Journal of Organometallic Chemistry 830 (2017) 62e66
Contents lists available at ScienceDirect
Journal of Organometallic Chemistry journal homepage: www.elsevier.com/locate/jorganchem
Review
Organophosphines in organoplatinum complexes: Structural aspects of PtP3C derivatives Milan Melník a, b, *, Peter Mikus a, b rov 10, SK-832 32 Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odboja Bratislava, Slovak Republic b rov 10, SK-832 32 Bratislava, Slovak Republic Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odboja a
a r t i c l e i n f o
a b s t r a c t
Article history: Received 25 October 2016 Received in revised form 7 December 2016 Accepted 9 December 2016 Available online 14 December 2016
In this review are summarized and analyzed structural parameters of over fifty monomeric organoplatinum complexes with PtP3C inner coordination sphere. These complexes crystallized in three crystal systems: orthorhombic (x9), triclinic (x19) and monoclinic (x26). On the basis of coordination mode of the respective donor ligands these complexes can be divided into the five sub-groups: Pt(PL)3(CL); Pt(h2P2L)(PL)(CL); Pt(h3-P3L)(CL); Pt(PL)2(h2-P,CL) and Pt(h2-P2L)(h2-P,CL). The chelating ligands form wide variety of metallocyclic rings with three-, four-, five- (most common), six- and even seven-membered and the effect of both steric and electronic factors was registered. The total mean Pt-L bond distances elongate in the sequence: 2.105 Å (C, trans to P) > 2.288 Å (P, trans to P) > 2.320 Å (P, trans to C). There is an example which exists in two isomeric forms e distortion isomers. These data are compare with those of monomeric Pt(II) complexes with the inner coordination spheres of cis- PtP2C2, trans PtP2C2 and PtPC3. There are discussed in terms of the coordination about the platinum atom interbond angles and correlations are drawn between Pt-L bond distances. © 2016 Elsevier B.V. All rights reserved.
Keywords: Structure Organoplatinum Organophosphine Trans-influence Review
Contents 1. 2.
3.
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 PtP3C derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.1. Pt(PL)3(CL) derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.2. Pt(h2-P2L)(PL)(CL) derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.3. Pt(h3-P3L)(CL) derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.4. Pt(PL)2(h2-P,CL) derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.5. Pt(h2-P2L)(h2-P,CL) derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1. Introduction Platinum atom has played major role in the development of organometallic chemistry. Organometallic platinum compounds
* Corresponding author. E-mail address:
[email protected] (M. Melník). http://dx.doi.org/10.1016/j.jorganchem.2016.12.011 0022-328X/© 2016 Elsevier B.V. All rights reserved.
especially alkene and alkyne compounds are important not only for their part in stimulating the development of bonding theory, but also for their catalytic role in a number of important industrial processes. Both these and other respects of platinum chemistry have stimulated considerable research activity for a long time. There have been many structural studies of organoplatinum complexes
M. Melník, P. Mikus / Journal of Organometallic Chemistry 830 (2017) 62e66
