the crossing near 41/2. (B): Magnetic rotational band #2. Band based on 35/2+. Configuration=π(h9/2i13/2)ν(i13/2–2 f5/2–1) below the band crossing and

π(h9/2i13/2) ν(i13/2–4f5/2–1) above the crossing near d (C): Magnetic–rotational band #3. Band based on e (D): Magnetic–rotational band #4. Band probably f (E): Magnetic–rotational band #5. Band probably

61/2. 39/2+. Configuration=π(h9/2i13/2)ν(i13/2–2 f5/2–1). based on 37/2. Tentative configuration=π(h9/2)2 ν(i13/2)–3. based on 45/2. Tentative configuration=π(h9/2)2 ν(i13/2–4p3/2–1).

γ( 1 9 9 Pb)

E(level)

Iγ†



424 . 8+x

4 2 4 . 8@ 2

1351 . 4+x

9 2 6 . 6@ 3

100

α

Mult. M4

I(γ+ce)‡

Comments

4 . 11 I(γ+ce): other: 2.3 5 (1988Pa12).

4 . 9 12

DCO=0.61 10. 1402 . 5+x

9 7 7 . 7@ 2

100 12

E2

DCO=0.98 13. α(K)exp=0.0055 9; α(L1)exp+α(L2)exp=0.0018 4; α(L3)exp=0.00080 30 (1988Pa12).

1437 . 5+x

1 0 1 2 . 8@ 3

1677 . 8+x

1 2 5 3 . 1@ 4 4 0 0 . 8@ 4 4 5 1 . 9@ 3

2.9 8

1 3 7 8 . 5@ 3

11 . 0 19

26 6

I(γ+ce): other: 37.5 15 (1988Pa12).

E 2 ( +M1 )

DCO=0.65 15. 1803 . 3+x

2 . 5& 5 4 . 7 25 I(γ+ce): other: 2.6 4 (1988Pa12). I(γ+ce): other: 11.2 16 (1988Pa12). DCO=0.93 14.

1826 . 0+x

2 2 . 7@ 3 1 4 8 . 2@a 4 3 8 8 . 5@ 2

[ M1 ]

134

1 4& Eγ: from 1988Pa12 only.

15 4

E2

0 . 0563

DCO=0.98 17. α(K)exp=0.046 9; α(L1)exp+α(L2)exp=0.014 4; α(L3)exp=0.0042 18 (1988Pa12). I(γ+ce): other: 33.6 6 (1988Pa12).

4 2 3 . 4@ 2

49 7

M1 +E 2

δ: –1.0 4.

0 . 11 3

DCO=0.39 9. α(K)exp=0.052 12; α(L1)exp+α(L2)exp=0.0174 22; α(L3)exp=0.063 15 (1988Pa12). I(γ+ce): other: 75 10 (1988Pa12). δ: from (α,3nγ). Continued on next page (footnotes at end of table)

416

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

1 8 6 W ( 1 8 O ,5n γ )

1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2 (conti nue d) γ( 1 9 9 P b) (continued )

E(level)



1842 . 1+x

4 3 9 . 5@ 2

Iㆠ25 4

Mult. ( E2 )

α

I(γ+ce)‡

0 . 0408

Comments DCO=1.04 19. α(K)exp=0.0551 18 (1988Pa12). α(K)exp: mixed with transitions from

199Tl

and

200Hg.

I(γ+ce): other: 16.8 5 (1988Pa12). 1904 . 8+x

1971 . 8+x

502 . 2

2.1 7

DCO=0.96 17.

553 . 4

1.5 5

DCO=0.89 19.

1480 . 1

0.3 1

1 2 9 . 7@ 2

1.6 7

DCO=0.76 26. M1

4 . 64

DCO=0.8 3. α(K)exp=3.5 3; α(L1)exp+α(L2)exp=0.69 12 (1988Pa12). I(γ+ce): other: 16 3 (1988Pa12).

2082 . 1+x

5 6 9 . 4@ 3

1 . 7 14

M1 +E 2

2 3 9 . 9@ 2

7 . 9 33

M1 ( +E 2 )

I(γ+ce): other: 9 2 (1988Pa12). 0.5 3

DCO=0.77 25. α(K)exp=0.56 9 (1988Pa12). I(γ+ce): other: 3.8 5 (1988Pa12).

2127 . 5+x

1 5 5 . 7@ 2

9 . 0 18

E1

0 . 147

DCO=0.65 19. α(L)exp=0.0235 12 (1988Pa12). I(γ+ce): other: 18.7 18 (1988Pa12).

3 0 1 . 4@ 2

73 9

E1

0 . 0294

DCO=0.72 9. α(K)exp=0.0228 7; α(L)exp=0.0030 10 (1988Pa12). I(γ+ce): other: 145 7 (1988Pa12).

2129 . 4+x

303 . 4

0.1 1

727 . 0

0.4 2

2306 . 2+x

903 . 8

12 . 1 19

2451 . 6+x

3 2 4 . 2@ 2

7 . 0 16

DCO=0.8 4. DCO=0.98 13. M1

0 . 360

DCO=1.31 32. α(K)exp=0.23 3 (1988Pa12). I(γ+ce): other: 8.8 6 (1988Pa12).

2499 . 9+x

4 8 . 2@ 4 3 7 2 . 4@ 2

[ M1 ] 65 10

E2

15 . 3

1 2&

0 . 0631

DCO=1.04 15. α(K)exp=0.0378 20; α(L1)exp=0.0063 5; α(L2)exp=0.0089 6; α(L3)exp=0.0036 4 (1988Pa12). I(γ+ce): other: 143 6 (1988Pa12).

2501 . 7+x 2559 . 1+x

596 . 9

2.1 9

1099 . 2

0.8 3

5 9 . 1@ 3

DCO=0.99 25. DCO=0.86 21. E2

72 . 3

1 3 5& 2 9

Eγ: other: 56.6 3 (1989Su12,1992Ba13). The value 56.6 was not accepted by 1993Ba01. (L1+L2)/L3=1.2 4 (1988Pa12).

