Applied Mathematics and Computation 206 (2008) 885–891
Contents lists available at ScienceDirect
Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc
Powers of tridiagonal matrices with constant diagonals Jesús Gutiérrez-Gutiérrez CEIT and Tecnun (University of Navarra), Manuel de Lardizábal 15, E-20018 San Sebastián, Spain
a r t i c l e
i n f o
a b s t r a c t In this paper, we derive a general expression for the entries of the qth power ðq 2 NÞ of the n n complex tridiagonal matrix tridiagn ða1 ; a0 ; a1 Þ for all n 2 N, in terms of the Chebyshev polynomials of the second kind. Ó 2008 Elsevier Inc. All rights reserved.
Keywords: Tridiagonal matrices Eigenvalues Eigenvectors Jordan’s form Chebyshev polynomials
1. Introduction In the present paper we study the entries of positive integer powers of an n n complex tridiagonal Toeplitz (constant diagonals) matrix
0
a0
B Ba B 1 B B B0 An ¼ tridiagn ða1 ; a0 ; a1 Þ ¼ B B . B .. B B . B . @ . 0
a1
0
a0
a1
.. .
a1 .. .
a0 .. . .. .
a1 .. . .. . 0
..
.
..
.
..
.
a1
0 .. . .. .
1
C C C C C C C; C 0 C C C C a1 A a0
where a1 a1 –0. The paper is organized as follows. In Section 2, we present an eigenvalue decomposition of the matrix An ¼ tridiagn ða1 ; a0 ; a1 Þ. In Section 3, based on this decomposition we introduce Theorem 2 that provides a general expression for the entries of Aqn for all q; n 2 N, in terms of the Chebyshev polynomials of the second kind. This novel expression is an extension of the one obtained in [1] for the powers of the Hermitian tridiagonal matrix tridiagn ða1 ; a0 ; a1 Þ with n 2 N. From Theorem 2 we will also deduce the expression given by Rimas for the entries of the powers of the real skew-symmetric tridiagonal matrix tridiagn ð1; 0; 1Þ with n 2 N (see [2 or 3] for the even case and [4 or 5] for the odd case). The paper finishes with a numerical example. 2. An eigenvalue decomposition of An It is known (see e.g. [6]) that V n diagða1 ; . . . ; an ÞV 1 n is an eigenvalue decomposition of An ¼ tridiagn ða1 ; a0 ; a1 Þ, where the entries of the eigenvector matrix V n are
E-mail address:
[email protected] 0096-3003/$ - see front matter Ó 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2008.10.005
886
J. Gutiérrez-Gutiérrez / Applied Mathematics and Computation 206 (2008) 885–891
½V n j;k ¼
rffiffiffiffiffiffiffiffij1 a1 jkp sin ; a1 nþ1
1 6 j;
k6n
and the eigenvalues are given by
aj ¼ a0 þ 2a1
rffiffiffiffiffiffiffiffi a1 jp cos ; a1 nþ1
1 6 j 6 n:
ð1Þ
