Applied Mathematics and Computation 219 (2013) 8295–8301
Contents lists available at SciVerse ScienceDirect
Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc
On q-difference asymptotic solutions of a system of nonlinear functional differential equations Stevo Stevic´ Mathematical Institute of the Serbian Academy of Sciences, Knez Mihailova 36/III, 11000 Beograd, Serbia
a r t i c l e
i n f o
a b s t r a c t The asymptotic behavior and the existence of a continuously differentiable solution bounded together with its first derivative of a system of nonlinear functional differential equations is studied here. Ó 2013 Elsevier Inc. All rights reserved.
Keywords: System of functional differential equations Iterated deviations q-Difference asymptotic solutions
1. Introduction and preliminaries Nonlinear differential equations, not solved (or partially solved) with respect to the highest-order derivatives, have been studied a lot, see, e.g., [1–11,13–15,19–21,29,31,32,34,35] and the references therein. Particular cases of the next system of functional differential equations
qx0 ðqtÞ ¼ x0 ðtÞ þ Fðt; xðtÞ; xðv 1 ðtÞÞ; x0 ðgðtÞÞÞ;
ð1Þ
where
v j ðtÞ ¼ uj ðt; xðujþ1 ðt; . . . uk ðt; xðtÞÞ ÞÞÞ;
j ¼ 1; k;
ð2Þ N
N
N
N
N
q is a constant, t 2 Rþ :¼ ½0; 1Þ, and the functions F : Rþ R R R ! R ; uj : Rþ R ! Rþ ; j ¼ 1; k; g : Rþ ! Rþ , are continuous on their domains, are ones which have attracted some attention (see, e.g. [11,12,16–18,20]). The idea of iterations of some iterative processes which can be found, e.g., in papers [22–28], motivated us to propose studying equations with continuous arguments, whose deviations of an argument depend on an unknown function which depend also of the function and so on, so called, iterated deviations (see [29–33,?]). Let C 1 ½T; 1Þ; T > 0, denote the space of continuously differentiable functions on the interval ½T; 1Þ. The space BC 1 ½T; 1Þ is defined by
n o BC 1 ½T; 1Þ :¼ x 2 C 1 ½T; 1Þ : kxk1 < 1 ; where the norm kxk1 is defined by
kxk1 ¼ max kxk1 ; kx0 k1 ¼ max
(
) 0
sup jxðtÞj; sup jx ðtÞj : t2½T;1Þ
t2½T;1Þ
1
In other words, the space BC ½T; 1Þ consists of all C 1 ½T; 1Þ functions which are bounded together with their first derivatives on ½T; 1Þ. The form of BC 1 ½T; 1Þ solutions of system (1) satisfying the next condition
E-mail address:
[email protected] 0096-3003/$ - see front matter Ó 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.amc.2013.02.029
S. Stevic´ / Applied Mathematics and Computation 219 (2013) 8295–8301
8296
lim ðxðqtÞ xðtÞÞ ¼ 0
ð3Þ
t!þ1
