Oscillation of second order delay differential equations

Oscillation of second order delay differential equations

Available online at www.sciencedirect.com Applied Mathematics and Computation 198 (2008) 930–935 www.elsevier.com/locate/amc Oscillation of second o...

128KB Sizes 3 Downloads 98 Views

Available online at www.sciencedirect.com

Applied Mathematics and Computation 198 (2008) 930–935 www.elsevier.com/locate/amc

Oscillation of second order delay differential equations Aizhi Weng, Jitao Sun

*

Department of Mathematics, Tongji University, 200092, PR China

Abstract We"establish the oscillation# criteria for the second order functional equation 00 l m n X X X xðtÞ þ ci ðtÞxðt  si Þ þ pi ðtÞxðt  di Þ  qi ðtÞxðt  ri Þ ¼ 0 i¼1

i¼1

i¼1

and " xðtÞ þ

l X

#00 ci ðtÞxðt  si Þ

þ

i¼1

m X

pi ðtÞxðt  di Þ 

i¼1

n X

qi ðtÞxðt  ri Þ ¼ f ðtÞ:

i¼1

New oscillation criteria improve the one recently established by Manojlovic et al. [J. Manojlovic, Y. Shoukaku, T. Tanigawa, N. Yoshida, Oscillation criteria for second order differential equations with positive and negative coefficients, Appl. Math. Comp. 181 (2006) 853–863]. Ó 2007 Elsevier Inc. All rights reserved. Keywords: Oscillation; Second order; Delay; Differential equation

1. Introduction In the present paper, we consider the oscillation of the second order functional equation " #00 l m n X X X xðtÞ þ ci ðtÞxðt  si Þ þ pi ðtÞxðt  di Þ  qi ðtÞxðt  ri Þ ¼ 0; t P t0 i¼1

i¼1

ð1:1Þ

i¼1

and " xðtÞ þ

l X i¼1

*

#00 ci ðtÞxðt  si Þ

þ

m X i¼1

pi ðtÞxðt  di Þ 

n X

qi ðtÞxðt  ri Þ ¼ f ðtÞ;

i¼1

Corresponding author. E-mail address: [email protected] (J. Sun).

0096-3003/$ - see front matter Ó 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2007.09.016

t P t0

ð1:2Þ

A. Weng, J. Sun / Applied Mathematics and Computation 198 (2008) 930–935

931

where m P n, si ði ¼ 1; 2; . . . ; lÞ, di ði ¼ 1; 2; . . . ; mÞ, ri ði ¼ 1; 2; . . . ; nÞ are non-negative constants, ri 6 di ði ¼ 1; 2; . . . ; nÞ and ci 2 Cð½0; 1Þ; ½0; 1ÞÞ ði ¼ 1; 2; . . . ; lÞ; pi 2 Cð½0; 1Þ; ½0; 1ÞÞ ði ¼ 1; 2; . . . ; mÞ; qi 2 Cð½0; 1Þ; ½0; 1ÞÞ ði ¼ 1; 2; . . . ; nÞ: We make the following assumptions: (H1) (H2) (H3) (H4)

0 6 s1 < s2 <    < sl 6 ri ; i ¼ 1; 2; . . . ; n. qi ðtÞ 6 qi ðt  ri Þ; pi ðtÞ P qi ðt  di Þ; i ¼ 1; 2; . . . ; n. 9j0 2Pf1; 2; . . . ; ng; pj0 ðtÞ  qj0 ðt  dj0 Þ P a; a ¼ const. l 0 6 i¼1 ci ðtÞ 6 c; c ¼ const.