2560 . 2+x 2571 . 1+x

108 . 7

0.5 2

1 1 . 8@ 3 7 0 . 9@ 3

DCO=0.55 31. [D] M1

92 86 4 . 94

< 3 . 5& 4 6& 8

2748 . 0+x

905 . 9

1.7 7

2841 . 2+x

389 . 5

1.6 8

713 . 8

2.5 6

DCO=1.05 24.

419 . 4

2 . 9 25

DCO=1.84 99 (from 1993Ba01).

614 . 9

4 . 6 14

DCO=0.93 16.

791 . 7

0.9 4

DCO=0.57 14.

838 . 7

0.7 4

DCO=0.72 26.

1016 . 3

2 . 7 11

DCO=0.94 24.

1079 . 0

1.1 4

DCO=0.88 19.

1095 . 1

2.2 6

DCO=0.54 10.

1117 . 7

2.1 6

676 . 9

2.8 8

1140 . 8

0.8 2

2921 . 1+x

DCO=1.02 25.

Mult.: ∆J=0 or 1 (1993Ba01). 2982 . 9+x 2984 . 2+x

63 . 1

2 . 6 15

Q

DCO=1.06 19. DCO=0.92 17. DCO=0.9 3.

M1

6 . 95

DCO=0.74 24. Mult.: DCO ratio compatible with mixed ∆J=0 or ∆J=1 transition; M1+E2 inferred from intensity balance. α(L)exp=6.9 18 (1999Po13).

3134 . 1+x

150 . 0

4 . 1 16

828 . 0

1.2 6

M1

3 . 07

DCO=0.64 10. Mult.: from DCO ratio and intensity balance. DCO=0.7 3. α(K)exp=0.0032 4 (1988Pa12).

Continued on next page (footnotes at end of table)

417

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

1 8 6 W ( 1 8 O ,5n γ )

1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2 (conti nue d) γ( 1 9 9 P b) (continued )

E(level)



3210 . 3+x

3 6 9 . 2@ 4

Iγ†

Mult.

α

I(γ+ce)‡

Comments 1988Pa12 placed this γ from 2452+x.

5 . 0 25

I(γ+ce): other: 3.5 5 (1988Pa12). DCO=0.87 17. 639 . 1

2.5 6

DCO=1.1 5.

651 . 2

9 . 1 15

DCO=0.67 31.

710 . 5

1.2 4

DCO=1.1 3.

787 . 8

2.6 6

DCO=0.37 19.

799 . 0

1.5 4

3386 . 2+x

252 . 0

4 . 2 10

3401 . 3+x

8 3 0 . 2@ 2

3359 . 0+x

45 10

DCO=0.92 28. M1

0 . 717

DCO=0.62 11.

E1

DCO=0.65 20. α(K)exp=0.0032 4 (1988Pa12). I(γ+ce): other: 63 3 (1988Pa12).

8 4 2 . 0@ 4

7 . 5 24

α(K)exp very small (1988Pa12).

( E1 )

I(γ+ce): other: 8.2 9 (1988Pa12). 3490 . 1+x

8 8 . 7@ 2

E2

3530 . 0+x

970 . 9

14 . 9 21

3584 . 9+x

450 . 8

4 . 6 11

600 . 7

10 . 5

8 2& 5

(L1+L2)/L3=1.12 10, L/M=4.1 3 (1988Pa12). DCO=0.98 16. DCO=1.11 18.

17 3

DCO=0.66 10. Mult.: stretched D or D+Q ∆J=0 transition from DCO ratio (1993Ba01).

3603 . 7+x 3657 . 5+x

469 . 6

1.5 5

DCO=0.69 15.

271 . 3

1 . 9 11

DCO=0.63 14.

674 . 6

2.1 6

DCO=0.97 20.

909 . 5

0.7 3

3674 . 8+x

89 . 9

3742 . 6+x

212 . 7

DCO=1.2 4. M1

13 . 3

49 26

DCO=0.62 15. α(L)exp=2.0 9 (1999Po13).

3745 . 7+x

3791 . 9+x

3.8 8

DCO=0.79 18.

359 . 5

2.9 8

DCO=0.63 14.

762 . 8

2.5 9

DCO=1.0 6.

997 . 6

0.6 4

DCO=0.9 4.

432 . 8

1.4 5

DCO=1.1 3.

581 . 6

6 . 4 10

DCO=1.03 19.

1232 . 8

0.6 2

DCO=0.65 27.

3848 . 7+x

173 . 9

M1

3850 . 9+x

1291 . 8

0.9 2

DCO=0.6 4.

3859 . 3+x

369 . 2

0.8 4

DCO=1.4 8.

3876 . 5+x

517 . 6

3 . 0 12

DCO=0.96 26.

666 . 1

8 4

DCO=0.86 32.

3966 . 7+x

224 . 1

3.5 8

DCO=1.3 3.

4006 . 3+x

620 . 1

1 . 9 13

DCO=0.40 14.

4086 . 0+x

340 . 4

1 . 8 10

DCO=0.54 20.

428 . 5

2.8 8

DCO=0.58 13.

699 . 9

0.2 2

DCO=1.0 5.

4108 . 1+x

617 . 9

0.9 8

4124 . 1+x

275 . 4

M1

2 . 02

0 . 562

91 13

98 13

DCO=0.63 9.

α(K)exp:

for 275.4+273.8.

DCO=0.62 8. 4143 . 3+x

932 . 9

4228 . 3+x

738 . 2

4257 . 5+x

7 6 7 . 3@ 4

1.2 4 7 . 9 13

DCO=0.29 20.

36 5

DCO=0.98 13. I(γ+ce): other: 0.8 3 (1988Pa12).

4292 . 6+x

1733 . 5

0.6 3

4339 . 4+x

809 . 4

2.8 6

DCO=1.0 3.

4348 . 8+x

342 . 4

3 . 3 18

DCO=0.66 20.

4363 . 6+x 4367 . 6+x

1789 . 7

1.0 5

357 . 3

0.6 3

1804 . 3

0.9 4

110 . 3

1.4 4

139 . 4

0.5 3

877 . 4 4474 . 7+x

2 1 7 . 2@ 3

DCO=0.7 3.

4.9 9 19 3

DCO=0.94 22. E 2 , M1

0.7 4

DCO=0.99 17. α(L)exp=0.123 20 (1988Pa12). I(γ+ce): other: 1.0 3 (1988Pa12).