is studied here. The next lemma from [34] will be used in the proofs of some mains results in this paper. Lemma 1. Assume that ðan Þn2N and ðbn Þn2N are two sequences of nonnegative numbers, and that sequence ðxn Þn2N satisfies the inequality
xn 6 an þ bn xnþ1 ;
n 2 N:
Then
x1 6
j1 k1 Y k1 X Y aj bi þ xk bi ; i¼1
j¼1
i¼1
for every k 2 N. 2. Main results Now we formulate and prove the main results in this paper. Theorem 1. Assume that 0 < q < 1; T > 0, and that the next conditions hold: (i) the function F : ½T; 1Þ RN RN RN ! RN is continuous,
Fðt; 0; 0; 0Þ 0;
t 2 ½T; 1Þ
ð4Þ
and
jFðt; x; y; zÞ Fðt; u; v ; wÞj 6 g1 ðtÞjx uj þ g2 ðtÞjy v j þ g3 ðtÞjz wj;
ð5Þ
R1
for x; y; z; u; v ; w 2 R ; t 2 ½T; 1Þ, where the functions gj ðtÞ and t gj ðsÞds; j ¼ 1; 3 are nonnegative, continuous, and bounded on ½T; 1Þ; (ii) the functions uj : ½T; 1Þ RN ! ½T; 1Þ, j ¼ 1; k, are continuous and N
juj ðt; xÞ uj ðt; yÞj 6 lj jx yj;
ð6Þ
for t 2 ½T; 1Þ, and x; y 2 RN , where lj ; j ¼ 1; k, are some non-negative constants; (iii) the function g : ½T; 1Þ ! ½T; 1Þ is continuous; (iv) the series
Hj ðtÞ ¼
1 X qi gj ðqi tÞ;
Gj ðtÞ ¼
i¼1
Z 1 X qi t
i¼1
1
gj ðqi sÞds;
converge uniformly on ½T; 1Þ and
( ) 3 3 X X max Hj ðtÞ; Gj ðtÞ 6 h < 1; j¼1
for every t 2 ½T; 1Þ:
j¼1
Then for any BC 1 ½T; 1Þ solution xðtÞ of system (1), there is a BC 1 ½T; 1Þ vector function xðtÞ, such that xðqtÞ ¼ xðtÞ and
lim ðxðtÞ xðtÞÞ ¼ 0
ð7Þ
t!þ1
(i.e. xðtÞ is a q-difference asymptotic solution of system (1)). Proof. Let xðtÞ be a BC 1 ½T; 1Þ solution of system (1) and
xðtÞ ¼ xðtÞ þ
Z 1 X qi i¼1
1
Fðqi s; xðqi sÞ; xðv 1 ðqi sÞÞ; x0 ðgðqi sÞÞÞds:
t
Since by using (4) and (5) we have that
ð8Þ
S. Stevic´ / Applied Mathematics and Computation 219 (2013) 8295–8301
8297
Z 1 Z 1 X X 1 1 Fðqi s; xðqi sÞ; xðv 1 ðqi sÞÞ; x0 ðgðqi sÞÞÞds 6 qi g1 ðqi sÞjxðqi sÞj þ g2 ðqi sÞjxðv 1 ðqi sÞÞj þ g3 ðqi sÞjx0 ðgðqi sÞÞj ds qi i¼1 t t i¼1 Z 1 3 X 1 3 X X 6 kxk1 qi gj ðqi sÞds ¼ kxk1 Gj ðtÞ; ð9Þ t
j¼1 i¼1
j¼1
we obtain that function xðtÞ is well-defined on ½T; 1Þ and then obviously
xðtÞ ¼ xðtÞ
Z 1 X qi
1
Fðqi s; xðqi sÞ; xðv 1 ðqi sÞÞ; x0 ðgðqi sÞÞÞds:
t
i¼1
From (8) and (9) it follows that 3 X Gj ðtÞ:
jxðtÞ xðtÞj 6 kxk1
ð10Þ
j¼1
The uniform convergence of the series Gj ðtÞ; j ¼ 1; 3, consisting of continuous functions on ½T; þ1Þ, easily implies that Gj ðtÞ ! 0, j ¼ 1; 3, as t ! þ1, from which (7) follows. The uniform convergence of series Hj ðtÞ; Gj ðtÞ; j ¼ 1; 3, along with (4) and (5), and the theorem on differentiating series easily implies that x 2 BC 1 ½T; þ1Þ. Integrating (1) from t to t 1 , then letting in such obtained equality t1 ! þ1 and using condition (3), we get
