Medical Hypotheses (2003) 60(4), 575–577 ª 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0306-9877(03)00046-X
Singlet oxygen (1O2)-oxidazable lipids in the HIV membrane, new targets for AIDS therapy? Thomas W. Stief Institute of Clinical Chemistry, University Hospital, Marburg, Germany
Summary Human immunodeficiency virus (HIV) is a lipid enveloped virus. The lipid envelope differs significantly from the lipid membrane of normal human cells: it contains high amounts of cholesterol, that is of importance for the virus–cell interaction (for entry and exit of the virus) at so-called lipid rafts. Cholesterol, as a RAC@CAR compound possesses an oxidazable carbenic bond. The present work suggests the inactivation of HIV by oxidation of viral cholesterol and/or unsaturated fatty acids. For oxidation, the relatively mild oxidant singlet oxygen ð1 O2 Þ might be used. 1 O2 is generated by redoxcyclers (e.g., of the quinone type, such as vitamin K) or by chloramines (e.g., taurine-chloramine). At the 1 O2 concentrations necessary to inactivate lipid enveloped virus in human blood the oxidation-sensible critical hemostasis parameters such as thrombocytes and fibrinogen are only partly inactivated. Therefore, it is proposed to consider generators of 1 O2 as a new form of AIDS therapy. ª 2003 Elsevier Science Ltd. All rights reserved.
In AIDS research the first stage of virus attack, i.e., the adhesion of the virus to the host cell membrane and the fusion of both (1), might need more consideration with regard to powerful inactivation of HIV. The virus envelope consists of so-called lipid rafts, i.e., membrane microdomains with high concentrations of cholesterol and of unsaturated fatty acids, resulting in a low fluidity of the virus membrane. The normal human cell membrane disposes of less cholesterol and of unsaturated fatty acids than the lipid envelope of HIV, and for HIV adhesion to the target cell cholesterol is of importance (2–14). The lipid rafts are important for virus entry and exit (15–29). Therefore, therapeutic agents that interfere with this cholesterol pathophysiology of the HIV are of major in-
Received 26 June 2002 Accepted 11 November 2002 Correspondence to: Thomas W. Stief, MD, Priv.-Doz. Institute of Clinical Chemistry, University Hospital, Marburg D-35033, Germany. Phone: +49-6421-28-64471; Fax: +49-6421-28-65594; E-mail:
[email protected]
terest (30,31). One physiologic substance that is generated in high concentrations by activated phagocytes, in particular polymorphonuclear neutrophils (PMN), is the nonradicalic oxidant singlet oxygen ð1 O2 Þ (32–34). 1 O2 oxidizes cholesterol and unsaturated fatty acids, like arachidonic acid, and inactivates them (35–41). Therefore, 1 O2 -generating agents such as redoxcyclers (e.g., vitamin K is a physiologic redox cycler) or chloramines (e.g., taurine-chloramine is a physiologic () and vancomycin is a pharmacologic chloramine (42)) might destroy both, HI-virus and HIV-infected cells with a changed membrane structure (2). At chloramine blood concentrations of about 1 mmol/L, lipid virus are to about 90% inactivated and even oxidation-sensible critical hemostasis parameters such as thrombocytes or fibrinogen are still active to more than 50% (43–49). Prooxidative changes in blood of AIDS patients might be considered as a physiologic defence mechanism against HIV (50). Activation of latent HI-virus by 1 O2 (51,52) might be beneficial in order to detect and destroy infected human cells (53). Daily and Sadeghi treated a patient with HIV and Mycobacterium avium infection with clarithromycin, ethambutol, and clofazimide (54). Consequently, the
575
576 Stief
HIV-RNA fell from 750 000 copies/ml at the time of diagnosis to 62 000 copies/ml; this change occurred before specific antiretroviral therapy. This >90% reduction in blood HIV RNA level might be due to a direct (redoxcycling) or indirect (PMN-stimulating) prooxidative action of the antiinfectious agents chosen (55–59). Thus, generators of singlet oxygen might be new physiologic and economical therapeutics of AIDS.
14.
15.
16.