which were classified and analyzed [1]. Research activity on this field is always very active. Organophosphines as a soft P- donor ligands are very useful for building wide variety of organoplatinum complexes. The aim of this review is classify and analyze structural parameters of monomeric organoplatinum complexes with PtP3C inner coordination sphere. The primary source of information has been the Cambridge Crystallographic Database up to the end of 2015. 2. PtP3C derivatives There are over fifty Pt(II) complexes in which a distorted square planar environment about Pt(II) atom has an inner coordination sphere of PtP3C. These complexes crystallized in three crystal systems: orthorhombic (x9), triclinic (x19) and monoclinic (x26). On the basis of coordination mode of the respective ligands these derivatives can be divided into the five groups: Pt(PL)3(CL), Pt(h2P2L)(PL)(CL), Pt(h3-P3L)(CL), Pt(PL)2(h2-P,CL) and Pt(h2-P2L). (h2P,CL). 2.1. Pt(PL)3(CL) derivatives There are twelve examples in which three monodentate Pdonor ligands with monodentate- C- donor ligand create a square planar environment about each Pt(II) atom (PtP3C). Such complexes are: [Pt(PMe3)3{C(Ph)¼C¼CH2}]BPh4$MeOH [2], [Pt(PMe3)3(C7H6 N2)](F3CSO3) [3], [Pt(PEt3)3(C6F4BF3)] [4], [Pt(PPh3)3(C6H9)]CH2Cl2 [5], [Pt(PPh3)3(butyl)](F3CSO3)0$5CH2Cl2 [6], [Pt{P(Me)2Ph}3(CH2 CN)]PF6 [7], [Pt{P(Me)2(C6F5)}3(Me)] [8], [Pt{P(OH)Ph2}2{P(O) Ph2}(C6F5)]Me2CO [9], Pt{P(OH)Ph2}2{P(O)Ph2}(C≡CBut)] [9], [Pt {Pt(C≡CPh)Ph2}3(C6F5)](F3CSO3)CH2Cl2 [10], [Pt{P(h2-N2C4H10)2 Me}3(Me)](I) [11] and [Pt{P(O)Ph2}(pbp)2(Ph)]toluene [12]. Structure of [Pt(PEt3)3(C6F4BF3)] [4] is shown in Fig. 1 as an example. The mean Pt-L bond distances elongate in the sequence: 2.08 Å (C, trans
63
to P) > 2.285 Å (P, trans to P) > 2.322 Å (P, trans to C). The mean LPt-L bond angles are 88.5 (C-Pt-P), 94.5 (P-Pt-P), 167.0 (P-Pt-P) and 173.5 (C-Pt-P). 2.2. Pt(h2-P2L)(PL)(CL) derivatives There are nineteen complexes with the respective inner coordination sphere which is build up by homobidentate P,P0 - donor ligands with monodentate P and C- donor ligands. Such complexes are: [Pt(h2-Ph2PCH2PPh2){h1-P(CH2Ph2)(Ph)2}(C14H13N2)](F3CSO3) [13], [Pt{h2-Ph2PN(H)PPh2}{P(O)Ph2}(Me)]$C6H6 [14], [Pt{h2-Ph2 PN(H)PPh2}(PPh3){C(NMe2)¼S}]Cl$CH2Cl2 [15], [Pt{h2-Ph2P(CH2)2 PPh2}{(P/O)(CH2Pri)(Ph)}(Me)]$H2O [16], [Pt{h2-Ph2P(CH2)2PPh2} (PPh3)(C¼NMe2)](PF6)2 [17], [Pt{h2-Me2P(CH2)2PMe2}(PMe3)(Me)] {B(C6H3(CF3)2)}4 [18], [Pt{h2-Me2P(CH2)2PMe2}(PPh3)(Me)]{B(C6H3 (CF3)2)}4 [18], [Pt{h2-Ph2P(CH2)2PPh2}{P(H)(mes)2}(Et)](F3CSO3) [19], [Pt{h2-Ph2P(CH2)2PPh2}{P(H)(mes)}(Me)] [20], [Pt{h2-Ph(OH) P(CH2)2(POH)Ph}(PPh3)(COMe)]Cl [21], [Pt{h2-Ph2P(C22H11F5)P Ph2}{P(C≡CPh)Ph2}(C6F5)](F3CSO3) [10], [Pt{h2-P2C18H28}{P(CH2Pri) (Ph)}(Me)] [16], [Pt{h2-P2C18H28}(PPh2)(Me)] [22], [Pt{h2-P2C18H28} {P(Me)(Pri)}(C6H2Pri3)}(Ph)](BF4) [23], [Pt{h2-P2C18H28}{P(Me)(C6 H2Pri3)(Ph)] [24], [Pt{h2-P2C26H14}{P(Me)(C6H2Pri3)}(Ph)] [24], [Pt {h2-P2C18H28}{P(H)(Me)(C6H2(Pri)2CH2Me2)}(Ph)](BF4)CH2Cl2 [24], [Pt{h2-Ph2P(CH2)3PPh2}(PPh3)(C6H9)]HCO3$3H2O [25], and [Pt{h2P2C38H34B}{P(C6F5)3}(Me)]C6H6 [26]. Structure of [Pt{h2-Ph2P (CH2)2PPh2}{P(H)(mes)2}(Et)]þ [19] is shown in Fig. 2 as an example. The chelating ligands form a metallocyclic rings with the mean P-Pt-P bite angles of 73.0 (PCP) [13], 70.0 (PNP) [14,15], 85.3 (PC2P) [10,16e24], 93.2 (PC3P) [25] and 94.0 (PCBCP) [26]. Mean values of the remaining L-Pt-L bond angles are: 91.0 and 172.8 (P-Pt-C), 94.0 and 173.0 (P-Pt-P). The mean Pt-L bond distance elongate in the sequence: 2.115 Å (C, trans to P) > 2.285 Å (P, trans to P) > 2.352 Å (P, trans to C). 2.3. Pt(h3-P3L)(CL) derivative There are fifteen complexes, in which the respective inner coordination sphere (PtP3C) is build up by homotridentate- P,P,P
Fig. 1. Structure of [Pt(PEt3)3(C6F4BF3)] [4].
