Positive periodic solution for a neutral Logarithmic population model with feedback control

Positive periodic solution for a neutral Logarithmic population model with feedback control

Applied Mathematics and Computation 217 (2011) 7692–7702 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homep...

245KB Sizes 3 Downloads 136 Views

Applied Mathematics and Computation 217 (2011) 7692–7702

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

Positive periodic solution for a neutral Logarithmic population model with feedback control q Rui Wang ⇑, Xiaosheng Zhang School of Mathematical Sciences, Capital Normal University, Beijing 100048, People’s Republic of China

a r t i c l e

i n f o

Keywords: Neutral Logarithmic population model Feedback control Positive periodic solution Global asymptotically stability

a b s t r a c t In this paper, a neutral delay Logarithmic population model with feedback control is studied. By using the abstract continuous theorem of k-set contractive operator, some new results on the existence of the positive periodic solution are obtained; after that, by constructing a suitable Lyapunov functional, a set of easily applicable criteria is established for the global asymptotically stability of the positive periodic solution.  2011 Elsevier Inc. All rights reserved.

1. Introduction In the past few years, many authors have studied the existence of the Logarithmic population model. Gopalsamy [3] and Kirlinger [5] had proposed the following single species Logarithmic model:

dNðtÞ ¼ NðtÞ½a  b  ln NðtÞ  c  ln Nðt  sÞ: dt

ð1:1Þ

System (1.1) is then generalized by Li [8] to the non-autonomous case

dNðtÞ ¼ NðtÞ½aðtÞ  bðtÞ ln NðtÞ  cðtÞ ln Nðt  sðtÞÞ: dt

ð1:2Þ

In [8], by using the coincidence degree theory, sufficient conditions for the existence of positive periodic solutions of system (1.2) are established. As was pointed out by Gopalsamy [3], in some case, the neutral delay population models are more realistic. There were many scholars done works on the periodic solution of neutral type Logistic model or Lotka–Volterra model, but only a little scholars considered the neutral Logarithmic model. Li [9] had studied the following single species neutral Logarithmic model:

dNðtÞ ¼ NðtÞ½rðtÞ  aðtÞ ln Nðt  rÞ  bðtÞðln Nðt  gÞÞ0 : dt

ð1:3Þ

Lu and Ge [6] investigated the following system:

" # n n X X dNðtÞ ¼ NðtÞ rðtÞ  aj ðtÞ ln Nj ðt  rðtÞÞ  bj ðtÞðln Nðt  gj ðtÞÞÞ0 : dt j¼1 j¼1

q

ð1:4Þ

Supported by the Natural Science Foundation of China (10871005) and the Foundation of Beijing City’s Educational Committee (KM200610028001).

⇑ Corresponding author.

E-mail address: [email protected] (R. Wang). 0096-3003/$ - see front matter  2011 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2011.02.072

R. Wang, X. Zhang / Applied Mathematics and Computation 217 (2011) 7692–7702

7693

Some results on the existence of positive periodic solution of system (1.4) are obtained by employing an abstract continuous theorem of k-set contractive operator. The authors [13], by using an abstract continuous theorem of k-set contractive operator, investigated the existence, globally attractive of the positive periodic solution of the following neutral multi-delays Logarithmic population model:

" # Z t n n n X X X dNðtÞ ¼ NðtÞ rðtÞ  aðtÞ ln NðtÞ  bj ðtÞ ln Nðt  sj ðtÞÞ  cj ðtÞ kj ðt  sÞ ln NðsÞds  dj ðtÞðln Nðt  gj ðtÞÞÞ0 : dt 1 j¼1 j¼1 j¼1 ð1:5Þ For the neutral multi-species Logarithmic population model, we refer the reader to [1]. On the other hand, in some situation, people may wish to change the position of the existing periodic solution but to keep its stability. This is of significance in the control of ecology balance. One of the methods to realize such a control is to alter the system structurally by introducing some feedback control variables so as to get the population stability of another periodic solution. The realization of the feedback control mechanism might be implemented by means of some biological control scheme or by harvesting procedure. In fact, during the last decade, the qualitative behaviors of the population dynamics with feedback control have been studied extensively. Recently, many scholars focus on the existence and global attractivity of the positive periodic solution of the system. The authors [12] have studied the existence, uniqueness and global attractivity of the periodic solution of the delay multispecies Logarithmic population model with feedback control, by using the contraction mapping principle and a suitable Lyapunov functional. By means of the Cauchy matrix, the authors [14] investigate the existence and exponential stability of almost periodic solutions and periodic solutions for the delay impulsive Logarithmic population. The impulses can be considered as a kind of control. However, to this day, there are few papers published on the existence and global asymptotically stability of positive periodic solution of the neutral Logarithmic population model with feedback control. This motivates us to consider the following equation:

8 ( n n > Rt P P > dNðtÞ > > dt ¼ NðtÞ rðtÞ  aðtÞ ln NðtÞ  bj ðtÞ ln Nðt  s1j ðtÞÞ  cj ðtÞ 1 kj ðt  sÞ ln NðsÞds > > > j¼1 j¼1 > > ) > < n n P P  dj ðtÞðln Nðt  g1j ðtÞÞÞ0  fj ðtÞuðt  s2j ðtÞÞ ; > > j¼1 j¼1 > > > > n > P > duðtÞ > > : dt ¼ a0 ðtÞuðtÞ þ g j ðtÞNðt  g2j ðtÞÞ;

ð1:6Þ

j¼1

where u(t) denotes the feedback control variable. It is assumed that: (H1) r(t), cj(t), fj(t), a0(t), gj(t) are continuous, positive x-periodic functions on R a(t), bj(t), dj(t) are continuous differentiable, positive x-periodic functions on R. (H2) s1j(t), g1j(t) 2 C(R, [0, +1)), g2j(t), s2j(t) 2 C(R, (0, +1)) are all x-periodic functions, and kj(t) 2 C([0, +1), (0, +1)) R þ1 R þ1 j = 1, . . . , n with 1  s01j ðtÞ > 0; 1  g01j ðtÞ P 0; 1  s02j ðtÞ > 0; 1  g02j ðtÞ > 0 and 0 kj ðsÞds ¼ 1; 0 skj ðsÞds < þ1. We consider (1.6) together with following initial conditions:

8 < NðtÞ ¼ uðtÞ; N0 ðtÞ ¼ u0 ðtÞ; uð0Þ > 0; u 2 C 1 ðð1; 0; ½0; 1ÞÞ; max : uðhÞ ¼ wðhÞ P 0; h 2 ½s2 ; 0; wð0Þ > 0; where s2 ¼

fs2j ðtÞg:

ð1:7Þ

t2½0;x;j¼1;...;n

The aim of this paper is to give a set of new conditions to guarantee the existence and global stability of the positive periodic solution of the system (1.6) and (1.7). 2. Main lemmas We will investigate the existence of positive periodic solution of system (1.6) and (1.7) in this section, and to do this, some lemmas are needed. Since each x-periodic solution of the equation n X duðtÞ ¼ a0 ðtÞuðtÞ þ g j ðtÞNðt  g2j ðtÞÞ dt j¼1

is equivalent to that of the equation

uðtÞ ¼

Z

tþw

Gðt; sÞ

t

where, Gðt; sÞ ¼

n X j¼1

Rs a ðhÞdh R xt 0 ; s 2 ½t; t þ x; t 2 R.

exp exp

!

g j ðsÞNðs  g2j ðsÞÞ ds :¼ ðUNÞðtÞ;

0

a0 ðhÞdh1

ð2:1Þ

7694

R. Wang, X. Zhang / Applied Mathematics and Computation 217 (2011) 7692–7702

Therefore, the existence problem of positive x-periodic solution of system (1.6) and (1.7) is equivalent to that of positive

x-periodic solution of the equation: ( Z t n n n X X X dNðtÞ bj ðtÞ ln Nðt  s1j ðtÞÞ  cj ðtÞ kj ðt  sÞ ln NðsÞds  dj ðtÞðln Nðt  g1j ðtÞÞÞ0 ¼ NðtÞ rðtÞ  aðtÞ ln NðtÞ  dt 1 j¼1 j¼1 j¼1 ! ) Z ts2j ðtÞþw n n X   X fj ðtÞ G t  s2j ðtÞ; s g j ðsÞNðs  g2j ðsÞÞ ds : ð2:2Þ  ts2j ðtÞ

j¼1

j¼1

Taking the transformation N(t) = ey(t), then (2.2) can be rewritten as

y0 ðtÞ ¼ rðtÞ  aðtÞyðtÞ 

n X j¼1



n X

fj ðtÞ

Z

ts2j ðtÞþw

ts2j ðtÞ

j¼1

bj ðtÞyðt  s1j ðtÞÞ 

n X

cj ðtÞ

Z

t

kj ðt  sÞyðsÞds  1

j¼1

n X

dj ðtÞy0 ðt  g1j ðtÞÞð1  g01j ðtÞÞ

j¼1

! n   X yðsg2j ðsÞÞ ds: G t  s2j ðtÞ; s g j ðsÞe

ð2:3Þ

j¼1

It is obvious that if Eq. (2.3) has a x-periodic solution y⁄(t), then Eq. (2.2) has a positive x-periodic solution N  ðtÞ ¼ ey Let E be a Banach space. For a bounded subset A  E, denote the Kuratoskii measure of non-compactness:

 ðtÞ

.

aE ðAÞ ¼ inffd > 0j There is a finite number of subsets fAi g  A such that A ¼ [ðAi Þ and diamðAi Þ 6 dg; where diam(Ai) denotes the diameter of set Ai. Let X, Y be two Banach spaces and X be a bounded open subset of X. A continuous and bounded map N : X ! Y is called k-set contractive if for any bounded set A  X, we have

aY ðNðAÞÞ 6 kaX ðAÞ; where k is a non-negative constant. Also, for a Fred-holm L : X ? Y with index zero, according to [4], we define:

lðLÞ ¼ supfr P 0 : r aX ðAÞ 6 aY ðLðAÞÞ; for all bounded subset A  Xg: Lemma 2.1 [11]. Let L : X ? Y be a Fred-holm operator with zero index, and r 2 Y be a fixed point. Suppose that N : X ? Y is called a k-set contractive with k < l(L), where X  X is bounded, open and symmetric about 0 2 X. Further, we also assume that: (1) Lx – kNx + kr, for x 2 oX, k 2 (0, 1), and (2) [QN(x) + Qr, x]  [QN(x) + Qr, x] < 0 for x 2 kerL \ oX; where [, ] is a bilinear form on Y  X and Q is the projection of Y onto Coker(L), where Coker(L) is the co-kernel of the operator L. Then there is a x 2 X such that Lx  Nx = r. In order to use Lemma 2.1 to study (2.3), we set

Y ¼ C x ¼ fxjx 2 CðR; Rn Þ; xðt þ xÞ ¼ xðtÞg with the norm defined by kxk = jxj0 = maxt2[0,x]{jx(t)j}, and

X ¼ C 1x ¼ fxjx 2 C 1 ðR; Rn Þ; xðt þ xÞ ¼ xðtÞg with the norm defined by jxj1 = max{jxj0, jx0 j0}. Then both Cx and C 1x are Banach spaces. We also denote:

¼ 1 h

Z

x

x

0

jhðsÞjds; ðhÞm ¼ min hðtÞ; ðhÞM ¼ max hðtÞ: t2½0;x

t2½0;x

Let L : C 1x ! C x defined by Ly = y0 (t) and N : C 1x ! C x defined by

Ny ¼ aðtÞyðtÞ 

n X

bj ðtÞyðt  s1j ðtÞÞ 

j¼1



n X j¼1

fj ðtÞ

Z

ts2j ðtÞþw

ts2j ðtÞ

n X

cj ðtÞ

j¼1

Z

t

kj ðt  sÞyðsÞds  1

! n   X yðsg2j ðsÞÞ G t  s2j ðtÞ; s g j ðsÞe ds:

n X

dj ðtÞy0 ðt  g1j ðtÞÞð1  g01j ðtÞÞ

j¼1

j¼1

Thus (2.3) has a positive x-periodic solution if and only if Ly = Ny + r for some y 2 C 1x , where r = r(t). Lemma 2.2 [10]. The differential operator L is a Fred-holm operator with index zero, and satisfies l(L) P 1.

ð2:4Þ

7695

R. Wang, X. Zhang / Applied Mathematics and Computation 217 (2011) 7692–7702

Lemma 2.3. Let c0, c1 be two positive constants, and X ¼ fxjx 2 C 1x ; jxj0 < c0 ; jx0 j0 < c1 g, if k ¼ X ? Cx is a k-set contractive map.