Manojlovic et al. [1], Shi et al. [2] and Wang [3] and many others studied the oscillation character of this type or its generalized form [4–8]. Ref. [1] proved the following Theorems A and B: Theorem A. Assume that (H2)–(H4) hold. Eq. (1.1) is oscillatory, if n Z 1 Z sri X qi ðnÞ dn ds 6 1: i¼1

0

ð1:3Þ

sdi

Theorem B. Assume that (H2)–(H4) and (1.3) hold and there exists a function F ðtÞ 2 C 2 ð½0; 1Þ; RÞ such that F 00 ðtÞ ¼ f ðtÞ;

lim F ðtÞ ¼ 0:

ð1:4Þ

t!1

Then, any solution xðtÞ of Eq. (1.2) either oscillates or satisfies limt!1 xðtÞ ¼ 0. Our main results are as follows: Theorem 1.1. Assume that (H1)–(H4) hold. Eq. (1.1) is oscillatory, if there exists j1 2 f1; 2; . . . ; lg such that n Z 1 Z sri X qi ðnÞ dn ds 6 cj1 ðtÞ: ð1:5Þ i¼1

0

sdi

Theorem 1.2. Assume that (H1)–(H4) and (1.5) hold and there exists a function F ðtÞ 2 C 2 ð½0; 1Þ; RÞ such that F 00 ðtÞ ¼ f ðtÞ and limt!1 F ðtÞ is finite. Then, any solution xðtÞ of Eq. (1.2) either oscillates or satisfies limt!1 xðtÞ ¼ 0. 2. Proof of Theorem 1.1 Proof. Denote T ¼ maxfsi ; dj ; rk : 1 6 i 6 l; 1 6 j 6 m; 1 6 k 6 ng: Suppose that xðtÞ is a non-oscillatory solution of (1.1). Without any loss of generality, we assume that xðtÞ > 0 for t P t0 . Denote wðtÞ ¼ xðtÞ þ

l X i¼1

ci ðtÞxðt  si Þ 

n Z X i¼1

By (2.1) and (H1)–(H3), it follows that

t0

t

Z

sri

sdi

qi ðnÞxðnÞ dn ds:

ð2:1Þ

932

A. Weng, J. Sun / Applied Mathematics and Computation 198 (2008) 930–935

" w00 ðtÞ ¼ xðtÞ þ

l X

#00 ci ðtÞxðt  si Þ

þ

i¼1

¼ 6

m X i¼1 m X

n X

qi ðt  di Þxðt  di Þ 

i¼1

pi ðtÞxðt  di Þ þ

n X

qi ðt  ri Þxðt  ri Þ

i¼1

qi ðtÞxðt  ri Þ þ

i¼1

n X

qi ðt  di Þxðt  di Þ 

n X

i¼1

½pi ðtÞ  qi ðt  di Þxðt  di Þ þ

i¼1

6

n X

qi ðt  ri Þxðt  ri Þ

i¼1

n X ½qi ðtÞ  qi ðt  ri Þxðt  ri Þ i¼1

m X

½pi ðtÞ  qi ðt  di Þxðt  di Þ 6 ½pj0 ðtÞ  qj0 ðt  dj0 Þxðt  dj0 Þ;

t P t0 þ T

i¼1

which yields that w00 ðtÞ 6 axðt  dj0 Þ < 0;

t P t0 þ T :

ð2:2Þ

By (2.2), we conclude that there exists t1 P t0 þ T such that w0 ðtÞ P 0 or w0 ðtÞ < 0 for t P t1 . (i) If w0 ðtÞ P 0 for t P t1 . Integrating (2.2), we have 0

0

0

1 > w ðt1 Þ P w ðt1 Þ  w ðtÞ P a

Z

t

xðs  dj0 Þ ds

t1

which implies that xðtÞ is integrable in ½t1 ; 1Þ. Hence, zðtÞ ¼ xðtÞ þ ½t1 ; 1Þ since ci ðtÞ is bounded. On the other hand, we have n Z tri X z0 ðtÞ ¼ w0 ðtÞ þ qi ðnÞxðnÞ dn P 0; t P t1 : i¼1

