Proper motions of 64 RR Lyrae variable stars

Proper motions of 64 RR Lyrae variable stars

C h i n e s e Astronomy 3 (1979) 296-307 Pergamon P r e s s . P r i n t e d i n G r e a t B r i t a i n 0146-6364/79/0901-0296-$07.50/0 Acta Astr...

562KB Sizes 0 Downloads 45 Views

C h i n e s e Astronomy

3 (1979) 296-307

Pergamon P r e s s . P r i n t e d i n G r e a t B r i t a i n

0146-6364/79/0901-0296-$07.50/0

Acta Astr. Sinica 1.~9 (1978) 192-203

PROPER MOTIONS OF 64 RR LYRAE VARIABLE STARS

Wan Lai

He Miao-fu

Zhu Guo-liang

Shanghai Observatory, Academia Sinica Li

Zhong-yuan

University of ScienceandTechnologyofChina ABSTRACT The r e l a t i v e p r o p e r m o t i o n s o f 64 RR Lyrae v a r i a b l e s a r e d e t e r m i n e d u s i n g T u r n e r ' s method. The f i r s t - e p o c h p o s i t i o n s a r e t a k e n from t h e C a r t e du C i e l A s t r o g r a p h i c C a t a l o g u e , w h i l e t h e s e c o n d - e p o c h p o s i t i o n s a r e measured p o s i t i o n s from p l a t e s t a k e n w i t h t h e 40-cm r e f r a c t o r ( f = 6 . 9 m) o f t h e Z6-S~ S e c t i o n , Shanghai O b s e r v a t o r y , i n 1962-65. The a v e r a g e i n t e r v a l b e t w e e n t h e two epochs i s about 60 y e a r s . The mean e r r o r in the proper motion i s ± 0,005"/y. The a b s o l u t e p r o p e r m o t i o n s o f t h e s e v a r i a b l e s a r e found a f t e r c o r r e c t i n g f o r t h e p a r a l l a c t i c m o t i o n s and t h e g a l a c t i c d i f f e r e n t i a l rotation. The r e s u l t s a r e g i v e n i n 5 TABLES.

INTRODUCTION RR Lyrae v a r i a b l e s t a r s a r e m o s t l y A - t y p e (a few a r e F - t y p e ) g i a n t s h a v i n g r e l a t i v e l y l u m i n o s i t i e s and m a s s e s , t h e i r

light

large

shows v e r y r e g u l a r c h a n g e s , t h e p e r i o d s a r e s h o r t ,

between 0.0S t o 1.2 d a y s , t h e l i g h t a m p l i t u d e s do n o t e x c e e d 1 o r 2 m a g n i t u d e s , and f o r them " p e r i o d - l u m i n o s i t y " and ' ~ e r i o d - a m p l i t u d e " r e l a t i o n s distributed

obviously exist.

o v e r t h e sky, and up t o now more t h a n 4400 o f them have been d i s c o v e r e d [1]; t h e y

b e l o n g t o t h e e x t r e m e P o p u l a t i o n I I , and form a s l i g h t l y and a h i g h - v e l o c i t y structure

They a r e w i d e l y

group [2].

flattened

s u b s y s t e m o£ t h e Galaxy,

Because o f t h e i m p o r t a n t r o l e t h e y p l a y i n t h e s t u d y o f t h e

and e v o l u t i o n o f t h e Galaxy, much a t t e n t i o n

has b e e n p a i d i n t h e l a s t

few d e c a d e s t o

t h e q u e s t i o n o f d e t e r m i n i n g t h e i r p r o p e r m o t i o n s a c c u r a t e l y and i n l a r g e numbers. respect,

many r e s u l t s

In t h i s

have b e e n p u b l i s h e d by t h e L e i d e n , Greenwich, L i c k , S t e r n b e r g and

McCormack O b s e r v a t o r i e s [ 5 - 7 ] .

Between 200 and 500 RR Lyrae v a r i a b l e s have now had t h e i r

p r o p e r m o t i o n s d e r m i n e d ; t h e aim has been t o d e t e r m i n e e v e r more a c c u r a t e l y t h e i r mean absolute magnitude.

I t i s w i t h t h e same aim t h a t we began our work o f d e t e r m i n i n g t h e p r o p e r

m o t i o n s o f t h e RR Lyrae s t a r s .

Our f i r s t

s e t o f p r o p e r m o t i o n s and s p a c e m o t i o n s f o r 30 RR

Lyrae s t a r s was p u b l i s h e d i n Vol. 26 o£ our Annals [ 8 ] .

Here we c o n t i n u e w i t h t h e p u b l i c a t i o n

o£ t h e p r o p e r m o t i o n s o f 64 more such o b j e c t s . 1. METHOD OF DETERMINING RELATIVE PROPER MOTION By means o f two p h o t o g r a p h i c p l a t e s of the variables relative our p l a t e s

for the first

t a k e n some t i m e a p a r t , we d e t e r m i n e t h e p r o p e r m o t i o n s

t o t h e same r e f e r e n c e s t a r s .

We use t h e p l a t e s o£ C a r t e du C i e l as

epoch, w h i l e as our s e c o n d - e p o c h p l a t e s ,

we u s e t h e p l a t e s

our t w i n a s t r o g r a p h ( a p e r t u r e 40 cm, f o c a l l e n g t h 6.5 m) i n t h e p e r i o d 1962-196S.

taken with The

Proper Motions of RR Lyrae Stars

interval

297

e e t w e e n t h e e p o c h s i s a b o u t 60 y e a r s on t h e a v e r a g e .

The r e d u c t i o n i s made by a p p l y i n g T u r n e r ' s f o r m u l a e t o t h e measured s t a n d a r d c o o r d i n a t e s o f the variable

s t a r and t h e r e f e r e n c e s t a r s .