Pn

j¼1 kdj ð1

 g01j Þk, then N :

Proof. Let A  X be a bounded subset and let g ¼ aC 1x ðAÞ. Then, for any e > 0, there is a finite family of subsets of Ai satisfying A = [(Ai) with diam (Ai) 6 g + e. Now we define:

ðHyÞðtÞ ¼ ðUey ÞðtÞ; Fðt; x; y1 ; . . . ; yn ; z1 ; . . . ; zn ; w1 ; . . . ; wn ; v 1 ; . . . ; v n Þ ¼ aðtÞx þ

n X

bj ðtÞyj þ

j¼1

n X

cj ðtÞzj þ

j¼1

n X

dj ðtÞwj ð1  g01j ðtÞÞ þ

j¼1

n X

fj ðtÞv j :

j¼1

For convenience, in the following discussion we denote

J i ðxÞðtÞ ¼

Z

t

1

ki ðt  sÞxðsÞds; for x 2 C 1x ;

i ¼ 1; 2; . . . ; n:

Since F(t, x, y1, . . . , yn, z1, . . . , zn, w1, . . . , wn, v1, . . . , vn) is uniformly continuous on any compact subset of R  R4n+1, A and Ai are precompact in Cx, it follows that there is a finite family of subsets Aij of Ai such that Ai = [jAij with

jFðt; xðtÞ; xðt  s11 ðtÞÞ; . . . ; xðt  s1n ðtÞÞ; J 1 ðxÞðtÞ; . . . ; J n ðxÞðtÞ; u0 ðt  g11 ðtÞÞ; . . . ; u0 ðt  g1n ðtÞÞ; ðHxÞðt  s21 ðtÞÞ; . . . ; ðHxÞðt  s2n ðtÞÞÞ  Fðt; uðtÞ; uðt  s11 ðtÞÞ; . . . ; uðt  s1n ðtÞÞ; J 1 ðuÞðtÞ; . . . ; J n ðuÞðtÞ; u0 ðt  g11 ðtÞÞ; . . . ; u0 ðt  g1n ðtÞÞ; ðHuÞðt  s21 ðtÞÞ; . . . ; ðHuÞðt  s2n ðtÞÞÞj 6 e; for any x; u 2 Aij : Therefore, we have

kNx  Nuk ¼ sup jFðt; xðtÞ; xðt  s11 ðtÞÞ; . . . ; xðt  s1n ðtÞÞ; J 1 ðxÞðtÞ; . . . ; J n ðxÞðtÞ; t2½0;x

x0 ðt  g11 ðtÞÞ; . . . ; x0 ðt  g1n ðtÞÞ; ðHxÞðt  s21 ðtÞÞ; . . . ; ðHxÞðt  s2n ðtÞÞÞ  Fðt; uðtÞ; uðt  s11 ðtÞÞ; . . . ; uðt  s1n ðtÞÞ; J 1 ðuÞðtÞ; . . . ; J n ðuÞðtÞ; u0 ðt  g11 ðtÞÞ; . . . ; u0 ðt  g1n ðtÞÞ; ðHuÞðt  s21 ðtÞÞ; . . . ; ðHuÞðt  s2n ðtÞÞÞj 6 sup jFðt; xðtÞ; xðt  s11 ðtÞÞ; . . . ; xðt  s1n ðtÞÞ; J 1 ðxÞðtÞ; . . . ; J n ðxÞðtÞ; t2½0;x

x0 ðt  g11 ðtÞÞ; . . . ; x0 ðt  g1n ðtÞÞ; ðHxÞðt  s21 ðtÞÞ; . . . ; ðHxÞðt  s2n ðtÞÞÞ  Fðt; xðtÞ; xðt  s11 ðtÞÞ; . . . ; xðt  s1n ðtÞÞ; J 1 ðxÞðtÞ; . . . ; J n ðxÞðtÞ; u0 ðt  g11 ðtÞÞ; . . . ; u0 ðt  g1n ðtÞÞ; ðHxÞðt  s21 ðtÞÞ; . . . ; ðHxÞðt  s2n ðtÞÞÞj þ sup jFðt; xðtÞ; xðt  s11 ðtÞÞ; . . . ; xðt  s1n ðtÞÞ; J 1 ðxÞðtÞ; . . . ; J n ðxÞðtÞ; t2½0;x

0

u ðt  g11 ðtÞÞ; . . . ; u0 ðt  g1n ðtÞÞ; ðHxÞðt  s21 ðtÞÞ; . . . ; ðHxÞðt  s2n ðtÞÞÞ  Fðt; uðtÞ; uðt  s11 ðtÞÞ; . . . ; uðt  s1n ðtÞÞ; J 1 ðuÞðtÞ; . . . ; J n ðuÞðtÞ; u0 ðt  g11 ðtÞÞ; . . . ; u0 ðt  g1n ðtÞÞ; ðHuÞðt  s21 ðtÞÞ; . . . ; ðHuÞðt  s2n ðtÞÞÞj 6

n X

kdj ð1  g01j Þk  jx0 ðt  g1j ðtÞÞ  u0 ðt  g1j ðtÞÞj þ e 6 kðg þ eÞ þ e:

j¼1

As e is arbitrarily small, it is easy to get that aC x ðNðAÞÞ 6 kaC 1x ðAÞ. The proof is complete. h Lemma 2.4 [7]. Suppose s 2 C 1x and s0 (t) < 1, t 2 [0, x]. Then the function t  s(t) has a unique inverse l(t) satisfying l 2 C(R, R) with l(a + x) = l(a) + x, "a 2 R. And if g() 2 Cx then g(l(t)) 2 Cx. Lemma 2.5 [7]. Let 0 6 a 6 x be a constant, s(t) 2 Cx, such that maxt2[0,x]js(t)j 6 a. Then for 8x 2 C 1x , we have Rx Rx jxðtÞ  xðt  sðtÞÞj2 dt 6 2a2 0 jx0 ðtÞj2 dt. If, in addition, sðtÞ 2 C 1x , and s0 (t) < 1, t 2 R, then for x 2 C 1x , we have the following 0 conclusions: (1) There exists a unique integer m such that l = js(t)  mxj0 < x; Rx 2 Rx (2) 0 jxðtÞ  xðt  sðtÞÞj2 dt 6 2l 0 jx0 ðtÞj2 dt.