REFERENCES 1. Cohen J. Building a small-animal model for AIDS, block by block. Science 2001; 293: 1034–1036. 2. Aguilar J. J., Anel A., Torres J. M., Semmel M., Uriel J. Changes in lipid composition of human peripheral blood lymphocytes infected by HIV. AIDS Res Hum Retroviruses 1991; 7: 761–765. 3. Aloia R. C., Jensen F. C., Curtain C. C., Mobley P. W., Gordon L. M. Lipid composition and fluidity of the human immunodeficiency virus. Proc Natl Acad Sci USA 1988; 85: 900–904. 4. Aloia R. C., Tian H., Jensen F. C. Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc Natl Acad Sci USA 1993; 90: 5181–5185. 5. Larsen C. E., Nir S., Alford D. R., Jennings M., Lee K. D., Duzgunes N. Human immunodeficiency virus type 1 (HIV-1) fusion with model membranes: kinetic analysis and the role of lipid composition, pH and divalent cations. Biochim Biophys Acta 1993; 1147: 223–236. 6. Asawakarn T., Cladera J., O’Shea P. Effects of the membrane dipole potential on the interaction of Saquinavir with phospholipid membranes and plasma membrane receptors of Caco2 cells. J Biol Chem 2001; 276: 38457–38463. 7. Liao Z., Cimakasky L. M., Hampton R., Nguyen D. H., Hildreth J. E. Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type 1. AIDS Res Hum Retroviruses 2001; 17: 1009–1019. 8. Manes S., del Real G., Lacalle R. A., Lucas P., Gomez-Mouton C., Sanchez-Palomino S., Delgado R., Alcami J., Mira E., Martinez A. C. Membrane raft microdomains mediate lateral assemblies required for HIV-1 infection. EMBO Rep 2000; 1: 190–196. 9. Mellado M., Rodriguez-Frade J. M., Manes S., Martinez A. C. Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Ann Rev Immunol 2001; 19: 397–421. 10. Van Mau N., Misse D., Le Grimellec C., Divita G., Heitz F., Veas F. The SU glycoprotein 120 from HIV-1 penetrates into lipid monolayers mimicking plasma membranes. J Membr Biol 2000; 177: 215–217. 11. Suarez T., Nir S., Goni F. M., Saez-Cirion A., Nieva J. L. The pre-transmembrane region of the human immunodeficiency virus type-1 glycoprotein: a fusogenic sequence. FEBS Lett 2000; 477: 145–149. 12. Nguyen D. H., Hildreth J. E. Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipidenriched membrane lipid rafts. J Virol 2000; 74: 3264–3272. 13. Pereira F. B., Goni F. M., Muga A., Nieva J. L. Permeabilization and fusion of uncharged lipid vesicles induced by the HIV-1 fusion peptide adopting an extended
Medical Hypotheses (2003) 60(4), 575–577
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
conformation: dose and sequence effects. Biophys J 1997; 73: 1977–1986. Maziere J. C., Landureau J. C., Giral P., Auclair M., Fall L., Lachgar A., Achour A., Zagury D. Lovastatin inhibits HIV-1 expression in H9 human T lymphocytes cultured in cholesterol – poor medium. Biomed Pharmacother 1994; 48: 63–67. Scheiffele P., Roth M. G., Simons K. Interaction of influenza virus haemagglutinin with sphingolipid–cholesterol membrane domains via its transmembrane domain. EMBO J 1997; 16: 5501–55088. Keller P., Simons K. Cholesterol is required for surface transport of influenza virus hemapplutinin. J Cell Biol 1998; 140: 1357–1367. Wang J. K., Kiyokawa E., Verdin E., Trono D. The Nef protein of HIV-1 associates with rafts and primes T cells for activation. Proc Natl Acad Sci USA 2000; 97: 394–399. Melkonian K. A., Ostermeyer A. G., Chen J. Z., Roth M. G., Brown D. A. Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J Biol Chem 1999; 274: 3910–3917. Nguyen D. H., Hildreth J. E. Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J Virol 2000; 74: 3264–3272. Lindwasser O. W., Resh M. D. Multimerization of human immunodeficiency virus type 1 Gag promotes its localization to barges, raft-like membrane microdomains. J Virol 2001; 75: 7913–7924. van der Goot F. G., Harder T. Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Semin Immunol 2001; 13: 89–97. Zheng Y. H., Plemenitas A., Linnemann T., Fackler O. T., Peterlin B. M. Nef increases infectivity of HIV via lipid rafts. Curr Biol 2001; 11: 875–879. Campbell S. M., Crowe S. M., Mak J. Lipid rafts and HIV-1: from viral entry to assembly to progeny virions. J Clin Virol 2001; 22: 217–227. Ono A., Freed E. O. Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc Natl Acad Sci USA 2001; 98: 13925–13930. Bavari S., Bosio C. M., Wiegand R., Ruthel G., Will A. B., Geisbert T. W., Hevey M., Schmaljohn C., Schmaljohn A., Aman M. J. Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med 2002; 195: 593–602. Sapin C., Colard O., Delmas O., Tessier C., Breton M., Enouf V., Chwetzoff S., Ouanich J., Cohen J., Wolf C., Trugnan G. Rafts promote assembly and atypical targeting of a nonenveloped virus, rotavirus, in Caco-2 cells. J Virol 2002; 76: 4591–4602. Nguyen D. H., Taub D. CXCR4 function requires membrane cholesterol: implications for HIV infection. J Immunol 2002; 168: 4121–4216. Popik W., Alce T. M., Au W. C. Human immunodeficiency virus type 1 uses lipid raft-colocalized CD4 and chemokine receptors for productive entry into CD4(+) T cells. J Virol 2002; 76: 4709–4722. Liu N. Q., Lossinsky A. S., Popik W., Li X., Gujuluva C., Kriedermann B., Roberts J., Pushkarsky T., Bukrinsky M., Witte M., Weinand M., Fiala M. Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the
ª 2003 Elsevier Science Ltd. All rights reserved.
Singlet oxygen (1O2)-oxidazable lipids
30.
31.
32.
33. 34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
mitogen-activated protein kinase signaling pathway. J Virol 2002; 76: 6689–6700. Khanna K. V., Whaley K. J., Zeitlin L., Moench T. R., Mehrazar K., Cone R. A., Liao Z., Hildreth J. E., Hoen T. E., Shultz L., Markham R. B. Vaginal transmission of cell-associated HIV-1 in the mouse is blocked by a topical, membrane-modifying agent. J Clin Invest 2002; 109: 205–211. Raulin J. Human immunodeficiency virus and host cell lipids. Interesting pathways in research for a new HIV therapy. Prog Lipid Res 2002; 41: 27–65. Weiss S. J., Lampert M. B., Test S. T. Long-lived oxidants generated by human neutrophils: characterization and bioactivity. Science 1983; 222: 625–628. Weiss S. J. Tissue destruction by neutrophils. New Engl J Med 1989; 320: 365–376. Tatsuzawa H., Maruyama T., Hori K., Sano Y., Nakano M. Singlet oxygen ((1)Delta (g)O (2)) as the principle oxidant in myeloperoxidase-mediated bacterial killing in neutrophil phagosome. Biochem Biophys Res Commun 1999; 262: 647–650. Iliou J. P., Jourd’heuil D., Robin F., Serkiz B., Guivarc’h P., Volland J. P., Vilaine J. P. Kinetics of photoperoxidation of arachidonic acid: molecular mechanisms and effects of antioxidants. Lipids 1992; 27: 959–967. Tanielian C., Mechin R. Reaction and quenching of singlet molecular oxygen with esters of polyunsaturated fatty acids. Photochem Photobiol 1994; 59: 263–268. Vever-Bizet C., Dellinger M., Brault D., Rougee M., Bensasson R. V. Singlet molecular oxygen quenching by saturated and unsaturated fatty-acids and cholesterol. Photochem Photobiol 1989; 50: 321–325. Korytowski W., Bachowski G. J., Girotti A. W. Photoperoxidation of cholesterol in homogeneous solution, isolated membranes, and cells: comparison of the 5a- and 6b-hydroperoxides as indicators of singlet oxygen intermediacy. Photochem Photobiol 1992; 56: 1–8. Geiger P. G., Korytowski W., Lin F., Girotti A. W. Lipid peroxidation in photochemically stressed mammalian cells: use of cholesterol hydroperoxides as mechanistic reporters. Free Radic Biol Med 1997; 23: 57–68. Korytowski W., Girotti A. W. Singlet oxygen adducts of cholesterol: photogeneration and reductive turnover in membrane systems. Photochem Photobiol 