v o m m i
anon
~lmmP
A V O ~
m m
v
: la
l,a
m
l
!
@
m
.s .,.., m
"2.
"r::
? r-i
ft
'-"
m
._= =
o
-n e!.
._= e-
.=_ E o t.
"2.
,
m e-
B e-
9
E e~_
._= e,-
e~ r
c-i
e-
e-
"~
o
-=. c'!. , -
1: c~
c~
m
E~ . ~-J'~
e'~cA
~,.,~
.-~ :
~.
m ,,3 o
e-
,,..,
m.
~2
I-
~._=
e..a
m.
mm
i;I
"2.
m.
m
m
I!n
m
2. E 9 e-q.. r
O
e-"
"2.
e-.
z eq.. r
e~'F_.,
.-= ~,
~g ..l::: m O.=_
"2.
m
#,.~ e- > .-.~ =-~
~2 <'N
r
2 e- ,--I ~ o
< "2.
r
.=_
E
t",l
,-q
fE.-.E Oea
~m
~z
-2
i i
=!
9~
j
.....
9
_
,_,.....
.~
._=
('-.1
E
r
9r - " ~ ca e-~
N--
xxiii
11.1 1 1.2 1 1.3 1 1.4 1 1.5 1 1.6 1 1.7 1 1.8
1.2.1.1 1.2.1.2 1.2.2.1 1.2.2.2
1.2.2.3 1.2.2.4 1.2.3 1.2.4 1.2.5 1.3.1 1.3.2 1.3.3
1.4.1 1.4.2
2.1 2.2
4.1 4.2 4.3 4.4
xxiv
Table 1. Principal characteristic vibrational bands assignment for different polymer classes. Polymer
Frequency range
class
(cm")
1
Relative intensity Infrared
2
3
4
5
s
m
Aliphatic CH3 asymmetric stretch Aliphatic CHz asymmetric stretch
m
2860-2880
Aliphatic CH3 symmetric stretch
2840-2860
Aliphatic CH 2 symmetric stretch
1450-1470
m
m
Aliphatic CH2, CH 3 bending
-1380
s-m (s, if
m-w (s, if
CH3 bending
at C=O)
at C=C)
720-770
m
1640-1648
m
S
C=C stretch in RHC=CH2
1665-1678
0
S
C=C stretch in trans- RHC=CHR"
1630-1660
m
S
C=C stretch in cis- RHC=CHR"
985-995,905-910
s, s
W-0
CH deformations in RHC=CH2
w-O
CH deformation in trans- RHC=CHR"
968-972 1.1.2
Raman
2950-2970 2920-2935 1.1.1
CH 2 rocking
730-745
m-s
w-0
CH deformation in cis- RHC=CHR"
2080-2140
m-w
m-s
C=C stretch in RC=CH C-H stretch in RC=CH
3300
1.1.3
1.1.4
Tentative assignment
2100-2200
VW
C=C stretch in RC=CR"
2200-2270
VW
C=C stretch in RC=C-C-~CR"
480-660
C - I stretch
500-700
C - Br stretch
530-800
C - C1 stretch
1150-1290
m-s
m-w
predominantly C-F stretch
550-890
m-w
m-s
predominantly C-F stretch
-3400, -1650
s, m - w
W, VW
O-H stretch, deformation in vinyl alcohol
-~1735,-1380
s, s
m, m
C-O stretch, CH3 def. In CH3C(O)OR
-1240
s
w
C-O stretch in CH3C(O)-OR
-1020
m
C-O stretch in CH3C(O)O-R
XXV
1.1.5
2600-3100
s (broad)
-1710,-1250
S, S
m, m-w
C=O, C-O stretch in RC(=O)-OH
-1560,-1410
S, m - w
w, m-s
C+O stretch asym. and sym. in RCOO-
-1730
s
m
C=O stretch in alkyl-O-C(O)-R
-1250,-1160
m, s
m, m-s
800-900
1.1.6
O-H stretch in H-bonded RC(O)O-H
C-O stretch in C-O-C predominantly C-C stretch
m-w
1700-1720
ketone C-O stretch in alkyl-C(O)-alkyl
1670-1700
ketone C-O stretch in aryl-C(O)-alkyl
1650-1670 2240-2260
m
ketone C=O stretch in aryl-C(O)-aryl Aliphat. C=N st. in acrylonitrile and cyanoacrylate
m-s
C=N stretch in aryl-C~N
1.1.7
1.1.8
2230-2240
m-s
2215-2235
m-s
C=N stretch in C=C-C=N N-H stretch in primary amides
-3350, -3200
s, m - s
-1660, ---1625
s, s
m, m
NH bend.) in primary amides
-1670
s
m
C+O stretch in vinylpyrrolidone
1000-1250
w
1580-1620
m-w
C=S stretch m-s
predominantly C=C benzene ring stretch mono-substituted benzene ring modes
-1032,1002,-760,
w-O
m, vs,
-700
m, vs
w-O
mono-substituted benzene ring modes
-1045,-745
W, S
s, m
ortho-disubstituted benzene ring modes
vs, m,
meta-disubstituted benzene ring modes
-1002,645-765,
w-O,
m,
750-810,810-900
s, m
w-0, w-0
meta-disubstituted benzene ring modes
620-645,810-850
w-O, s
m-s, w-0
para-disubstituted benzene ring modes
m-s, w-O
symmetric and asymmetric C-O-C stretch in
-1000
w-O
830-940,1080-1150
w-O, s
1,3,5- derivatives
1210-1290 1.2.1.1
845-900
aliphatic ether m
C-O stretch in aryl-OR
1735-1770
m
C=O stretch in aliphatic ester
1715-1740
m
C=O stretch in aryl-C(O)OR ester
1770-1785
m
C=O stretch in Ar-O-C(O)-O-Ar carbonates
W, m - s
C=O stretch in cyclic anhydride units
s
0-w
1.2.1.2
-1780,-1860
s, w
-3300 --3080 1.2.2.1
amide I (C+O str.+C+N str.), amide II (C+N str.+
m, m
O-O stretch
N-H stretch m
N-H stretch
1630-1680