The following result presents the eigenvalue decomposition of An that we will really use in Section 3. Theorem 1. Let a1 ; a0 ; a1 2 C; a1 a1 –0 and n 2 N. Then W n Dn W 1 n is an eigenvalue decomposition of An ¼ tridiagn ða1 ; a0 ; a1 Þ, where the entries of the eigenvector matrix W n are
½W n j;k ¼
rffiffiffiffiffiffiffiffiffiffiffiffirffiffiffiffiffiffiffiffij 2 a1 jkp sin ; nþ1 a1 nþ1
1 6 j;
k 6 n;
and Dn ¼ diagða1 ; . . . ; an Þ, with aj given by (1). Moreover, W n can be written as
W n ¼ Kn n ; where Kn is the diagonal matrix
rffiffiffiffiffiffiffiffi rffiffiffiffiffiffiffiffin ! a1 a1 ; ;...; a1 a1
Kn ¼ diag
and n is the unitary matrix
½ n j;k ¼
rffiffiffiffiffiffiffiffiffiffiffiffi 2 jkp sin ; nþ1 nþ1
1 6 j;
k 6 n:
Proof. We will split the proof into three steps: Step 1. In this step we will prove the following equality that will be used in the other two steps: n X
cos
h¼1
mhp ¼ nþ1
1 if m is even; 0
ð2Þ
if m is odd;
for every n 2 N; 1 6 m 6 2n þ 1. P P We first consider the even case. If x–1 is an n þ 1th root of unity then nh¼0 xh ¼ 0 and consequently nh¼1 xh ¼ 1. Obmpi mpi mpi serve that enþ1 is an n þ 1th root of unity. Moreover, since 0 < m < 2ðn þ 1Þ then enþ1 –1. Therefore, by taking x ¼ enþ1 , we deduce that " #
1 ¼ Re
n X
xh ¼
n X
h¼1
Re½xh ¼
h¼1
n X
cos
h¼1
mhp ; nþ1
where Re denotes real part. The odd case is a direct consequence of the fact that
cos
mhp mðn þ 1 hÞp ¼ cos ; nþ1 nþ1
1 6 h 6 n:
Step 2. In the second step we will show that n is unitary. Obviously, we only have to prove that n n ¼ In , where denotes conjugate transpose (i.e., n ¼ n > ) and In is the n n identity matrix. To show that ½ n n j;k is the Kronecker delta dj;k , we first consider the case j ¼ k. We have
½ n n j;j
n X ¼ ½ n j;h ½ n j;h ¼ h¼1
! n n n X 2 X 1 X 2jhp 1 2jhp 2 jhp : sin 1 cos cos n ¼ ¼ n þ 1 h¼1 nþ1 n þ 1 n þ 1 h¼1 nþ1 nþ1 h¼1
Consequently, by using (2) we obtain that ½ n n j;j ¼ 1. We now consider the case j–k. We have
½ n n j;k ¼
n X ½ n j;h ½ n k;h ¼ h¼1
n n 2 X jhp khp 1 X ðj kÞhp ðj þ kÞhp sin cos sin ¼ cos : n þ 1 h¼1 nþ1 n þ 1 n þ 1 h¼1 nþ1 nþ1
From (2) n X h¼1
cos
n ðj þ kÞhp X ðj kÞhp cos ¼ ¼ nþ1 nþ1 h¼1
and therefore ½ n n j;k ¼ 0.
1 if j þ k is even; 0
if j þ k is odd;
887
J. Gutiérrez-Gutiérrez / Applied Mathematics and Computation 206 (2008) 885–891
Step 3. Obviously,
½Kn n j;k ¼
n X ½Kn j;h ½ n h;k ¼ ½Kn j;j ½ n j;k ¼ h¼1
rffiffiffiffiffiffiffiffiffiffiffiffirffiffiffiffiffiffiffiffij 2 a1 jkp sin ¼ ½W n j;k : nþ1 a1 nþ1
To finish the proof we need to show that An ¼ W n Dn W 1 n . We have