4483 . 5+x

359 . 4

M1

0 . 272

100 12

DCO=0.59 7.

Continued on next page (footnotes at end of table)

418

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

1 8 6 W ( 1 8 O ,5n γ )

1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2 (conti nue d) γ( 1 9 9 P b) (continued )

E(level)



Iγ†

Mult.

I(γ+ce)‡

634 . 8

4543 . 3+x

666 . 8

8 4

DCO=0.99 29.

751 . 4

7 . 6 12

DCO=0.93 16.

1013 . 4

4770 . 0+x

4777 . 2+x 4778 . 6+x

4884 . 8+x

2.0 7

3 . 8 22

DCO=0.93 23.

660 . 8

1.6 5

DCO=0.82 26.

1278 . 9

0.9 2

DCO=0.8 3.

1367 . 7

0.3 2

DCO=1.2 7.

406 . 3

2.5 7

DCO=0.59 15.

421 . 2

5 . 2 12

DCO=0.56 13.

477 . 3

1.0 3

684 . 0

2.7 7

763 . 8

0.1 1

DCO=0.8 4.

1112 . 5

0.7 3

DCO=0.8 4.

DCO=0.40 10.

302 . 5

6 . 3 15

DCO=1.09 21.

519 . 7

1.0 5

DCO=0.9 4.

486 . 0

1.2 4

670 . 4

0.9 4

DCO=0.5 4.

919 . 3

1.3 4

DCO=1.1 4.

927 . 7

1.6 7

401 . 3

M1

760 . 8 5067 . 1+x

0 . 0171

Comments

4483 . 5+x

4769 . 0+x

[ E2 ]

α

( E2 )

0 . 203

87 13

0 . 0117

8 . 6 19

DCO=0.58 7. DCO=1.06 14.

289 . 8

1.5 6

DCO=0.94 24.

592 . 3

2.3 5

DCO=0.85 19.

352 . 1

1.7 4

DCO=1.1 3.

654 . 6

3.6 8

DCO=1.07 20.

761 . 8

7 . 0 13

DCO=1.01 18.

872 . 0

1.1 4

DCO=0.83 23.

748 . 1

1.9 4

DCO=0.27 17.

965 . 0

1.1 3

DCO=0.9 3.

5282 . 4+x

807 . 8

2.3 6

5305 . 6+x

420 . 7

5129 . 4+x

5222 . 6+x

DCO=0.34 20. M1

0 . 179

87 18

0 . 0099

12 3

α(K)exp: for 420.7+421.5. DCO=0.56 12.

822 . 1 5314 . 9+x

( E2 )

DCO=0.96 11.

771 . 7

8 . 9 14

DCO=1.01 19.

975 . 6

2.9 7

DCO=0.94 29.

5338 . 9+x

795 . 6

7 . 9 12

DCO=1.01 20.

5478 . 7+x

139 . 9

1.8 5

DCO=0.57 19.

163 . 8

2.4 6

DCO=0.67 19.

196 . 3

1.4 8

DCO=1.0 4.

256 . 1

1.3 4

DCO=0.79 21.

349 . 3

11 . 2 17

DCO=0.66 15.

411 . 5

5 . 9 24

DCO=0.65 19.

701 . 5

3.8 7

DCO=0.62 17.

1004 . 1

2.0 5

DCO=0.63 21.

1512 . 0

2.6 5

5495 . 4+x

180 . 5

0.9 3

5554 . 2+x

1079 . 5

5727 . 2+x

421 . 5

DCO=1.2 4.

3 . 4 11

DCO=1.09 23. M1

0 . 178

87 13

α(K)exp: for 420.7+421.5. DCO=0.56 12.

842 . 4 6055 . 7+x

( E2 )

328 . 6

M1

750 . 1

( E2 )

0 . 347

15 4

DCO=0.96 12.

65 8

DCO=0.61 8.

0 . 0120

5 . 9 13

DCO=1.01 16.

6290 . 3+x

234 . 6

M1

0 . 87

60 8

DCO=0.64 9.

6530 . 4+x

240 . 1

M1

0 . 820

57 12

DCO=0.68 13.

6804 . 2+x

273 . 8

M1

0 . 571

51 9

α(K)exp: for 273.8+275.4.

6986 . 7+x

1432 . 5

7120 . 5+x

316 . 3

DCO=0.66 9.

590 . 1 7483 . 7+x

363 . 1 679 . 5

7895 . 1+x

1.0 3

DCO=0.75 23. M1 [ E2 ] M1 [ E2 ]

0 . 385

41 6

0 . 0201 0 . 265

32 5

0 . 0148

411 . 3

( M1 )

0 . 190

774 . 6

[ E2 ]

0 . 0112

DCO=0.63 9.

1.3 4 DCO=0.57 9.

2.0 7 20 4

DCO=0.53 11.

1.8 6

Continued on next page (footnotes at end of table)

419

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

1 8 6 W ( 1 8 O ,5n γ )

1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2 (conti nue d) γ( 1 9 9 P b) (continued )

E(level) 8354 . 5+x 8862 . 8+x 9417 . 5+x



Iγ†

Mult.

459 . 3

( M1 )

870 . 9

[ E2 ]

508 . 3

( M1 )

967 . 7

[ E2 ]

α 0 . 141

I(γ+ce)‡ 13 3

10022 . 4+x 10659 . 5+x

1159 . 6§ 636 . 9§

DCO=0.49 14.

1.1 5 0 . 108

8 2

DCO=0.42 18.

1.6 6

554 . 8 1063 . 0§a 604 . 7§

Comments

3 2

1242 . 1§ 98 . 2+y

98 . 2

34 14

DCO=0.8 4.

223 . 2+y

125 . 0

M1

5 . 16

72 17

DCO=0.65 14.

388 . 8+y

165 . 6

M1

2 . 32

95 14

DCO=0.71 11.

589 . 2+y

491 . 0

603 . 3+y

214 . 6

M1

1 . 12

100 13

DCO=0.71 11.

726 . 8+y

137 . 7

3 . 91

34 10

DCO=0.52 17.

0 . 606

82 11

DCO=0.65 10.

[ M1 ]

2 . 36

42 12

DCO=0.56 17.

[ M1 ]

1 . 22

56 14

0 . 363

70 10

DCO=0.66 10.

