Journal Pre-proof Stratigraphy and paleoenvironment of the Lower-Middle Eocene succession in the Darnah area, northeast Libya Ibrahim M. Abd El-Gaied, Sayed M. Abd El-Aziz PII:
S1464-343X(20)30025-X
DOI:
https://doi.org/10.1016/j.jafrearsci.2020.103774
Reference:
AES 103774
To appear in:
Journal of African Earth Sciences
Received Date: 10 September 2019 Revised Date:
8 January 2020
Accepted Date: 21 January 2020
Please cite this article as: M. Abd El-Gaied, I., M. Abd El-Aziz, S., Stratigraphy and paleoenvironment of the Lower-Middle Eocene succession in the Darnah area, northeast Libya, Journal of African Earth Sciences (2020), doi: https://doi.org/10.1016/j.jafrearsci.2020.103774. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2020 Published by Elsevier Ltd.
Stratigraphy and Paleoenvironment of the Lower-Middle Eocene Succession in the Darnah Area, Northeast Libya Ibrahim, M. Abd El-Gaied*, Sayed, M. Abd El-Aziz** *Geology Department, Faculty of Science, Beni-Suef University **Geology Department, Faculty of Science, Fayoum University
Abstract The stratigraphy and paleoenvironment of the Lower-Middle Eocene Apollonia Formation exposed at the northeastern and southern parts of Darnah city, northeast Libya, was studied in detail by means of foraminifera, where rich benthic and planktonic foraminiferal assemblages were recorded. Fifty-seven planktonic foraminiferal species and subspecies belonging to nineteen genera and seven families were identified and seventy-five benthic species and subspecies belonging to thirtyfive genera and twenty-three families. The stratigraphic distribution of the recorded fauna in three selected surface sections enabled us to subdivide the studied succession into six planktonic and two benthic zones covering a time interval ranging from the Early to Middle Eocene. The planktonic zones were arranged from base to top as follows: Morozovella edgari, Morozovella subbotinae, Morozovella aragonensis, Acarinina pentacamerata (Early Eocene), Acarinina bullborooki and Globigerinatheka subconglobata subconglobata (Middle Eocene). The benthic zones are represented by the Anomalinoides trinitatensis (Early Eocene) and Bulimina jacksonensis (Middle Eocene). The established zones were discussed and correlated with the international standard zones and with those from neighbouring North Africa and Middle East countries. The Lower/Middle Eocene (Ypresian/Lutetian) boundary was discussed based on the zonal boundaries. The statistical analysis of the identified foraminiferal assemblages for each sample as well as the lithologic characteristics of the Apollonia Formation indicated marine middle to outer neritic setting. The high ratio of the calcareous foraminiferal assemblages and the moderate epifaunal/infaunal ratio reflect deposition in an environment of high calcium carbonate, normal salinity and low to moderate oxygenation levels. Keywords: Planktonic, benthic foraminifera, Apollonia Formation, Early Middle Eocene, Darnah area, Northeast Libya
1- Introduction The Lower and Middle Eocene rocks in northeast Libya are exposed on the northern escarpment of Al Jabal Al Akhdar area which forms the northern part of Cyrenaica region (Fig.1). These rocks are mainly carbonates and represented by the Apollonia and Darnah formations. Gregory (1911a,b) considered the first one described the Eocene rocks of northern Cyrenaica and nominated three formations; the Apollonia
Limestone, Derna Limestone and Slonta Limestone. He produced the earliest geological maps of northeastern Libya and studied the fossil contents of the recorded formations. The author placed the Apollonia Limestone in the Lower Eocene (Ypresian) depending on its stratigraphic position below his Middle Eocene (Lutetian) Derna Limestone. Stefanini (1921) also placed the Apollonia Limestone in the Lower Eocene depending on the nummulites species, meanwhile Röhlich, (1974) and Zert (1974) recorded some planktonic and benthic foraminiferal species from the Apollonia Formation and assigned a Lutetian age to it. On the other hand Barr & Berggren (1980) indicated a Lower - Middle Eocene to this formation based on the foraminiferal contents. The subdivisions of the Eocene sequence of Gregory (1911a) in Al Jabal Al Akhdar was subjected to minor modifications by the subsequent workers, where the Slonta Limestone has been combined with the Derna Limestone and defined as Darnah Formation (Klen, 1974; Röhlich, 1974 and Zert, 1974). The