rffiffiffiffiffiffiffiffij X n a1 ½ n Dn n j;h ½K1 n h;k a1 h¼1 rffiffiffiffiffiffiffiffij rffiffiffiffiffiffiffiffijk rffiffiffiffiffiffiffiffijk X n a1 a1 a1 ¼ ½ n Dn n j;k ½K1 ¼ ½ D ¼ ½ n j;h ½Dn n h;k n n n j;k n k;k a1 a1 a1 h¼1 rffiffiffiffiffiffiffiffi rffiffiffiffiffiffiffiffijk X rffiffiffiffiffiffiffiffijk X n n a1 a1 a1 hp ¼ ½ n j;h ah ½ n k;h ¼ a0 þ 2a1 cos ½ n j;h ½ n k;h : a1 a1 a1 nþ1 h¼1 h¼1
1 1 ½W n Dn W 1 n j;k ¼ ½Kn n Dn n Kn j;k ¼ ½Kn j;j ½ n Dn n Kn j;k ¼
Therefore, ½W n Dn W 1 n j;k can be written as
½W n Dn W 1 n j;k ¼
rffiffiffiffiffiffiffiffijk a1 ðL1 þ L2 Þ; a1
ð3Þ
where
L1 ¼ a0
n X ½ n j;h ½ n k;h ¼ a0 ½ n n j;k ¼ a0 ½In j;k ¼ a0 dj;k
ð4Þ
h¼1
and
rffiffiffiffiffiffiffiffi X rffiffiffiffiffiffiffiffi X a1 n hp 4a1 a1 n hp jhp khp cos cos ½ n j;h ½ n k;h ¼ sin sin a1 h¼1 nþ1 n þ 1 a1 h¼1 nþ1 nþ1 nþ1 rffiffiffiffiffiffiffiffi X 2a1 a1 n hp ðj kÞhp ðj þ kÞhp ¼ cos cos cos n þ 1 a1 h¼1 nþ1 nþ1 nþ1 rffiffiffiffiffiffiffiffi"X X # n a1 a1 n ðj k þ 1Þhp ðj k 1Þhp ðj þ k þ 1Þhp ðj þ k 1Þhp : cos cos ¼ þ cos þ cos n þ 1 a1 h¼1 nþ1 nþ1 nþ1 nþ1 h¼1
L2 ¼ 2a1
If j k þ 1–0 and j k 1–0 then by using (2) we obtain that n X
cos
h¼1
n n n ðj þ k þ 1Þhp X ðj þ k 1Þhp X ðj k þ 1Þhp X ðj k 1Þhp cos cos cos ¼ ¼ ¼ ¼ nþ1 n þ 1 n þ 1 nþ1 h¼1 h¼1 h¼1
and therefore L2 ¼ 0. If j k þ 1 ¼ 0 then from (2) we have n X
cos
h¼1
n n ðj þ k þ 1Þhp X ðj þ k 1Þhp X ðj k 1Þhp cos cos ¼ ¼ ¼ 1 nþ1 n þ 1 nþ1 h¼1 h¼1
and consequently
L2 ¼
a1 nþ1
! # rffiffiffiffiffiffiffiffi" X rffiffiffiffiffiffiffiffi n a1 a1 1 1 ð1 1Þ ¼ a1 : a1 h¼1 a1
If j k 1 ¼ 0 then by using (2) we obtain that n X
cos
h¼1
n n ðj þ k þ 1Þhp X ðj þ k 1Þhp X ðj k þ 1Þhp cos cos ¼ ¼ ¼ 1; nþ1 n þ 1 nþ1 h¼1 h¼1
and therefore
a1 L2 ¼ nþ1
! # rffiffiffiffiffiffiffiffi" rffiffiffiffiffiffiffiffi n X a1 a1 1 ð1 1Þ ¼ a1 1 þ : a1 a 1 h¼1
1 if j þ k þ 1 is even 0
if j þ k þ 1 is odd
888
J. Gutiérrez-Gutiérrez / Applied Mathematics and Computation 206 (2008) 885–891
Summarizing
( L2 ¼
a1
qffiffiffiffiffiffi a1 a1
0
if j k 2 f1; 1g;
ð5Þ
in other case:
By substituting expressions (4) and (5) into (3) we have
½W n Dn W 1 n j;k
that is, ½An j;k ¼
8 a1 > > >
a1 > > : 0
½W n Dn W 1 n j;k .
if j k ¼ 1; if j k ¼ 0; if j k ¼ 1; in other case; h
Observe that
rffiffiffiffiffiffiffiffi2 a1 ¼ 1 () a1 ¼ 1 () ja1 j ¼ ja1 j: W n W n ¼ In () Kn Kn ¼ In () a a1 1 Therefore, the eigenvector matrix W n of An is unitary if and only if ja1 j ¼ ja1 j. Thus, W n is unitary, e.g., when An is symmetric, skew-symmetric, Hermitian or skew-Hermitian.