1999; 70: 484–489. Yamazaki S., Ozawa N., Hiratsuka A., Watabe T. Photogeneration of 3b-hydroxy-5a-cholest-6-ene-5hydroperoxiin in rat skin: evidence for occurrence of singlet oxygen in vivo. Free Radic Biol Med 1999; 27: 301–308. Stief T. W., Kurz J., Doss M. O., Fareed J. Singlet oxygen inactivates fibrinogen, factor V, factor VIII, factor X, and platelet aggregation of human blood. Thromb Res 2000; 97: 473–480. Lenard J., Rabson A., Vanderoef R. Photodynamic inactivation of infectivity of human immunodeficiency virus and other enveloped viruses using hypericin and rose bengal: inhibition of fusion and syncytia formation. Proc Natl Acad Sci USA 1993; 90: 158–162. Park J., English D. S., Wannemuehler Y., Carpenter S., Petrich J. W. The role of oxygen in the antiviral activity of
ª 2003 Elsevier Science Ltd. All rights reserved.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
577
hypericin and hypocrellin. Photochem Photobiol 1998; 68: 593–597. Dewilde A., Pellieux C., Pierlot C., Wattre P., Aubry J. M. Inactivation of intracellular and non-enveloped viruses by a non-ionic naphthalene endoperoxide. Biol Chem 1998; 79: 1377–1379. Stief T. W., Fareed J. The antithrombotic factor singlet oxygen/light ð1 O2 =hmÞ. Clin Appl Thrombosis/Hemostasis 2000; 6: 22–30. Stief T. W. The blood fibrinolysis/deep-sea analogy: a hypothesis on the cell signals singlet oxygen/photons as natural antithrombotics. Thromb Res 2000; 99: 1–20. Stief T. W., Jeske W. P., Walenga J., Schultz C., Kretschmer V., Fareed J. Singlet oxygen inhibits agonist-induced Pselectin expression and formation of platelet aggregates. Clin Appl Thrombosis/Hemostasis 2001; 7: 219–224. Stief T. W., Feek U., Ramaswamy A., Kretschmer V., Renz H., Fareed J. Singlet oxygen ð1 O2 Þ disrupts platelet aggregates. Thromb Res 2001; 104/5: 361–369. McLemore J. L., Beeley P., Thorton K., Morrisroe K., Blackwell W., Dasgupta A. Rapid automated determination of lipid hydroperoxide concentrations and total antioxidant status of serum samples from patients infected with HIV: elevated lipid hydroperoxide concentrations and depleted total antioxidant capacity of serum samples. Am J Clin Pathol 1998; 109: 268–273. Legrand-Poels S., Hoebeke M., Vaira D., Rentier B., Piette J. HIV-1 promoter activation following an oxidative stress mediated by singlet oxygen. J Photochem Photobiol B 1993; 17: 229–237. Piette J., Legrand-Poels S. HIV-1 reactivation after an oxidative stress mediated by different reactive oxygen species. Chem Biol Interact 1994; 91: 79–89. Bernstein M. S., Tong-Starksen S. E., Locksley R. M. Activation of human monocyte-derived macrophages with lipopolysaccharide decreases human immunodeficiency virus replication at the level of gene expression. J Clin Invest 1991; 88: 540–545. Daily J. P., Sadeghi S. A 35-year-old man with a painful abdominal mass and fever. N Engl J Med 2000; 342: 493–500. Mitsuya H., Popovic M., Yarchoan R., Matsushita S., Gallo R. C., Broder S. Suramin protection of T cells in vitro against infectivity and cytopathic effect of HTLV-III. Science 1984; 226: 172–174. Zeis B. M. Antimycobacterial drugs and the production of reactive oxidants by polymorphonuclear leucocytes in vitro. Chemotherapy 1988; 34: 56–60. Anderson R., Zeis B. M., Anderson I. F. Clofaziminemediated enhancement of reactive oxidant production by human phagocytes as a possible therapeutic mechanism. Dermatologica 1988; 176: 234–242. Akamatsu H., Niwa Y., Sasaki H., Asada Y., Horio T. Enhanced effect of clarithromycin on neutrophil function in vitro. J Int Med Res 1996; 24: 185–189. Jiang M. C., Lin J. K., Chen S. S. L. Inhibition of HIV-1 Tat-mediated transactivation by quinacrine and chloroquine. Biochem Biophys Res Commun 1996; 226: 1–7.
Medical Hypotheses (2003) 60(4), 575–577