Apollonia Formation constitutes the majority of the Eocene carbonate succession exposed along the coastal area of northeast Libya. The formation extends from Darnah city to Tukra city on the eastern side of Al Jabal Al Akhdar anticlinorium (Fig. 1a, b) and forms the lower costal scarp of Darnah Sheet. The micropaleontologic studies that were performed on this rock unit resulted in the occurrence of common to abundant assemblages of both benthic and planktonic foraminiferal taxa. Most of the previous studies concerning the Apollonia limestone (between the cities of west Darnah and Tukra) attested it to the Early to early Late Eocene age and deep neritic environment based on the planktonic and benthic foraminifera (Pietersz, 1968; Klen, 1974; Röhlich, 1974; El Khoudary, 1980; El Khoudary and Helmdach, 1980; Barr & Berggren, 1980; El Hawat, 1986; Abdulsamad, 1999 and 2000). The main objective of this work is to study the lithologic characteristics and foraminiferal content of the Apollonia Formation exposed at the northeastern and southern sides of Darnah city. In addition to subdividing the studied succession into bio and chronostratigraphic units and estimating the depositional environment of the Apollonia Formation, the systematic classification of the recorded fauna was also provided. Three stratigraphic surface sections representing the Apollonia Formation in the study area were selected; the first one is located on the coastal international Darnah-Tubrok highway at the El Fataieh downward road, while the second section is located at the southern part of Darnah city, south Al Sahaba Mosque area and the third is at the entrance of Wadi Darnah near Darnah Dam. 2- Geologic setting and stratigraphy The study area is located in the northeastern and southern parts of Darnah city. It is located between latitudes 32° 40' 24” N and 32° 45' 38” N and longitudes 22°42' 27” E and 22° 43' 53” E (Fig. 1a, b). This area constitutes the northeastern part of Al Jabal Al Akhdar which is a highland area represents the northern mobile belt area of Cyrenaica region. This mobile tectonic province is separated from the southern more stable Cyrenaica platform by a hinge line, named the Cyrenaica fault system. It has been influenced by the Tethys tectonic activities and events since it formed during the
Jurassic time (El Hawat and Abdulsamad (2004). The tectonic history of northern Cyrenaica is also studied by Barr & Berggren, 1980. They mentioned that a major tectonic event commenced with a weak movements during the Late Cretaceous and reached its maximum intensity at the end of Paleocene, where a greater part of Al Jabal Al Akhdar was uplifted, folded and greatly eroded; this orogenic movements continued into the Early Eocene but with low intensity. The study area contains sedimentary succession represents by a rock units covered an intervals ranging in age from the early Eocene to the Miocene and these units are; the Apollonia, Darnah (Eocene), Al Bydah, Al Abraq (Oligocene) and Al Faidiyah (Lower Miocene) formations. The Apollonia limestone was first named by Gregory (1911a) and represents the oldest Eocene succession of northern Cyrenaica, which is now called Susah. Pietersz (1968) introduced the term Apollonia Formation for the succession at its type locality Susah village. It forms the basal part of the northern coastal escarpment of Al Jabal Al Akhdar between the cities of Tukrah and Darnah. Zert (1974) studied the upper part of the Apollonia Formation at Wadi Darnah as a reference section. Generally, this formation is composed of rhythmical intercalations of light-coloured bedded limestones of different grain sizes. It is marked by the occurrence of chert nodules and bands of different sizes. The lower boundary of this formation is exposed only in the Marsa al Hilal area at Wadi al Athrun and Wadi al Qalah (about 30km west Darnah city near Cyrine), where it unconformably overlies the Upper Cretaceous Al Athrun Formation and conformably underlies the MiddleUpper Eocene Darnah Formation (Barr & Hammuda, 1971). In the present study, the Apollonia Formation is composed of a scarp, repeated intercalations of thick to thinly bedded snow white chalky limestones and light grey argillaceous limestones with rhythmical alignment. The formation contains dark brown to brownish grey chert nodules, lenses and bands of different sizes and shapes. It has a thickness of approximately 57 metres in the first section, 68 metres in the second section and 64 metres in the third section (Figs. 2, 3). The base of this formation is unexposed in the studied sections, while its upper part conformably overlain by the Darnah Formation which is mainly composed of well developed, massive, medium to coarse grained, light grey Nummulitic limestones full of large forms of Nummulites and megafossils. In the field the main characteristic feature of the Apollonia Formation is the rhythmical alternations of microcrystalline, thin-bedded limestones with thin chert band and nodules and also the bituminous smell it produces by striking. 