Organophosphines in organoplatinum complexes: Structural aspects of PtPC2X (X = H, O, N, B, Cl, S or I) derivatives

Organophosphines in organoplatinum complexes: Structural aspects of PtPC2X (X = H, O, N, B, Cl, S or I) derivatives

Journal of Organometallic Chemistry 828 (2017) 30e37 Contents lists available at ScienceDirect Journal of Organometallic Chemistry journal homepage:...

2MB Sizes 0 Downloads 34 Views

Journal of Organometallic Chemistry 828 (2017) 30e37

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry journal homepage: www.elsevier.com/locate/jorganchem

Review

Organophosphines in organoplatinum complexes: Structural aspects of PtPC2X (X ¼ H, O, N, B, Cl, S or I) derivatives Milan Melník a, b, *, Peter Mikus a, b rov 10, SK-832 32 Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odboja Bratislava, Slovak Republic b rov 10, SK-832 32 Bratislava, Slovak Republic Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odboja a

a r t i c l e i n f o

a b s t r a c t

Article history: Received 27 September 2016 Received in revised form 28 October 2016 Accepted 4 November 2016 Available online 5 November 2016

In this review are summarized and analyzed structural parameters of over seventy monomeric organoplatinum complexes with PtPC2X (X ¼ H, O, N, B, Cl, S or I) inner coordination sphere. These complexes crystallized in four crystal systems: tetragonal (2), orthorhombic (3), triclinic (27) and monoclinic (41). The inner coordination spheres about platinum atoms are built by mono- P, C, H, O, N, Cl, S, I, bi- C/ C, C/O, C/N, P/N, P/C, P/S, and tri- C/C/B, P/C/C, C/N/C and P/C/N- dentate ligands. There are complexes with cis- and trans-configurations from which the former by far prevails (56 examples) against (8 examples) with trans-configuration. The chelating ligands created wide variety of metallocycles with three, four-, five-, and six-membered metallocyclic rings. There are examples which exist in isomeric formsdistortion and ligand isomerism. Several relationships were found and discussed. © 2016 Elsevier B.V. All rights reserved.

Keywords: Structure Organoplatinum Organophosphines Trans-influence Isomers

Contents 1. 2.

3.

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 PtPC2X derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.1. PtPC2X (X ¼ H or O) derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2. PtPC2N derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3. PtPC2X (X ¼ B or Cl) derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4. PtPC2X (X ¼ S or I) derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1. Introduction Systematic studies in the field of stereoselectivity of coordination as well as organometallic compounds over the last 50 years have become of increasing interest. Stereoselectivity in

* Corresponding author. Department of Pharmaceutical Analysis and Nuclear rov 10, Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odboja SK-832 32 Bratislava, Slovak Republic. E-mail address: [email protected] (M. Melník). http://dx.doi.org/10.1016/j.jorganchem.2016.11.011 0022-328X/© 2016 Elsevier B.V. All rights reserved.

coordination compounds is very often related to important stereospecificity of biological systems, catalysis and stereochemical effects of technical processes. Recently we classified and analyzed structural parameters of stereoisomers of organoplatinum complexes [1]. In the chemistry of organoplatinum complexes organophosphines as soft-donor ligands are very often used. There are numerous published structural studies of such complexes. Structural parameters of mononuclear organoplatinum complexes with an inner coordination spheres: cis- PtP2C2 [2], PtP2CX (X ¼ H, F or O) [3], PtP2CX (X ¼ N or B) [4], cis- PtP2CCl [5], trans- PtP2CCl [6],

M. Melník, P. Mikus / Journal of Organometallic Chemistry 828 (2017) 30e37

PtP2CX (X ¼ S, Se, Si or Te) [7] and PtP2CX (X ¼ Br or I) [8] we analyzed and discussed. The aim of this review is classify and analyze structural parameters of monomeric organoplatinum complexes with an inner coordination sphere of PtPC2X (X ¼ H, O, N, B, Cl, S or I). The structural parameters of PtPC2X compared and summarized with those found in the precursors [2e8]. The primary source of information was Cambridge Crystallographic Database up to the end of 2015. 2. PtPC2X derivatives There are over seventy monomeric organoplatinum complexes with an inner coordination sphere of PtPC2X for which structural parameters are available. These complexes crystallized in four crystal systems: tetragonal (2), orthorhombic (3), triclinic (27) and monoclinic (41). 2.1. PtPC2X (X ¼ H or O) derivatives Colorless triclinic [Pt(PPh3)(CH2CN)(C11H14N2O)(H)] [9] is only example in which monodentate donor ligands create cis- PtPC2H inner coordination sphere. The Pt-L bond distances elongate in the order: 1.64(4) Å (H, trans to O) < 2.069(4) Å (C, trans to P) < 2.110(7) Å (C, trans to H) < 2.252(2) Å (P, trans to C). The cis- L-Pt-L bond angles open in the order: 85(1) (CePteH) < 88(1) (HePteP) < 90.0(2) (CePteC) < 96.7(1) (CePteP). The trans- LPt-L bond angles are 172.7(1) (CePteP) and 174.(1) (CePteH). In two monoclinic complexes: [Pt(PPh3)(h1-C6H5NO2-o)(h2C6H5NO2-o)] [10] and [Pt(PPh3)(h1-C9H9N2O7)(h2-C9H9N2O7)] Me2CO [11] which are isostructural, the respective donor ligands create a distorted square-planar environment about each Pt(II) atom cis- PtPC2O inner coordination sphere. Structure of [Pt(PPh3)(h1-C9H9N2O7)(h2-C9H9N2O7)] [11] is shown in Fig. 1 as an example. The mean Pt-L bond distances elongate in the order: 1.985 Å (C(h1L), trans to O) < 2.025 Å (C(h2L), trans to P) < 2.140 Å (O, trans to C) < 2.320 Å (P, trans to C). Each chelating- C,O ligand forms five-membered metallocyclic ring with the mean CePteO bite angle of 79.5 (CCNO). The mean values of the remaining cis- LPt-L bond angles open in the order: 92.5 (CePteP) < 93.4 (OePteP) < 95.0 (CePteC). The mean values of trans- L-Pt-L bond angles are 172.2 (CePteP) and 174.3 (CePteO).