Fig. 2. Structure of [Pt{h2-Ph2P(CH2)2PPh2}{P(H)(mes)2}(Et)]þ [19].
M. Melník, P. Mikus / Journal of Organometallic Chemistry 830 (2017) 62e66
64
donor ligands with monodentate C- donor ligands. In the fourteen of these complexes: [Pt(h3-triphos){C(O)C6H4Me}]PF6 [27], [Pt(h3P3C24H36)(Me)] [28], [Pt(h3-P3C34H33)(Me)] [29], [Pt(h3P3C34H33)(C15H17O)](BF4) [30], [Pt(h3-P3C34H33)(C20H25O)](BF4) [31], [Pt(h3-P3C34H33)(C25H33O)](BF4) [31], [Pt(h3-P3C34H33)(C15 H23)](BF4) [31], [Pt(h3-P3C34H33)(C18H29)](BF4)(C5H12O) [31], [Pt(h3-P3C34H33)(C14H23)](BF4)$CH2Cl2 [31], [Pt(h3- P3C34H33) (C12H9)](BF4)$CH2Cl2 [32], [Pt(h3- P3C34H33)(C17H23)](BF4)$CH2Cl2 [33], [Pt(h3- P3C34H33)(C10H16O)](BF4) (monoclinic and triclinic) [34], and [Pt(h3-P3C34H33)(C12H22N)](BF4)$CH2Cl2 [34], the homotridentate ligands form pair of five-membered metallocyclic rings with the mean P-Pt-P bite angles of 85.8 (PC2P). In the remaining one [Pt(h3-P3C29H20O)(Me)]Cl [35] the tridentate ligand forms fiveand seven-membered rings with the values of 85.7 (PC2P) and 97.0 (PCPC2P). Structure of [Pt(h3-P3C34H33)(C14H23)]þ [31] is shown in Fig. 3 as an example. The mean values of trans- L-Pt-L bond angles are 168.5 (P-Pt-P) and 174.9 (P-Pt-C). The mean Pt-L bond distances are 2.11 Å (C, trans to P), 2.255 Å (P, trans to P) and 2.295 Å (P, trans to C). 2.4. Pt(PL)2(h2-P,CL) derivatives In three monoclinic complexes: [Pt(PPh3)2(h2-P≡CMes)]C7H8 [36], [Pt(Pcy3)2(h2-P≡CMe)]C7H8 [37], [Pt(P(p-tolyl)Ph2)2(h2PC19H26)](BF4)$CH2Cl2 [38] and in triclinic [Pt(PPh3)2(h2C6H4PPh2)](SbF6)$CD2Cl2 [39] a pair of PR3 ligands with heterobidentate- C,P donor ligands build up PtP3C inner coordination sphere. Structure of [Pt(Pcy3)2(h2-P≡CMe)] [37] is shown in Fig. 4 as an example. Each chelating ligand in [Pt(PPh3)2(h2-P≡CMes)]C7H8 [36] and [Pt(Pcy3)2(h2-P≡CMe)]C7H8 [37] forms three-membered metallocyclic ring with the mean C-Pt-P bite angles of 47.3 (CP) and in the remaining two complexes [Pt(P(p-tolyl)Ph2)2(h2PC19H26)](BF4)$CH2Cl2 [38] and [Pt(PPh3)2(h2-C6H4PPh2)](SbF6)$ CD2Cl2 [39] the chelating ligands form four-membered metallocyclic rings with the mean value of 67.5 (CCP). The mean values of remaining L-Pt-L bond angles are 92.0 and 170.6 (C-Pt-P), 100.5 and 159.0 (P-Pt-P). The mean Pt-L bond distances elongate in the sequence: 2.095 Å (C, trans to P) < 2.310 Å (P, trans to P) < 2.325 Å (P, trans to C). 2.5. Pt(h2-P2L)(h2-P,CL) derivatives
Fig. 4. Structure of [Pt(Pcy3)2(h2-P≡CMe)] [37].