[ M1 ]

0 . 59

75 15

DCO=0.75 27.

377 . 1

[ M1 ]

0 . 239

57 9

700 . 1

[ E2 ]

0 . 0139

[ M1 ]

0 . 311

100 8

0 . 168

46 7

503 . 7 871 . 1+y

267 . 8

891 . 4+y

164 . 6 502 . 6

1099 . 8+y 1194 . 2+y

323 . 1

1370 . 7+y

271 . 0 499 . 6

10 . 3

0.8 3 [ M1 ] 1.0 3

DCO=0.54 26. M1

1.2 2

208 . 3 496 . 5

1571 . 2+y

[ M1 ]

DCO=0.60 22.

1.0 2

DCO=0.62 15. DCO=0.52 19.

M1 1.2 2

DCO=0.75 33. DCO=0.57 9. Iγ: I(377.10γ)/I(700.10γ)=7.7 25 (1992Ba13).

1712 . 7+y

342 . 0 518 . 5

2001 . 4+y

2.3 8

1.7 3

430 . 3

DCO=0.54 11. DCO=0.63 31.

M1

DCO=0.57 9. Iγ: I(377.10γ)/I(700.10γ)=7.7 25 (1992Ba13).

807 . 1 2129 . 8+y

417 . 0 558 . 6

2483 . 5+y

481 . 9

( E2 )

0 . 0103

3 . 0 10

[ M1 ]

0 . 183

72 13

0 . 124

37 7

0.8 2

DCO=1.05 18. DCO=0.60 14. DCO=0.64 29.

M1

DCO=0.56 10. Iγ: I(377.10γ)/I(700.10γ)=7.7 25 (1992Ba13).

2612 . 6+y

912 . 4

( E2 )

482 . 7

[ M1 ]

2.2 7 0 . 123

56 11

900 . 0 3015 . 5+y

DCO=1.16 23. DCO=0.48 14.

6 . 6 28

532 . 0

( M1 )

0 . 096

1014 . 2

( E2 )

536 . 8

( M1 )

0 . 094

0 . 079

30 5

DCO=0.50 12. Iγ: I(531.95γ)/I(1014.00γ)=16.4 50 (1992Ba13).

3149 . 4+y

5 . 5 17 16 4

DCO=0.97 20. DCO=0.44 21.

1019 . 6# 3164 . 8+y

552 . 2

3589 . 1+y

573 . 6

[ M1 ]

15 4

1105 . 7

( E2 )

15 3

DCO=0.54 18. Iγ: I(573.45γ)/I(1105.55γ)=17.8 50 (1992Ba13).

3608 . 4+y

DCO=0.82 21.

9 2

Iγ: I(618.35γ)/I(1191.95γ)=15.8 40 (1992Ba13).

593 . 1§ 1124 . 6§

3734 . 6+y

585 . 2#

3967 . 6+y

1122 . 0# 359 . 2§

4197 . 5+y

2.9 8

608 . 5§ 1181 . 8§

4207 . 5+y

618 . 2

[ M1 ]

1192 . 1

[ E2 ]

4546 . 7+y

339 . 2§

4932 . 6+y

349 . 3§ 385 . 9§

5353 . 6+y 5807 . 0+y

0 . 0647

1.4 5

421 . 0§ 453 . 4§ Continued on next page (footnotes at end of table)

420

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

1 8 6 W ( 1 8 O ,5n γ )

1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2 (conti nue d) γ( 1 9 9 P b) (continued )

E(level)



6303 . 5+y

496 . 5§

6846 . 0+y

542 . 5§ 587 . 7§

7433 . 7+y

Iγ†

Mult.

I(γ+ce)‡

α

Comments

97 . 7+z

97 . 7

24 9

DCO=0.52 23.

232 . 9+z

135 . 2

M1

4 . 12

36 8

DCO=0.57 13.

426 . 1+z

193 . 2

M1

1 . 50

48 9

DCO=0.65 12.

673 . 5+z

247 . 4

M1

0 . 755

76 10

DCO=0.70 12.

967 . 5+z

294 . 1

M1

0 . 469

100 7

541 . 4 1349 . 7+z

382 . 1

[ M1 ]

0 . 231

55 11

676 . 2 1743 . 8+z

394 . 2

[ M1 ]

0 . 213

33 8

483 . 5

[ M1 ]

0 . 123

29 7

510 . 5 518 . 8#

3595 . 0+z

1029 . 4# 338 . 2#

DCO=0.57 18.

7 3 [ M1 ]

0 . 107

23 6

994 . 2 3256 . 8+z

DCO=0.55 11.

9 . 7 25

877 . 6 2738 . 0+z

DCO=0.58 9.

6 . 0 17

776 . 4 2227 . 4+z

DCO=0.64 10.

10 3

DCO=0.68 25.

5 . 1 19

2 4 2 . 9+u

242 . 9

52 12

DCO=0.65 16.

5 5 0 . 3+u

307 . 3

75 16

DCO=0.58 15.

8 6 3 . 3+u

313 . 0

100 17

DCO=0.59 11.

[ M1 ]

0 . 396

620 . 5 1 2 4 7 . 9+u

17 5

384 . 6

[ M1 ]

0 . 227

81 16

697 . 6 1 6 6 2 . 0+u

414 . 0

[ M1 ]

0 . 187

57 13

798 . 7 2 1 4 9 . 2+u

487 . 0 471 . 7

602 . 6+v

602 . 6

DCO=0.53 12.

11 3 [ M1 ]

0 . 121

27 7

901 . 4 2 6 2 0 . 9+u

DCO=0.54 9.

7 . 4 24

DCO=0.48 16.

6 . 2 25 12 4 20 5

DCO=0.43 18. DCO=1.00 15.

938 . 8+v

336 . 3

5.0 9

DCO=1.04 22.

1088 . 6+v

149 . 8

2 . 4 12

DCO=0.73 18.

485 . 9

4.6 9

DCO=0.60 17.

1336 . 1+v

1336 . 1

1.3 3

1795 . 8+v

1193 . 2

1.9 4

DCO=0.87 22.

1813 . 0+v

724 . 4

4 . 6 11

DCO=0.58 20.