Fig. 1. Structure of [Pt(PPh3)(h1-C9H9N2O7)(h2-C9H9N2O7)] [11].

31

2.2. PtPC2N derivatives There are over forty complexes with PtPC2N inner coordination sphere, which on the bases of combination of coordination mode of the respective donor ligands can be divided into the eight subgroups: Pt(h1-PL)(h1-CL)2(h1-NL); Pt(h1-PL)(h1-CL)(h2-C,NL); Pt(h2-P,NL)(h1-CL)2; Pt(h2-P,CL)(h1-CL)(h1-NL); Pt(h3-P,C,CL)(h1NL); Pt(h1-PL)(h3-C,N,CL); Pt(h3-P,C,NL)(h1-CL), and Pt(h2-P,NL)(h2C,CL). In two complexes with cis-configuration: tetragonal [Pt(PPh3)(Me)2(h1-pop)] [12] and triclinic [Pt(PPh3)(Me)(h1C10H12N6)(h1-py)](py)2 [13], only monodentate donor ligands are involved. The mean Pt-L bond distances elongate in the order: 2.02 Å (C, trans to N) < 2.08 Å (C, trans to P) < 2.124 Å (N, trans to C) < 2.304 Å (P, trans to C). The cis- L-Pt-L bond angles (mean values) open in the order: 86.4 (CePteC)(CePteN) < 90.7 (CePteP) < 96.5 (NePteP). The mean values of trans- L-Pt-L bond angles are 171.7 (CePteN) and 176.7 (CePteP). There are nineteen examples of Pt(h1-PL)(h1-CL)(h2-C,NL) type, sixteen with cis- PtPC2N configuration and remaining three with trans-configuration. The complexes with cis-configuration are: [Pt(PPh3)(Me)(h2-C14H10F2N)] [14], [Pt(PPh3)(Me)(h2-C14H9F3N)] monoclinic [14] and triclinic [15], [Pt(PPh3)(Me)(h2-C14H11ClN)] [16], [Pt(PPh3)(Me)(h2-C15H14N)] [17], [Pt(Ph2PC6H4OMeo)(Me)(h2-C10H11N6)] [18], [Pt(PPh3)(Me)(h2-C20H16N-2)] [19], [Pt(PPh3)(Me)(h2-C20H16N-4)] [19], [Pt(PPh3)(Me)(h22 C14H10BrClN)] [20], [Pt(PPh3)(Me)(h -C18H13ClN)] [21], [Pt(PPh3)(Me)(h2-C18H13ClN)] [21], [Pt(PPh3)(Me)(h2-C17H14NS)] [22], [Pt(PPh3)(Me)(h2-C17H15ClNO2)] [23], [Pt(PPh3)(Me)(h2C12H10NS)] [24], [Pt(PPh3)(Me)(C6F5)(h2-C13H8N)] [25], and [Pt(PPh3)(Me)(h2-C15H9BrF4N)] [26]. Structure of cis-[Pt(PPh3)(Me)(h2-C14H10BrClN)] [20] is shown in Fig. 2 as an example. The chelating ligands in the Pt(h1-PL)(h1CL)(h2-C,NL) type complexes in Refs. [14e25,27,28] create fivemembered metallocyclic rings with the mean CePteN bite angles

Fig. 2. Structure of cis-[Pt(PPh3)(Me)(h2-C14H10BrClN)] [20].

32

M. Melník, P. Mikus / Journal of Organometallic Chemistry 828 (2017) 30e37

of 80.2 (CC2N). The chelating ligand in the [Pt(PPh3)(Me)(h2C15H9BrF4N)] [26] forms six-membered metallocyclic ring, 91.7 (CC3N). The remaining cis- L-Pt-L bond angles (mean values) open in the order: 89.5 (CePteC) < 90.2 (CePteP) < 100.6 (NePteP). The mean values of trans- L-Pt-L bond angles are 168 (CePteN) and 173.4 (CePteP). The mean values of Pt-L bond distances elongate in the order: 2.01 Å (C, trans to P) < 2.02 Å (C, trans to N) < 2.148 Å (N, trans to C) < 2.298 Å (P, trans to C). Complexes with trans-configuration are: [Pt{P(C^CPh)Ph2}(C^CPh)(h2-C13H8N)] [27], [Pt(h1-Ph2PCH2PPh2)(p-tolyl)(h2-C13H8N)] [27] and [Pt(h1Ph2PCH2PPh2)(C6H4OMe-4)(h2-C11H8N)] [28]. The chelating ligands form five-membered metallocycles with the mean CePteN bite angles of 80.4 (CC2N). The mean values of cis- L-Pt-L bond angles are 90.2 (CePteN) and 98.5 (CePteP). The mean values of trans- L-Pt-L bond angles are 170.0 (CePteC) and 174.5 (NePteP). The mean Pt-L bond distances elongate in the order: 2.01 Å (C, trans to C) < 2.12 Å (N, trans to P) < 2.302 Å (P, trans to N). There are nine cis-complexes of the Pt(h2-P,NL)(CL)2 type: [Pt {h2-Ph2P. (CH2)2NBut2}(Me)2] [29], [Pt(h2-But2PCH2C5H4N)(Me)2] [30], [Pt(h2-Ph2PCH2C3H4NO). (Me)2] [31], [Pt(h2i 2 i Pr 2PC11H12N)(Me)2] [32], [Pt{h -Pr 2P(CH2)2NMe2}(C^CPh)(Ph)] [33], [Pt(h2-Ph2PC4H6NO)(CO)(Ph)].PF6$C4H8O [34], [Pt{h22 Ph2P(CH2)3NMe2}(Me)2]$C6H6 [29], [Pt(h -Ph2PC9H11NO)(Ph)2] [35], and [Pt(h2-Ph2PC15H14N)(Et)2] [36], in which heterobidentateP,N donor ligands with two monodentate C donor ligands create cisPtPC2N inner coordination sphere. Structure of [Pt{h2Ph2P(CH2)2NPri2}(Me)2] [29] is shown in Fig. 3 as an example. The chelating ligands in the Pt(h2-P,NL)(CL)2 type complexes [29e33] form five-membered and in Refs. [29,35,36] six-membered metallocyclic rings with the mean values of PePteN bite angles of 81.3 (PC2N) and 86.8 (PC3N), respectively. The remaining cis- L-Pt-L bond angles open in the sequence 87.2 (CePteC) < 88.8