xðqtÞ ¼ xðtÞ
Z
1
Fðs; xðsÞ; xðv 1 ðsÞÞ; x0 ðgðsÞÞÞds:
ð11Þ
t
Further, by using the change of variables t ! tq and (11), we have that
xðqtÞ ¼ xðqtÞ þ ¼ xðtÞ
Z 1 X qiþ1 1
Fðqiþ1 s; xðqiþ1 sÞ; xðv 1 ðqiþ1 sÞÞ; x0 ðgðqiþ1 sÞÞÞds
t
i¼1
Z
1
Fðs; xðsÞ; xðv 1 ðsÞÞ; x0 ðgðsÞÞÞds þ
t
¼ xðtÞ þ
Z 1 X qi
Z 1 X qi i¼0
1
1
Fðqi s; xðqi sÞ; xðv 1 ðqi sÞÞ; x0 ðgðqi sÞÞÞds
t
Fðqi s; xðqi sÞ; xðv 1 ðqi sÞÞ; x0 ðgðqi sÞÞÞds ¼ xðtÞ;
ð12Þ
t
i¼1
that is, xðqtÞ ¼ xðtÞ, as desired. h Theorem 2. Assume that 0 < q < 1; T > 0, conditions (i)–(iv) in Theorem 1 are satisfied, and xðtÞ is a BC 1 ½T; 1Þ vector function satisfying condition xðqtÞ ¼ xðtÞ. Then for sufficiently small lj , j ¼ 1; k, system (1) has a BC 1 ½T; 1Þ solution satisfying condition (7). Proof. If xðtÞ is a BC 1 ½T; 1Þ solution of system (1) satisfying condition (7), then by the proof of Theorem 1 we see that it satisfies system (11), which can be written in the form
xðtÞ ¼ xðq1 tÞ q1
Z
1
Fðq1 s; xðq1 sÞ; xðv 1 ðq1 sÞÞ; x0 ðgðq1 sÞÞÞds:
ð13Þ
t
Plugging tqi ; i ¼ 1; N 1 in (13) instead of t, and summing up such obtained equalities, it follows that
xðtÞ ¼ xðqN tÞ
Z N X qi
1
Fðqi s; xðqi sÞ; xðv 1 ðqi sÞÞ; x0 ðgðqi sÞÞÞds
t
i¼1
¼ ðxðqN tÞ xðqN tÞÞ þ xðqN tÞ
Z N X qi i¼1
1
Fðqi s; xðqi sÞ; xðv 1 ðqi sÞÞ; x0 ðgðqi sÞÞÞds:
ð14Þ
t
Letting N ! þ1 in (14) and using the assumption q 2 ð0; 1Þ, condition (7) and xðqtÞ ¼ xðtÞ, it follows that xðtÞ satisfies the following system of integral equations
xðtÞ ¼ xðtÞ
Z 1 X qi i¼1
1
Fðqi s; xðqi sÞ; xðv 1 ðqi sÞÞ; x0 ðgðqi sÞÞÞds:
ð15Þ
t
On the other hand, using the uniform convergence of series Hj ðtÞ; Gj ðtÞ; j ¼ 1; 3, along with (4) and (5), and the theorem on differentiating series we see that any bounded continuous solution of system (15) is a BC 1 ½T; 1Þ solution of system (1) satisfying condition (7). Hence, it is enough to prove the existence of a BC 1 ½T; 1Þ solution of system (15). We use the method of successive approximations. Let
x0 ðtÞ ¼ xðtÞ;
x00 ðtÞ ¼ x0 ðtÞ;
ð16Þ
S. Stevic´ / Applied Mathematics and Computation 219 (2013) 8295–8301
8298
xm ðtÞ ¼ xðtÞ
Z 1 X qi t
i¼1
x0m ðtÞ ¼ x0 ðtÞ þ
1
Fðqi s; xm1 ðqi sÞ; xm1 ðv 1;m1 ðqi sÞÞ; x0m1 ðgðqi sÞÞÞds;
1 X qi Fðqi t; xm1 ðqi tÞ; xm1 ðv 1;m1 ðqi tÞÞ; x0m1 ðgðqi tÞÞÞ;
ð17Þ
m 2 N;
ð18Þ
i¼1
where
v j;m ðtÞ ¼ uj ðt; xm ðujþ1 ðt; . . . uk ðt; xm ðtÞÞ . . .ÞÞÞ;
j ¼ 1; k:
1
That xm 2 BC ½T; 1Þ, for every m 2 N0 , is proved similarly as for the bounded continuous solution of system (15) and by using the method of induction. Since x0 ðtÞ ¼ xðtÞ and x00 ðtÞ ¼ x0 ðtÞ, it is obvious that for every t 2 ½T; 1Þ
