Polymer classification guide

Polymer classification guide

v o m m i anon ~lmmP A V O ~ m m v : la l,a m l ! @ m .s .,.., m "2. "r:: ? r-i ft '-" m ._= = o -n e!. ._= e- .=_ E o t. "2...

228KB Sizes 1 Downloads 78 Views

v o m m i

anon

~lmmP

A V O ~

m m

v

: la

l,a

m

l

!

@

m

.s .,.., m

"2.

"r::

? r-i

ft

'-"

m

._= =

o

-n e!.

._= e-

.=_ E o t.

"2.

,

m e-

B e-

9

E e~_

._= e,-

e~ r

c-i

e-

e-

"~

o

-=. c'!. , -

1: c~

c~

m

E~ . ~-J'~

e'~cA

~,.,~

.-~ :

~.

m ,,3 o

e-

,,..,

m.

~2

I-

~._=

e..a

m.

mm

i;I

"2.

m.

m

m

I!n

m

2. E 9 e-q.. r

O

e-"

"2.

e-.

z eq.. r

e~'F_.,

.-= ~,

~g ..l::: m O.=_

"2.

m

#,.~ e- > .-.~ =-~

~2 <'N

r

2 e- ,--I ~ o

< "2.

r

.=_

E

t",l

,-q

fE.-.E Oea

~m

~z

-2

i i

=!

9~

j

.....

9

_

,_,.....

.~

._=

('-.1

E

r

9r - " ~ ca e-~

N--

xxiii

11.1 1 1.2 1 1.3 1 1.4 1 1.5 1 1.6 1 1.7 1 1.8

1.2.1.1 1.2.1.2 1.2.2.1 1.2.2.2

1.2.2.3 1.2.2.4 1.2.3 1.2.4 1.2.5 1.3.1 1.3.2 1.3.3

1.4.1 1.4.2

2.1 2.2

4.1 4.2 4.3 4.4

xxiv

Table 1. Principal characteristic vibrational bands assignment for different polymer classes. Polymer

Frequency range

class

(cm")

1

Relative intensity Infrared

2

3

4

5

s

m

Aliphatic CH3 asymmetric stretch Aliphatic CHz asymmetric stretch

m

2860-2880

Aliphatic CH3 symmetric stretch

2840-2860

Aliphatic CH 2 symmetric stretch

1450-1470

m

m

Aliphatic CH2, CH 3 bending

-1380

s-m (s, if

m-w (s, if

CH3 bending

at C=O)

at C=C)

720-770

m

1640-1648

m

S

C=C stretch in RHC=CH2

1665-1678

0

S

C=C stretch in trans- RHC=CHR"

1630-1660

m

S

C=C stretch in cis- RHC=CHR"

985-995,905-910

s, s

W-0

CH deformations in RHC=CH2

w-O

CH deformation in trans- RHC=CHR"

968-972 1.1.2

Raman

2950-2970 2920-2935 1.1.1

CH 2 rocking

730-745

m-s

w-0

CH deformation in cis- RHC=CHR"

2080-2140

m-w

m-s

C=C stretch in RC=CH C-H stretch in RC=CH

3300

1.1.3

1.1.4

Tentative assignment

2100-2200

VW

C=C stretch in RC=CR"

2200-2270

VW

C=C stretch in RC=C-C-~CR"

480-660

C - I stretch

500-700

C - Br stretch

530-800

C - C1 stretch

1150-1290

m-s

m-w

predominantly C-F stretch

550-890

m-w

m-s

predominantly C-F stretch

-3400, -1650

s, m - w

W, VW

O-H stretch, deformation in vinyl alcohol

-~1735,-1380

s, s

m, m

C-O stretch, CH3 def. In CH3C(O)OR

-1240

s

w

C-O stretch in CH3C(O)-OR

-1020

m

C-O stretch in CH3C(O)O-R

XXV

1.1.5

2600-3100

s (broad)

-1710,-1250

S, S

m, m-w

C=O, C-O stretch in RC(=O)-OH

-1560,-1410

S, m - w

w, m-s

C+O stretch asym. and sym. in RCOO-

-1730

s

m

C=O stretch in alkyl-O-C(O)-R

-1250,-1160

m, s

m, m-s

800-900

1.1.6

O-H stretch in H-bonded RC(O)O-H

C-O stretch in C-O-C predominantly C-C stretch

m-w

1700-1720

ketone C-O stretch in alkyl-C(O)-alkyl

1670-1700

ketone C-O stretch in aryl-C(O)-alkyl

1650-1670 2240-2260

m

ketone C=O stretch in aryl-C(O)-aryl Aliphat. C=N st. in acrylonitrile and cyanoacrylate