(CePteN) < 94.8 (CePteP). The mean values of trans- L-Pt-L bond angles are 169.6 (CePteN) and 172.0 (CePteP). The mean values of Pt-L bond distances elongate in the order: 2.00 Å (C, trans to N) < 2.06 Å (C, trans to P) < 2.09 Å (N, trans to C) < 2.296 Å (P, trans to C). Another four complexes belong to the Pt(h2-P,CL)(h1-CL)(h1-NL) type, three with cis-configuration: [Pt(h2-But2PC11H8)(C6F5)(py)] [37], [Pt(h2-But2PC11H8)(C6F4F-4)(py)] [37], [Pt(h2-ButP(h2C14H15)(C6F5)(py)] [37] and one with trans-configuration [Pt{h2(C10H16)2PCH2C6H4}(mesityl)(py)] [38]. Structure of trans-[Pt{h2(C10H16)2PCH2C6H4}(mesityl)(py)] [38] is shown in Fig. 4 as an example. Each chelating- P,C donor ligand forms five-membered metallocyclic ring with the mean PePteC bite angle of 82.6 (PC2C). The mean Pt-L bond distances in cis-derivatives elongate in the order: 2.03 Å (C, trans to N) < 2.07 Å (C, trans to P) < 2.09 Å (N, trans to C) < 2.302 Å (P, trans to C). In the trans-derivative the order is: 2.01 Å (C, trans to C) < 2.125 Å (N, trans to P) < 2.295 Å (P, trans to N). Another four complexes are of cis-Pt(h3-P,C,CL)(h1-NL) type: [Pt(h3-But2PC18H13)(py)] [37], [Pt(h3-But2PC18H13O)(N]CMe)] [37], [Pt(h3-But2PC17H9F2)(N]CMe)] [37] and [Pt(h3-But2PC17H10F)(N] CMe)] (Fig. 5) [37]. Each heterotridentate- P,C,C donor ligand forms two five-membered metallocycles with the mean PePteC bite angles of 82.4 (PC2C) and 84.3 (CC2C). The mean Pt-L bond distances elongate in the order: 2.03 Å (C, trans to N) < 2.06 Å (C, trans to P) < 2.11 Å (N, trans to C) < 2.304 Å (P, trans to C). Two complexes with trans-configuration: [Pt{h3C20H15NO2}(PPh3)] (Fig. 6) [39] and [Pt{h3-C17H11N}{P(C14H19O5) Ph2}]CH2Cl2 [40] are of Pt(h3-C,N,CL)(h1-PL) type. Each heterotridentate- C,N,C donor ligand create pair of five-membered metallocycles with the common N atom and the mean CePteN bite angle of 80.6 (CC2N). The mean Pt-L bond distances elongate in the

Fig. 3. Structure of [Pt{h2-Ph2P(CH2)2NPri2}(Me)2] [29].

Fig. 4. Structure of trans-[Pt{h2-(C10H16)2PCH2C6H4}(mesityl)(py)] [38].

M. Melník, P. Mikus / Journal of Organometallic Chemistry 828 (2017) 30e37

33

Fig. 5. Structure of [Pt(h3-But2PC17H10F)(N]CMe)] [37].

Fig. 7. Structure of [Pt{h3-But2PC11H15N}{C(Ph)]N]N}] [42].

[Pt{h2-Pri2P(CH2)2NMe2}{h2-PhC^CPh}].CH2Cl2 [44] and [Pt{h2-Pri2P(CH2)2NMe2}{h2-C(Ph)]C(Ph)-C(Ph)}].CH2Cl2 [44] which are of Pt(h2-P,NL)(h2-C2L) type. Structure of [Pt{h2Pri2P(CH2)2NMe2}{h2-PhC^CCF3}] [43] is shown in Fig. 8 as an example. The heterobidentate- P,N donor ligand forms fivemembered metallocyclic ring with the mean value of PePteN bite angle of 83 (PC2N). In the three complexes [43] (2) and [44] (1) homobidentate- C^C- donor ligands create three-membered metallocyclic rings with the mean CePteC bite angle of 38 (C^C) and in the remaining complex [44] the homobidentate- C]CC]C

Fig. 6. Structure of [Pt{h3-C20H15NO2}(PPh3)] [39].

order: 2.00 Å (C, trans to C) < 2.12 Å (N, trans to P) < 2.300 Å (P, trans to N). Another two complexes also with trans-configuration [Pt{h3But2PC11H15N}(Me)] [41] and [Pt{h3-But2PC11H15N}{C(Ph)]N]N}] [42] are example of Pt(h3-P,C,NL)(h1-CL) type. Structure of [Pt{h3But2PC11H15N}{C(Ph)]N]N}] [42] is shown in Fig. 7 as an example. The heterotridentate- P,C,N donor ligand create two metallocycles one five- (PC2C) and another one six- (CC3N) membered with the mean values of L-Pt-L bite angle of 82.7 and 92 , respectively. The mean Pt-L bond distances elongate in the sequence: 2.03 Å (C, trans to C) < 2.13 Å (N, trans to P) < 2.298 Å (P, trans to N). There are four complexes with cis-configuration: [Pt{h2-Pri2P(CH2)2NMe2}{h2-PhC^CCF3}] [43], [Pt{h2-Pri2P(CH2)2NMe2}{h2-PhC^CBut}] [43], Fig. 8. Structure of [Pt{h2-Pri2P(CH2)2NMe2}{h2-PhC^CCF3}] [43].