Its principle

d e s c r i b e d as f o l l o w s :

is briefly

Let t h e v a r i a b l e have measured c o o r d i n a t e s x01, Y01 and x02, E02 r e s p e c t i v e l y on t h e f i r s t and second epoch p l a t e s , ~1'

Y i l and x i 2 , Y£2"

and l e t t h e c o r r e s p o n d i n g c o o r d i n a t e s f o r t h e i - t h

A l s o , l e t t h e p r o p e r m o t i o n s o f t h e v a r i a b l e and t h e i - t h

s t a r i n t h e measured c o o r d i n a t e s y s t e m o f t h e f i r s t ~ y i ' and l e t At be t h e i n t e r v a l reference stars,

r e f e r e n c e s t a r be

epoch be r e s p e c t i v e l y

between t h e two e x p o s u r e s .

reference

~xO" ~ 0 and

ux'f."

Then, f o r t h e v a r i a b l e and t h e

we have [9]

~=o A¢ :

(ax.

( ~ a - - Xo,) -I-

p , ozxt = (yo, -

y.)

U , i A t ---- (xl2 - - x . )

~.,zx~ :

(y,, -

-1- b y . -I- c ) . ~

(axe, + ~y~ + / ) ;

+

(1)

J

+ ( a x t , + byta + ¢ ) : !

(1 ' )

i

y.) + (a=,, + .y~, + / ) ,

where aj b, oj ds e, f a r e c a l l e d t h e c o n n e c t i n g c o n s t a n t s o f t h e two p l a t e s ,

and i n ( 1 ' ) ,

the

the suffix i runs over all reference stars. To s i m p l i f y t h e r e d u c t i o n t h a t f o l l o w s , we t r a n s f o r m t h e s e f o r m u l a e as f o l l o w s : we form t h e d i f f e r e n c e b e t w e e n (1) and ( 1 ' ) and w r i t e

a'--~-- a , . b ' ~ - - b , c" =

d'=' - - d , e ' = - - e ,

- - tZ~oAt, [ ' =

,l

Xi : xn - - Xo:, Yt ffiffiYi2 - - Yo:; X~ :

(2)

I

- - PyoAt,

xil - - xot, Y~ : yn - - Yol

(3)

and so obtain

Xt--X~a'Xj+b'Yi+c'+F~iAt"

} (4)

Yt--Y~=d'Xl+e'Yt+J'+pyiAt. t h e n we s e t

Axi = X , -

X~,

Ay, = Ya-

(s)

Y~.

( t h e s e a r e t h e d i f f e r e n c e s b e t w e e n t h e measured c o o r d i n a t e s o f a r e f e r e n c e s t a r and t h e v a r i a b l e s t a r on t h e two p l a t e s )

and f i n a l l y

get

Axifffia'Xi+~Yi+c'+p~iAt~ Ay~==d,Xt+e,yt+f

}

+pyiAt.

(6)

The measured c o o r d i n a t e s o f t h e v a r i a b l e and t h e r e f e r e n c e s t a r s

on t h e f i r s t - e p o c h p l a t e s

were s i m p l y looked up i n t h e p u b l i s h e d C a r t e du C i e l C a t a l o g u e s , w h i l e t h e i r

c o o r d i n a t e s on t h e

s e c o n d - e p o c h p l a t e s were measured w i t h our Z e i s s c o o r d i n a t e m e a s u r i n g machine.

The

measuring details

From (3) and

have been g i v e n b e f o r e i n [8] and w i l l n o t be r e p e a t e d h e r e .

( 5 ) , we t h u s g e t AxiJ &Vi; a f t e r

inserting

t h e s e i n (6) and r e g a r d i n g a l l t h e r e f e r e n c e s t a r s

t o have z e r o p r o p e r m o t i o n s , we can s o l v e t h e e q s . and c ' ,

f'

by l e a s t

squares.

By s u b s t i t u t i n g

these

(6) so formed f o r t h e c o n s t a n t s a, b, d j e back i n ( 6 ) , we t h e n g e t t h e r e s i d u a l s

vx£" vvi" which, i f t o o l a r g e , would mean t h e p r o p e r motion o f t h a t p a r t i c u l a r not neglegible.

We took 0P050 as t h e u p p e r l i m i t ,

p r o p e r m o t i o n s g r e a t e r t h a n t h i s v a l u e and t h e n s o l v e d a g a i n by l e a s t constants.

r e f e r e n c e was

and d i s c a r d e d a l l r e f e r e n c e s t a r s w i t h

A c c o r d i n g t o ( 2 ) , t h e p r o p e r motion o f t h e v a r i a b l e

squares for the

in the right

a s c e n s i o n and

.298

P r o p e r M o t i o n s o f RR Lyrae S t a r s

declination

directions

a r e t h e n g i v e n by ~. c o s ~

~z° = -- ~'/Z~t~

=

~8 = ~y. ---- - - l / ~ . The r e s u l t s

w i l l be i n u n i t s

of

mm/y,

J

C7)

t o c o n v e r t t o a r c s e c / y we m u l t i p l y by t h e f a c t o r

k

g i v e n i n t h e C a r t e du C i e l C a t a l o g u e s . In an effort to secure the most accurate and reliable results, we made our reductions, as far as possible, using two plates of each epoch, which were compared severally in pairs and then taking the mean of the values obtained.

This was done for 26 variable stars.

However,

for the other 38 variables, either because the relevant Cart du Ciel Catalogue does not contain its position or because there was difficulty in selecting suitable references, or because our observatory happens to lack the particular catalogue, we were unable to secure two first-epoch positions, and we had to be content with the comparison of the two second-epoch plates with the same first-epoch plate, or of even only one pair of plates in all. The laborious reduction was carried out with the assistance of the comrades of the Shanghai Computing Technique Research Institute.

2. ERROR ANALYSIS OF PROPER MOTION DETERMINATION Here we were mainly concerned with the errors arising from the measuring devices and not personal errors, which can be regarded as random factors. i. Errors in the Zeiss Measurin~ Machine.

