Partial equivalent conductance of electrolytes in sea water

Partial equivalent conductance of electrolytes in sea water

618 Oceanographic Abstracts PAINTER D. W., II, 1963. Ambient noise in a coastal lagoon. J. Acoust. Soc. Amer., 35 (9): 1458-1459. The results of a 4...

96KB Sizes 2 Downloads 47 Views

618

Oceanographic Abstracts

PAINTER D. W., II, 1963. Ambient noise in a coastal lagoon. J. Acoust. Soc. Amer., 35 (9): 1458-1459. The results of a 4-day underwater ambient-noise investigation conducted in a Mexican shallow-water lagoon are shown by pressure spectra in the frequency range .40 c/s to 20 kc/s. The pressure spectra are differentiated on the basis of noise generated by wind, tidal currents, and biological activity. PALAUSI GuY, 1964.

Observations sur une plage de sable calcaire.

Rec. Tray. Sta. Mar.

d'Endoume, Bull., 31 (47): 235-239. W. D. Nesteroff a bien indiqu6 que les sables calcaires terrig~nes 6taient rares. Ceux-ci sont dfis des circonstances tr~s particuli~res. Tout se passe comme si la plage 6voluait de la faqon suivante, grace A des cycles successifs que l'on peut ainsi essayer de sch6matiser en deux 6pisodes : (a) Une temp6te (certains coups de Labech durent 3 jours) ou un mauvais temps assez tong remet en mouvement les galets du plateau littoral. Ces galets, se heurtant entre eux et heurtant le fond, provoquent une pulv6risation des calcaires et am~nent sur la plage une quantit6 variable de sable calcaire terrigi~,ne h6t6rog~ne, peu ou mal class6. La forme du plateau littoral, la protection que lui apportent l'Ile Saint F6rr6ol, l'Ilon et le plateau des Moines emlz~chent en grande partieles galets et les sables de descendre dans les fonds de plus de 5 m, d'oh ils ne pourraient plus remonter (ce qui est bien le cas partout ailleurs). (b) Le d6ferlement de la houle de beau temps entretient l'usure des 616ments. En un premier temps, les 616ments calcaires, plus tendres, sont us6s plus rapidement que les grains de quartz. En un deuxi~me temps, la dissolution va plus vite que l'abrasion : les grains de calcaire s'amenuisent de plus en plus et sont 61imin6s sous forme de vases ou de solutions, cependant que les grains de quartz demeurent, pr~ts ~t 8tre de nouveau inclus duns le cycle suivant. Si, en effet, la dissolution des carbonates n'intervenait pas, il serait impossible d'expliquer les courbes granulom&riques. Au dessous de 0"4 mm, on ne pourrait comprendre pourquoi les carbonates partent et la silice reste. PALMER HAROLD D., 1964. Marine geology of Rodriguez Seamount. Deep-Sea Res., 11 (5): 737-756. Rodriguez Seamount is an elliptical volcanic feature 56 km west of San Miguel Island, California. Its base lies at a depth mid-way between the oceanic floor and Arguello Plateau, but the flat summit lies at 675 m, 425 m shoaler than the adjacent 1100 m deep shelf-break of the plateau. Dredging and coring operations show the cone to be composed of hawaiite, an alkalic basalt. Relict authigenic sediments are localized on the summit, and mixed authigenic and hemipelagic sediments at least 1 krn thick form the continental rise surrounding the base of the cone. A complex channel system in the thick wedge of sediments of the rise east of the seamount suggests that the submarine profile of equilibrium has been grossly exceeded by an influx of sediment during the Pleistocene. Bathymetric orientation and lithologic character show the seamount to be part of the regional pinnate pattern of the local East Pacific Basin. Evidence provided by volcanic and sedimentary materials suggests that the cone was built to sea level, truncated by wave erosion, and then subsided to its present level through compaction and possibly extrusion of underlying sediments plus isostatic crustal compensation. Rates of sedimentation, plus biologic, mineralogic and tectonic characteristics indicate a Late Miocene age. If the adjacent plateau represents a wave-cut terrace, its bathymetric position suggests planation which pre-dates the formation of the seamount. PANZAR1NI RODOLFO N., 1963.

Publ., No. 10 : 103 pp.

Nomenclatura del hielo en el mar. Inst. Antarct. Argentino,

The classification of sea ice, the definitions of the various terms and their equivalents in Spanish, English, French, German and Russian are given with the symbols used in drawing ice charts on board ship. Photographs of some ice forms are included. The work is based on the Abridged International Ice Nomenclature approved by the World Meteorological Organization (W.M.O.) by Resolution 4 (EC-VIII), published in Fa'ghth Session of the Executive Committee-Geneva, 17-30 April, 1956---Abridged Report with Resolutions (W.M.O.-No. 53, RC.13), but certain terms omitted from this publication but considered useful are included here. PARK IOLHO, 1964. Partial equivalent conductance of electrolytes in sea water. Deep-Sea Res., 11 (5): 729-736. The partial equivalent conductances of sixteen electrolytes were measured in sea water. The electrolytes studied are : NaCi, KCI, MgCh, CaCh, SrCh, Na~SO4, I~SOa, MgSO4, NaHCOs, KHCOa, Na2OC3, KzC03, KI4zPO,, KBr, HCI and NaOH. The equivalent conductance was obtained by comparing the specific conductance before and after the addition of one of the above electrolytes to sea water. Conductance ranged from 23 t2--1cmz for Na~COs to 310 12-1 cm 2 for HCI at 35.00~ salinity and at 23°C.