M. Melník, P. Mikus / Journal of Organometallic Chemistry 828 (2017) 30e37

34

donor ligand create five-membered metallocyclic ring, 84.7 (CC2C). The mean Pt-L bond distances elongate in the sequence: 1.98 Å (C, trans to N) < 2.07 Å (C, trans to P) < 2.135 Å (N, trans to C) < 2.305 Å (P, trans to C). 2.3. PtPC2X (X ¼ B or Cl) derivatives Triclinic cis-[Pt{h3-C(Ph)]C]CB(C6F5)2}(PBut3)] (Fig. 9) [45] is only example with PtPC2B inner coordination sphere. The heterotridentate- C,C,B donor ligand create pair of three-membered metallocycles with one of the C atom which is common. The values of L-Pt-L bite angles are 39.2 (CC) and 40 (CB). The Pt-L bond distances elongate in the sequence: 2.00 Å (C, trans to B) < 2.07 Å (C, trans to P) < 2.10 Å (B, trans to C) < 2.300 Å (P, trans to C). There are six examples with cis- PtPC2Cl inner coordination sphere. In five complexes: [Pt(PPh3)(C]NMe2)(CH2CL)(Cl)] [46], [Pt {P(C6F5)3}(CO)(Me)(Cl)] [47], [Pt(PMePh2)(CO)(C5H5)(Cl)] [48], [Pt(PPh3)(CNMe)(alkyl)(Cl)] [49] and [Pt(PPh3)(C^NC8H9)(C9H9N2O7)(Cl)] [50] only monodentate donor ligands are involved. The mean Pt-L bond distances elongated in the sequence: 1.84 Å (C, trans to Cl) < 2.13 Å (C, trans to PO) < 2.316 Å (Cl, trans to C) < 2.348 Å (P, trans to C). The mean value of cis- L-Pt-L bond angle open in the order: 87.3 (PePteCl) < 87.9 (CePteCl) < 90.2 (CePteC) < 95.6 (CePteP). The mean values of trans- L-Pt-L bond angles are 1.75 (CePteP) and 177.4 (CePteCl). Yellow triclinic cis-[Pt(PEt3)(h2-baip)(Cl)] (Fig. 10) [51] is only example in which homobidentate- C,C donor ligand with monodentate PEt3 ligand and Cl anion forms PtPC2Cl inner coordination sphere. The chelating ligand create five-membered metallocyclic ring with the value of CePteC bite angle of 84.7 (CC2C). the remaining cis- L-Pt-L bond angles open in the sequence: 85.8 (PePteCl) < 90.7 (CePteCl) < 98.9 (PePteC). The values of transL-Pt-L bond angles are 174.3 (PePteC) and 174.9 (CePteCl). The mean Pt-L bond distances elongate in the sequence: 2.05 Å (C, trans to Cl) < 2.07 Å (C, trans to P) < 2.315 Å (P, trans to C) < 2.354 Å (Cl, trans to C). 2.4. PtPC2X (X ¼ S or I) derivatives There are five examples with PtPC2S inner coordination sphere.

Fig. 9. Structure of cis-[Pt{h3-C(Ph)]C]CB(C6F5)2}(PBut3)] [45].

Fig. 10. Structure of cis-[Pt(PEt3)(h2-baip)(Cl)] [51].

In two monoclinic cis-[Pt{h2-Ph2P(CH2)2SEt}(Ph)2] [52] and cis-[Pt {h2-Ph2PCH2C6H4SMe}(Me)2] [53] heterobidentate- P,S donor ligands with two monodentate C- donor ligands form a distorted square planar environment about each Pt(II) atom. Structure of cis[Pt{h2-Ph2P(CH2)2SEt}(Ph)2] [52] is shown in Fig. 11 as an example. The chelating ligand in the former complex create five- (PC2S) and in the latter six- (PC3S) membered metallocyclic rings with the values of PePteS bite angles of 87 and 89.5 , respectively. In another two monoclinic cis-[Pt{h2-But2P(C10H6)}(Me)(SMe2)] [54] and cis-[Pt{h2- Pri2O(C11H10N)](Me)(SMe2)] [55] heterobidentate- P,C donor ligands with monodentate Me and SMe2 donor ligands form such inner coordination sphere. Structure of cis[Pt{h2-But2P(C10H6)}(Me)(SMe2)] [54] is shown in Fig. 12 as an example. The chelating ligands form five- (PC2C) [54] and six(PC2NC) [55] membered metallocyclic rings with the values of PePteC bite angles of 82.5 and 91.5 , respectively. The mean Pt-L bond distances elongated in the sequence: 2.01 Å (C, trans to S) < 2.06 Å (C, trans to P) < 2.300 Å (P, trans to C) < 2.352 Å (S, trans to C). In orthorhombic trans-[Pt{h2-But2P(C6H5N)}(Me)(SEt2)] [54] heterobidentate- P,C donor ligand with Me and SEt2 ligands form a distorted square planar environment about Pt(II) atom (PtPC2S). The chelating ligand forms five-membered metallocycle with the value of PePteC bite angle of 86.3 (PNCC). The Pt-L bond distances elongate in the sequence: 2.02 Å (C, trans to C) < 2.302 Å (P, trans to S) < 2.345 Å (S, trans to P). There are nine examples in which each Pt(II) atom has PtPC2I

Fig. 11. Structure of cis-[Pt{h2-Ph2P(CH2)2SEt}(Ph)2] [52].