Previous studies of the errors in this

apparatus have shown that the error in a single coordinate measurement arising from structural and other causes is less than 1 micron ( % OP03).

In other words, the error produced this way

in the proper motion will be less than 0?000S/y, which is much less than the errors due to personal factors and poor image quality, and can therefore be neglected. 2. Error due to the Non-Coincidence of Optical Centres on Plates of the Two Epochs. Let the difference in the optical centre position between the two plates be X, Y along the coordinate axes of the second epoch.

Then, the focal length of the astrographic telescopes used in

making the Carte du Ciel being f' (=3440 ~ ) ,

Axl. = X ( 2 z , , -

the formulae giving the errors so arising are

Xo,)* "b Y ( 2 x i , -

xs)(2y,,-

Yo,) ..n

1"

Ay~ = X ( 2 x , , -

y~) + V ( 2 y , , -

should first

~ ,

reference

before carrying out the proper motion reduction.

However, a n a l y s e s show t h a t are three reasons

positional between reference

shifts

in the position

Nevertheless,

arising

involved all

3) The s h i f t s

hence the net effect

from t h i s

cause are also very small.

have small f i e l d s

of the optical

so c a u s e d w i l l be f u r t h e r

t h e two e p o c h s . stars,

be added t o t h e m e a s u r e d c o o r d i n a t e s x~8, Y~2 o f t h e

the errors

: l) the telescopes

to f i n d any d i f f e r e n c e

(8)

y..)' mm

The c o r r e c t i o n s stars

ayi2

x~)(2y,,-

) '

and i t

is extremely rare

c e n t r e t h a t e x c e e d s 0?80. 2) The s m a l l

reduced after

d i v i d i n g by t h e number o f y e a r s

so c a u s e d a r e a b o u t t h e same f o r t h e v a r i a b l e on t h e r e l a t i v e

proper motion is very small.

f o r t h e s a k e o f a c c u r a c y , we a p p l i e d t h e above c o r r e c t i o n s

r e d u c t i o n whenever the change in the p o s i t i o n

There

of the optical

before the

c e n t r e e x c e e d e d 0?75.

and t h e

P r o p e r Motions o f RR Lyrae S t a r s

As r e g a r d s o t h e r e r r o r s such as c a u s e d by e m u l s i o n s h i f t generally held that their

effects

299

o r annual p a r a l l a x * ,

it

is

on t h e p r e s e n t work a r e s m a l l and t h e y can be n e g l e c t e d .

3. E s t i m a t i n g t h e Accuracy o f t h e P r o p e r Motion Measurement. Let n be t h e number o f reference stars used. ~yl.

In a c t u a l f a c t ,

A f t e r s o l v i n g n p a i r s o f E q s . ( 6 ) , we have t h e n p a i r s o f r e s i d u a l s

~z~j

t h e s e include not only the proper motions of the r e f e r e n c e s t a r s but also

the measuring errors.

Obviously, the latter

a r e r e p r e s e n t e d by t h e d i f f e r e n c e i n r e s i d u a l s o f

t h e same r e f e r e n c e s t a r o b t a i n e d from two p a i r s o f p l a t e s ,

6Vx/, ~ y l .

T h e r e f o r e , t h e mean

e r r o r i n t h e p r o p e r m o t i o n measurement o f a g i v e n v a r i a b l e s t a r i s g i v e n [ 1 0 ]

~0.7979

I

~[(~..,)'+(~.,,)']

(9)

~=I

2n O b v i o u s l y , t h i s can o n l y be done where t h e two p a i r s o f p l a t e s have t h e same s e t o f r e f e r e n c e stars. We

can

a l s o g i v e an e r r o r e s t i m a t e f o r a l l

t h e p r o p e r motion s t a r s .

F i r s t we u s e t h e

formula

] ~ [(~-,,"~,-~-,.:"D ~+

a,

(~,,.",,-

~,,.",D']

0.7979

2 n . A---~ t o e s t i m a t e an a v e r a g e e r r o r f o r each v a r i a b l e formula,

~z41" ~yil

and

~x{2" ~yi2

are respectively

o b t a i n e d from t h e two p a i r s o f p l a t e s , pairs.

A-{is the average

of all

(10)

s t a r and t h e n t a k e t h e mean o f t h e s e . the residuals

of the i-th

and A t l , At 2 a r e t h e same t i m e i n t e r v a l s

In t h i s

reference star i n t h e two

At, which we took t o be 60 y e a r s f o r s i m p l i c i t y .

As in [8], our e s t i m a t e came t o ~ - ~ " _+ 0~'005. For a g i v e n v a r i a b l e ,

(ll)

i t s mean e r r o r i n p r o p e r motion can now be s i m p l y e s t i m a t e d t o be at ~t"

(12)

3. CONVERSION FROM RELATIVE TO ABSOLUTE PROPER MOTIONS To the relative proper motions obtained above, we must add the mean proper motions of the reference stars to arrive at the absolute proper motions. Since the peculiar motions of the reference stars averaging, their

a v e r a g e p r o p e r motion i s e s s e n t i a l l y

motion i n s p a c e ( t h e p a r a l l a c t i c The c o r r e c t i o n s

l a r g e l y c a n c e l one a n o t h e r out d u r i n g t h e sum o f t h o s e caused by t h e S u n ' s

m o t i o n s ) and by t h e d i f f e r e n t i a l

rotation

o f t h e Galaxy.

f o r t h e a b s o l u t e c o n v e r s i o n can be c a l c u l a t e d a c c o r d i n g t o t h e f o l l o w i n g

f o r m u l a e [ii]:

/,(~,) = v'(h--]-~p)+ Q',

(13)

4.74 * As t h e s e v a r i a b l e s a r e a l l d i s t a n t o b j e c t s , t h e i r annual p a r a l l a x e s a r e n e g l i g i b l e compared to t h e i r proper motions. I f t h e p l a t e s o f t h e two epochs were t a k e n a t t h e same time o f t h e y e a r t h e n t h i s e f f e c t would be s m a l l e r s t i l l .