](F3CSO3)$0.5H2O [40], [Pt{h2-Ph2P(CH2)2PPh2}(h2-P2C12H30OSi2)]$ 0.5C4H8O [41] and [Pt(h2-Ph2POHOPPh2)(h2-CH2CH2PPh2)] [42], in each of them are two categories of chelating ligands which build up PtP3C inner coordination sphere, one of the chelating ligand is homobidentate with P,P0 donor sites and the other one is heterobidentate with P,C- donor sites. Structure of [Pt{h2Ph2P(CH2)2PPh2}(h2-P2C12H30OSi2)] [41] is shown in Fig. 5 as an example. The values of P-Pt-P and C-Pt-P bite angles are: 73.0 (PCP) and 87.0 (CC2P) [40], 86.0 (PC2P) and 68.4 (CPP) [41], and 91.1 (POHOP) and 68.3 (CCP) [42]. The mean values of the remaining L-Pt-L bond angles are: 102.0 and 163.0 (P-Pt-P) and 91.5 and 174.5 (P-Pt-C). The mean Pt-L bond distances elongate in the sequence: 2.12 Å (C, trans to P) < 2.303 Å (P, trans to P) < 2.305 Å (P, trans to C).
There are three complexes: [Pt(h2-Ph2PCH2PPh2)(h2-P2C37H27O)
Fig. 3. Structure of [Pt(h3-P3C34H33)(C14H23)]þ [31].
Fig. 5. Structure of [Pt{h2-Ph2P(CH2)2PPh2}(h2-P2C12H30OSi2)] [41].
M. Melník, P. Mikus / Journal of Organometallic Chemistry 830 (2017) 62e66
3. Conclusions
KEGA 022UK-4/2015.
In this review are classified and analyzed over fifty Pt(II) complexes with an inner coordination sphere of PtP3C. These complexes crystallized in the three crystal systems: orthorhombic (x9), triclinic (x19) and monoclinic (x26). These complexes on the basis of coordination mode of the respective donor ligands were divided into the five sub-groups: Pt(PL)3(CL) (12 examples); Pt(h2P2L)(PL)(CL) (19 examples); Pt(h3-P3L)(CL) (15 examples); Pt(PL)2(h2-P,CL) (4 examples); and Pt(h2-P2L)(h2-P,CL) (4 examples). The chelating ligands form wide variety of metallocyclic rings with mean values of the L-Pt-L bite angles which open in the sequence: 47.3 (CP) < 67.5 (CCP) < 68.4 (CPP) < 70.0 (PNP) < 73.0 (PCP) < 85.7 (PC2P) < 87.0 (CC2P) < 91.1 (POHOP) < 93.2 (PC3P) < 94.0 (PCBCP) < 97.0 (PCPC2P). There are at least two contributing factors to the size of the L-Pt-L chelate bond angles, bond ligand based. One is the steric constraint imposed on the ligand and the other is the need to accommodate the imposed ring size. The total mean Pt-L bond distances elongate in the sequence: 2.105 Å (C, trans to P) < 2.288 Å (P, trans to P) < 2.320 Å (P, trans to C). The total mean values of trans- L-Pt-L bond angles are 166.5 (P-Pt-P) and 173.5 (P-Pt-C). There is an example [Pt(h3-P3C34H33)(C10H16O)](BF4) [34] which exists in two isomeric forms: monoclinic and triclinic. These isomeric forms are differ not