M. Melník, P. Mikus / Journal of Organometallic Chemistry 828 (2017) 30e37

35

2.06 Å (C, trans to I) < 2.07 Å (C, trans to P) < 2.294 Å (P, trans to C) < 2.658 Å (I, trans to C). Triclinic cis-[Pt{h3-Ph2PC28H23P}(I)] (Fig. 13) [62] is only example in PtPC2I series in which heterotridentate- P,C,C donor ligand with iodine atom forms a distorted square planar environment about Pt(II) atom. The heterotridentate ligand create two fivemembered metallocycles with the one of C common atom. The values of L-Pt-L bite angles are 83 (PC2C) and 84.2 (CPCC). 3. Conclusions

Fig. 12. Structure of cis-[Pt{h2-But2P(C10H6)}(Me)(SMe2)] [54].

inner coordination sphere. In two of them cis[Pt(PPh3)(CH2PPh3)2(I)] [56] and trans-[Pt(Pcy3)(CO)(CH2CN)(I)] [57] only monodentate donor ligands are involved. The Pt-L bond distances in cis-derivative elongate in the sequence: 2.084 Å (C, trans to I) < 2.093 Å (C, trans to P) < 2.296 Å (P, trans to C) < 2.679 Å (I, trans to C). The cis- L-Pt-L bond angles open in the order: 88.8 (CePteI) < 89.0 (CePteC) < 91.5 (PePteI) < 93.3 (CePteP). The values of trans- L-Pt-L bond angles are 165.4 (CePteP) and 169.5 (CePteI). In six examples with cis-configuration: [Pt{P(NMe2)(h2-O2C20H12)}{h2-C11H11N2}(I)] [58], [Pt{P(NMe2)(h2-O2C20H12)}{h2-C14H17N2}(I)]toluene [58], [Pt{P(NMe2)(h2-O2C20H12)}{h2-C11H11N2}(I)] [59], [Pt{P(NMe2)(h2-O2C31H28O2)}{h2-C11H11N2}(I)] [59], [Pt{P(Ph)(h2-C22H16)}{h2-C11H11N2}(I)]toluene [60], and [Pt(PEt3){h2-C10H16BN4}(I)] [61], each homobidentate- C,Cdonor ligand create six-membered metallocyclic ring with the mean CePteC bite angles of 90.3 (CC2NC) [58e60] and 91.2 (CNBNC) [61]. Monodentate P- donor ligands and iodine atom completed a distorted square-planar environment about each Pt(II) atom (PtPC2I). The mean Pt-L bond distances elongate in the order:

Fig. 13. Structure of cis-[Pt{h3-Ph2PC28H23P}(I)] [62].

In this review we classified and analyzed structural parameters of over seventy organoplatinum complexes with an inner coordination spheres of PtPC2X (X ¼ H(1), O(2), N(44), B(1), Cl(6), S(8), I(9)). These complexes crystallized in four crystal systems: tetragonal (2), orthorhombic (3), triclinic (27) and monoclinic (41). The inner coordination spheres are build up by mono- H, OL, NL, CL, Cl, PL, SL, I; bi- C/O; C/N; C/C; P/N; P/C; P/S and ter- C/N/C; C/ C/B; P/C/N and P/C/C dentate donor ligands. The total mean values of Pt-L bond distances elongate in the sequences: PteC (trans to X): 1.84 Å (CO trans to Cl) < 1.985 Å (X-O) < 2.00 Å (B) < 2.01 Å (N or S) < 2.02(C) < 2.05 Å (P) < 2.11 Å (H) PteP (trans to X): 2.295 Å (X]N) < 2.302 Å (S) < 2.305 Å (C) Pt-L (trans to C): 1.64 Å (H) < 2.10 Å (B) < 2.14 Å (O) < 2.335 Å (Cl or S) < 2.668 Å (I) Reflect quite well trans-influence of the respective donor atoms/ ligands. The chelating ligands create wide variety of metallocyclic rings. There are at least two contributing factors to the sin of te L-Pt-L chelate bond angles, bond ligand based. One is the steric constraint imposed in the ligand and the other is the need to accommodate imposed ring size. Comparing the chelate L-Pt-L angles, there is an increase in the value of the angle as the number of ring atoms increases. Both electronic and steric factors can be seen from the values of the L-Pt-L bite angles. The L-Pt-L bite angles open in the order (mean values): 38 (C^C) < 39.2 (C]C) < 40 (C]B) < 80.4 (CC2N) < 81.5 (PC2N) < 82.5 (PC2C) < 83.2 (PC2O) < 84.2 (CPCC) < 84.7 (CC2C) < 86.3 (PNCC) < 86.8 (PC3N) < 87.0 (PC2S) < 89.0 (PC3S) < 90.3 (Cl2NC) < 91.2 (CNBNC) < 91.5 (PC2NC) < 92.0 (CC3N). Complexes with the inner coordination spheres of PtPC2X (X ¼ H, O, B, Cl or I) were found only with cis-configuration, however, when X ¼ N or S, both configurations were found with the number of examples (cis vs trans) of 38 vs 5 (X ¼ N) and 4 vs 1 (X ¼ S). The sum of all four (PteP þ PteC(2) þ Pt-X) bond distances growing with the covalent radii of the coordinated X atom in the orders: 8.08 Å (X ¼ H, 0.37 Å) < 8.47 Å (X ¼ O, 0.75 Å) < 8.49 Å (X ¼ N, 0.77 Å) < 8.51 Å (X ¼ B, 0.87 Å) < 8.72 Å (X ¼ Cl, 0.99 Å) < 8.73 Å (X ¼ S, 1.02 Å) < 9.12 Å (X ¼ I, 1.33 Å) for cisderivatives, and 8.45 Å (X ¼ N) < 8.69 Å (X ¼ S), for transderivatives. As can be seen, the sum of cis- PtPC2N and cis- PtPC2S are somewhat larger than those in trans-derivatives. This indicates that the cis-derivatives are somewhat less crowded than their trans-partners. The Pt-L bonds in the cis-derivatives are more polar and presumably weaker than those in the trans-derivatives where Pt-L bonds are less polar and presumably stronger. Cis-[Pt(PPh3)(Me)(h2-C14H9F3N)] exists in two isomeric forms, monoclinic [14] and triclinic [15] which differ not only by crystal systems, but also by degree of distortion and are classical examples of distortion isomerism [63]. There are two pairs of complexes: [Pt(PPh3)(Me)(h2-C20H16N-2)] [19] with [Pt(PPh3)(Me)(h22 C20H16N-4)] [19], and [Pt(PPh3)(Me){h -C18H13ClN*}] [21] with [Pt(PPh3)(Me)(h2-C18H13ClN)] [21] which are examples of ligand isomerism.