2157 . 2+v

1068 . 6

1.8 5

2171 . 5+v

1568 . 9

1.8 6



Relative γ intensities (1994Ba43) within each band for transitions assigned in a band. All other intensities are relative to 100 for 977.7γ from 1402.6+x level.



From 1994Ba43. Values are relative intensities within each band, unless otherwise stated.

§

From 1997Hu12.

# From 1999Po13. @ From 1988Pa12. Energy quoted by 1994Ba43 is in good agreement. & From 1988Pa12, relative to 100 for 977.7γ. a Placement of transition in the level scheme is uncertain.

421

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

1 8 6 W ( 1 8 O ,5n γ )

1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2 (conti nue d) Level Scheme

Intensities: relative γ–ray intensities for transitions not assigned to any band or for out–of–band transitions. See footnote † in table. See tables for gammas above 4108.1+x level 2171.5+v 602.6+v 1247.9+u 3256.8+z 1743.8+z 97.7+z 5353.6+y

(59/2–)

9417.5+x

(53/2–)

7895.1+x

29/2+ 33/2 31/2 (29/2–) 33/2 29/2+ (27/2–) 29/2+ (25/2–)

71 650.5 631.2 369.1 9.2 82 8 . 15 0 0.0 1. 63 M12 11 .1 M 4.1 6740.8 1 2 6.9 0 .6 11 2.8.8 1017.7 1095.1 Q 1079.0 2.22.1 8316.3 1.1 798.7 2.7 611.7 0.7 414.9 0.9 9.4 4. 6 2.9

31/2+

61 69 7.9 429.9 0.9 348.5 0.2 0.4 2. 62 8 0 1.8 .1 22 4.1 1.9 66 6 3 .5 51 .1 36 7.6 8 12 9.2 3.0 17 91.8 0.8 3.9 0 12 M1 .9 5832.8 1 43 .6 0.6 99 2.8 6.4 1.4 767.6 352.8 0.6 9 2 21 .5 .5 2.7 2. 89 9 3.8 90 .9 M 679.5 1 274.6 0.7 46 1.3 2.1 9 1.9 60 .6 450.7 1.5 0 1 . 8 7 97 4.6 88 0.9 .7 14 84 E .9 2 832.0 ( 25 0.2 EE1) 79 2.0 M 1 7.5 1 45 789.0 7.8 1. 5 4.2 2.6 1.2 9.1 2.5 5.0

(65/2+)

33/2 33/2+ 29/2+ 27/2+ 29/2 29/2 (25/2+)

4108.1+x 4086.0+x 4006.3+x 3966.7+x 3876.5+x 3859.3+x 3850.9+x 3848.7+x 3791.9+x 3745.7+x 3742.6+x 3674.8+x 3657.5+x 3603.7+x 3584.9+x 3530.0+x 3490.1+x 3386.2+x 3359.0+x 3210.3+x 3134.1+x 2984.2+x

25/2+

2982.9+x

21/2+

2921.1+x

25/2

2841.2+x

25/2+

2748.0+x

27/2–

2571.1+x

25/2

2560.2+x

29/2–

2559.1+x

21/2+

2501.7+x

25/2–

2499.9+x

21/2+

2306.2+x

19/2

2129.4+x

21/2+

2082.1+x

17/2+

1904.8+x

21/2+

1842.1+x

19/2+

1826.0+x

17/2+

1803.3+x 0+x 1 9 9 Pb 117 82

422

63 ns

3401.3+x

(23/2+)

5/2–

0.111 ps

10.6 µs 9.3 ns

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

1 8 6 W ( 1 8 O ,5n γ )

1 9 9 4 Ba4 3 ,1 9 9 9 Po1 3 ,1 9 8 8 Pa1 2 (conti nue d) Level Scheme (continued)

Intensities: relative γ–ray intensities for transitions not assigned to any band or for out–of–band transitions. See footnote † in table. See tables for gammas above 4108.1+x level 2171.5+v 602.6+v 1247.9+u 3256.8+z 1743.8+z 97.7+z (65/2+)

5353.6+y

(59/2–)

9417.5+x

(53/2–)

7895.1+x

31/2+

4086.0+x

0.111 ps

3966.7+x (29/2–)

3848.7+x 3742.6+x 3584.9+x

33/2+

3490.1+x

29/2

3359.0+x

(25/2+)

3134.1+x

27/2– 25/2 29/2– 21/2+ 25/2– (23/2–) 21/2+ 19/2 21/2– 21/2+ 19/2+ 17/2+ 21/2+ 19/2+ 17/2+

63 ns

2841.2+x 2748.0+x 2571.1+x 2560.2+x 2559.1+x 2501.7+x 2499.9+x

10.6 µs 9.3 ns

2451.6+x 2306.2+x 2129.4+x 2127.5+x

10 97 12.8 92 7.7 E E2(+ 6.6 M 2 4.9 100 1) 2 6

25/2+

90

25/2

71 383.8 9.5 2. 5 5.9 1.6 70 . 1.7 9 11 M 10 .8 [D1 598.7 ] 10 .1 E 0.5 5999.2 2 37 6.9 0.8 482.4 E2.1 32 .2 [M2 4.2 1 65 90 M1 ] 3.8 72 7 7.0 1 . 2.1 30 0 30 3.4 0.4 1 0 . 15 4 E .1 23 5.7 E1 9.9 1 73 56 M1 9.0 129.4 M (+E 9 . 7 1+ 2) 14 M1 E2 7.9 5580.1 503.4 0.3 1.6 1.7 43 2.2 1.5 42 9.5 ( 2.1 383.4 ME2) 148.5 E 1+E 25 228.2 2 2 15 49 13 .7 [M 4578.5 1] 1 . 40 9 11. 0.8 2. 0 12 9 53 4.7 .1

(25/2–)

3.85 ns

2082.1+x 1971.8+x 1904.8+x 1842.1+x 1826.0+x 1803.3+x 1677.8+x 1437.5+x

17/2+

1402.5+x

13/2+

1351.4+x

42

4.8

M4

10

0

15/2+

13/2+

5/2–

424.8+x

0+x 1 9 9 Pb 117 82

423

12.2 m in

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

1 9 8 H g( α ,3 n γ )