only by crystal system, but also by degree of distortion and are example of distortion isomerism [43]. Recently, we classified and analyzed structural parameters of monomeric Pt(II) complexes with an inner coordination spheres: cis-PtP2C2 (250 examples) [44] trans-PtP2C2 (170 examples) [45] and PtPC3 (14 examples) [46]. This review with its precursors [44e46] covers almost five hundred examples. These complexes crystalized in four crystal systems hexagonal (x2), orthorhombic (x13), triclinic (x197) and monoclinic (x257). The coordination spheres about the Pt(II) atom are build up by mono- PL, CL dentate donor ligands. The chelating ligands form wide variations of metallocycles and the effect of both steric and electronic factors can be seen from the total mean values of L-Pt-L which open in the sequence: C-Pt-C: 38.2 (C≡C) < 38.7 (C¼C) < 40.2 (C-C) < 68.0 (CCC) < 78.5 (CPC) < 81.6 (CC2C) < 82.3 (CCSC) < 85.2 (CC3C) < 85.8 (CCOCC) < 89.0 (CCSiCC) < 89.7 (CC17C) < 90.5 (CC4C) < 99.0 (CC3NC4NC3C) < 102.0 (C12C) < 180 (CC13C), (CC7NC7C), (CC16C). P-Pt-P: 70.2 (PCP) < 71.0 (PCP) < 86.2 (PC2P) < 88.6 (PP2P) < 91.0 (POHOP) < 94.0 (PCBCP) < 94.2 (PC3P) < 96.8 (PNSiNP) < 97.0 (PCSiCP), (PCBC2C) < 97.6 (PC3NP), (POC4P) < 99.0 < (PC4P) < 105.0 {P(C2O)3(C2N)3(C2O)3} < 180 (PC14P), (PC16P). C-Pt-P: 68.0 (CCP) < 68.4 (CPP) < 69.0 (CNP) < 85.4 (CC2P) < 86.0 (CC2P) < 86.0 (CCOP) < 88.6 (CC2OP) < 90.0 (CNC2P) < 90.5 (CPCP). The total sums of both, four Pt-L bond distances and the covalent radii of the coordinated atoms, growing in the sequence: 8.38 Å (PtPC3, 3.37 Å) < 8.70 Å (trans-PtP2C2, 3.66 Å) < 8.77 Å (cis-PtP2C2, 3.66 Å) < 9.03 Å (PtP3C, 3.95 Å), as expected. As can be seen, the sum of Pt-L bond distances in the complexes with cis-configuration is larger (8.77 Å) than the sum in the complexes with transconfiguration (8.70 Å). This indicates that the Pt-L bond distances in cis-derivatives are more polar and presumably weaker than in the complexes with trans-configuration in which Pt-L bond distances are less polar and presumably stronger.
Abbreviations
Acknowledgements This work was supported by the projects VEGA 1/0873/15 and
65
C4H8O tetrahydrofuran C5H12O 2-methoxy-2-methylpropane C6F4BF3 2,3,4,5-tetrafluoro-6-(trifluoro-boranyl)phenyl C6H9 cyclohexenyl C7H6N2 benzimidazolin-2-ylidene C12H9 diphenyl-2-yl C14H13N2 4,40 -dimethylazobenzene C14H23 4a-methyl-5-(prop-1-en-2-yl)decahydronaphthalen-2-yl C15H17O 1,4a-dimethyl-4,4a,9,9a-tetrahydro-3H-xanthen-2-yl C15H23 4a-methyl-1,2,3,4,4a,5,6,7,8,9,9a,10dodecahydroanthracene-2-yl