7696

As

R. Wang, X. Zhang / Applied Mathematics and Computation 217 (2011) 7692–7702

s01j ðtÞÞ < 1, t 2 [0, x], from Lemma 2.5, we can choose an integer mj(s1j(t)), j = 1, . . . , n. Such that lj = js1j  mjxj0 and Z

x

0

2

jxðtÞ  xðt  s1j ðtÞÞj2 dt 6 2lj

Z

x

jx0 ðtÞj2 dt;

x 2 C 1x :

0

ð2:5Þ

Lemma 2.6 [15] . Suppose x(t) is a differently continuous x-periodic function on R with x > 0. Rx maxt 6t6ðt þxÞ jxðtÞj 6 jxðt Þj þ 12 0 jx0 ðtÞjdt.

Then to any t 2 R;

3. Existence of periodic solution Since s01j ðtÞ < 1; g01j ðtÞ < 1, t 2 [0, x] we see that t  s1j(t), t  g1j(t) all have its inverse function. In the rest of this paper, we set l1j(t), c1j(t) represent the inverse function of t  s1j(t), t  g1j(t), respectively. For convenience, throughout this paper, we also use the notations:

C1 ðtÞ ¼ aðtÞ þ

n X j¼1

CðtÞ ¼ C1 ðtÞ þ

n X

0

n X bj ðl1j ðtÞÞ dj ðc1j ðtÞÞ  ; 0 1  s1j ðl1j ðtÞÞ j¼1 1  g01j ðc1j ðtÞÞ

cj ðtÞ;

j¼1



Z

1

x

n X

x

0

I ¼ max

fj ðtÞ

t2½0;x

ts2j ðtÞþx

 r  ; C þ A n X

Gðt  s2j ðtÞ; sÞ

ts2j ðtÞ

j¼1

Z

Z

  H ¼ ln

ts2j ðtÞþx

! g j ðsÞ dsdt;

j¼1

Gðt  s2j ðtÞ; sÞ

ts2j ðtÞ

n X

! g j ðsÞ ds:

j¼1

Theorem 3.1. If in addition to (H1)–(H2) assume further that: (H3):

r > 0; cj ðtÞ P 0; C1 ðtÞ > 0; t 2 ½0; x;

þ and a

n X

 þ b j

j¼1

n X

cj > 0;

j¼1

(H4):

r  A

CþA

6 ln

r

CþA

;

ln

r þ C r P ; CþA CþA

(H5):

2 1 2

B , 42

n X

kbj klj þ

j¼1

n X

1

1 2

k1  g01j k kdj k þ

j¼1

x2 2

Z

x

0

n X j¼1

!1 !12 312 n   2 X x  0 2 0 5 jcj ðtÞj dt þ pffiffiffi ka k þ bj  < 1; 2 2 j¼1

(H6): n X

kdj kk1  g01j k < 1:

j¼1

Then (1.6) and (1.7) has at least one positive x-periodic solution. Proof. Suppose u(t) is a x-periodic solution of the following operator equation

Lu ¼ kNu þ kr;

k 2 ð0; 1Þ:

ð3:1Þ

Then u(t) satisfies the following equation

" 0

u ðtÞ ¼ k rðtÞ  aðtÞuðtÞ 

n X

bj ðtÞuðt  s1j ðtÞÞ 

j¼1



n X j¼1

dj ðtÞu0 ðt  g1j ðtÞÞð1  g01j ðtÞÞ 

n X

cj ðtÞ

Z

j¼1

fj ðtÞ

kj ðt  sÞuðsÞds

1

j¼1 n X

t

Z

ts2j ðtÞþw

ts2j ðtÞ

Gðt  s2j ðtÞ; sÞ

n X j¼1

# g j ðsÞeuðsg2j ðsÞÞ Þds :

ð3:2Þ

R. Wang, X. Zhang / Applied Mathematics and Computation 217 (2011) 7692–7702

7697

Integrating (3.2) on [0, x], we have

Z

rx ¼

"

x

n X

aðtÞuðtÞ þ

0 n X

þ

fj ðtÞ

cj ðtÞ

þ

n X

Gðt  s2j ðtÞ; sÞ

x

n X

t

kj ðt  sÞuðsÞds 

0

fj ðtÞ

Z

g j ðsÞe

t

kj ðt  sÞuðsÞds þ 1

! #

uðsg2j ðsÞÞ

n X

ds dt ¼

Z

n X

dj ðtÞu0 ðt  g1j ðtÞÞð1  g01j ðtÞÞ

j¼1

x

"

aðtÞuðtÞ þ

0

#

n X

bj ðtÞuðt  s1j ðtÞÞ

j¼1

0

dj ðtÞuðt  g1j ðtÞÞ dt

j¼1

ts2j ðtÞþw

ts2j ðtÞ

j¼1

Z

j¼1

1

j¼1

Z

ts2j ðtÞþw

Z

cj ðtÞ

j¼1

ts2j ðtÞ

n X

n X

j¼1

Z

j¼1

þ

bj ðtÞuðt  s1j ðtÞÞ þ

! n   X uðsg2j ðsÞÞ dsdt: G t  s2j ðtÞ; s g j ðsÞe

ð3:3Þ

j¼1

Let t  s1j(t) = s, then t = l1j(s), and

Z

Z

x

bj ðtÞuðt  s1j ðtÞÞdt ¼

xs1j ðxÞ

s1j ð0Þ

0

bj ðl1j ðsÞÞ uðsÞds: 1  s01j ðl1j ðsÞÞ

From Lemma 2.4, it follows that

Z

Z

x

bj ðtÞuðt  s1j ðtÞÞdt ¼

0

x

0

bj ðl1j ðsÞÞ uðsÞds: 1  s01j ðl1j ðsÞÞ

ð3:4Þ

Similarly, we have

Z

x

Z

0

dj ðtÞuðt  g1j ðtÞÞdt ¼

0

x

0

0

dj ðc1j ðsÞÞ uðsÞds: 1  g01j ðc1j ðsÞÞ

ð3:5Þ

Combining (3.3)–(3.5), we have

Z

x

C1 ðtÞuðtÞdt ¼

Z

0

x

" aðtÞuðtÞ þ

0

n X

bj ðtÞuðt  s1j ðtÞÞ 

j¼1

n X

# 0

dj ðtÞuðt  g1j ðtÞÞ dt:

ð3:6Þ

j¼1

From Lemma 2.4, we get

l1j ðxÞ ¼ l1j ð0Þ þ x; c1j ðxÞ ¼ c1j ð0Þ þ x; j ¼ 1; . . . ; n; then Z

x

0

Z 0

x

Z x Z l1j ðxÞ Z l1j ð0Þþx bj ðtÞð1  s01j ðl1j ðtÞÞÞ bj ðl1j ðtÞÞ  x; b ðtÞdt ¼ bj ðtÞdt ¼ b dt ¼ dt ¼ j j 1  s01j ðl1j ðtÞÞ 1  s01j ðl1j ðtÞÞ l1j ð0Þ l1j ð0Þ 0 Z x Z c1j ðxÞ 0 0 dj ðtÞð1  g01j ðc1j ðtÞÞÞ dj ðc1j ðtÞÞ 0 dt ¼ dj ðtÞdt ¼ 0: dt ¼ 0 1  g01j ðc1j ðtÞÞ 1  g1 j ðc1j ðtÞÞ c1j ð0Þ 0 

Rx



P

C1 ðtÞdt ¼ a þ nj¼1 bj x; ! Z x Z x Z x X n Cx ¼ CðtÞdt ¼ C1 ðtÞdt þ cj ðtÞ dt ¼

Then C1 x ¼

0

0

0

By (H3), we have C1(t) > 0,

rx ¼

Z

x

C1 ðtÞuðtÞdt þ

0



0

Pn

j¼1 c j ðtÞ

Z 0

Z

ts2j ðtÞþw



x

n X

n X

j¼1

bj þ

j¼1

n X

! cj x:

ð3:7Þ

j¼1

P 0, t 2 [0, x]. From (3.3)

cj ðtÞ

Z

t

kj ðt  sÞuðsÞdsdt þ

n  X

! g j ðsÞe

Z 0

1

j¼1

G t  s2j ðtÞ; s

ts2j ðtÞ

þ a

uðsg2j ðsÞÞ

x

n X

fj ðtÞ

j¼1

dsdt

j¼1

P ðuÞm Cx þ eðuÞm Ax P ðuÞm Cx þ ð1 þ ðuÞm ÞAx: Then r P ðuÞm C þ ð1 þ ðuÞm ÞA, we obtain

ðuÞm 6

r  A r 6 : CþA CþA

In the same manner, we get

rx 6 ðuÞM Cx þ eðuÞM Ax 6 eðuÞM xðC þ AÞ:

ð3:8Þ

7698

R. Wang, X. Zhang / Applied Mathematics and Computation 217 (2011) 7692–7702

Then r 6 eðuÞM ðC þ AÞ, we obtain

ðuÞM P ln

r

CþA

ð3:9Þ

:

By Lemma 2.6, (H4), (3.8) and (3.9), we have

uðtÞ 6 ðuÞm þ

Z

1 2

uðtÞ P ðuÞM 

1 2

x

ju0 ðsÞjds P ln

0

Z

x

ju0 ðsÞjds 6 ln

0

r 1  CþA 2

Z

ju0 ðsÞjds; 0

Z

r 1 þ CþA 2

x

x

ju0 ðsÞjds:

0

So

kuk 6 H þ

1 2

Z

x

ju0 ðsÞjds:

Also, from (3.3), we have

rx ¼

Z

Z

x

C1 ðtÞuðtÞdt þ

0



ð3:10Þ

0

x

0

Z

ts2j ðtÞþw

n X

cj ðtÞ

Z

kj ðt  sÞuðsÞdsdt þ

Z

G t  s2j ðtÞ; s

n  X

ts2j ðtÞ

x

0

1

j¼1



t

! uðsg2j ðsÞÞ

g j ðsÞe

n X

fj ðtÞ

j¼1

dsdt

j¼1

6 ðuÞM Cx þ eðuÞM Ax ¼ ððuÞM þ 1ÞCx  Cx þ eðuÞM Ax 6 eðuÞM xðC þ AÞ  Cx: Then r 6 eðuÞM ðC þ AÞ  C, from (H4), we obtain

ðuÞM P ln

r þ C r P : CþA CþA

ð3:11Þ

Multiplying both sides of (3.2) by u0 (t) and integrating them over [0, x], we have

Z 0

x

Z Z x  x n Z x X  ju ðtÞj dt 6  rðtÞu0 ðtÞdt  aðtÞuðtÞu0 ðtÞdt  bj ðtÞuðt  s1j ðtÞÞu0 ðtÞdt  0 0 0 j¼1 Z t

Z xX n  cj ðtÞ kj ðt  sÞuðsÞds u0 ðtÞdt 0

2

0



n X

Z

x

0

x

0

j¼1



1

j¼1

Z

n X

dj ðtÞu0 ðt  g1j ðtÞÞð1  g01j ðtÞÞu0 ðtÞdt fj ðtÞ

Z

ts2j ðtÞþw

Gðt  s2j ðtÞ; sÞ

ts2j ðtÞ

j¼1

n X j¼1

 ! !   g j ðsÞeuðsg2j ðsÞÞ ds u0 ðtÞdt  

Z Z x  x n Z x X  6 rðtÞu0 ðtÞdt  aðtÞuðtÞu0 ðtÞdt  bj ðtÞuðt  s1j ðtÞÞu0 ðtÞdt  0 0 0 j¼1 Z t

Z xX n  cj ðtÞ kj ðt  sÞuðsÞds u0 ðtÞdt



0

j¼1

n Z X

x

j¼1

þ

n X

1

dj ðtÞu ðt  g1j ðtÞÞð1  g

0

jfj j0 Ie

Hþ12

Rx 0

 

 0 0 1j ðtÞÞu ðtÞdt 

0

ju0 ðsÞjds

Z



x

u0 ðtÞdt

0

j¼1

Z Z x  x n Z x X  rðtÞu0 ðtÞdt  aðtÞuðtÞu0 ðtÞdt  bj ðtÞuðt  s1j ðtÞÞu0 ðtÞdt ¼  0 0 0 j¼1 Z t