Pl

i¼1 ci ðtÞxðt

 si Þ is integrable too in

tdi

zðtÞ is non-decreasing, that is, zðtÞ P zðt1 Þ > 0 for t P t1 . Therefore, zðtÞ is non-integrable in ½t1 ; 1Þ. We obtain a contradiction. (ii) If w0 ðtÞ < 0 for t P t1 . We define l n Z t Z sri X X yðtÞ ¼ xðtÞ þ ci ðtÞxðt  si Þ  qi ðnÞxðnÞ dn ds: i¼1 0

0

i¼1

00

sdi

t1

00

y ðtÞ ¼ w ðtÞ; y ðtÞ ¼ w ðtÞ for t P t1 , together with (2.2), yielding that y 0 ðtÞ is decreasing for t P t1 . The inequality y 0 ðtÞ 6 y 0 ðt1 Þ < 0 implies that lim yðtÞ ¼ 1:

ð2:3Þ

t!1

We claim that xðtÞ is bounded in ½t0 ; 1Þ. If not, then limt!1 xðtÞ ¼ 1 so that there exists t2 P t1 satisfying max xðtÞ ¼ xðt2  sj1 Þ; yðt2 Þ < 0:

t1 T 6t6t2 sj1

Then, we have 0 > yðt2 Þ ¼ xðt2 Þ þ

l X

ci ðt2 Þxðt2  si Þ 

i¼1

n Z X i¼1

P xðt2 Þ þ cj1 ðt2 Þxðt2  sj1 Þ  xðt2  sj1 Þ " P cj1 ðt2 Þ 

n Z X i¼1

P 0:

t1

t2

Z

sri

sdi

t2 t1

n Z X

#

i¼1

t1

Z

sri

qi ðnÞxðnÞ dn ds

sdi

t2

Z

sri

sdi

qi ðnÞ dn ds "

qi ðnÞ dn ds xðt2  sj1 Þ P cj1 ðt2 Þ 

n Z X i¼1

0

1

Z

sri

sdi

# qi ðnÞ dn ds xðt2  sj1 Þ

A. Weng, J. Sun / Applied Mathematics and Computation 198 (2008) 930–935

933

The contradiction shows that xðtÞ must be bounded. Then, there exists a constant M such that xðtÞ 6 M for t P t1 . By (H4) and (1.5), it follows that n Z t Z sri n Z t2 Z sri n Z 1 Z sri X X X qi ðnÞxðnÞ dn ds P M qi ðnÞ dn ds P M qi ðnÞ dn ds yðtÞ P  i¼1

sdi

t1

i¼1

t1

sdi

i¼1

0

sdi

P Mc > 1 which is contradictory to (2.3). This completes the proof. h Example 2.1. Let us consider the equation 00

½xðtÞ þ 3xðt  pÞ þ ðt þ 1Þxðt  2pÞ  3et2p xðt  pÞ ¼ 0;

ð2:4Þ

t > 0:

We have here l ¼ 1; c1 ðtÞ ¼ 3; s1 ¼ p; m ¼ 1; p1 ðtÞ ¼ t þ 1; d1 ¼ 2p; n ¼ 1;

q1 ðtÞ ¼ 3et2p ;

r1 ¼ p:

Straightforward calculations yield q1 ðtÞ 6 q1 ðt  r1 Þ; p1 ðtÞ  q1 ðt  d1 Þ ¼ t þ 1  3et ep P ð1  3ep Þ > 0; Z 1 Z sr1 q1 ðnÞ dn ds ¼ 3ð1  ep Þ < c1 ðtÞ: 0

t > 0;

sd1

Therefore, according to Theorem 1.1, Eq. (2.4) is oscillatory. But, the theorem in Ref. [1] is invalid to this example since Z 1 Z sr1 q1 ðnÞ dn ds ¼ 3ð1  ep Þ > 1: 0

sd1

3. Proof of Theorem 1.2 Proof. Suppose that xðtÞ is a non-oscillatory solution of (1.2). Without any loss of generality, we assume that xðtÞ > 0 for t P t0 . Denote limt!1 F ðtÞ ¼ A. We define l n Z t Z sri X X W ðtÞ ¼ xðtÞ þ ci ðtÞxðt  si Þ  qi ðnÞxðnÞ dn ds  F ðtÞ þ A þ 1: ð3:1Þ i¼1