jx0 ðtÞj 6
kxk1 1h
kxk1 : 1h
and jx00 ðtÞj 6
ð19Þ
Assume that the functions xk ðtÞ and x0k ðtÞ; k ¼ 0; m 1, defined by (17) satisfy the next estimates
jxk ðtÞj 6
kxk1 1h
kxk1 : 1h
and jx0k ðtÞj 6
ð20Þ
Then, by (4), (5), (17) and (20) it follows that
jxm ðtÞj 6 kxk1 þ
Z 1 X qi t
i¼1
6 kxk1 þ
Z 1 X qi
1 t
jFðqi s; xm1 ðqi sÞ; xm1 ðv 1;m1 ðqi sÞÞ; x0m1 ðgðqi sÞÞÞjds
1
g1 ðqi sÞjxm1 ðqi sÞjds þ
t
i¼1
Z
1
1 X qi i¼1
g2 ðqi sÞjxm1 ðv 1;m1 ðqi sÞÞj þ g3 ðqi sÞjx0m1 ðgðqi sÞÞj ds
6 kxk1 þ
1 kxk1 X qi 1 h i¼1
Z t
1
3 X
gj ðqi sÞds 6 kxk1 þ
j¼1
hkxk1 kxk1 6 1h 1h
ð21Þ
and by (4), (5), (18) and (20)
jx0m ðtÞj 6 kx0 k1 þ
1 X
qi jFðqi t; xm1 ðqi tÞ; xm1 ðv 1;m1 ðqi tÞÞ; x0m1 ðgðqi tÞÞÞj
i¼1
6 kx0 k1 þ
1 X
qi g1 ðqi tÞjxm1 ðqi tÞj þ g2 ðqi tÞjxm1 ðv 1;m1 ðqi tÞÞj þ g3 ðqi tÞjx0m1 ðgðqi tÞÞj
i¼1 1 3 X kxk1 X hkxk1 kxk1 qi gj ðqi tÞ 6 kx0 k1 þ 6 kx0 k1 þ 6 : 1 h i¼1 1h 1h j¼1
ð22Þ
From (19), (21) and (22), and the method of induction we see that (20) holds for every k 2 N0 . Now we show that the following inequalities hold for t P T and every m 2 N
jxm ðtÞ xm1 ðtÞj 6 kxk1 ~hm
and jx0m ðtÞ x0m1 ðtÞj 6 kxk1 ~hm ;
ð23Þ
where
( ~h :¼ max h; sup t2½T;þ1Þ
! s s k X kxk1 Y G1 ðtÞ þ G2 ðtÞ li þ G3 ðtÞ ; 1 h i¼1 s¼0
sup t2½T;þ1Þ
!) s s k X kxk1 Y H1 ðtÞ þ H2 ðtÞ li þ H3 ðtÞ ; 1 h i¼1 s¼0
which belongs to the interval ½0; 1Þ for sufficiently small lj ; j ¼ 1; k. By (4), (5), (16), (17) and (20), we have that
jx1 ðtÞ x0 ðtÞj 6
Z 1 X qi i¼1
6
6 kxk1
jFðqi s; xðqi sÞ; xðv 1;0 ðqi sÞÞ; x0 ðgðqi sÞÞÞjds
t
Z 1 X qi i¼1
1
1
t 1 X i¼1
qi
g1 ðqi sÞjxðqi sÞj þ g2 ðqi sÞjxðv 1;0 ðqi sÞÞj þ g3 ðqi sÞjx0 ðgðqi sÞÞj ds
Z t
1
3 X
3 X Gj ðtÞ 6 kxk1 h;
j¼1
j¼1
gj ðqi sÞds 6 kxk1
ð24Þ
S. Stevic´ / Applied Mathematics and Computation 219 (2013) 8295–8301
8299
and
jx01 ðtÞ x00 ðtÞj 6
1 X
qi jFðqi t; xðqi tÞ; xðv 1;0 ðqi tÞÞ; x0 ðgðqi tÞÞÞj
i¼1
6
1 X
1 3 X X qi g1 ðqi tÞjxðqi tÞj þ g2 ðqi tÞjxðv 1;0 ðqi tÞÞj þ g3 ðqi tÞjx0 ðgðqi tÞÞj 6 kxk1 qi gj ðqi tÞ
i¼1
i¼1
j¼1
3 X 6 kxk1 Hj ðtÞ 6 kxk1 h j¼1
and, hence, inequalities (23) hold for m ¼ 1. Assume that inequalities (23) hold for an m 2 N. Then, by (4) and (5), we get Z 1 X 1 jxmþ1 ðtÞ xm ðtÞj 6 qi ðFðqi s; xm ðqi sÞ; xm ðv 1;m ðqi sÞÞ; x0m ðgðqi sÞÞÞ Fðqi s; xm1 ðqi sÞ; xm1 ðv 1;m1 ðqi sÞÞ; x0m1 ðgðqi sÞÞÞÞds i¼1 t Z 1 Z 1 1 1 X X i i i i i i i i 6 q g1 ðq sÞjxm ðq sÞ xm1 ðq sÞjds þ q g2 ðq sÞjxm ðv 1;m ðq sÞÞ xm ðv 1;m1 ðq sÞÞjds t
i¼1
Z 1 X þ qi
i¼1 1
t
i¼1
6 kxk1 ~hm
t
g2 ðq sÞjxm ðv 1;m1 ðq sÞÞ xm1 ðv 1;m1 ðq sÞÞjds þ i
Z 1 X qi
1 t
i¼1
i
3 X
gj ðqi sÞds þ
j¼1
i
1 kxk1 X qi 1 h i¼1