300

P r o p e r M o t i o n s o f RR LyTae S t a r s

Here Y® = 20 k m / s i s t h e s o l a r

m o t i o n , ~ i s t h e mean a n n u a l p a r a l l a x

w h i c h c a n be f o u n d f r o m t h e s t a t i s t i c a l pj p t j

and Qj Qr a r e c o n s t a n t s

reference tables

stars

b e t w e e n mean p a r a l l a x

d e p e n d i n g on t h e c o o r d i n a t e s

and on t h e p a r a m e t e r o f g a l a c t i c

rotation,

stars,

and mean m a g n i t u d e .

of the solar

apex, those of the

and t h e y c a n b e l o o k e d u p i n

from Ill].

4. The t h r e e

following

tables

a b o v e and some r e l e v a n t I n TABLE l , its

relation

of the reference

g i v e t h e p r o p e r m o t i o n s o f 64 RR L y r a e v a r i a b l e s

the serial

n u m b e r , Column 2 t h e name o f t h e v a r i a b l e ,

magnitude,

Column 6 s h o w s t h e p a r t i c u l a r number o f t h e v a r i a b l e

two e p o c h s i n y e a r s ,

determined as

data.

Column 1 g i v e s t h e s e r i a l

median apparent photographic

declination;

RESULTS OF DETERMINATION

Columns 4 and 5, catalogues

in the catalogue,

its

right

ascension

o f t h e C a r t e du C i e l u s e d ,

Colunm 8 t h e t i m e i n t e r v a l

and Column 9 t h e n u m b e r o f r e f e r e n c e

Column 3

and Colunm 7,

between the

stars.

Table No.

variable

C a r t e du C i e l C a t .

NCdC

~t

n

~ec ')

~1900.0

~ltOe.O +23 ° 53~2

Par. Ph.

lb08m+23 °

103

69.9~.

9

34.8 34.0

8 8

1

RUPsc

10.~2

O1h 09m 00'

2

XXAnd

11.0

Ol

11 46

+38

25.4

Hyd.Ph.

lh10m+38° lhlSm-l-39 °

901 093

3

SVScl

11.5

01 40 27

--30

34.2

Cord. Ph.

lh39m--30 ° lh43m_31 o

827

50.0

8

90

49.0

8

4

SSFor

9.5

02 03 20

--27

20.4

Cord. Ph.

2h04m--27°

655

53.9

10

5

RVAri

12.3

02 09 37

+17

36.5

Par. Ph.

2h08m'l'18 °

163

67.8

10

6

RZCet

11.5

02 23 37

--08

48.5

S. F. Ph.

2h24m--7 °

75

71.9

9

7

XAri

06

+10

03.9

Toa. Ph. Bord. Ph.

3hO4m+10° 3h00m+ll °

40 139

42.9 51.9

10 9

8

ARPer

10.7

04 10 01

+47

09.1

Cat. Ph.

4h05a'l'47°

4hlOm+48 °

82 109

60.7 60.8

8 7

9

BCEri

10.2

04 42 25

--14

48.2

Ta~ Ph.

4h44m--15°

44

59.8

10

I0

RXEri

8.9

04 45

13

--15

54.8

Tac. Ph.

4h44m--15°

97

59.8

7

I1

RRGem

11.6

07

15 I1

+31

04.2

Oxf. Ph..

7h16m-l-31°

19153

60.6

10

12

SZGem

11.7

07 47 55

+19

32.0

Par. Ph.

7h48m-t-19°

84

69.5

I0

13

SSCn¢

12.0

08 O0 29

+23

32.2

Par. Ph.

7h56m-l-23°

243

70.0

9

14

XXPup

11.6

08 03 55

--16

14.8

Tac. Ph. Hyd. Ph.

8h00m--16e 8h04m--17°

1052 23779

60.0 49.0

10 10

9.4

03

03

Proper

Motions

Table

of

RR L y r a e

Stars

301

1 (contd.) Cat.

Ncac

xxt

H e h . Ph.

9u00=+44 * 8h55m+450

14 75

70.9 70.9

8 10

11.8

Tac. Ph.

9h04=--16 ° 9h08=_15 o

180 59

57.9 63.0

9 9

--08

54.4

S . F . Ph.

9h12=--8 ° 9h12= 8 o

21 21

70.7 70.9

6 6

I0

+29

29.2

Oxf. Ph.

9h13=+29 ° 9h09=+30 °

27191 22953

62.0 60.8

8 8

48

18

+02

31.7

Alg. Ph.

9h48=+3 * 9h52=+2 o

202 5

53.9 55.0

9 7

10

00

05

+39

50.7

Hels. Ph.

10h00=+40 °

43

70.9

8

11.4

I0

19

48

+29

17.6

Oxf. Ph.

10h16=+29 ° 29482 10h21=+30 * 25244

58.1 62.7

10 10

SZLeo

11.9

10

56

24

+08

42.2

Tou. Ph.

llh00=+9 °

66

65.9

8

23

TVLeo

10.6

11

06

18

--05

20.9

S . F . Ph.

llh08m--5° llh08m 5 o

43 43

54.9 54.9

10 10

24

STLeo

11.6

11

33

23

+11

07.0

Bord. Ph. Tou. Ph.

111'32m+11 ° 11h32=+11 °

54 63

53.0 54.9

9 7

25

XCrt

11.0

11

43

51

--09

53.4

Tac. Ph.

11h44 = - 1 0 ° 11h44 = - 10 °

102 102

58.9 59.0

10 10

26

UUVir

10.2

12

03

28

+00

04.2

Alg. Ph.