It follows that " 00

W ðtÞ ¼ xðtÞ þ

l X

#00 ci ðtÞxðt  si Þ

þ

i¼1

" ¼ f ðtÞ 

m X

sdi

t0

i¼1

n X i¼1

pi ðtÞxðt  di Þ þ

i¼1

n X

qi ðt  di Þxðt  di Þ 

n X

qi ðt  ri Þxðt  ri Þ  f ðtÞ

i¼1

#

qi ðtÞxðt  ri Þ þ

n X

i¼1

i¼1

qi ðt  di Þxðt  di Þ 

n X

qi ðt  ri Þxðt  ri Þ

i¼1

 f ðtÞ m n n X X X ¼ pi ðtÞxðt  di Þ þ qi ðt  di Þxðt  di Þ þ ½qi ðtÞ  qi ðt  ri Þxðt  ri Þ i¼1

6

m X i¼1

i¼1

i¼1

½pi ðtÞ  qi ðt  di Þxðt  di Þ 6 ½pj0 ðtÞ  qj0 ðt  dj0 Þxðt  dj0 Þ; t P t0 þ T

934

A. Weng, J. Sun / Applied Mathematics and Computation 198 (2008) 930–935

which yields that W 00 ðtÞ 6 axðt  dj0 Þ < 0;

t P t0 þ T :

ð3:2Þ

By (3.2) there exists n1 P t0 þ T such that W 0 ðtÞ P 0 or W 0 ðtÞ < 0 for t P n1 . By conditions of Theorem 1.2, there exists sufficiently large g1 such that F ðtÞ þ A þ 1 > 0 for t P g1 . Let t1 ¼ maxfn1 ; g1 g. (i) If W 0 ðtÞ P 0 for t P t1 , Integrating (3.2), we have 1 > W 0 ðt1 Þ P W 0 ðt1 Þ  W 0 ðtÞ P a

Z

t

xðs  dj0 Þ ds t1

which implies that xðtÞ is integrable and bounded in ½t1 ; 1Þ so that U ðtÞ ¼ xðtÞ þ integrable and bounded in ½t1 ; 1Þ. Denoting UðtÞ ¼ U ðtÞ  F ðtÞ;

Pl

i¼1 ci ðtÞxðt

 si Þ is ð3:3Þ

t P t1 ;

then, UðtÞ is bounded in ½t1 ; 1Þ since limt!1 F ðtÞ exists and U ðtÞ is bounded. By (3.1), we have that n Z tri X 0 0 qi ðsÞxðsÞ ds P 0; U ðtÞ ¼ W ðtÞ þ tdi

i¼1

hence UðtÞ is bounded and monotonous, limt!1 UðtÞ exists. By (3.3), limt!1 U ðtÞ exists, let limt!1 U ðtÞ ¼ l, where l 2 ½0; 1Þ. We claim that l ¼ 0. If l 2 ð0; 1Þ, then there exists t2 P t1 such that l U ðtÞ > ; t P t2 ; 2 which contradicts the fact that U ðtÞ is integrable in ½t1 ; 1Þ. Therefore, limt!1 U ðtÞ ¼ 0. Since 0 < xðtÞ 6 U ðtÞ for t P t1 , we have that limt!1 xðtÞ ¼ 0. (ii) If W 0 ðtÞ < 0 for t P t1 , We define l n Z t Z sri X X Y ðtÞ ¼ xðtÞ þ ci ðtÞxðt  si Þ  qi ðnÞxðnÞ dn ds  F ðtÞ þ A þ 1: ð3:4Þ i¼1 0

i¼1 0

00

sdi

t1

00

Then, Y ðtÞ ¼ W ðtÞ; Y ðtÞ ¼ W ðtÞ for t P t1 , together with (3.2), yield that Y 0 ðtÞ is decreasing for t P t1 . The equality Y 0 ðtÞ 6 Y 0 ðt1 Þ < 0 implies that lim Y ðtÞ ¼ 1:

ð3:5Þ

t!1

We claim that xðtÞ is bounded in ½t0 ; 1Þ. If not, then limt!1 xðtÞ ¼ 1 so that there exists t2 P t1 satisfying max

t1 T 6t6t2 sj1

xðtÞ ¼ xðt2  sj1 Þ;

Y ðt2 Þ < 0:

Then, we have l X

0 > Y ðt2 Þ ¼ xðt2 Þ þ

ci ðt2 Þxðt2  si Þ 

n Z X

i¼1

i¼1

P xðt2 Þ þ cj1 ðt2 Þxðt2  sj1 Þ  xðt2  sj1 Þ P ½cj1 ðt2 Þ 

n Z X i¼1

t1

t2

Z

t2

t1

n Z X i¼1

t1

Z

sri

qi ðnÞxðnÞ dn ds  F ðtÞ þ A þ 1

sdi

t2

Z

sri

qi ðnÞ dn ds  F ðtÞ þ A þ 1

sdi

sri

sdi

qi ðnÞ dn dsxðt2  sj1 Þ P ½cj1 ðt2 Þ 

n Z X i¼1

0

1

Z

sri

qi ðnÞ dn dsxðt2  sj1 Þ P 0

sdi

The contradiction shows that xðtÞ must be bounded. Then, there exists a constant L > 0 such that xðtÞ 6 L for t P t1 . It follows that

A. Weng, J. Sun / Applied Mathematics and Computation 198 (2008) 930–935

Y ðtÞ P L

n Z X i¼1

t1

t2

Z

sri

qi ðnÞ dn ds P L sdi

n Z X i¼1

0

1

Z

935

sri

qi ðnÞ dn ds P Lc > 1

sdi

which contradicts (3.5). We conclude that if xðtÞ is a non-oscillatory solution of (1.2), then limt!1 xðtÞ ¼ 0. This completes the proof. h Example 3.1. Consider the equation 00

½xðtÞ þ 3xðt  pÞ þ ðt þ 1Þxðt  2pÞ  3et2p xðt  pÞ ¼ et þ

1 1 sin ; 3 t t

t > 0:

ð3:6Þ

Here F ðtÞ ¼ et þ t sin 1t ! 1 as t ! 1. The left of equality (3.6) is exactly the left of equality (2.4). All conditions of Theorem 1.2 are satisfied, thus any solution xðtÞ of Eq. (3.6) is either oscillatory or satisfies limt!1 xðtÞ ¼ 0: Acknowledgement This work was supported by the NNSF of China under Grant 60474008. References [1] J. Manojlovic, Y. Shoukaku, T. Tanigawa, N. Yoshida, Oscillation criteria for second order differential equations with positive and negative coefficients, Appl. Math. Comp. 181 (2006) 853–863. [2] W. Shi, P. Wang, Oscillatory criteria of a class of second-order neutral functional differential equations, Applied. Math. Comp. 146 (2003) 211–226. [3] P. Wang, Oscillation criteria for second-order neutral equations with distributed deviating arguments, J. Comp. Math. Appl. 47 (2004) 1935–1946. [4] C. Lee, C. Yeh, An oscillation theorem, Appl. Math. Lett. 20 (2007) 238–240. [5] Y. Sun, Oscillation of second order functional differential equations with distributed damping, Appl. Math. Comp. 178 (2006) 519–526. [6] P. Wang, Y. Wu, Oscillation of certain second-order functional differential equations with damping, J. Comp. Appl. Math. 157 (2003) 49–56. [7] L. Erbe, Q. Kong, B. Zheng, Oscillation Theory for Functional Differential Equations, Dekker, New York, 1995. [8] R. Agarwal, S. Grace, D. Regan, Oscillation Theory for Difference and Functional Differential Equations, Kluwer Academic Publishers, Netherland, 2000.