Z xX n  cj ðtÞ kj ðt  sÞuðsÞds u0 ðtÞdt



0

j¼1

n Z X

x

j¼1

0

1

     dj ðtÞu0 ðt  g1j ðtÞÞ 1  g01j ðtÞ u0 ðtÞdt  

7699

R. Wang, X. Zhang / Applied Mathematics and Computation 217 (2011) 7692–7702

Z

x

6

jrðtÞj2 dt

12 Z

0

þ

kbj k

Z

Z

n X

x

0

ju0 ðtÞj2 dt Z

x

x

6

jcj ðtÞ

2

kj ðt  sÞuðsÞdsj dt

ju0 ðtÞj2 dt

jrðtÞj2 dt Z

n X

12 Z

x

12

2

0

jrðtÞj2 dt

x

12

Z

Using the notation ku kL2 ¼

0

12

ju0 ðtÞj2 dt

þ

x

Z

x

0

2

0

juðtÞj2 dt þ

ju ðtÞj dt

12

Z

þ

x

0

ju0 ðtÞj2 dt

212

n X

!12 jcj ðtÞj2 dt

12

Z x n 1X 0 kbj k juðtÞj2 dt 2 j¼1 0 n X

!12 2

jcj ðtÞj dt

Z kuk

x

ju0 ðtÞj2 dt

3 Z kuk5

ju0 ðtÞj2 dt

x

ju0 ðtÞj2 dt

0

j¼1

x

12

0

j¼1

" #Z n n X pffiffiffi X 1 ¼ 2 kbj klj þ k1  g01j ðtÞk2 kdj k

12 þ

0

j¼1

!Z n x X 1 0 ka0 k þ kbj k juðtÞj2 dt: 2 0 j¼1 ð3:12Þ

12

2

0

12

j¼1

0

x

x

0

0

R

x

0

Z

j¼1

0

!12 Z

1 þ ka0 k 2

12 pffiffiffi Z ju ðtÞj dt 2l j

x

1

x

0

Z x n 1X 0 kbj k juðtÞj2 dt 2 j¼1 0

jdj ðtÞu0 ðt  g1j ðtÞÞð1  g01j ðtÞÞj2 dt

ju0 ðtÞj2 dt

k1  g01j ðtÞk2 kdj k

2 Z þ4

ku0 k2L2

x

0

j¼1

juðtÞj2 dt þ

0

12 Z 0

kbj k

x

juðtÞ  uðt  s1j ðtÞÞj2 dt

0

n X

Z

1

0

þ

x

1 þ ka0 k 2

t

0

j¼1

þ

12

0

j¼1

n Z X

Z

x

12 Z

0

j¼1

þ

ju0 ðtÞj2 dt

0

n X

þ

x

ju ðtÞj dt , by

Rx 0

2

2

juðtÞj dt 6 kuk x (3.10) and (3.12), we have

! n n X pffiffiffi X 1 0 2 2 kbj klj þ k1  g1j ðtÞk kdj k ku0 k2L2

6

2 þ4

þ

j¼1

Z

j¼1

x

2

jrðtÞj dt

12 þ

Z

0

x 2

x

0

ka0 k þ

n X

0

!12 2

jcj ðtÞj dt

1



j¼1

!

j¼1

x2 2

x2 2

!3 ku kL2 5ku0 kL2 0

!2

1



kbj k

n X

ku0 kL2

2 !12 3 Z xX 1 n n n X pffiffiffi X 1 x2 2 0 4 2 ¼ 2 kbj klj þ k1  g1j ðtÞk kdj k þ jcj ðtÞj dt 5  ku0 k2L2 2 0 j¼1 j¼1 j¼1 2 !2 !12 3 ! Z x

12 Z xX 1 n n X x x2 0 0 2 2 0 0 4 5 þ jrðtÞj dt þ jcj ðtÞj dt H ku kL2 þ kbj k Hþ ka k þ ku kL2 : 2 2 0 0 j¼1 j¼1

ð3:13Þ

From a2 6 b2 + c2 + d2 ) a 6 b + c + d, where a, b, c, d are all non-negative. Then, we get

2

!12 312 Z xX 1 n n n X pffiffiffi X 2 1 x 2 0 ku kL2 6 4 2 kbj klj þ k1  g1j ðtÞk2 kdj k þ jcj ðtÞj dt 5  ku0 kL2 2 0 j¼1 j¼1 j¼1 0

2 þ4

Z

x

jrðtÞj2 dt

12 þ

Z

0

2 Z 0 ¼ Bku kL2 þ 4

x

0

x

2

jrðtÞj dt 0

n X j¼1

12 þ

! !12 312 " !#12 1 n X 1 x x2 0 0 2 0 2 0 5 jcj ðtÞj dt H  ku kL2 þ kbj k Hþ ka k þ ku kL2 2 2 j¼1

Z

x 0

n X j¼1

!12 312 !12 1 n X 1 2 x 0 0 0 2 jcj ðtÞj dt H5  ku kL2 þ pffiffiffi ka k þ kbj k H: 2 j¼1 2

ð3:14Þ

7700

R. Wang, X. Zhang / Applied Mathematics and Computation 217 (2011) 7692–7702

By (H5), then there exists a constant M > 0 such that ku0 kL2 6 M, that is ity, we obtain

1 2

kuk 6 H þ

Z

1

x

ju0 ðtÞjdt 6 H þ

x2

Z

2

0

x

ju0 ðtÞj2 dt

12

R x 0

ju0 ðtÞj2 dt

12

6 M. From (3.10) and Hölder inequal-

1

6Hþ

x2

0

2

M :¼ M1 :

ð3:15Þ

Again from (3.2), we get

ku0 k 6 krk þ kakkuk þ

n X

kbj kkuk þ

j¼1

n X

kcj kkuk þ

n X

j¼1

kdj kk1  g01j kku0 k þ

j¼1

n X

kfj keM1 I:

ð3:16Þ

j¼1

From (H6) and (3.15), we have

  P P P krk þ kak þ nj¼1 kbj k þ nj¼1 kcj k M 1 þ nj¼1 kfj keM1 I 0 P :¼ M 2 : ku k 6 1  nj¼1 kdj kk1  g01j k

ð3:17Þ

n n oo P r . Then k ¼ nj¼1 kdj ð1  g01j Þk < lðLÞ. Defined a bounded bilinear form [, ] on Let X ¼ xjx 2 C 1x ; jxj1 > max M 1 ; M 2 ; CþA R Rx x C x  C 1x by ½y; x ¼ 0 yðtÞxðtÞdt. Also we define Q : Y ? Coker(L) by y ! 0 yðtÞdt. It is obvious that {u : u 2 Ker L \ oX} = {u : u  r0 or r0}, without loss of generality, suppose that u  r0, then