3. General expression for the entries of Aqn Let U m ðxÞ be the mth degree Chebyshev polynomial of the second kind, with m 2 N [ f0g:
U m ðxÞ ¼
sin½ðm þ 1Þ arccos x ; sin arccos x
1 6 x 6 1:
ð6Þ
The following result provides a general expression for the entries of Aqn for all q; n 2 N in terms of the Chebyshev polynomials of the second kind. qffiffiffiffiffiffi hp Theorem 2. Consider a1 ; a0 ; a1 2 C; a1 a1 –0 and n 2 N. Let An ¼ tridiagn ða1 ; a0 ; a1 Þ, b ¼ aa11 and kh ¼ 2 cos nþ1 for every 1 6 h 6 n. Then
½Aqn j;k
" bn2c X bjk knhþ1 ¼ ð4 k2nhþ1 ÞU j1 2ð1 þ ð1Þnþ1 Þaq0 U j1 ð0ÞU k1 ð0Þ þ 2n þ 2 2 h¼1 knhþ1 U k1 ½ða0 þ a1 bknhþ1 Þq þ ð1Þjþk ða0 a1 bknhþ1 Þq 2
for all q 2 N and 1 6 j; k 6 n, where bxc denotes the largest integer less than or equal to x. Proof. By using Theorem 1 we obtain that q q 1 q 1 q 1 jk ½Aqn j;k ¼ ½ðW n Dn W 1 ½ n Dqn n j;k n Þ j;k ¼ ½W n Dn W n j;k ¼ ½Kn n Dn n Kn j;k ¼ ½Kn j;j ½ n Dn n j;k ½Kn k;k ¼ b q n n n X X 2bjk X hp jhp khp ¼ bjk ½ n j;h ½Dqn n h;k ¼ bjk ½ n j;h aqh ½ n k;h ¼ a0 þ 2a1 b cos sin sin : n þ 1 n þ 1 n þ 1 n þ1 h¼1 h¼1 h¼1
Observe that from expression (6) we have
p sin mh hp nþ1 ¼ U m1 cos ; h p nþ1 sin nþ1
m ¼ j; k;
1 6 h 6 n:
Consequently,
½Aqn j;k ¼
q n 2bjk X hp hp hp 2 hp U k1 cos : a0 þ 2a1 b cos sin U j1 cos n þ 1 h¼1 nþ1 nþ1 nþ1 nþ1
p hp Since cos nþ1 ¼ cos ðnþ1hÞ , 1 6 h 6 n, then nþ1
knhþ1 ¼ 2 cos
hp ¼ kh ; nþ1
1 6 h 6 n:
ð7Þ
889
J. Gutiérrez-Gutiérrez / Applied Mathematics and Computation 206 (2008) 885–891
Therefore,
½Aqn j;k ¼
n bjk X knhþ1 knhþ1 ða0 þ a1 bknhþ1 Þq ð4 k2nhþ1 ÞU j1 U k1 : 2n þ 2 h¼1 2 2
By using (7), ½Aqn j;k can be written as
½Aqn j;k
¼
8 <
bjk ½S 2nþ2 1
:
bjk ½S 2nþ2 1
þ S2 þ S2 þ
if n is even; 4aq0 U j1 ð0ÞU k1 ð0Þ
if n is odd;
where
knhþ1 knhþ1 U k1 ; 2 2 h¼1 b2nc X knhþ1 knhþ1 S2 ¼ ða0 a1 bknhþ1 Þq ð4 k2nhþ1 ÞU j1 U k1 : 2 2 h¼1 n
S1 ¼
b2c X
ða0 þ a1 bknhþ1 Þq ð4 k2nhþ1 ÞU j1
ð8Þ
i bjk h S1 þ S2 þ 2ð1 þ ð1Þnþ1 Þaq0 U j1 ð0ÞU k1 ð0Þ : 2n þ 2
ð9Þ
Thus,
½Aqn j;k ¼ Since
U m ðxÞ ¼ ð1Þm U m ðxÞ;
m 2 N [ f0g
ð10Þ
(i.e., the mth degree Chebyshev polynomial of the second kind is an even or odd function, when m is even or odd, respectively), then n
S2 ¼ ð1Þjþk
b 2c X
ða0 a1 bknhþ1 Þq ð4 k2nhþ1 ÞU j1
h¼1
knhþ1 knhþ1 U k1 : 2 2
ð11Þ
The theorem follows by substituting expressions (8) and (11) into (9). h Corollary 3. Consider a1 ; a0 ; a1 2 C; a1 a1 –0 and n 2 N. Let An ¼ tridiagn ða1 ; a0 ; a1 Þ and b ¼
qffiffiffiffiffiffi
a1 . a1
Then