m-s

C=N stretch in aryl-C~N

1.1.7

1.1.8

2230-2240

m-s

2215-2235

m-s

C=N stretch in C=C-C=N N-H stretch in primary amides

-3350, -3200

s, m - s

-1660, ---1625

s, s

m, m

NH bend.) in primary amides

-1670

s

m

C+O stretch in vinylpyrrolidone

1000-1250

w

1580-1620

m-w

C=S stretch m-s

predominantly C=C benzene ring stretch mono-substituted benzene ring modes

-1032,1002,-760,

w-O

m, vs,

-700

m, vs

w-O

mono-substituted benzene ring modes

-1045,-745

W, S

s, m

ortho-disubstituted benzene ring modes

vs, m,

meta-disubstituted benzene ring modes

-1002,645-765,

w-O,

m,

750-810,810-900

s, m

w-0, w-0

meta-disubstituted benzene ring modes

620-645,810-850

w-O, s

m-s, w-0

para-disubstituted benzene ring modes

m-s, w-O

symmetric and asymmetric C-O-C stretch in

-1000

w-O

830-940,1080-1150

w-O, s

1,3,5- derivatives

1210-1290 1.2.1.1

845-900

aliphatic ether m

C-O stretch in aryl-OR

1735-1770

m

C=O stretch in aliphatic ester

1715-1740

m

C=O stretch in aryl-C(O)OR ester

1770-1785

m

C=O stretch in Ar-O-C(O)-O-Ar carbonates

W, m - s

C=O stretch in cyclic anhydride units

s

0-w

1.2.1.2

-1780,-1860

s, w

-3300 --3080 1.2.2.1

amide I (C+O str.+C+N str.), amide II (C+N str.+

m, m

O-O stretch

N-H stretch m

N-H stretch

1630-1680

C+O stretch + C+N stretch (amide I)

1530-1550

C+N stretching + N-H bending (amide II)

1220-1290

N-H bend + C-C str. + C=O bend. (amide III)

xxvi

1.2.2.2

3300-3350

s-m

2240-2270

m-s

1730-1690

1.2.2.3

m-s

stretching of O=C=NR

m

C=O stretch

1515-1540

m

m-w

C+N stretching + N-H bending (amide II)

1790-1740

m-w

m-s

C=O symmetric stretch

1690-1730

C=O asymmetric stretch

1360-1390

1.2.2.4

N-H stretch

m-s

predominantly C-N stretch

1610-1680

m

C=N stretch

1550-1580

0

N=N stretch (aliphatic substituent)

1410-1440

0

1200-1230

s-m

m-w

P+O asym. stretch in RO-P(+O2)--OR"

1.2.3

1050-1100

m-w

m-s

P+O sym. stretch in RO-P(+O2)-OR"

(polynucl-

-810

eotides)

1.2.4

N=N stretch (aromatic substituent)

P-O stretch in-C-O-P(+O2)-O-C- (A-form)

-790

W

2550-2600

m-w

m-s

S-H stretch

500-545

0

VS

S-S stretch in alkyl-S-S-alkyl

620-730

m

470-510

0

1080-1100

m-s

1120-1160

m-s

1300-1340

S

C-S stretch in alkyl-S-S-alkyl or alkyl-S-alkyl VS

S

S=O stretch symmetric in aryl-SOz-aryl

w-0

S=O stretch asymmetric in aryl-SO2-aryl O-H stretch

1000-1200

C-O stretch in-C-O-C-,-C-OH

-3300 -3080

S-S stretch in aryl-S-S-aryl C-S stretch aryl-S-aryl

-3400 1.2.5

P-O stretch in-C-O-P(+O2)-O-C- (B-form)

m

m-w

amide A

0

amide B

1630-1680

amide I

1590-1620

m-s

Tyr, Phe

1525-1550(broad)

0

amide II

-1555 (sharp)

m

1.3.2

1230-1290

(for

-1210

example,

1050-1200

proteins)

Trp amide III

m-s

Tyr, Phe

W

m

predominantly C-N stretch

1032,1002,624

0,0,0

m-s

Phe

900-1000

W

m

predominantly C-C stretch

-830,-850

0,0

m-s, m-s

Tyr (I830/I850-indicative of H-bonding, ionization)

- 644

0

m-s

630-670,700-730 510-540

m-s

Tyr C-S stretch S-S stretch

xxvii

2100-2220

m-s

Si-H stretch

1000-1100

0

Si-O-Si asymmetric stretch

2.1

450-550

s

Si-O-Si symmetric stretch

1255-1265

s

w

2.2

2500-2600

s

s

Si-CH3 deformation B-H stretch in R-BloHlo-R"

Experimental conditions

Raman spectra were measured on a Bruker spectrometer, IFS 66, coupled with a Raman Accessory FRA 106. The light-scattering was excited using a low-noise diode-pumped advanced-technology N d - Y A G laser (ADLAS) at 1064 nm: the illumination power on a sample was not more than 200 mW. A special (enhanced) liquid-nitrogen-cooled germanium detector was used. The collection geometry of scattered light was 1800. Double sided interferograms were acquired in both directions of the moving mirror. All spectra were obtained with a resolution not higher than 4 cm -~ (4P-apodisation) after more than 2000 scans (one hour) for a high signal-to-noise ratio, stored in the range 100-3500 cm ~ , and corrected for the instrument response. Most spectra are presented after fluorescence-background correction using an interactive baseline linearization routine program. The higher level noise in the range of 2000-2500 cm ~ in some spectra having a high fluorescence background may appear as a result of NIR water vapour absorption, and some features of the instrumental response. Raman measurements needed no sample preparation or only minor preparation, such as by pressing of solids into a conic hollow at the fiat edge of aluminium cylinder (as well as a node of a few fibres) or by making a multilayer package of films on a mirror surface to increase the scattering intensity. Liquid samples were measured using a special quartz cell with a mirrorback. FT-IR spectra were measured mainly on a Bruker IFS 45 spectrometer coupled with an IR-microscope (15-x Cassegranian objective, knife-edge apertures, MCT-detector) or on an IFS 66 spectrometer at a resolution 4 cm -~ (4P-apodisation) after acquisition of 50-100 scans. Spectra were stored in the range 600-4000 cm -~ when using the MCT-detector, or 400-4000 cm -~ with the DTGS-detector. IR spectra are presented after baseline linearization.