12h00=0 ° 12h04=+1 o

66 87

67.0 55.0

7 7

27

UVVir

12.1

12

16

I0

+00

55.4

Alg. Ph.

12h16=0 ° 12h20m+l o

29 82

72.1 54.9

7 9

28

SVHya

10.6

12

25

16

--25

29.7

Cord. Ph.

12h24m--26 °

21

53.0

10

29

SCom

11.3

12

27

48

+27

34.9

Oxf. Ph.

12h28=+27 ° 29529 12h27=+28 ° 34910

66.0 63.1

8 8

30

UCom

12.0

12

35

08

+28

02.9

Oxf. Ph.

J 2h36m+27 ° 29755 12h36m+28 ° 35371

65.1 62.9

9 8

31

ASVir

11.7

12

47

34

--09

42.4

Tac. Ph.

121148=--10 °

75

57.7

7

32

RYCom

11.8

13

00

16

+23

48.9

Par. Ph.

13h00=+23 °

37

68.0

8

33

RXCVn

12.6

13

44

29

+41

53.0

Hels. Ph.

13h40m+42 ° 13h40m+42 o

61 61

67.9 67.9

8 8

34

BBVir

11.0

13

46

40

+06

55.0

Tou. Ph.

13h48m+7 °

58

56.8

9

35

UYBoo

11.3

13

53

54

+13

26.2

Bord. Ph.

13h56=+13 ° 13h52.+14 o

16 114

56.0 57.0

10 10

36

SZBoo

11.6

14

37

52

+28

37.9

Oxf. Ph.

35966

57.9

dh,oo.o

a,too.,

No.

variable

~ p t ~'

15

TTLyn

1091

08 h 56 = 28 s

+ 4 4 ° 58"8

16

XXHya

11.2

09

05

08

--15

17

SZHya

11.3

09

08

58

18

RWCne

11.6

09

13

19

TSex

10.5

09

20

XLMI

11.4

21

VLMi

22

Carte

du Ciel

14h37m+29 °

I

/

10

Proper Motion of RR Lyrae Stars

302

Table

1 (contd.)

~1~0.0

~1~00.0

lO.mO

14 h 53 m 47 s

- - 0 0 ° 32~9

Alg. Ph.

APSer

10.6

12

09

10

+10

21.7

39

TVLib

11.6

15

13

00

--08

40

VYSer

10.1

15

25

59

41

ANSer

11.1

15

48

42

DYHer

10.6

16

43

V,,Sco

11.8

44

STOph

45

No.

var£able

~Pc

37

EHLIb

38

Ncdc

~,t

n

14h52m--1 ° 14h56m0 o

47 177

63.0: 72.9

13 13

Bord. Ph.

15h08~+11 °

180

51.9

9

05.8

S. F. Ph.

15h12m--8°

169

67.8

9

+02

01.5

Alg. Ph.

15h24m+3 °

150

54.0

8

51

+13

16.1

Bord. Ph.

15h48m+13 °

48

57.1

7

26

37

+12

13.3

Bord. Ph.

16h24m+12° 16h28m+13 °

75 73

56.8 59.0

10 9

17

28

29

--34

19.5

Perth. Ph.

17h28m--35° 17h28m--35 °

863 863

50.9 50.9

12 12

11.9

17

28

50

--01

00.7

Alg. Ph.

17h32m--1 ° 17h32m io

93 93

71.8 72.1

10 10

ATHer

10.5

17

33

14

+45

01.3

Hels. Ph.

17h35~+45 °

72

69.9

8

46

CEHer

12.0

17

37

23

+15

07.6

Bord. Ph.

17h40m+15c 17h36='t'16 c

19 361

61.0 67.0

8 8

47

Vs67Oph

11.8

17

53

22

+01

06.8

Alg. Ph.

17h56m+l° 17h52a+2°

255 310

54.8 55.0

8 8

48

EZLyr

11.5

18

44

08

+35

52.8

U d e - P a r . P h . 18h40m+35 c H y d . Ph. 18h45m+36 °

412 568

18.9 29.9

8 9

49

BNVul

11.6

19

23

44

+24

08.7

Par. Ph. Oxf. Ph.

555 60954

72.0 59.6

12 12

50

V44oSgr

9.8

19

26

19

--24

03.8

C o r d . Ph.

19h28m--24c 19h24m--25 c

380 529

53.9 52.0

10 8

51

gZCyg

9.6

19

30

26

+56

10.3

Vat. Ph.

1 9 h 3 6 = + 5 6 © 56919 19h30m+57 ~ 51641

56.2 55.9

9 9

52

CWCge

11.4

19

55

31

+18

54.3

Par. ph.

19h52m+18 ~ 19h56m+19 ~

66.0 59.2

13 10

53

XXCyg

12.0

20

01

18

+58

40.3

Vat. Ph.

50306

59.0

10

54

EGDel

12.8

20

48

59

+16

07.3

Bord. Ph.

20h48®+16¢ 20h48m+16 °

145 145

65.9 66.0

9 12

55

UYCyg

11.2

20

52

17

+30

02.6

Oxf. Ph.

20h51m+30 © 62429 20h51~+30~ 62429

62.9 63.0

8 8

56

DMCyg

11.0

21

17

00

+31

46.0

Oxf. Ph. 21h13m+31 ° 64001 PosUiam Ph. 21h17m+32 c 203

59.9 68.9

7 8

57

CGPeg

11.2

21

36

46

+24

19.4

Oxf. Ph. Par. Ph.

74407 199

59.0 71.0

10 12

58

DELac

t0.75B I)

22

05

54

+40

25.7

Hels. Ph.

41 299

66.9 67.0

8 7

Carte

du Ciel

Cat.

19h20~+24 ° 19h24m+25 °

20h06~+59 °

21h40m+25 * 21h36m+24 ° 22h10m+40 ~ 22b05m+41 o

610" 443

Proper

Motion

of

Table No°

variable

59

WPeR

ll.m8

60

DHPeR

61

RR L y r a e

Ncdc

At

n

22h08m+18 °

343

58.0

10

T o u . Ph.