Z
Z 1 X qi i¼1
1
t
t
1
g3 ðqi sÞjx0m ðgðqi sÞÞ x0m1 ðgðqi sÞÞjds
g2 ðqi sÞjv 1;m ðqi sÞ v 1;m1 ðqi sÞjds:
ð25Þ
We have
jv j;m ðtÞ v j;m1 ðtÞj ¼ juj ðt; xm ðv jþ1;m ðtÞÞÞ uj ðt; xm1 ðv jþ1;m1 ðtÞÞÞj 6 lj jxm ðv jþ1;m ðtÞÞ xm1 ðv jþ1;m1 ðtÞÞj 6 lj jxm ðv jþ1;m ðtÞÞ xm ðv jþ1;m1 ðtÞÞj þ lj jxm ðv jþ1;m1 ðtÞÞ xm1 ðv jþ1;m1 ðtÞÞj kxk1 6 lj kxk1 ~hm þ jv jþ1;m ðtÞ v jþ1;m1 ðtÞj : 1h
ð26Þ
hm and bn ¼ ln kxk1 =ð1 hÞ we have that Applying Lemma 1 with an ¼ ln kxk1 ~
s1 Y k1 Y k1 s k1 X kxk1 kxk1 li þ jv k;m ðtÞ v k;m1 ðtÞj li 1h 1h s¼1 i¼1 i¼1 s1 Y k1 Y k1 s k1 X kxk1 kxk1 6 kxk1 ~hm li þ lk jxm ðtÞ xm1 ðtÞj li 1h 1h s¼1 i¼1 i¼1 s1 Y k s X kxk1 6 kxk1 ~hm li : 1h s¼1 i¼1
jv 1;m ðtÞ v 1;m1 ðtÞj 6 kxk1 ~hm
ð27Þ
Using (27) into (25) we obtain
jxmþ1 ðtÞ xm ðtÞj 6 kxk1 ~hm
3 X j¼1
Gj ðtÞ þ G2 ðtÞ
s s ! k X kxk1 Y li 6 kxk1 ~hmþ1 : 1 h s¼1 i¼1
ð28Þ
Using (4) and (5), inductive hypothesis and (27) we have that
jx0mþ1 ðtÞ x0m ðtÞj 6
1 X
qi jFðqi t; xm ðqi tÞ; xm ðv 1;m ðqi tÞÞ; x0m ðgðqi tÞÞÞ
i¼1
Fðqi t; xm1 ðqi tÞ; xm1 ðv 1;m1 ðqi tÞÞ; x0m1 ðgðqi tÞÞÞj 1 1 X X qi g1 ðqi tÞjxm ðqi tÞ xm1 ðqi tÞj þ qi g2 ðqi tÞjxm ðv 1;m ðqi tÞÞ xm ðv 1;m1 ðqi tÞÞj 6 i¼1
i¼1
1 1 X X qi g2 ðqi tÞjxm ðv 1;m1 ðqi tÞÞ xm1 ðv 1;m1 ðqi tÞÞj þ qi g3 ðqi tÞjx0m ðgðqi tÞÞÞ x0m1 ðgðqi tÞÞj þ i¼1
i¼1
1 3 1 X X kxk1 X 6 kxk1 ~hm qi gj ðqi tÞ þ qi g2 ðqi tÞjv 1;m ðqi tÞ v 1;m1 ðqi tÞj 1 h i¼1 i¼1 j¼1 s s ! 3 k X X kxk1 Y Hj ðtÞ þ H2 ðtÞ li 6 kxk1 ~hmþ1 : 6 kxk1 ~hm 1 h i¼1 s¼1 j¼1
ð29Þ
S. Stevic´ / Applied Mathematics and Computation 219 (2013) 8295–8301
8300
Hence (23) holds for every m 2 N. From this, since ~ h 2 ð0; 1Þ, and by the Weierstrass theorem the sequences xm ðtÞ and x0m ðtÞ; m 2 N0 , converge uniformly on ½T; þ1Þ, to the vector function xðtÞ :¼ limm!þ1 xm ðtÞ 2 BC 1 ½T; 1Þ and its derivative respectively. By letting m ! þ1 in (17) and (18) k ! þ1 in (20) we see that xðtÞ is a solution of system (15) satisfying the conditions
jxðtÞj 6
M 1h
and jx0 ðtÞj 6
M : 1h
Theorem 3. Assume that q > 1; T > 0, conditions (i)–(iii) in Theorem 1 and the following condition are satisfied: (v) the series
~ j ðtÞ ¼ H
1 X qi gj ðqi tÞ;
~ j ðtÞ ¼ G
i¼0
Z 1 X qi i¼0
1
gj ðqi sÞds; j ¼ 1; 3;
t
converge uniformly on ½T; 1Þ and
( ) 3 3 X X ~ ~ Hj ðtÞ; max Gj ðtÞ 6 h < 1; j¼1
for every t 2 ½T; 1Þ:
j¼1
Then for any BC 1 ½T; 1Þ solution xðtÞ of system (1), there is a BC 1 ½T; 1Þ vector function xðtÞ, such that xðqtÞ ¼ xðtÞ and condition (7) holds. Proof. Let xðtÞ be a BC 1 ½T; 1Þ solution of system (1) and
xðtÞ ¼ xðtÞ
Z 1 X qi
1
Fðqi s; xðqi sÞ; xðv 1 ðqi sÞÞ; x0 ðgðqi sÞÞÞds:
t
i¼0