36

M. Melník, P. Mikus / Journal of Organometallic Chemistry 828 (2017) 30e37

In this review together with its precursors [2e8] we classified and analyzed structural parameters of over seven hundreds of monomeric organoplatinum complexes in which is present at least one organophosphine ligand, shown how rich is the chemistry of such complexes. These complexes crystallized in six crystal systems: hexagonal (2), trigonal (3), tetragonal (8), orthorhombic (112), triclinic (191) and monoclinic (398). Several relationships between structural parameters with an attention on trans-influence were found and discussed in the respective review. In general, the complexes with cis-configuration by far prevail over the complexes with trans-configuration. The complexes with cis-configuration are somewhat less crowded and more distorted than their trans-partners. Related review of PtPCX2 derivatives is in progress. Acknowledgements This work was supported by the projects VEGA 1/0873/15 and KEGA 022UK-4/2015. Abbreviations C11H14N2O C(cyclo NCH2CH2CH2)NH(C6H4OMe-4) C9H9N2O7 2,6-dinitro-3,4,5-trimethoxyphenyl pcp 4-(5-phenyl-2-oxazolyl)pyridine C10H12N6 tri(1-pyrazolyl)methane py pyridine C14H10F2N 2,3-C6H2F2CH]NCH2C6H5 C14H9F3N2,3,4-C6HF3CH]NCH2C6H5 C14H11ClN C6H4CH]NCH2C6H4Cl-2 C15H14N 3-MeC6H3CH]NCH2C6H5 C20H16N2-2 2-((benzyl)iminomethyl)biphenyl-3-yl C20H16N2-4 4-((benzyl)iminomethyl)biphenyl-3-yl C14H10BrClN 3-bromo-2-(((4-chlorobenzyl)imino)methyl)phenyl C18H13ClN N-(20 -chlorobenzyl)-2-(methylimido)-3-naphtyl C18H13ClN* N-(2-chlorobenzyl)-1-methylimido)-2-naphtyl C17H14NS 3-(1-naphtylethyliminomethyl)triazol-2-yl C17H15ClNO2 5-chloro-2-(((1-methoxy-1-oxo-3-phenylpropan-2yl)imino)methyl)phenyl C12H10NS 3-(N-benzyliminomethyl)-2-thienyl C15H9BrF4N (2-(((4-bromobenzyl)imino)methyl)-3-4,5,6tetrafluorophenyl)methyl C13H8N benzo[h]quinolin-10-yl C11H8N 2-(pyridine-2-yl)phenyl dppm bis(diphenylphosphine)methane Ph2P(CH2)2N(Pri)2 1-(diphenylphosphino)-2-diisopropylamino) ethane (But)2PCH2C5H4N 2-(di-t-butylphosphinomethyl)pyridine Ph2PCH2C3H4NO 2-((diphenylphosphanyl)methyl)-4,5-dihydro1,3-oxazole (Pri)2PC11H12N 2-(dimethylamino)-1-(diisopropylphosphino)-3Hindene (Pri)2P(CH2)2NMe2 1-(diisopropylphosphino)-2-(dimethylamino) ethane Ph2PC9H11NO 2-((2-diphenylphosphino)phenyl)-4-isopropyl-1,3oxazoline Ph2PC15H14N N-(2-(diphenylphosphino)benzylidene)-2,6dimethylaniline (C10H16)2PCH2C6H4 2-((bis(adamantan-1-yl)phosphino)methyl) phenyl (But)2PC11H8 8-(d-t-butylphosphino)-7-methyl-1-naphthyl ButP(h2-C14H15) (1-t-butyl-2,2-dimethyl-2,3-dihydro-1H-benzo [de]phosphinolin-9-yl)methyl (But)2PC18H13 8-(di-t-butylphosphanyl)-7-methyl-2-(6-methylbenzen-1,2-diyl)naphthalen-1-yl