22h12m+7 ° 22h12~+7o

115 115

57.7 57.7

8

19.9

Vat. Ph.

22630m+64 °

25401

49.7

9

--24

45.9

Cord. Ph.

23h16m--25 ° 23h16~_25 ¢

400 400

51.8 52.0

9 9

37

--08

42.1

S. F. Ph.

23h44m--8° 23h44~--8 °

63 63

52.8 54.2

9 9

40

--25

30.1

Cord. Ph.

23h56 m - 25 c 23h56m_ 25 c

319 319

52.1 53.9

10 9

Carte d u Ciel Cat

~1900.0

22 h 08 m 17'

+ 1 7 ° 57~4

Par. Ph.

9.7

22

10

25

+06

19.3

RZCep

9.5

22

35

44

+64

62

DNAqr

10.2

23

13

57

63

BSAqr

9.0

23

43

64

RUScl

10.2

23

57

2)

The m values listed are taken from Pg B-magnitudes i n t h e UBV- p h o t o m e t r i c

Table No.

variable

b

303

1 (contd.)

~IPO0.O

1)

Stars

~

8

[1]. system.

2

(h/p)

p,

Q

Q'

1

RUPsc

--38 °

12~4

0Y0131

+0.81

--0.57

--0Y0024

--0~I0016

2

XXAnd

--23

12.1

0.0111

+0.81

--0.57

-0.0029

--0.0012

3

SVScl

--77

12.3

0.0155

+0.77

--0.26

+0.0010

+0.0006

4

SSFor

--72

10.6

0.0259

+0.73

-0.26

+0.0011

+0.0006

5

RVAri

--40

13.7

0.0091

+0.72

--0.63

--0.0009

--0.0014

6

I~ZCet

--59

12.9

0.0128

+0.69

-0.44

+0.0005

--0.0003

7

XAri

--39

11.7

0.0164

+0.60

-0.61

+O.0O04

--0.0010

8

ARPer

--I

11.7

0.0093

+0.39

-0.90

0.0000

9

BCEri

--33

13.0

0.0101

+0.28

-0.29

+0.0010

+0.0019

I0

RXEri

--32

12.7

0.0109

+0.27

-0.27

+0.OOLO

+0.0020

11

RRGem

+21

12.2

OJO104

--0.27

-0.86

--0.0002

--0.0010

• 12

SZGem

+24

11.5

0.0136

--0.39

--0.75

--0.0010

--0.0004

13

SSCnc

+28

11.2

0.0159

--0.43

--0.77

--0.0010

-0.0005

14

XXPup

+10

12.7

0.0073

--0.44

--0.29

--0.0029

+0.0036

15

TTLyn

+43

11.8 12.9

0.0165 0.0118

--0.60

--0.80

0.0000

--0.0009

16

XXHya

+22

13.0

0.0083

-0.63

-0.34

--0.0039

+0.0035

17

SZHya

+27

12.2

0.0116

-0.63

--0.41

--0.0036

+0.0029

18

RWCne

+45

12.6

0.0133

-0.64

--0.73

--0.0011

--0.0005

19

TSex

+42

11.6

0.0177

-0.71

--0.53

--0.0037

+0.0018

--0.0002

20

XLMi

+55

12.1

0.0161

-0.74

--0.0007

VLMi

+59

12.5

0.0145

-0.77

--0.67 --0.62

-0.0004

21

--0.0012

--0.0001

22

SZLeo

+59

12.5

0.0146

--0.82

--0.54

--0.0027

+0.0014

23

TVLeo

+50

12.3

0.0150

--0.83

--0.0036

+0.0023

24

STLeo

+67

11.6

0.0191

--0.85

--0.49 --0.52

--0.0022

+0.0012

25

KCrt

+50

13.1

0.0118

--0.85

--0.50

--0.0034

+0.0022

26

UUVir

+61

12.0

0.0168

--0.86

--0.51

--0.0025

+0.0018

304

P r o p e r M o t i o n s o f RR L y r a e S t a r s

Table 2 (contd. No.

variable

27 28

UVVir SVHya

29

p,

~

O/p)