½QNðuÞ þ Q ðrÞ; u  ½QNðuÞ þ Q ðrÞ; u "Z ! Z x n n x X X 2 rðtÞdt  r0 aðtÞ þ bj ðtÞ þ cj ðtÞ dt ¼ r0 0

e 

r0

0

Z

"Z

n x X

0

fj ðtÞ

Z

j¼1

ts2j ðtÞþw

x

rðtÞdt  ðr 0 Þ

0

er0

"

G t  s2j ðtÞ; s

Z

0

n X

fj ðtÞ

Z

x

aðtÞ þ

¼ r 20 x2 r  r 0 a þ " < r 20 x2 r  r 0 a þ

n X

bj þ

j¼1

g j ðsÞ dsdt

bj þ

j¼1

n X

bj ðtÞ þ

#

! cj ðtÞ dt

j¼1

! # n   X G t  s2j ðtÞ; s g j ðsÞ dsdt

n X

!

n X

#

! cj

ð3:18Þ

j¼1

#

"

 er0 A  r  ðr 0 Þ a þ

cj

j¼1

n X

n X j¼1

ts2j ðtÞþw

ts2j ðtÞ

j¼1

!

j¼1

0

x

n  X

ts2j ðtÞ

j¼1

Z

j¼1



"

 r 0 A  r þ r0 a þ

j¼1

    < r 20 x2 r  r 0 C þ A  r þ r 0 C þ A :

n X

bj þ

j¼1 n X j¼1

bj þ

n X

! cj

#  er0 A

j¼1 n X

#

!

cj

þ r0 A

j¼1

       r   r   r  r r Since r 0 > CþA , and r0 < CþA . , then r 0 > CþA  P CþA  6 CþA Thus

r  r0 ðC þ AÞ < 0; r þ r0 ðC þ AÞ > 0: By (3.18), we get [QN(u) + Q(r), u]  [QN(u) + Q(r), u] < 0. Then all of the conditions required in Lemma 2.1 are hold. It follows from Lemma 2.1 that Eq. (2.3) has at least one xperiodic solution. Therefore, system (1.6) and (1.7) has at least one positive x-periodic solution. The proof is complete. h 4. Global asymptotic stability In this section, we devote ourselves to the study of the global asymptotic stability of periodic solution of system (1.6) and (1.7). Our method involves the construction of a suitable Lyapunov functional, which is based on the Lyapunov functional introduced by [12]. Definition 4.1. Let (N⁄(t), u⁄(t))T be a periodic solution of (1.6) and (1.7). We say (N⁄(t), u⁄(t))T is globally asymptotically stable if any other solution (N(t), u(t))T of (1.6) and (1.7) has the property:

lim jN  ðtÞ  NðtÞj ¼ 0;

t!þ1

lim ju ðtÞ  uðtÞj ¼ 0:

t!þ1

Now we state our main results of this section below.

ð4:1Þ

R. Wang, X. Zhang / Applied Mathematics and Computation 217 (2011) 7692–7702

7701

Theorem 4.1. Assume that the conditions in Theorem 3.1 hold. Moreover, if there is a positive constant k such that:

8 ( " #) n n R > P P bj ðl1j ðtÞÞ > þ1 > inf k aðtÞ   kj ðsÞcj ðt þ sÞds > 0; > > 0 1s01j ðl1j ðtÞÞ > t2½0;þ1Þ > j¼1 j¼1 > > ( " # ) > > n > P < fj ðl2j ðtÞÞ > 0; k a0 ðtÞ  inf 1s02j ðl2j ðtÞÞ t2½0;þ1Þ j¼1 > > > R þ1 gj ðc2j ðsÞÞ > > ds < þ1; j ¼ 1; . . . ; n; > > 0 1g02j ðc2j ðsÞÞ > > > R > d ð c ðsÞÞ þ1 j 1j > : ds < þ1; j ¼ 1; . . . ; n: 0 1g0 ðc ðsÞÞ 1j

ð4:2Þ

1j

where l1j(t), l2j(t), c1j(t), c2j(t) are the inverse function of t  s1j(t), t  s2j(t), t  g1j(t), t  g2j(t), respectively. Then system (1.6) and (1.7) has a unique periodic solution which is globally asymptotically stable. Proof. By Theorem 3.1, there exists a periodic solution of (1.6) and (1.7), say (N⁄(t), u⁄(t))T. To complete the proof, we only need to show that (N⁄(t), u⁄(t))T is globally asymptotically stable. Let (N(t), u(t))T be any solution of (1.6) and (1.7). Consider a Lyapunov functional V(t) = V(t, (N⁄(t), u⁄(t))T, (N(t), u(t))T) defined by

VðtÞ ¼ V 1 ðtÞ þ V 2 ðtÞ þ V 3 ðtÞ þ V 4 ðtÞ þ V 5 ðtÞ þ V 6 ðtÞ; for t P 0; where

V 1 ðtÞ ¼ kðj ln N ðtÞ  ln NðtÞj þ ju ðtÞ  uðtÞjÞ; n Z t X bj ðl1j ðsÞÞ j ln N ðsÞ  ln NðsÞjds; V 2 ðtÞ ¼ k s01j ðl1j ðsÞÞ 1  ts1j ðtÞ j¼1 Z t n Z þ1 X kj ðsÞ cj ðh þ sÞj ln N ðhÞ  ln NðhÞjdhds; V 3 ðtÞ ¼ k j¼1

V 4 ðtÞ ¼ k

j¼1

V 5 ðtÞ ¼ k

þ1

tg2j ðtÞ

n Z X j¼1

ts t

ts2j ðtÞ

n Z X j¼1

V 6 ðtÞ ¼ k

0

n Z X

þ1

tg1j ðtÞ

fj ðl2j ðsÞÞ ju ðsÞ  uðsÞjds; 1  s02j ðl2j ðsÞÞ g j ðc2j ðsÞÞ jN ðsÞ  NðsÞjds; 1  g02j ðc2j ðsÞÞ dj ðc1j ðsÞÞ jðln N ðsÞÞ0  ðln NðsÞÞ0 jds: 1  g01j ðc1j ðsÞÞ

From the definition of V(t), it is easy to see that

Vð0Þ < þ1

ð4:3Þ

and

VðtÞ P kðj ln N ðtÞ  ln NðtÞj þ ju ðtÞ  uðtÞjÞ; t P 0:

ð4:4Þ

+

Calculating the upper right derivative D V(t) of V(t) along the solution of (1.6) and (1.7), by computation, one could obtain

Dþ VðtÞ 6 kaðtÞj ln N ðtÞ  ln NðtÞj Z n n X X þk bj ðtÞj ln N ðt  s1j ðtÞÞ  ln Nðt  s1j ðtÞÞj þ k cj ðtÞ j¼1

þk

n X

0

dj ðtÞjðln N ðt  g1j ðtÞÞÞ  ðln Nðt  g1j ðtÞÞÞ j þ k

j¼1

kj ðt  sÞj ln N  ðsÞ  ln NðsÞjds

1

j¼1 0



t

n X

fj ðtÞju ðt  s2j ðtÞÞ  uðt  s2j ðtÞÞj

j¼1

 ka0 ðtÞju ðtÞ  uðtÞj þ k

n X

g j ðtÞjN ðt  g2j ðtÞÞ  Nðt  g2j ðtÞÞj

j¼1 n X bj ðl1j ðtÞÞ bj ðtÞj ln N ðt  s1j ðtÞÞ  ln Nðt  s1j ðtÞÞj þk j ln N ðtÞ  ln NðtÞj  k 0 s ð l ðtÞÞ 1  1j 1j j¼1 j¼1 n Z þ1 n Z þ1 X X þk kj ðsÞcj ðt þ sÞj ln N ðtÞ  ln NðtÞjds  k kj ðsÞcj ðtÞj ln N ðt  sÞ  ln Nðt  sÞjds n X

j¼1

0

j¼1

n X

0

n X fj ðl2j ðtÞÞ þk fj ðtÞju ðt  s2j ðtÞÞ  uðt  s2j ðtÞÞj ju ðtÞ  uðtÞj  k 0 s ð l ðtÞÞ 1  2j 2j j¼1 j¼1 n n X X k g j ðtÞjN ðt  g2j ðtÞÞ  Nðt  g2j ðtÞÞj  k dj ðtÞjðln N ðt  g1j ðtÞÞÞ0  ðln Nðt  g1j ðtÞÞÞ0 j j¼1

¼ S1 j ln N ðtÞ  ln NðtÞj  S2 ju ðtÞ  uðtÞj;

j¼1

7702

R. Wang, X. Zhang / Applied Mathematics and Computation 217 (2011) 7692–7702

where,

"

n X

n X bj ðl1j ðtÞÞ  0 1  s1j ðl1j ðtÞÞ j¼1 j¼1 " # n X fj ðl2j ðtÞÞ : S2 ¼ k a0 ðtÞ  1  s02j ðl2j ðtÞÞ j¼1

S1 ¼ k aðtÞ 

Z

#

þ1

kj ðsÞcj ðt þ sÞds ;

0

From (4.2), it follows that there exists a constant K > 0 such that

S1 > K;

S2 > K:

Hence, it follows that

Dþ VðtÞ < K ðj ln N ðtÞ  ln NðtÞj þ ju ðtÞ  uðtÞjÞ:

ð4:5Þ

Then, by using (4.3) and (4.5) and the analysis of that in [2, p. 816], one could obtain:

lim j ln N ðtÞ  ln NðtÞj ¼ 0;

t!þ1

lim ju ðtÞ  uðtÞj ¼ 0:

t!þ1

From this, one could easily obtain:

lim jN  ðtÞ  NðtÞj ¼ 0;

t!þ1

lim ju ðtÞ  uðtÞj ¼ 0:

t!þ1

which means (N⁄(t), u⁄(t))T is globally asymptotically stable. This completes the proof. h Remark. From Theorems 3.1 and 4.1, we can get the system (1.6) and (1.7) has only one positive periodic solution. References [1] F.D. Chen, Periodic solutions and almost periodic solutions of a neutral multispecies Logarithmic population model, Appl. Math. Comput. 176 (2006) 431–441. [2] M. Fan, P.J.Y. Wong, Ravi P. Agarwal, Periodicity and stability in Periodic n-species Lotka–Volterra competition system with feedback controls and deviating arguments, Acta. Math. Sin. 19 (4) (2003) 801–822. [3] K. Gopalsamy, Stability and Oscillation in Delay Differential Equations of Population Dynamics, Mathematics and its Applications, vol. 74, Kluwer Academic Publishers Group, Dordrecht, 1992. [4] R.E. Gaines, J.L. Mawhin, Lecture Notes in Mathematics, Springer, Berlin, 1977. vol. 586. [5] G. Kirlinger, Permanence in Lotka–Volterra equations linked prey-predator systems, Math. Biosci. 82 (1986) 165–169. [6] S.P. Lu, W.G. Ge, Existence of positive periodic solutions for neutral Logarithmic population model with multiple delays, J. Comput. Appl. Math. 166 (2) (2004) 371–383. [7] S.P. Lu, W.G. Ge, Existence of positive periodic solutions for neutral population model with multiple delays, Appl. Math. Comput 153 (2004) 885–902. [8] Y.K. Li, Attractivity of a positive periodic solution for all other positive solution in a delay population model, Appl. Math. -JCU. 12 (3) (1997) 279–282. in Chinese. [9] Y.K. Li, On a periodic neutral delay Logarithmic population model, J. Syst. Sci. Math. Sci. 19 (1) (1999) 34–38. in Chinese. [10] Z.D. Liu, Y.P. Mao, Existence theorem for periodic solutions of higher order nonlinear differential equations, J. Math. Anal. Appl. 216 (1997) 481–490. [11] W.V. Petryshyn, Z.S. Yu, Existence theorems for higher order nonlinear periodic boundary value problems, Nonlinear Anal. 6 (9) (1982) 943–969. [12] C.Z. Wang, J.L. Shi, Periodic solution for a delay multispecies Logarithmic population model with feedback control, Appl. Math. Comput 193 (2007) 257–265. [13] Q. Wang, Y. Wang, B.X. Dai, Existence and uniqueness of positive periodic solutions for a neutral Logarithmic population model, Appl. Math. Comput. 213 (2009) 137–147. [14] Q. Wang, H.Y. Zhang, Y. Wang, Existence and stability of positive almost periodic solutions and periodic solutions for a logarithmic population model, Nonlinear Anal. 72 (2010) 4384–4389. [15] Y.G. Zhou, X.H. Tang, On existence of periodic solutions of Rayleigh equation of retarded type, J. Comput. Appl. Math. 203 (2007) 1–5.