(But)2PC18H13O 8-(di-t-butylphosphanyl)-7-methyl-2(4-methoxybenzen-1,2-diyl)naphthalene-1-yl (But)2PC17H9F2 8-(di-t-butylphosphanyl)-7-methyl-2-(3,5difluorobenzen-1,2-diyl)naphthalene-1-yl (But)2PC17H10F 8-(di-t-butylphosphanyl)-7-methyl-2-(4fluorobenzen-1,2-diyl)naphthalene-1-yl C20H15NO2 2,6-bis(o-phenylene)-7-ethoxycarbonylpyridine P(C14H19O5)Ph2 benzo-15-crown[5]diphenylphosphine C17H11N 2,6-diphenylpyridine (But)2PC11H15N 2-(di-t-butylphosphinomethyl)-6(dimethylaminoethyl)phenyl C(Ph)]N]N phenyl(diazo)methyl hosphino)-N,N(Pri)2P(CH2)2NMe2 2-(di-isoropylpe dimethylethanamine PhC^CCF3 1-phenyl-3,3,3-trifluoroprop-1-yne C(Ph)]C(Ph)-C(Ph)]C(Ph) 1,2,3,4-tetraphenylbuta-1,3-dien-1,4-diyl C(Ph)]C]CB(C6F5)2 bis(pentafluorophenyl)-(2-phenylvinyl)borane C^NC8H9 2,6-dimethylphenylisocyanide C9H9N2O7 3,4,5-trimethoxy-2,6-dinitrophenyl Ph2P(CH2)2SEt 1-ethythio-2-(diphenylphosphino)ethane Ph2PCH2C6H4SMe 1-(diphenylphosphinomethyl)-2-(methylthio) benzene (But)2P(C10H6) 8-(di-t-butylphosphino)-1-naphthyl (Pri)2P(C10H6) 8-(di-isopropylphosphino)-2-(methyl(methylene) amino)indene (But)2P(C6H5N) 1-(di-t-butylphosphino)-1H-indol-7-yl P(NMe2)(h2-O2C20H12) NN-dimethyldinaphtho[2,1-d:1,20 -f][1,3,2] dioxaphosphepin-4-amine C11H11N2 1-benzyl-3-methyl-imidazole-2-ylidene C14H17N2 1-benzyl-3-t-butyl-imidazole-2-ylidene P(NMe2)(h2-O2C20H20) N,N-dimethyl-8,9,10,11,12,13,14,15octahydrodinaphthol[2,1-d:10,20 -f][1.3,2] dioxaphospherin-4-amine P(NMe2)(h2-O2C31H28O2) N,N,2,2-tetramethyl-4,4,8,8tetraphenyltetrahydro[1,3]dioxolo-[4,5e][1,3,2]-dioxaphosphepin-6-amine P€ aPh)(h2-C22H16) 4-phenyl-4,5-dihydro-3Hdinaphthophosphepine C10H16BN4 dihydrogen bis(3-ethylimidazolin-2-ylidene-1-yl) borate Ph2PC28H23P 3-(2-(2-methyl-3-diphenylphosphinopropenyl) diphenyl-phosphino)biphenyl baip 2-C6H4P(Ph)(NHC6H4Me-4)(CHPPh2]NC6H4Me-4) Ph2PC4H6NO (2-oxazolin-2-ylmethyl)diphenylphosphine References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18]

M. Melník, P. Mikus, J. Organomet. Chem. 779e780 (2015) 239. M. Melník, P. Mikus, J. Organomet. Chem. 805 (2016) 6. M. Melník, P. Mikus, J. Organomet. Chem. 811 (2016) 1. M. Melník, P. Mikus, J. Organomet. Chem. 813 (2016) 78. M. Melník, P. Mikus, Open Chem. (2016) in press. M. Melník, P. Mikus, J. Organomet. Chem. 899 (2016) 46. M. Melník, P. Mikus, J. Organomet. Chem. 822 (2016) 118. M. Melník, P. Mikus, J. Organomet. Chem., DOI: 10.1016/ j.jorganchem.2016.09.024. R.A. Michelin, R. Bertini, M. Mozzon, L. Zanatto, F. Benetollo, G. Bombieri, Organometallics 9 (1990) 1449. J. Vicente, M.T. Chicote, J. Martin, P.G. Jones, Ch. Fittschen, G.W. Sheldrick, J. Chem. Soc. Dalton Trans. (1980) 2215. J. Vicente, A. Arcas, M.D. Galvez-Lopez, P.G. Jones, Organometallic 25 (2006) 4247. D.L. Thorn, J.C. Calabrese, J. Organomet. Chem. 342 (1988) 269. A.J. Carty, N.J. Minchin, J.M. Patrick, A.H. White, J. Chem. Soc. Dalton Trans. (1983) 1253. M. Crespo, X. Solans, M. Font-Bardia, Organometallics 14 (1995) 355. M. Crespo, M. Font-Bardia, X. Solans, Polyhedron 21 (2002) 105. M. Crespo, X. Solans, M. Font-Bardia, J. Organomet. Chem. 483 (1994) 187. M. Crespo, X. Solans, M. Font-Bardia, J. Organomet. Chem. 509 (1996) 29. A.J. Carty, R.T. Honeyman, B.W. Skelton, A.H. White, J. Organomet. Chem. 430