+62 ° +36

1195 11.5

0~197 0.0167

-0.85

--0.51 --0.50

--0~0022 --0.0034

+0~'0017

-0.85

SCom

+87

12.6

0.0143

-0.85

-0.40

--0.0002

+0.0000

30

UCom

+89

12.3 12.8

0.0156 0.0134

-0.84

--0.39

--0.0001

-0.0001

31 32 33

ASVir RYCom RXCVn

-0.83 -0.76 -0.76 -0.75 -0.66

--0.38

--0.40 --0.20

--0.0022 0.0000 +0.0015 --0.0001 +0.0003 +0.0013

+0.0018 +0.0001 -0.0016 +0.0007 +0.0004 --0.0012

37

EHLib

+47

0.0119 0.0165 0.0109 0.0159 0.0226 0.0121 0.0146 0.0187

--0.53

BBVir UYBoo SZBoo

13.1 12.1 13.5 12.2 11.0 13.1 12.3 11.5

-0.84

34 35 36

+52 +84 +71 +63 +67 +64

-0.62

--0.51

+0.0006

+0.0006

12.5

0.0142

--0.58

+38 +43

13.0 12.0

0.0108 0.0154

--0.57 --0.53

--0.40 --/0.59

+0.0010

39 40 41

APSer TVLib VYSer ANSer

+51

--0.0003 +0.0008 +0.0001

42 43 44 45 46

DYHer V4.,Sco STOph ATHer CEHer

+44 +35 -- 2 +15

12.3 12.4 12.8 12.4

0.0143 0.0125 0.0067 0.0088

47

Vs,7Oph

+31 +21 +12

12.3 11.6 12.3

0.0144 0.0122 0.0086

--0.46 --0.34 --0.12 --0.11 --0.10 --0.08 --0.03

--0.89 -0.52 +0.23 --0.28 --0.49

+0.0006 +0.0009 +0.0013 +0.001I +0.0006 +0.0005 +0.0001 +0.0003 +0.o001

48

EZLyr

+15

+0.08

--0.0014

--0.0052

BNVul

+2

+0.30

--0.15

--0.0022

--0.0043

50

V44oSgr

--21

+0.31

--0.79

--0.0004

+0.0007

51

XZCyg

+~6

+0.32

+0.37

--0.0027

--0.0057

+0.41

--0.24

--0.0028

-0.0039

+14

0.0067 0.0085 0.0058 0.0078 0.0113 0.0136 0.0084 0.0096 0.0080 0.0083

+0.16

49

13.3 12.5 13.3 12.3 11.9 11.3 12.6 11.7 12.3 12.5

+0.43

+0.38

--0.0034

--19 - - 10

12.3 12.3

0.009 ! 0.0082

+ 0.57 +0.59

--0.32

--0.0037

--0.0055 --0.0035

-o.i3

-0.0042

--0.0046

13 --22 - - 13

12.5 11.4 11.7

0.0082 0.0135 0.0104

+0.65 +0.69 + 0.75

-0.15 --0.26

-0.0045

--0.0044

--0.0045

--0.0039

--31 --40

12.8 11.7

0.0105 0.0166

+o.75

--0.35

+ 5 --70 --67

12.4 12.0 12.9

0.0077 0.0168 0.0128

+0.76 +0.79 +0.83 +0.85

--0.47 +0.06 --0.54 --0.51

-0.0050 --0.0045 --0.0040 --0.0048 --0.0013 --0.0023

--0.0038 --0.0033 --0.0025 --0.0024 --0.0003 --0.0013

--80

12.0

0.0168

+0.86

--0.46

--0.0008

-0.0004

38

52

CWCge

53 54 55

XXCyg EGDel UYCyB DMCyg CGPeg DELac VVPeg DHPeg RZCep DNAqr BSAqr RUScl

56 57 58 59 60 61 62 63 64

b

--

7

--

--0.14 --0.46

--0.49

--0.35 --0.34

--0.14

0'

+0.0021

--0.0010 --0.0013 +0.0011 --0.0007 --0.0052 --0.0026 --0.0011

P r o p e r M o t i o n s o f RR L y r a e S t a r s

305

Table 3 No.

variable

~,cos~ (rel.)

a#.

~a (rcl.)

a~a

A/Z,C~$

~,Pa

/.~cos8 (abs.)

Pa (abs.)

1

RUPse

+0/'100

+0/r004

--0[t030

+0It004

+0/t008

--0/~009

+0[q08

-0['039

2

XXAnd

+0.056

9

--0.022

9

+0.006

--0.007

+0.062

--0.029

3

SVSd

--0.013

6

--0.039

6

+0.013

--0.003

0.000

--0.042

4

SSFor

+0.026

6

--0.063

6

+0.020

--0.006

+0.046

--0.069

5

RVAri

--

0.004

4

+0.007

4

+0.006

--0.007

+0.002

0.000

6

RZCet

+0.014

4

+0.009

4

+0.009

--0.006

+0.023

+0.003

7

XAri

+0.064

6

--0.074

6

+0.010

--0.011

+0.074

--0.085

8

ARPer

--0.002

5

+0.026

5

+0.004

--0.008

+0.002

+0.018

9

BCEri

+0.008

5

+0.010

5

+0.004

--0.001

+0.012

+0.009

10

RXEri

--0.030

5

+0.017

5

+0.004

0.000

--0.026

+0.017

11

RRGem

--0.003

5

+0.015

5

--0.003

--0.010

--0.006

+0.005

12

SgGem

--0.013

4

--0.024

4

--0.006

--0.011

--0.019

--0.035

13

SSCnc

+0.013

4

+0.005

4

--0.008

--0.013

+0.005

--0.008

14

XXPup

--0.022

5

--0.006

5

--0.006

+0.002

--0.028

-0.004

15

TTLyn

--0.081

4

--0.038

4

--0.008

--0.012

--0.089

--0.050

16

XXHya

+0.017

5

-0.035

5

--0.009

+0.001

+0.008

--0.034

17

SZHya

+0.034

4

--0.042

4

--0.011

--0.002

+0.023

--0.044

18

RWCnc

+0.018

5

--0.027

5

--0.010

--0.010

+0.008

--0.037

19

TSex

--0.009

5

--0.016

5

--0.017

--0.008

--0.026

--0.024

20

XLMi

+0.021

4

--0.008

4

--0.012

--0.011

+0.009

--0.019

21

VLMi

+0.023

5

--0.019

5

--0.012

--0.009

+0.011

--0.028

22

SZLeo

--0.001

4

--0.005

4

--0.015

--0.006

--0.016

--0.011

--0.016

--0.005

+0.005

+0.024

23

TVLeo

+0.021

5

+0.029

5

24

STLeo

+0.002

5

--0.046

5

--0.018

--0.009

--0.016

--0.055

25

XCrt

+0.006

5

--0.038

5

--0.013

--0.004

--0.007

--0.042

26

UUVir

--0.008

5

--0.002

5

--0.017

--0.007

--0.025

--0.009

27

UVVir

--0.001

4

-0.023

4

--0.019

--0.008

--0.020

--0.031

28

SVHya

+0.008

6

0.000

6

--0.018

--0.006

--0.010

--0.006

29

SCorn t)

+0.002

5

+0.023

5

--0.012

--0.033

--0.010

--0.010

30

UCom

--0.042

5

-0.009

5

--0.012

--0.006

--0.054

--0.015

31

ASVir

+0.032

5

--0.033

5

--0.012

--0.004

+0.020

--0.037

32

RYCom

+0.014

4

+0.023

4

--0.014

--0.006

0.000

+0.017

33

P,XCVn

+0.044

4

--0.024

4

--0.007

--0.003

+0.037

--0.027

34

BBVir

--0.031

5

+0.003

5

--0.012

--0.007

--0.043

--0.004

306

P r o p e r Motions o f RR Lyrae S t a r s

Table 3 (contd.) No. 35

variable

UYBoo

/ZoCOS6 (rel.) +0"008

~e (rel.)

o~, +0"005

--0"037

A~.cos8

O~, +0"005

Apa

/~cos/~ Cabs.)