Similar to the proof of Theorem 1 it follows that vector function xðtÞ is well-defined and belongs to BC 1 ½T; 1Þ, and that the solution xðtÞ satisfies relations (7) and (11). By using (11), we obtain
xðqtÞ ¼ xðqtÞ ¼ xðtÞ
Z 1 X qiþ1 1
Fðqiþ1 s; xðqiþ1 sÞ; xðv 1 ðqiþ1 sÞÞ; x0 ðgðqiþ1 sÞÞÞds
t
i¼0
Z
1
Fðs; xðsÞ; xðv 1 ðsÞÞ; x0 ðgðsÞÞÞds
t
¼ xðtÞ
Z 1 X qi i¼1
Z 1 X qi
1
1
Fðqi s; xðqi sÞ; xðv 1 ðqi sÞÞ; x0 ðgðqi sÞÞÞds
t
Fðqi s; xðqi sÞ; xðv 1 ðqi sÞÞ; x0 ðgðqi sÞÞÞds ¼ xðtÞ;
t
i¼0
that is, xðqtÞ ¼ xðtÞ, finishing the proof of the theorem. h Theorem 4. Assume that q > 1; T > 0, conditions (i)–(iii) and (v) are satisfied. Then, for any BC 1 ½T; 1Þ vector function xðtÞ satisfying condition xðqtÞ ¼ xðtÞ, there is a BC 1 ½T; 1Þ solution xðtÞ of system (1) satisfying relation (7). Proof. Let xðtÞ be a BC 1 ½T; 1Þ solution of system (1) satisfying condition (7). Then from the proof of Theorem 1 we know that (11) hold. Plugging tqi , i ¼ 1; N 1 in (11) instead of t, and summing up such obtained equalities, it follows that
xðtÞ ¼ xðqN tÞ þ
Z N1 X qi
1
Fðqi s; xðqi sÞ; xðv 1 ðqi sÞÞ; x0 ðgðqi sÞÞÞds
t
i¼0
¼ ðxðqN tÞ xðqN tÞÞ þ xðqN tÞ þ
Z N 1 X qi i¼0
1
Fðqi s; xðqi sÞ; xðv 1 ðqi sÞÞ; x0 ðgðqi sÞÞÞds:
ð30Þ
t
Letting N ! þ1 in (30) and using the assumption q > 1, conditions (7) and xðqtÞ ¼ xðtÞ, it follows that xðtÞ satisfies the following system of integral equations
xðtÞ ¼ xðtÞ þ
Z 1 X qi i¼0
1
Fðqi s; xðqi sÞ; xðv 1 ðqi sÞÞ; x0 ðgðqi sÞÞÞds:
ð31Þ
t
Using conditions (i)-(iii) and (v) it is not difficult to prove that any BC 1 ½T; 1Þ solution of system (31), where x 2 BC 1 ½T; 1Þ satisfies the condition xðqtÞ ¼ xðtÞ, is a solution of system (1) satisfying condition (7). Hence it is enough to prove the existence of a BC 1 ½T; 1Þ solution of system (31). This can be done by using the method of successive approximations where the approximations are defined by
S. Stevic´ / Applied Mathematics and Computation 219 (2013) 8295–8301
x0 ðtÞ ¼ xðtÞ;
x00 ðtÞ ¼ x0 ðtÞ;
xm ðtÞ ¼ xðtÞ þ
Z 1 X qi i¼0
x0m ðtÞ ¼ x0 ðtÞ
t
1
8301
Fðqi s; xm1 ðqi sÞ; xm1 ðv 1;m1 ðqi sÞÞ; x0m1 ðgðqi sÞÞÞds;
1 X qi Fðqi t; xm1 ðqi tÞ; xm1 ðv 1;m1 ðqi tÞÞ; x0m1 ðgðqi tÞÞÞ; i¼0
m 2 N. The rest of the proof is similar to corresponding part of the proof of Theorem 2, so it is omitted. h References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35]