1 9 8 1 H e 0 7 ,1 9 8 8 Ro0 8

1981He07 (also 1977He06): E=35–45 MeV; measured Eγ, Iγ, excit, γ(θ), γγ, γγ(t). 1988Ro08: E=41 MeV; measured Eγ, Iγ, γ(θ), γ(θ,H,t), γγ(t). 1985St16: E=60 MeV; measured γ(θ,H,t), γ(t). Other: 1978Ri01. The level scheme is basically that of 1988Ro08, based on their experiments and the earlier results of 1985St16, 1981He07, 1978Ri01 and 1978Ri04. The evaluators have made the following changes: 1. All E(level) have been recalculated placing the 5/2– level at 0+x (x≤9.3 keV), rather than at 19.6. 2. The Eγ of the three proposed but unobserved low energy transitions have been replaced with the corresponding Eγ from the (18O,5nγ). 3. The placements of the 830.0γ and 903.6γ are from the (18O,5nγ). 199Pb

E(level) 0+x

Jπ†

T1/2

Comments E(level): x≤9.3 from

5 / 2–

424 . 8+x

13 / 2+

1402 . 36+x

17 / 2+

1437 . 39+x

15 / 2+

1825 . 86+x

19 / 2+

1841 . 96+x

21 / 2+

1971 . 64+x 2082 . 0+x

( 19 / 2 ) + ( 21 / 2+ ) ‡

2127 . 26+x

21 / 2–

2305 . 9+x

( 21 / 2+ ) ‡

2451 . 4+x

23 / 2–

Levels

<2 ns

199Pb

IT decay.

T1/2: from 1981He07.

3 . 6 ns

7

T1/2: from 1981He07.

2499 . 66+x

25 / 2–

7 . 5 ns

3

T1/2: from 1988Ro08. Others: 11 ns 3 (1985St16), 33 ns 3 (1981He07).

2558 . 8+x

29 / 2–

10 . 0 µs

2

g=–0.0742 2 (1988Ro08). g: other: –0.074 5 (1985St16). For pure ν(i13/2–2f5/2–1), the expected value is –0.073. T1/2: from 1988Ro08. Other: 10.6 µs 5 (1981He07).

2570 . 7+x 4

27 / 2–

3400 . 7+x

29 / 2+

3489 . 4+x

33 / 2+

E(level),Jπ: level from (18O,5nγ). 55 ns

5

g=–0.145 9 (1988Ro08). g: other: –0.152 3 (1985St16). For pure νi13/2–3, the expected value is –0.15 (1980Sc26). T1/2: from 1988Ro08. Others: 58 ns 6 (1985St16), 55 ns 8 (1981He07).



As proposed by 1988Ro08, unless otherwise stated.



From adopted levels.

γ( 1 9 9 Pb) A2 and A4 values are from 1981He07. Eγ†

E(level)

Iγ‡

Mult.§

δ

α

Comments

2570 . 7+x

Eγ: from adopted gammas.

( 48 . 3 ) ( 5 9 . 1& 3 ) 7 0 . 9& 3

2499 . 66+x

Eγ: γ required from γγ(t) data (1988Ro08).

( 8 8 . 4& 3 )

3489 . 4+x

129 . 6 3

1971 . 64+x

1.8 3

155 . 6 2

2127 . 26+x

6.4 7

240 . 2 3

2082 . 0+x

3.8 5

301 . 4 1

2127 . 26+x

324 . 2 2

2451 . 4+x

372 . 4 1

2499 . 66+x

46 4

( E2 )

0 . 0631

A2=+0.06 2.

388 . 5 2

1825 . 86+x

16 . 2 14

( E2 )

0 . 0562

A2=+0.11 2.

423 . 5 3

1825 . 86+x

38 5

M1 +E 2

0 . 11 3

A2=–0.40 3, A4=–0.11 5.

424 . 9 3

424 . 8+x

30 4

M4 @

4 . 11

439 . 6 2

1841 . 96+x

25 . 0 18

E2

0 . 0408

569 . 3 3

1971 . 64+x

2.0 4

830 . 0 2

3400 . 7+x

9.2 9

11 . 8 3

2558 . 8+x

E 2&

72 . 3

2570 . 7+x

M1 & E 2&

10 . 5

63 4

4 . 94

( M1 ) # ( E1 ) #

4 . 65

A2=–0.10 4, A4=–0.10 6.

0 . 147

A2=–0.11 4, A4=–0.03 6.

E1

0 . 0294

A2=–0.10 2, A4=–0.09 4. Mult.: also from γ(θ) in g–factor experiment.

7.7 7

A2=+0.40 3.

–1 . 0 4

δ: from g–factor experiment (1985St16). A2=+0.18 3, A4=–0.06 4. A2=+0.03 11. A2=–0.11 4, A4=–0.07 6. Eγ: placement from adopted gammas, consistent with the γγ coin evidence by 1988Ro08 that this γ feeds the 2505 level through unobserved low energy transitions.

Continued on next page (footnotes at end of table)

424

19 9 P b 117 82

19 9 P b 82 117

NUCLEAR DATA SHEETS

1 9 8 Hg( α ,3 n γ )

1 9 8 1 H e 0 7 ,1 9 8 8 Ro0 8 (conti nue d) γ( 1 9 9 P b) (continued )

Eㆠ903 . 4 2

Iγ‡

E(level) 2305 . 9+x

Mult.§

9 . 6 10

Comments

E2

A2=+0.29 4, A4=–0.16 6. Eγ: placement from adopted gammas. γ assigned to a 25/2+ level at 2749 by 1981He07 and 1988Ro08.

977 . 4 1

1402 . 36+x

1012 . 4 3

1437 . 39+x



From 1981He07.



At 125° (1981He07).

100 26 3

E2

A2=+0.15 3, A4=–0.11 4.

M1 +E 2

A2=–0.25 2, A4=0.00 4.

