On computing of arbitrary positive integer powers for tridiagonal matrices with elements −1,0,0, … ,0 in principal and 1,1,1, … ,1 in neighbouring diagonals – I

On computing of arbitrary positive integer powers for tridiagonal matrices with elements −1,0,0, … ,0 in principal and 1,1,1, … ,1 in neighbouring diagonals – I

Available online at www.sciencedirect.com Applied Mathematics and Computation 193 (2007) 253–256 www.elsevier.com/locate/amc On computing of arbitra...

103KB Sizes 34 Downloads 64 Views

Available online at www.sciencedirect.com

Applied Mathematics and Computation 193 (2007) 253–256 www.elsevier.com/locate/amc

On computing of arbitrary positive integer powers for tridiagonal matrices with elements 1,0,0, . . . ,0 in principal and 1,1,1, . . . ,1 in neighbouring diagonals – I Jonas Rimas Department of Applied Mathematics, Faculty of Fundamental Sciences, Kaunas University of Technology, Kaunas 51368, Lithuania

Abstract In this paper we derive the general expression of the lth power (l 2 N Þ for one type of tridiagonal matrices of arbitrary order. Ó 2007 Elsevier Inc. All rights reserved. Keywords: Tridiagonal matrices; Eigenvalues; Eigenvectors; Jordan’s form; Chebyshev polynomials

1. Introduction Solving some difference, differential equation and delay differential equations we meet the necessity to compute the arbitrary positive integer powers of square matrices [1,2]. In this paper we derive the general expression of the lth power (l 2 N Þ for one type of tridiagonal matrices. Similar expressions for some types of symmetric circulant and tridiagonal matrices were derived in [3–6]. 2. Derivation of general expression Consider the nth order ðn 2 N ; n P 2Þ matrix B of the following type: 1 0 1 1 C B 1 0 1 0 C B C B C B 1 0 1 C: B¼B C B ... C B C B @ 0 1 0 1A 1

0

E-mail address: [email protected] 0096-3003/$ - see front matter Ó 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2007.03.051

ð1Þ

254

J. Rimas / Applied Mathematics and Computation 193 (2007) 253–256

The lth power ðl 2 N Þ of this matrix we will find using the expression Bl ¼ TJ l T 1 [7], where J is the Jordan’s form of B, T is the transforming matrix. Matrices J and T can be found provided eigenvalues and eigenvectors of the matrix B are known. The eigenvalues of B are defined by the characteristic equation jB  kEj ¼ 0; here E is the identity Let us denote  a  1    1     Dn ðaÞ ¼        

ð2Þ matrix of the nth order. 1 a

1

1

a

1 ...

0

1

     0     ;    a 1   1 a

 a   1     Dn ðaÞ ¼        

1 a 1 1 a

0 1 ...

0

1 a 1

         ;    1   a

ð3Þ

here a 2 R. Then jB  kEj ¼ Dn ðkÞ:

ð4Þ

From (3) follows: Dn ¼ ða  1ÞDn1  Dn2

ð5Þ

and Dn ¼ aDn1  Dn2 ðD2 ¼ a2  1; D1 ¼ a; D0 ¼ 1Þ; here Dn ¼ Dn ðaÞ;

Dn ¼ Dn ðaÞ. Solving difference equation (6), we obtain Dn ðaÞ ¼ U n  a  a Dn ðaÞ ¼ U n  U n1 ; 2 2 here Un(x) is the nth degree Chebyshev polynomial of the second kind: U n ðxÞ ¼

sinðn þ 1Þ arccos x ; sin arccos x

1 6 x 6 1:

a 2

ð6Þ , ð7Þ

ð8Þ

All the roots of the polynomial Un(x) are included in the interval [1; 1] and can be found using the relation [8] xnk ¼ cos

kp ; nþ1

k ¼ 1; 2; 3; . . . ; n:

ð9Þ

Taking (4), (7) and (9) into account we find the roots of the characteristic equation (2) (the eigenvalues of the matrix B): ð2k  1Þp ; 2n þ 1

k ¼ 1; n: ð10Þ   Since all the eigenvalues kk ; k ¼ 1; n are simple eigenvalues (lk ¼ 1; lk denotes the multiplicity of the eigenvalue kk) for each eigenvalue kk corresponds single Jordan cell J 1 ðkk Þ in the matrix J. Taking this into account we write down the Jordan’s form of the matrix B [7]: kk ¼ 2 cos

J ¼ diagðk1 ; k2 ; k3 ; . . . ; kn Þ:

ð11Þ

Using the equality J ¼ T 1 BT we find the matrices T, T1 and derive the expression of the lth power (l 2 N Þ of the matrix B: Bl ¼ TJ l T 1 ¼ QðlÞ ¼ ðqij ðlÞÞ;

ð12Þ

J. Rimas / Applied Mathematics and Computation 193 (2007) 253–256

255

here qij ðlÞ ¼ tk ¼

tk klk U 2i3 2

k¼1 ( 2k n2kþ2 2nþ1 2k2kn1 2nþ1



n X

0; 1;

;

    kk kk U 2j3 ; 2 2 2

i; j ¼ 1; n;

if k ¼ 1; nþm ; 2

ð13Þ

; if k ¼ nþ2þm ; n; 2 if n ¼ 2p ðp 2 N Þ; if n ¼ 2p þ 1 ðp 2 N Þ;

ð14Þ

  kk k ¼ 1; n are the eigenvalues of the matrix B (defined by (10)), n is the order of the matrix B (n 2 N ; n P 2Þ; U k ðxÞ is the function, defined by (8). The matrix B of arbitrary order n (see (1)) is nonsingular since all its eigenvalues are nonzero: kk 6¼ 0; k ¼ 1; n; n 2 N ; n P 2 (see (10)). This means that derived expression (12) can be applied for computing negative integer powers of B. For example, taking l ¼ 1 in (12), we get following expression for the elements of the inverse matrix B1:     n X tk kk kk 1 U 2i3 ð15Þ fB gij ¼ U 2j3 ; i; j ¼ 1; n; 2 2 k 2 2 k k¼1 here n 2 N ðn P 2Þ is the order of the matrix B; kk ; tk and Uk (x) are defined by (10), (13) and (8), respectively. 3. Numerical considerations We can find the arbitrary positive integer powers of the nth order matrix (1) ðn 2 N ; n P 2Þ taking into account derived expressions. For example, if n = 3, we would have: p a ¼ 2 cos ; 7

J ¼ diagðk1 ; k2 ; k3 Þ ¼ diagða; b; cÞ; 0 1 a1 a2 a 3 1 Bl ¼ ðqij Þ ¼ @ a2 a4 a5 A; 7 a3 a5 a 6

b ¼ 2 cos

3p ; 7

c ¼ 2 cos

ð16Þ

a1 ðlÞ ¼ ð2 þ aÞðaÞl þ ð2 þ bÞðbÞl þ ð2  cÞcl ; a2 ðlÞ ¼ bð2 þ aÞðaÞ

lþ1

 cð2 þ bÞðbÞ

l

lþ1

þ að2  cÞclþ1 ;

l

a3 ðlÞ ¼ bð2 þ aÞðaÞ  cð2 þ bÞðbÞ þ að2  cÞcl ; a4 ðlÞ ¼ b2 ð2 þ aÞðaÞ

lþ2

þ c2 ð2 þ bÞðbÞ

lþ2

þ a2 ð2  cÞclþ2 ;

a5 ðlÞ ¼ b2 ð2 þ aÞðaÞ

lþ1

þ c2 ð2 þ bÞðbÞ

lþ1

þ a2 ð2  cÞclþ1 ;

l

l

a6 ðlÞ ¼ b2 ð2 þ aÞðaÞ þ c2 ð2 þ bÞðbÞ þ a2 ð2  cÞcl : Assuming l ¼ 1 in (16) , 0 1 0 1 B 1 B ¼@ 0 0 1 1

we get the expression for the inverse matrix B1: 1 C A:

1 1

Taking l ¼ 2, we have 0

2

B 2 B2 ¼ ðB1 Þ ¼ @ 1 2

1 1 1

2

1

C 1 A: 3

2p ; 7

256

J. Rimas / Applied Mathematics and Computation 193 (2007) 253–256

If n = 4, we would obtain: J ¼ diagðk1 ; k2 ; k3 ; k4 Þ ¼ diagða; 1; b; cÞ; p 4p 2p a ¼ 2 cos ; b ¼ 2 cos ; c ¼ 2 cos ; 9 9 9 0 1 a1 a2 a3 a4 B 1 B a2 a5 a6 a8 C C Bl ¼ ðqij Þ ¼ B C; 9 @ a3 a6 a8 a9 A a4

a7

a9

2

ð17Þ

a10 l

2

l

2

a1 ðlÞ ¼ ð2  cÞða þ 1Þ ðaÞ þ 3ð1Þ þ ð2 þ aÞð1  bÞ bl þ ð2  bÞðc  1Þ cl ; l

a2 ðlÞ ¼ ð2  cÞðc þ 1Þða þ 1ÞðaÞ þ ð2 þ aÞða  1Þð1  bÞbl þ ð2  bÞð1 þ bÞðc  1Þcl ; a3 ðlÞ ¼ ð2  cÞða þ 1ÞðaÞ

lþ1 l

l

 3ð1Þ  ð2 þ aÞð1  bÞblþ1 þ ð2  bÞðc  1Þclþ1 ; l

a4 ðlÞ ¼ ð2  cÞða þ 1ÞðaÞ þ 3ð1Þ  ð2 þ aÞð1  bÞbl þ ð2  bÞðc  1Þcl ; 2

2

l

2

a5 ðlÞ ¼ ð2  cÞðc þ 1Þ ðaÞ þ ð2 þ aÞða  1Þ bl þ ð2  bÞð1 þ bÞ cl ; a6 ðlÞ ¼ ð2  cÞðc þ 1ÞðaÞ

lþ1

 ð2 þ aÞða  1Þblþ1 þ ð2  bÞð1 þ bÞclþ1 ;

l

a7 ðlÞ ¼ ð2  cÞðc þ 1ÞðaÞ  ð2 þ aÞða  1Þbl þ ð2  bÞð1 þ bÞcl ; a8 ðlÞ ¼ ð2  cÞðaÞlþ2 þ 3ð1Þlþ2 þ ð2 þ aÞblþ2 þ ð2  bÞclþ2 ; a9 ðlÞ ¼ ð2  cÞðaÞlþ1 þ 3ð1Þlþ1 þ ð2 þ aÞblþ1 þ ð2  bÞclþ1 ; a10 ðlÞ ¼ ð2  cÞðaÞl þ 3ð1Þl þ ð2 þ aÞbl þ ð2  bÞcl ; Assuming l ¼ 1 in (17) 0 0 1 0 B 1 1 0 B B1 ¼ B @ 0 0 0 1 1 1

, we get 1 1 1 C C C: 1 A 1

References [1] R.P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, 1992. [2] J. Rimas, Investigation of the dynamics of mutually synchronized systems, Telecommunications and Radio Engineer 32 (1977) 68–79. [3] J. Rimas, On computing of arbitrary positive integer powers for one type of odd order symmetric circulant matrices – I, Applied Mathematics and Computation 165 (2005) 137–141. [4] J. Rimas, On computing of arbitrary positive integer powers for one type of odd order symmetric circulant matrices – II, Applied Mathematics and Computation 169 (2005) 1016–1027. [5] J. Rimas, On computing of arbitrary positive integer powers for one type of symmetric tridiagonal matrices of even order – I, Applied Mathematics and Computation 168 (2005) 783–787. [6] J. Rimas, On computing of arbitrary positive integer powers for one type of symmetric tridiagonal matrices of even order – II, Applied Mathematics and Computation 172 (2006) 245–251. [7] R. Horn, Ch. Johnson, Matrix Analysis, Cambridge University Press, 1996. [8] L. Fox, J.B. Parke, Chebyshev Polynomials in Numerical Analysis, Oxford University Press, London, 1968.