R. Bellman, K.L. Cooke, Differential–Difference Equations, Academic Press, New York, 1963. M.A. Cruz, J.K. Hale, Existence, uniqueness, and continuous dependence for hereditary system, Ann. Mat. Pura Appl. 85 (4) (1970) 63–82. B.P. Demidovich, Lectures on the Mathematical Theory of Stability, Nauka, Moscow, 1970 (in Russian). J. Diblik, Asymptotic behaviour of solutions of a differential equation partly solved with respect to its derivative, Sib. Math. J. 23 (5) (1982) 80–91. J. Diblik, Solutions of a singular system of differential equations which is not solved with respect to the derivatives, Demonstratio Math. 17 (4) (1984) 1031–1041. in Russian. J. Diblik, On conditional stability of the solutions of the systems of differential equations, not solved with respect to the derivatives, Sbornik VUT 1–4 (1985) 5–9. J. Diblik, The existence of solution of the singular Cauchy problem for systems of differential equations that are not solved for the derivatives, Publ. Inst. Math. 37 (51) (1985) 73–80 (in Russian). J. Diblik, Functional Differential Equations, University of Zˇilina, 2008. R.D. Driver, Existence and continuous dependence of solutions of a neutral functional–differential equation, Arch. Ration. Mech. Anal. 19 (2) (1965) 149–166. L.J. Grimm, Existence and continuous dependence for a class of nonlinear neutral–differential equation, Proc. Am. Math. Soc. 29 (3) (1971) 467–473. J. Hale, Theory of Functional Differential Equations, Springer, Berlin, 1977. T. Kato, J.B. Mcleod, The functional–differential equation y0 ðxÞ ¼ ayðkxÞ þ byðxÞ, Bull. Am. Math. Soc. 77 (1971) 891–937. M. Kwapisz, On the existence and uniqueness of solutions of certain integral–functional equation, Ann. Pol. Math. 31 (1) (1975) 23–41. O.P. Oliinychenko, Asymptotic properties of solutions of linear functional differential equations, Nelin. Kolyv. 3 (4) (2000) 489–496. G.P. Pelyukh, On global solutions of systems of nonlinear functional differential equations with deviating argument dependent on unknown functions, Ukr. Math. J. 54 (3) (2001) 496–503. G.P. Pelyukh, Asymptotic properties of solutions to systems of nonlinear functional–differential equations, Differ. Equ. 39 (1) (2003) 46–50. G.P. Pelyukh, On properties of solutions of a limit problem for systems of nonlinear functional differential equations of neutral type, Ukr. Math. J. 60 (2) (2008) 253–261. G.P. Pelyukh, D.V. Bel’skii, On the behavior of solutions of linear functional differential equations with constant coefficients and linearly transformed argument in neighborhoods of singular points, Ukr. Math. J. 57 (12) (2005) 1957–1967. H.P. Pelyukh, O.P. Oliinychenko, Asymptotic properties of global solutions of systems of functional differential equations of neutral type with nonlinear deviations of an argument, Nonlinear Oscil. 