Pe Cabs.)

--0"017

--0"009

--0"009

--0"046

--0.007

--0.004

--0.015

+0.012 --0.018

36

SZBoo

--0.008

5

+0.016

5

37

EHLib

--0.006

4

--0.010

4

--0.009

--0.008

--0.015

38

Al~3er

--0.041

6

--0.023

6

--0.007

--0.006

--0.048

--0.029

+0.013

4

--0.006

--0.006

--0.002

+0.007

+0.006

5

--0.007

--0.007

-0.018

--0.001

--0.005

--0.006

- - 0 . 0 1 1 --0.011

--0.006

--0.001

39

TVLib

+0.004

4

40

VYSer

--0.011

5

41

ANSer

--0.006

5

--0.005

5

42

DYHer

+ 0.002

5

+0.018

5

--0.003

43

V,a,Sco

--0.014

6

--0.012

6

0.000

--0.005

--0.014

-0.017

+0.008

4

0.000

--0.005

-0.008

+0.003

+0.012

44

STOph

-- 0.008

4

45

ATHer

+0.007

4

+0.066

4

--0.001

--0.002

+0.006

+0.064

46

CEHer

+0.002

5

--0.008

5

--0.001

--0.006

+0.001

-0.014

47

Vs6,Oph

--0.006

5

+0.016

5

0.000

-0.005

--0.006

+0.011

48

EZLyr

--0.006

12

--0.007

12

0.000

-0.004

--0.006

-0.011

-0.030

5

0.000

--0.006

-0.051

- 0.036

--0.041

6

+0.004

--0.009

-0.002

-0.050

0.000

--0.003

+0.084

-0.031

+0.001

--0.006

+0.010

-0.016

49

BNVul

--0.051

5

50

V~4oSgr

-- 0. 006

6

51

XgCyg

+0.084

5

--0.028

5

52

CWCge

+ O.009

5

--0.010

5

53

XXCyB

--0.005

5

+0.026

5

--0.005

4

-0.004

54

EGDel

--0.010

4

55

UYCyg

--0.012

5

--0.002

-0.005

+0.024

+0.002

--0.007

-0.008

--0.012

5

+0.001

--0.006

-0.011

--0.010

+0.001

--0.006

-0.004

--0.003

+0.006

--0.008

-O.Oll

-0.012

56

DMCyg

-0.005

5

+0.003

5

57

CGPeg

--0.017

5

--0.004

5

58

DELa¢

0.000

--0.005

4

+0.004

4

+0.003

--0.005

-0.002

--0.001

+0.012

5

+0.003

--0.007

+0.010

+0.005

59

VVPeg

+0.007

5

60

DHPeg

+0.002

5

+0.008

5

+0.009

--0.010

+0.011

--0.002

+0.203

6

+0.001

--0.002

+0.091

+0.201

--0.007

6

+0.012

--0.009

+0.046

--0.016

+0.008

--0.008

+0.040

--0.026

+0.013

--0.008

+0.059

-0.022

61

RZCep

+0.090

6

62

DNAqr

+0.037

6

63

BSAqr

+0.032

6

--0.018

6

64

RUSd

+0.046

6

--0.014

6

i) Here we used the corrections

for conversions

into absolute motions

given in [I0]

P r o p e r Motions o f RR Lyrae S t a r s

307

In TABLE 2, Columns 1 and 2 are again the serial number and name of the variable, Column 3 gives its galactic latitude, Column 4 the mean photographic magnitude of the reference stars, and Columns 5, 6, 7, 8 and 9 give respectively the values of ~/~, P, P', Q and Q'. In TABLE 3, the first two columns are the same as before, Columns 3 and 4 give the star's relative

proper motion in right ascension and its mean error, Columns S and 6, the same in

declination, Columns 7 and 8 give the absolute conversion corrections in right ascension and declination, and the last two columns give the star's absolute proper motion in right ascension and declination.

REFERENCES

[i]

Kukarkin, V.V., et al., Obshchii Katalog Peremennykh Zvezdj Srd Edition I (1969), I I (19709, I I I {1971).

[2] [3] [4] [5] [6] [7] [8]

Bok, B.J. and Bok, P.F., "The Milky Way" p. 121, {1974). Van Herk G., B.A.N., 18 (1965), 71. Clube, S.V.M. et al, Roy. Ob8. Bull., No. 136 (1968), No. 161 (1971). Klemola, A.R., Lick Obs. Bull., No. 613. (1971). Karimova,D.K., et a l . , Peremennye Zvezdy ]9 (1974) 401-402. Hemenway,M.K., A.J. 80 {1975), 194-198. Wan Lai, He Miao-fu, Li Zhong-yuan, Zhu Guo-liang, T ~ e n NY~rnk~n

[9]

6 {1966) 18-41. "Tianmenxu8 Jiaocheng" (Course on Astronomy) compiled by the Department of

[i0] [ii]

Astronomy, Nanking University, Volume Two, (1961) p.217. Pavlovskaya, E.D., Perem. Zv. 9 (1953) 233-255. Parenago, P.P., Ast~on. Zh. 22 {1945) 129-149.

{Astronomical

Annals), Zo-se Section, Shanghai Observatory, Academia Sinica,