M. Melník, P. Mikus / Journal of Organometallic Chemistry 828 (2017) 30e37 (1992) 245. [19] M. Crespo, M. Font-Bardia, X. Solans, J. Organomet. Chem. 691 (2006) 444. [20] M. Crespo, C.M. Anderson, N. Kfoury, M. Font-Bardia, T. Calvet, Organometallics 31 (2012) 4401. [21] M. Crespo, M. Font-Bardia, S. Perez, X. Xolans, J. Organomet. Chem. 642 (2002) 171. [22] C. Anderson, M. Crespo, F.D. Rochon, J. Organomet. Chem. 631 (2001) 164. [23] J. Rodriguez, J. Zafrilla, J. Albert, M. Crespo, J. Granell, T. Calvet, M. Font-Bardia, J. Organomet. Chem. 694 (2009) 2467. [24] C. Anderson, M. Crespo, M. Font-Bardia, A. Klein, X. Solans, J. Organomet. Chem. 601 (2000) 22. [25] A. Martin, U. Belio, S. Fuertes, V. Sicilia, Eur. J. Inorg. Chem. (2013) 2331. [26] L. Keys, T. Wang, B.O. Patrick, J.A. Love, Inorg. Chim. Acta 380 (2012) 284. [27] A. Diez, J. Fornies, A. Garcia, E. Lalinde, M.T. Moreno, Inorg. Chem. 44 (2005) 2443. [28] S.M. Nabavizadeh, M.G. Haghighi, A.R. Esmailbeig, F. Racof, Z. Mandegani, S. Jamall, M. Rashidi, R.J. Puddephatt, Organometallics 29 (2010) 4893. [29] S.M. Thomson, F. Stohr, D. Sturmayr, G.K. ickelbick, U. Schubert, J. Organomet. Chem. 686 (2003) 183. [30] K.A. Grice, K.I. Goldberg, Organometallics 28 (2009) 953. [31] R. Pattacini, G. Margraf, A. Messaoudi, N. Oberbeckmann-Winter, P. Braunstein, Inorg. Chem. 47 (2008) 9886. [32] B.M. Wile, R.J. Burford, R. McDonald, M.J. Ferguson, M. Stradiotto, Organometallics 25 (2006) 1028. [33] C. Muller, C.N. Iverson, R.J. Lachicotte, W.D. Jones, J. Am. Chem. Soc. 123 (2001) 9718. [34] N. Oberbeckmann-Winter, P. Braunstein, R. Welter, Organometallics 23 (2004) 6311. [35] A.J. Blacker, M.L. Clarke, M.S. Loft, M.F. Malton, J.M.J. Williams, Organometallics 18 (1999) 2867. [36] T.F. Vaughan, D.J. Koedyk, J.L. Spencer, Organometallics 30 (2011) 5170. [37] I.S. Dubinsky-Davidchik, I. Golberg, A. Vigalok, A.N. Vedernikov, Chem. Commun. (2013) 3446. [38] A.W. Kaspi, I. Goldberg, A. Vigalok, J. Am. Chem. Soc. 132 (2010) 10626. [39] S. Fuertes, S.K. Brayshaw, P.R. Raithby, S. Schiffers, M.R. Warren, Organometallics 31 (2012) 105. [40] V.W.W. Yam, R.P.L. Tang, K.M.Ch. Wong, X.X. Lu, K.K. Cheung, N. Zhu, Chem. Eur. J. 8 (2002) 4066. [41] E. Poverenov, M. Gandelman, L.J.W. Shimon, H. Rozenberg, Y. Ben-Dvid,

37

D. Milstein, Chem. Eur. J. 10 (2004) 4673. [42] E. Poverenov, G. Leitus, L.J.W. Shimon, D. Milstein, Organometallics 24 (2005) 5937. [43] A. Gunay, C. Muller, R.J. Lachicotte, W.W. Brennessel, W.D. Jones, Organometallics 28 (2009) 6524. [44] C. Muller, R.J. Lachicotte, W.D. Jones, Organometallics 21 (2002) 1118. pin, D.J.H. Emslie, Angew. Chem. Int. Ed. 49 (2010) 2716. [45] K.B. Kole [46] G. Ferguson, Y. Li, A.J. McAlees, R. McCrindle, E. Zang, J. Organomet. Chem. 617 (2001) 671. [47] C. Albrecht, C. Wagner, K. Merzweiler, T. Lis, D. Steinborn, Appl. Organomet. Chem. 19 (2005) 1155. [48] R.J. Ros, L.J. Farrugia, K.E.A. Kuma, J. Organomet. Chem. 471 (1994) 273. [49] A. Scrivanti, G. Carturan, U. Belluco, N. Bresciani, Pahor, M. Calligaris, L. Randaccio, Inorg. Chim. Acta 20 (1976) L3. [50] J. Vicente, A. Arcos, M.D. Galvez-Lopez, P.G. Jones, D. Bautista, Organometallics 28 (2009) 3501. [51] M.W. Avis, K. Vrieze, J.M. Ennsting, C.J. Elsevier, N. Veldman, A.L. Spek, K.V. Katti, Ch.L. Barnes, Organometallics 15 (1996) 2376. [52] R. Romeo, L.M. Scoalro, M.R. Plutino, A. Romeo, F. Nicolo, A. Del Zotto, Eur. J. Inorg. Chem. (2002) 629. [53] J.R. Dilworth, C.A.M. von Beckh, S.I. Poscu, Dalton Trans. (2005) 2151. [54] K.A. Grice, W. Kaminsky, K.I. Goldberg, Inorg. Chim. Acta 369 (2011) 76. [55] B.M. Wile, R. McDonald, M.J. Ferguson, M. Stradiotto, Organometallics 24 (2005) 1959. [56] J.F. Hoover, J.M. Stryker, Organometallics 7 (1988) 2082. [57] Z. Beni, R. Ros, A. Tassan, R. Scopelliti, R. Roulet, Dalton Trans. (2005) 315. [58] H. Julien, D. Brissy, R. Sylvain, P. Retailleau, J.V. Neubron, S. Gladiali, A. Marinetti, Adv. Synth. Catal. 353 (2011) 1109. [59] Y. Zhang, H. Julien, D. Brissy, P.L. Retailleau, A. Voituriez, A. Marinetti, Chem. Cat. Chem. 5 (2013) 2051. [60] D. Brissy, M. Skander, H. Julien, P. Retailleau, A. Marinetti, Org. Lett. 11 (2009) 2137. [61] R. Frankel, J. Kniczek, W. Ponikwar, H. Noth, K. Polborn, W.P. Fehlhammer, Inorg. Chim. Acta 312 (2001) 23. [62] C. Gracia, G. Marco, R. Navarro, P. Romero, T. Soler, E.P. Urriolabeitia, Organometallics 22 (2003) 4910. [63] M. Melník, Coord. Chem. Rev., 47 (1982) 239; M. Melník, C.E. Holloway, ibid, 250 (2006) 2261.