5 (4) (2002) 489–503. A.M. Samoilenko, G.P. Pelyukh, Solutions of systems of nonlinear functional differential equations bounded on the entire real axis and their properties, Ukr. Mat. Zh. 46 (6) (1994) 737–747. Yu. D. Shlapak, On periodic solutions of nonlinear second order differential equations, not solved with respect to the highest derivative, Ukr. Math. J. 26 (6) (1974) 850–854 (in Russian). S. Stevic´, On stability results for a new approximating fixed points iteration process, Demonstratio Math. 34 (4) (2001) 873–880. S. Stevic´, Stability of a new iteration method for strongly pseudocontractive mappings, Demonstratio Math. 36 (2) (2003) 417–424. S. Stevic´, Stability results for /-strongly pseudocontractive mappings, Yokohama Math. J. 50 (2003) 71–85. S. Stevic´, Approximating fixed points of strongly pseudocontractive mappings by a new iteration method, Appl. Anal. 84 (1) (2005) 89–102. S. Stevic´, Approximating fixed points of nonexpansive mappings by a new iteration method, Bull. Inst. Math. Acad. Sinica 1 (3) (2006) 437–450. S. Stevic´, On a nonlinear generalized max-type difference equation, J. Math. Anal. Appl. 376 (2011) 317–328. S. Stevic´, Periodicity of a class of nonautonomous max-type difference equations, Appl. Math. Comput. 217 (2011) 9562–9566. S. Stevic´, Bounded solutions of some systems of nonlinear functional differential equations with iterated deviating argument, Appl. Math. Comput. 218 (2012) 10429–10434. S. Stevic´, Existence of bounded solutions of some systems of nonlinear functional differential equations with complicated deviating argument, Appl. Math. Comput. 218 (2012) 9974–9979. S. Stevic´, Globally bounded solutions of a system of nonlinear functional differential equations with iterated deviating argument, Appl. Math. Comput. 219 (2012) 2180–2185. S. Stevic´, On continuous solutions of a class of systems of nonlinear functional difference equations with deviating argument, Appl. Math. Comput. 218 (2012) 10188–10193. S. Stevic´, Unique existence of bounded continuous solutions on the real line of a class of nonlinear functional equations with complicated deviations, Appl. Math. Comput. 218 (2012) 7813–7817. S. Stevic´, Existence of solutions bounded together with their first derivatives of some systems of nonlinear functional differential equations, Appl. Math. Comput. 219 (2013) 6457–6465. L.A. Zhivotovskii, On the existence and uniqueness of solutions of differential equations with delay dependent on a solution and its derivative, Differ. Uravn. 5 (5) (1969) 880–889.