C17H23 8-mesitylcyclooct-4-en-1-yl C18H29 3-isopropyl-3,9a-dimethyl-2,3,4,5,5a,6,7,8,9,9adecahydro-14-cyclopenta[a]naphtalen-7-yl C20H25O 8-methoxy-4a-methyl-1,2,3,4,4a,4b,5,6,12,12a-decahydrochrysen-2-yl C25H33O 10-methoxy-6a,14b-dimethyl1,2,3,4,4a,5,6a,6b,7,8,14,14a,14b-tetradecyhydropicen-3yl P(h2-N2C4H10)2(Me) 2-methyl-1,3-dimethyl-3,2diazaphospholidine P(h2-N2C4H10)2(OMe) 2-methoxy-1,3-dimethyl-3,2diazaphospholidine P2C12H30OSi2 bis(trimethylsilyl)((2,2-dimethylpropyl) phoshido)(phosphinoyl) P2C18H28 1,2-bis((hexa-2,3-diyl)phosphino)benzene P2C26H14 1,2-bis(2,5-di-isopropylphospholanyl)benzene P2C37H27O 9-(diphenylphosphino-10-(diphenylphoshoryl)-1anthryl P2C38H34B bis(diphenylphosphinomethyl)diphenylborate P3C24H36 ((phosphinediyl)di-2,1-phenylene)bis(diisopropylphosphinate) P3C29H20O ((diphenylphosphino)ethyl)phenylphoshinomethyl P3C34H33 bis(2-diphenylphosphinoethyl)(phenyl)phosphine pbp 1-phenyl-3H-2,1-benzoxaphosphole Ph2P(C22H11F5)PPh2 4-phenyl-1-(pentafluorophenyl)naphthalen2,3-diylbis(diphenyl-phosphino) triphos bis[2-diphenylphosphino)ethyl]phenylphoshine References [1] M. Melník, C.E. Holloway, Rev. Inorg. Chem. 32 (2012) 23. [2] P.W. Blosser, M. Calligaris, D.G. Schmipff, A. Wojcicki, Inorg. Chim. Acta 320 (2001) 110. [3] F.E. Hahn, V. Langenhahn, T. Lugger, T. Pape, D. LeVan, Angew. Chem. Int. Ed. 44 (2005) 3759. [4] J. Bauer, H. Braunschweig, R.D. Dewhurst, K. Radacki, Chem. Eur. J. 19 (2013) 879. [5] M. Fujita, W.H. Kim, Y. Sakanishi, K. Fujiwara, S. Hirayama, T. Okujama, Y. Ohki, K. Tatsumi, Y. Yoshioka, J. Am, Chem. Soc. 126 (2004) 7548. [6] P.J. Stang, M.H. Kowalski, M.D. Schiavelli, D. Longford, J. Am, Chem. Soc. 111 (1989) 3347. [7] P.S. Pregosin, R. Favez, R. Roulet, T. Boschi, R.A. Michelin, R. Ros, Inorg. Chim. Acta 45 (1980) L7. [8] L. Manojlovi c-Muir, K.W. Muir, T. Solomun, D.V. Meck, J.L. Peterson, J. Organomet. Chem. 146 (1978) C28. s, J. Gomez, E. Lalinde, A. Martin, M.T. Moreno, S. Sanchez, [9] A. Diez, J. Fornie Dalton Trans. (2007) 3653. s, A. Garcia, E. Lalinde, M.T. Moreno, [10] J.F. Berenguer, M. Bemechia, J. Fornie Inorg. Chem. 43 (2004) 8185. [11] M. Itazaki, Y. Shigesato, H. Nakazawa, Comptes Rendus Chim. 13 (2010) 943. [12] P.W.N.M. van Leeuwe, C.F. Roobeck, A.G. Orpen, Organometallics 9 (1990) 2179. [13] J. Vicente, Q. Arcas, D. Bautista, M.C.R. de Arellano, J. Organomet. Chem. 663 (2002) 164. [14] M. Rashidi, M.C. Jennings, R.J. Puddephatt, Cryst. Eng. Comm. 5 (2003) 65. [15] K.H. Yih, G.H. Lee, J. Organomet. Chem. 691 (2006) 3997.