C+O stretch + C+N stretch (amide I)
1530-1550
C+N stretching + N-H bending (amide II)
1220-1290
N-H bend + C-C str. + C=O bend. (amide III)
xxvi
1.2.2.2
3300-3350
s-m
2240-2270
m-s
1730-1690
1.2.2.3
m-s
stretching of O=C=NR
m
C=O stretch
1515-1540
m
m-w
C+N stretching + N-H bending (amide II)
1790-1740
m-w
m-s
C=O symmetric stretch
1690-1730
C=O asymmetric stretch
1360-1390
1.2.2.4
N-H stretch
m-s
predominantly C-N stretch
1610-1680
m
C=N stretch
1550-1580
0
N=N stretch (aliphatic substituent)
1410-1440
0
1200-1230
s-m
m-w
P+O asym. stretch in RO-P(+O2)--OR"
1.2.3
1050-1100
m-w
m-s
P+O sym. stretch in RO-P(+O2)-OR"
(polynucl-
-810
eotides)
1.2.4
N=N stretch (aromatic substituent)
P-O stretch in-C-O-P(+O2)-O-C- (A-form)
-790
W
2550-2600
m-w
m-s
S-H stretch
500-545
0
VS
S-S stretch in alkyl-S-S-alkyl
620-730
m
470-510
0
1080-1100
m-s
1120-1160
m-s
1300-1340
S
C-S stretch in alkyl-S-S-alkyl or alkyl-S-alkyl VS
S
S=O stretch symmetric in aryl-SOz-aryl
w-0
S=O stretch asymmetric in aryl-SO2-aryl O-H stretch
1000-1200
C-O stretch in-C-O-C-,-C-OH
-3300 -3080
S-S stretch in aryl-S-S-aryl C-S stretch aryl-S-aryl
-3400 1.2.5
P-O stretch in-C-O-P(+O2)-O-C- (B-form)
m
m-w
amide A
0
amide B
1630-1680
amide I
1590-1620
m-s
Tyr, Phe
1525-1550(broad)
0
amide II
-1555 (sharp)
m
1.3.2
1230-1290
(for
-1210
example,
1050-1200
proteins)
Trp amide III
m-s
Tyr, Phe
W
m
predominantly C-N stretch
1032,1002,624
0,0,0
m-s
Phe
900-1000
W
m
predominantly C-C stretch
-830,-850
0,0
m-s, m-s
Tyr (I830/I850-indicative of H-bonding, ionization)
- 644
0
m-s
630-670,700-730 510-540
m-s
Tyr C-S stretch S-S stretch
xxvii
2100-2220
m-s
Si-H stretch
1000-1100
0
Si-O-Si asymmetric stretch
2.1
450-550
s
Si-O-Si symmetric stretch
1255-1265
s
w
2.2
2500-2600
s
s
Si-CH3 deformation B-H stretch in R-BloHlo-R"
Experimental conditions
Raman spectra were measured on a Bruker spectrometer, IFS 66, coupled with a Raman Accessory FRA 106. The light-scattering was excited using a low-noise diode-pumped advanced-technology N d - Y A G laser (ADLAS) at 1064 nm: the illumination power on a sample was not more than 200 mW. A special (enhanced) liquid-nitrogen-cooled germanium detector was used. The collection geometry of scattered light was 1800. Double sided interferograms were acquired in both directions of the moving mirror. All spectra were obtained with a resolution not higher than 4 cm -~ (4P-apodisation) after more than 2000 scans (one hour) for a high signal-to-noise ratio, stored in the range 100-3500 cm ~ , and corrected for the instrument response. Most spectra are presented after fluorescence-background correction using an interactive baseline linearization routine program. The higher level noise in the range of 2000-2500 cm ~ in some spectra having a high fluorescence background may appear as a result of NIR water vapour absorption, and some features of the instrumental response. Raman measurements needed no sample preparation or only minor preparation, such as by pressing of solids into a conic hollow at the fiat edge of aluminium cylinder (as well as a node of a few fibres) or by making a multilayer package of films on a mirror surface to increase the scattering intensity. Liquid samples were measured using a special quartz cell with a mirrorback. FT-IR spectra were measured mainly on a Bruker IFS 45 spectrometer coupled with an IR-microscope (15-x Cassegranian objective, knife-edge apertures, MCT-detector) or on an IFS 66 spectrometer at a resolution 4 cm -~ (4P-apodisation) after acquisition of 50-100 scans. Spectra were stored in the range 600-4000 cm -~ when using the MCT-detector, or 400-4000 cm -~ with the DTGS-detector. IR spectra are presented after baseline linearization.