§ From γ(θ) (1981He07), unless otherwise indicated. # From intensity balance considerations (1981He07). @ From adopted gammas. & from adopted gammas; γ not observed in this experiment. Level Scheme

29/2– 25/2– 23/2– (21/2+) 21/2– (21/2+) (19/2)+

30

27/2–

3489.4+x

70 11.9 M 59 .8 1 37 .1 E 482.4 ( 2 32 .3 E2) 46 90 4.2 30 3.4 E 7.7 151.4 E 2 9.6 24 5.6 ( 1 6 56 0.2 E1) 3 9 3 .8 6.4 12 .3 43 9.6 ( 2.0 42 9.6 E M1) 1 383.5 M2 8.5 1 25 .8 10 (E +E2.0 2) 97 12.4 7.4 M 16 38 .2 E2 1+E 10 2 2 0 6

33/2+ 29/2+

88 83 .4 E 0.0 2 9.2

Intensities: relative Iγ

M4

21/2+ 4.9

19/2+ 42

15/2+ 17/2+ 13/2+

2570.7+x 2558.8+x 2499.66+x 2305.9+x 2127.26+x

425

3.6 ns

2082.0+x 1971.64+x 1841.96+x 1825.86+x 1437.39+x 1402.36+x 0+x

19 9 Pb 117 82

10.0 µs 7.5 ns

2451.4+x

424.8+x

5/2–

55 ns

3400.7+x

<2 ns

NUCLEAR DATA SHEETS

REFERENCES FOR

199Pb

1 9 4 8Te 0 1

D.H.Templeton, I.Perlman – Phys.Rev. 73, 1211 (1948)

1 9 5 0N e 7 7

H.M.Neumann, I.Perlman – Phys.Rev. 78, 191 (1950)

1 9 5 5 An 0 1

G.Andersson, E.Arbman, I.Bergstrom, A.H.Wapstra – Phil.Mag. 46, 70 (1955)

1956S t 05

R.Stockendal, J.A.McDonnell, M.Schmorak, I.Bergstrom – Arkiv Fysik 11, 165 (1956)

1 9 5 7 An 5 3

G.Andersson, E.Arbman, B.Jung – Arkiv Fysik 11, 297 (1957)

1962Ju05

B.Jung, G.Andersson, T.Stenstrom – Nuclear Phys. 36, 31 (1962)

1964S i 11

A.Siivola, P.Kauranen, B.Jung, J.Svedberg – Nucl.Phys. 52, 449 (1964)

1 9 6 6Ma 5 1

I.Mahunka, L.Tron, T.Fenyes, V.A.Khalkin – Izv.Akad.Nauk SSSR, Ser.Fiz. 30, 1375 (1966); Bull.Acad.Sci.USSR,

1 9 6 7Le 2 1

Y.Le Beyec, M.Lefort – Arkiv Fysik 36, 183 (1967)

Phys.Ser. 30, 1436 (1967) 1 9 6 7T i 0 4

E.Tielsch–Cassel – Nucl.Phys. A100, 425 (1967)

1 9 6 8G o 1 2

N.A.Golovkov, R.B.Ivanov, Y.V.Norseev, So Ki Kvan, V.A.Khalkin, V.G.Chumin – Contrib.Intern.Conf.Nucl.Struct.,

1 9 7 0Da ZM

J.M.Dairiki – Thesis, Univ. California (1970); UCRL–20412 (1970)

Dubna, p.54 (1968) 1970Jo26

A.G.Jones, A.H.W.Aten, Jr. – Radiochim.Acta 13, 176 (1970)

1 9 7 0Ra 1 4

K.Raichev, L.Tron – Acta Phys. 28, 263 (1970)

1 9 7 3 J o ZF

M.W.Johnson, R.A.Warner, W.C.McHarris, W.H.Kelly – Ann.Rept.Mich.State Univ.Cyclotron Lab., 1972–1973, p.63 (1973)

1 9 7 4 J o ZX

M.W.Johnson, W.C.McHarris, R.A.Warner, W.H.Kelly – Bull.Amer.Phys.Soc. 19, No.4, 598, KI3 (1974)

1 9 7 7He 0 6

H.Helppi, S.K.Saha, P.J.Daly, S.R.Faber, T.L.Khoo, F.M.Bernthal – Phys.Lett. 67B, 279 (1977)

1 9 7 8 L e ZA

C.M.Lederer, V.S.Shirley, E.Browne, J.M.Dairiki, R.E.Doebler, A.A.Shihab–Eldin, L.J.Jardine, J.K.Tuli, A.B.Buyrn –

1 9 7 8R i 0 1

H.Richel, G.Albouy, G.Auger, J.M.Lagrange, M.Pautrat, C.Roulet, H.Sergolle, J.Vanhorenbeeck – Z.Phys. A284, 425

1 9 7 8R i 0 4

H.Richel, G.Albouy, G.Auger, F.Hanappe, J.M.Lagrange, M.Pautrat, C.Roulet, H.Sergolle, J.Vanhorenbeeck – Nucl.Phys.

1980S c 26

M.R.Schmorak – Nucl.Data Sheets 31, 283 (1980)

1 9 8 1He 0 7

H.Helppi, S.K.Saha, P.J.Daly, S.R.Faber, T.L.Khoo, F.M.Bernthal – Phys.Rev. C23, 1446 (1981)

1 9 8 3Th 0 3

R.C.Thompson, M.Anselment, K.Bekk, S.Goring, A.Hanser, G.Meisel, H.Rebel, G.Schatz, B.A.Brown – J.Phys.(London) G9,

1985S t 16

C.Stenzel, H.Grawe, H.Haas, H.–E.Mahnke, K.H.Maier – Z.Phys. A322, 83 (1985)

Table of Isotopes, 7th Ed., John Wiley and Sons, Inc., New York (1978) (1978) A303, 483 (1978)

443 (1983) 1 9 8 6 An 0 6

M.Anselment, W.Faubel, S.Goring, A.Hanser, G.Meisel, H.Rebel, G.Schatz – Nucl.Phys. A451, 471 (1986)

1 9 8 7Ca 2 3

P.Carle, S.Egnell, L.O.Norlin, K.–G.Rensfelt, U.Rosengard, B.Fant, H.C.Jain, K.Johansson – Hyperfine Interactions

1 9 8 8Pa 1 2

M.Pautrat, J.M.Lagrange, J.S.Dionisio, Ch.Vieu, J.Vanhorenbeeck – Nucl.Phys. A484, 155 (1988)

1 9 8 8Ro 0 8

U.Rosengard, P.Carle, A.Kallberg, L.O.Norlin, K.–G.Rensfelt, H.C.Jain, B.Fant, T.Weckstrom – Nucl.Phys. A482, 573