66
M. Melník, P. Mikus / Journal of Organometallic Chemistry 830 (2017) 62e66
[16] C. Scriban, D.K. Wicht, D.C. Glueck, L.M. Zakharov, J.A. Golen, A.L. Rheingold, Organometallics 25 (2006) 3370. [17] G. Ferguson, Y. Li, A.J. Ac Alees, R.M. Crindle, E. Zang, J. Organomet. Chem. 617 (2001) 671. [18] D. Serra, M.E. Moret, P. Chen, J. Am. Chem. Soc. 133 (2011) 8914. [19] M.A. Zhuravel, N.S. Grewal, K.Ch Lam, A.L. Rheingold, Organometallics 19 (2000) 2882. [20] D.K. Wicht, S.N. Paisner, B.M. Lew, D.S. Glueck, G.P.A. Yap, L.M. Liable-Sands, A.L. Rheingold, C.M. Haar, S.P. Nolan, Organometallics 17 (1998) 652. [21] J. Powell, M.J. Howath, L. Lough, J. Chem. Soc. Dalton Trans. (1996) 1679. [22] C. Scriban, D.S. Glueck, L.N. Zakharov, W.S. Kassel, A.G. DiPasquale, J.A. Golen, A.L. Rheingold, Organometallics 25 (2006) 5757. [23] C. Scriban, D.S. Glueck, A.L. Rheingold, Organometallics 26 (2007) 1788. [24] C. Scriban, D.S. Glueck, A.G. DiPasquale, A.L. Rheingold, Organometallics 25 (2006) 5435. [25] M.A. Bennett, G.B. Robertson, P.N. Kapoor, Aust. J. Chem. 52 (1999) 949. [26] J.C. Thomas, J.C. Peters, J. Am. Chem. Soc. 125 (2003) 8870. [27] D.W. Dockter, P.E. Fanwick, C.P. Kubiak, J. Am. Chem. Soc. 118 (1996) 4846. [28] M. Mazzeo, M. Strianese, O. Kuhl, J.C. Peters, Dalton Trans. 40 (2011) 9026. [29] G. Annibale, P. Bergamini, V. Bertolasi, M. Cattrabriga, V. Ferretti, Inorg. Chem. Commun. 3 (2000) 303. [30] D.L. Nelsen, M.R. Gagne, Organometallics 28 (2009) 950. [31] J.G. Sokol, C.S. Korapala, P.S. White, J.J. Becker, M.R. Gagne, Angew. Chem. Int.
Ed. 50 (2011) 5658. [32] S.B. Zhao, R.Y. Wang, H. Nguyen, J.J. Becker, M.R. Gagne, Chem. Commun. (2012) 443. [33] S.B. Zhao, R.Y. Wang, R. Gagne, Online, Acta Crystallogr. Sect. E, Struct. Rep. 67 (2011) m 972. [34] J.A. Feducia, M.R. Gagne, J. Am. Chem. Soc. 130 (2008) 592. [35] P. Nair, G.K. Anderson, N.P. Rath, Inorg. Chem. Commun. 6 (2003) 1307. [36] D. Himmel, M. Seitz, M. Scheer, Z. Anorg, Allg. Chem. 630 (2004) 1220. [37] C. Jones, C. Schulten, A. Stasch, Dalton Trans. (2006) 3733. [38] M.A. Bennett, S.K. Bhargawa, S.H. Priver, A.C. Willis, Eur. J. Inorg. Chem. (2008) 3467. [39] H.C.S. Clark, J. Fawcett, J.H. Holloway, E.G. Hope, L.A. Peck, D.R. Russell, J. Chem. Soc. Dalton Trans. (1998) 1249. [40] J. Hu, J.H.K. Yip, Organometallics 28 (2009) 1093. [41] M.H. Araujo, P.B. Hitchcock, J.F. Nixon, U. Kuchner, O. Stelzer, Chem. Commun. (2003) 1092. [42] W.N.M. van Leuewen, C.F. Roobeck, J.H.G. Fujins, A.G. Orpen, Organometallics 9 (1990) 1211. [43] M. Melník, Coord. Chem. Rev. 47 (1982) 239. [44] M. Melník, P. Mikus, J. Organomet. Chem. 805 (2016) 6. [45] M. Melnik, P. Mikus, Rev. Inorg. Chem., http//dx.doi.org/10.1515/revic-20160003, Received May 4, 2016; accepted September 14, 2016. [46] M. Melnik, P. Mikus, J. Organomet. Chem. 811 (2016) 1.