½Aqn k;j ¼ b2k2j ½Aqn j;k for all q 2 N and 1 6 j; k 6 n. Proof. From the previous theorem we have
½Aqn k;j ½Aqn j;k
¼
bkj bjk
¼ b2k2j :
From Theorem 2 we can now directly obtain the expression given in [1] for the powers of the Hermitian tridiagonal matrix tridiagn ða1 ; a0 ; a1 Þ. hp for every 1 6 h 6 n. Then Theorem 4. Consider a0 2 R; a1 –0 and n 2 N. Let An ¼ tridiagn ða1 ; a0 ; a1 Þ and kh ¼ 2 cos nþ1
½Aqn j;k
jk " bn2c X 1 a1 nþ1 q ¼ 2ð1 þ ð1Þ Þa0 U j1 ð0ÞU k1 ð0Þ þ ð4 k2nhþ1 Þ 2n þ 2 ja1 j h¼1 knhþ1 knhþ1 U k1 ½ða0 þ ja1 jknhþ1 Þq þ ð1Þjþk ða0 ja1 jknhþ1 Þq U j1 2 2
for all q 2 N and 1 6 j; k 6 n. Finally, it should be mentioned that from Theorem 2 we can also obtain the expression given by Rimas for the entries of the powers of the real skew-symmetric tridiagonal matrix tridiagn ð1; 0; 1Þ (see [2 or 3] for the even case and [4 or 5] for the odd case).
890
J. Gutiérrez-Gutiérrez / Applied Mathematics and Computation 206 (2008) 885–891
hp Theorem 5. Suppose An ¼ tridiagn ð1; 0; 1Þ with n 2 N. Let kh ¼ 2 cos nþ1 for every 1 6 h 6 n. Then
b 2c ð1Þjþk ðq þ k jÞp X kh kh U k1 kqh 4 k2h U j1 cos nþ1 2 2 2 h¼1 n
½Aqn j;k ¼
for all q 2 N and 1 6 j; k 6 n. Proof. From Theorem 2, by taking b ¼ i and by using expressions (7) and (10), we have
b 2c 1 þ ð1Þqþjþk X kh kh U k1 : kqh ð4 k2h ÞU j1 2n þ 2 2 2 h¼1 n
½Aqn j;k ¼ ðiÞqþjk
To conclude the proof we need to show that
ðiÞqþjk
1 þ ð1Þqþjþk ðq þ k jÞp ¼ ð1Þjþk cos : 2 2
p The case when q þ k j is odd (or equivalently, q þ j þ k is odd) is clear, since 1 þ ð1Þqþjþk ¼ cos ðqþkjÞ ¼ 0. On the other 2 hand, if q þ k j is even then
ðiÞqþjk
qþjk qþkj qþkj 1 þ ð1Þqþjþk 2 qþjk ¼ ðiÞqþjk ¼ ð1Þqþjk ði Þ 2 ¼ ð1Þ 2 ¼ ð1Þjk ð1Þ 2 ¼ ð1Þjþk ð1Þ 2 2 ðq þ k jÞp ¼ ð1Þjþk cos : 2
4. Numerical example Let An ¼ tridiagn ða1 ; a0 ; a1 Þ, with a1 ; a0 ; a1 2 C; a1 a1 –0 and n 2 N. Observe that since An is a persymmetric matrix, Aqn is also persymmetric, with q 2 N. From Theorem 2, we can find any positive integer power of An with n 2 N. As an example, we consider here the cases n ¼ 3 and n ¼ 4. If n ¼ 3 then Aq3 ; q 2 N, has the form
0
1
c1 c4 c6 B C Aq3 ¼ @ c2 c5 c4 A c3 c2 c1 and by using Theorem 2 and Corollary 3 we obtain that
1 q 4a0 þ a2 ðða0 þ a1 baÞq þ ða0 a1 baÞq Þ ; 8 1 c2 ¼ ba3 ðða0 þ a1 baÞq ða0 a1 baÞq Þ; 8 1
c3 ¼ b2 4aq0 þ a2 ðða0 þ a1 baÞq þ ða0 a1 baÞq Þ ; 8 1 c4 ¼ 2 c2 ; b
c1 ¼
1 8 1
c5 ¼ a4 ðða0 þ a1 baÞq þ ða0 a1 baÞq Þ; c6 ¼ with a ¼
b4
c3 ;
qffiffiffiffiffiffi pffiffiffi 2 and b ¼ aa11 .