1 9 8 9Ra 1 7

P.Raghavan – At.Data Nucl.Data Tables 42, 189 (1989)

1 9 8 9Su1 2

X.Sun, U.Rosengard, H.Grawe, H.Haas, H.Kluge, A.Kuhnert, K.H.Maier – Z.Phys. A333, 281 (1989)

34, 77 (1987)

(1988)

1 9 9 1Ry 0 1

A.Rytz – At.Data Nucl.Data Tables 47, 205 (1991)

1 9 9 2Ba 1 3

G.Baldsiefen, H.Hubel, D.Mehta, B.V.T.Rao, U.Birkental, G.Frohlingsdorf, M.Neffgen, N.Nenoff, S.C.Pancholi, N.Singh, W.Schmitz, K.Theine, P.Willsau, H.Grawe, J.Heese, H.Kluge, K.H.Maier, M.Schramm, R.Schubart, H.J.Maier – Phys.Lett. 275B, 252 (1992)

1 9 9 3Ba 0 1

G.Baldsiefen, U.Birkental, H.Hubel, N.Nenoff, B.V.T.Rao, P.Willsau, J.Heese, H.Kluge, K.H.Maier, R.Schubart,

1 9 9 4A r 1 3

A.Artna–Cohen – Nucl.Data Sheets 72, 297 (1994)

1 9 9 4Ba 4 3

G.Baldsiefen, H.Hubel, W.Korten, D.Mehta, N.Nenoff, B.V.T.Rao, P.Willsau, H.Grawe, J.Heese, H.Kluge, K.H.Maier,

1 9 9 4Du 1 9

J.Duprat, C.Vieu, F.Azaiez, G.Baldsiefen, C.Bourgeois, R.M.Clark, I.Deloncle, J.S.Dionisio, B.Gall, F.Hannachi,

S.Frauendorf – Phys.Lett. 298B, 54 (1993)

R.Schubart, S.Frauendorf, H.J.Maier – Nucl.Phys. A574, 521 (1994) H.Hubel, M.Kaci, A.Korichi, Y.Le Coz, M.Meyer, N.Perrin, M.G.Porquet, N.Redon, C.Schuck, H.Sergolle, R.Wadsworth – Z.Phys. A347, 289 (1994) 1 9 9 5 Au 0 4

G.Audi, A.H.Wapstra – Nucl.Phys. A595, 409 (1995)

1 9 9 5N e 0 9

M.Neffgen, G.Baldsiefen, S.Frauendorf, H.Grawe, J.Heese, H.Hubel, H.Kluge, A.Korichi, W.Korten, K.H.Maier, D.Mehta, J.Meng, N.Nenoff, M.Piiparinen, M.Schonhofer, R.Schubart, U.J.van Severen, N.Singh, G.Sletten, B.V.T.Rao, P.Willsau – Nucl.Phys. A595, 499 (1995)

1 9 9 6 Bu 2 6

P.A.Butler, P.M.Jones, K.J.Cann, J.F.C.Cocks, H.Hubel, G.D.Jones, R.Julin, W.Pohler, B.Schulze, J.F.Smith – Acta

1 9 9 7 Au 0 4

G.Audi, O.Bersillon, J.Blachot, A.H.Wapstra – Nucl.Phys. A624, 1 (1997)

1 9 9 7C l 0 3

R.M.Clark, S.J.Asztalos, G.Baldsiefen, J.A.Becker, L.Bernstein, M.A.Deleplanque, R.M.Diamond, P.Fallon, I.M.Hibbert,

Phys.Pol. B27, 463 (1996)

H.Hubel, R.Krucken, I.Y.Lee, A.O.Macchiavelli, R.W.MacLeod, G.Schmid, F.S.Stephens, K.Vetter, R.Wadsworth, S.Frauendorf – Phys.Rev.Lett. 78, 1868 (1997) 1 9 9 7D i 0 3

R.M.Diamond – Acta Phys.Pol. B28, 105 (1997)

1 9 9 7Fa 1 5

P.Fallon – Z.Phys. A358, 231 (1997)

1 9 9 7Hu 1 2

H.Hubel, G.Baldsiefen, R.M.Clark, S.J.Asztalos, J.A.Becker, L.Bernstein, M.A.Deleplanque, R.M.Diamond, P.Fallon, I.M.Hibbert, R.Krucken, I.Y.Lee, A.O.Macchiavelli, R.W.MacLeod, G.Schmid, F.S.Stephens, K.Vetter, R.Wadsworth – Z.Phys. A358, 237 (1997)

1997Jo15

P.M.Jones, P.A.Butler, K.J.Cann, J.F.C.Cocks, G.D.Jones, R.Julin, H.Kankaanpaa, W.Pohler, B.Schulze, J.F.Smith, A.N.Wilson – Z.Phys. A358, 191 (1997)

426

NUCLEAR DATA SHEETS

REFERENCES FOR

199Pb

( CONT I NUED )

1 9 9 8Ma 0 9

A.O.Macchiavelli, R.M.Clark, P.Fallon, M.A.Deleplanque, R.M.Diamond, R.Krucken, I.Y.Lee, F.S.Stephens, S.Asztalos,

1 9 9 8Ma 4 3

A.O.Macchiavelli, R.M.Clark, M.A.Deleplanque, R.M.Diamond, P.Fallon, I.Y.Lee, F.S.Stephens, K.Vetter – Phys.Rev.

1 9 9 9C l 0 4

R.M.Clark – J.Phys.(London) G25, 695 (1999)

1 9 9 9Po 1 3

W.Pohler, G.Baldsiefen, H.Hubel, W.Korten, E.Mergel, D.Rossbach, B.Aengenvoort, S.Chmel, A.Gorgen, N.Nenoff,

K.Vetter – Phys.Rev. C57, R1073 (1998) C58, R621 (1998)

R.Julin, P.Jones, H.Kankaanpaa, P.A.Butler, K.J.Cann, P.T.Greenlees, G.D.Jones, J.F.Smith – Eur.Phys.J. A 5, 257 (1999) 2 0 0 1C l 0 2

R.M.Clark, A.O.Macchiavelli – Nucl.Phys. A682, 415c (2001)

427

428