If n ¼ 4 then Aq4 ; q 2 N, has the form
0
c1 Bc B 2 q A4 ¼ B @ c3 c4
c5 c6 c7 c3
1
c8 c10 c9 c8 C C C; c6 c5 A c2 c1
J. Gutiérrez-Gutiérrez / Applied Mathematics and Computation 206 (2008) 885–891
891
and from Theorem 2 and Corollary 3 we deduce that
i 1 h 2 ð4 a2 Þðða0 þ a1 baÞq þ ða0 a1 baÞq Þ þ ð4 b Þðða0 þ a1 bbÞq þ ða0 a1 bbÞq Þ ; 10 i 1 h c2 ¼ b að4 a2 Þðða0 þ a1 baÞq ða0 a1 baÞq Þ þ bð4 b2 Þðða0 þ a1 bbÞq ða0 a1 bbÞq Þ ; 10 i 1 h c3 ¼ b2 að4 a2 Þðða0 þ a1 baÞq þ ða0 a1 baÞq Þ bð4 b2 Þðða0 þ a1 bbÞq þ ða0 a1 bbÞq Þ ; 10 i 1 h c4 ¼ b3 ð4 a2 Þðða0 þ a1 baÞq ða0 a1 baÞq Þ ð4 b2 Þðða0 þ a1 bbÞq ða0 a1 bbÞq Þ ; 10 1 c5 ¼ 2 c2 ; b i 1 h 2 2 2 c6 ¼ a ð4 a2 Þðða0 þ a1 baÞq þ ða0 a1 baÞq Þ þ b ð4 b Þðða0 þ a1 bbÞq þ ða0 a1 bbÞq Þ ; 10 i 1 h c7 ¼ b a2 ð4 a2 Þðða0 þ a1 baÞq ða0 a1 baÞq Þ b2 ð4 b2 Þðða0 þ a1 bbÞq ða0 a1 bbÞq Þ ; 10 1 c8 ¼ 4 c3 ; b 1 c9 ¼ 2 c7 ; b 1 c10 ¼ 6 c4 ; b
c1 ¼
with a ¼ 2 cos p5 ; b ¼ 2 cos 25p and b ¼
qffiffiffiffiffiffi
a1 . a1
A different expression for the entries of the powers of A3 and A4 can be found in [7]. Acknowledgments I would like to thank Dr. F.J. Williams for encouraging the writing of this paper and for his helpful comments and criticism. This work was partially supported by the Spanish Ministry of Education and Science, and by the European Regional Development Fund through the MultiMIMO Project TEC2007-68020-C04-03 and the program CONSOLIDER-INGENIO 2010 CSD2008-00010 COMONSENS. References [1] J. Gutiérrez-Gutiérrez, Positive integer powers of certain tridiagonal matrices, Appl. Math. Comput. 202 (2008) 133–140. [2] J. Rimas, On computing of arbitrary positive integer powers for one type of even order skew-symmetric tridiagonal matrices with eigenvalues imaginary axis – I, Appl. Math. Comput. 174 (2006) 997–1000. [3] J. Rimas, On computing of arbitrary positive integer powers for one type of even order skew-symmetric tridiagonal matrices with eigenvalues imaginary axis – II, Appl. Math. Comput. 181 (2006) 1120–1125. [4] J. Rimas, On computing of arbitrary positive integer powers for one type of odd order skew-symmetric tridiagonal matrices with eigenvalues imaginary axis – I, Appl. Math. Comput. 183 (2006) 1378–1380. [5] J. Rimas, On computing of arbitrary positive integer powers for one type of odd order skew-symmetric tridiagonal matrices with eigenvalues imaginary axis – II, Appl. Math. Comput. 186 (2007) 872–878. [6] W.F. Trench, On the eigenvalue problem for Toeplitz band matrices, Linear Algebra Appl. 64 (1985) 199–214. [7] R. Witula, D. Slota, Some phenomenon of the powers of certain tridiagonal and asymmetric matrices, Appl. Math. Comput. 202 (2008) 348–359.
on on on on