3-Methodology and systematic classification A total of 102 rock samples were carefully collected from three stratigraphic surface sections representing the Apollonia Formation in the northeastern and southern parts of Darnah city for foraminiferal analysis. Approximately 400 grams from each sample was soaked in a hydrogen peroxide solution for approximately 48 hours and then washed under tap water many times through a 63 µm sieve until the washed water became very clear. The residue of the sample was dried in an oven at 50° and then separated into several fractions of size to enable the picking of the planktonic and benthic foraminiferal assemblages using a stereo binocular microscope. The picked
foraminiferal species were identified and systematically classified following Loeblich and Tappan (1988) and Pearson and Berggren (2006), where seventy-five benthic foraminiferal species and subspecies belonging to thirty-five genera, fifteen subfamilies, twenty-three families, twelve superfamily and three suborders (Textulariina, Lagenina and Rotaliina) are recorded, which are in addition to fiftyseven planktonic species belonging to nineteen genera, four subfamilies, seven families and four superfamilies. Most of the identified planktonic species besides the benthic zonal marker species were photographed by scanning electron microscopy (SEM) and are illustrated in three figures (Figs. 4, 5, and 6). The type specimens of this work are preserved in the Geology Department, Faculty of Science, Beni-Suef University. 4- Biostratigraphy Six planktonic and two local benthic foraminiferal zones represent the Lower and Middle Eocene successions in the three studied surface sections at northeastern and southern Darnah city were constructed depending on the stratigraphic distribution of identified foraminiferal species (Figs. 7, 8, 9). The planktonic zones were discussed in detail following the international schemes of Toumarkine and Luterbacher (1985) and correlated with those of Berggren and Pearson (2005), and with those identified in Libya and other countries in the Middle East (Fig.10). The local benthic zones are also discussed and correlated with those in nearby countries. In the following section, we briefly discuss these zones from old to young. 4-1. Planktonic zones 1- Morozovella edgari Zone - Early Eocene Category: Partial-Range Zone Definition: This zone was originally defined by Premoli Silva and Bolli (1973). Toumarkine and Luterbacher (1985) defined this zone as the interval from the last occurrence of Morozovella velascoensis to the last occurrence of Morozovella edgari. In the present work, the base of this zone is unexposed, so it is defined here by the interval from the first appearance of Pseudohastigerina wilcoxensis to the last appearance of Morozovella edgari. Assemblages: Ten planktonic species were recorded from this zone, of which one species are restricted to it, Morozovella edgari, while the other nine species extend to the overlying zone: Morozovella Subbotina, Morozovella f. gracilis, Morozovella aequa, Acarinina soldadoensis soldadoensis, A. quetra, A. primitiva, Subbotina linaperta, Pseudohastigerina wilcoxensis and planorotalites chapmani. Remarks: The present zone is recorded only on the basal part of section 2 and measures approximately 8 metres thick (Figs. 3, 8). It is characterized by a high representation of the total foraminiferal numbers and moderate faunal diversity. Age and Correlation: The established zone was recognized by many authors from the Early Eocene of Libya and the other countries. Globally, it is completely matched with the Morozovela edgari Zone of Bolli (1966) and Toumarkine and Luterbacher (1985) and the Morozovella marginodentata of Berggren and Pearson (2005) and
coincides with the lower part of the P6 zone of Blow (1969); Berggren and Van Couvering (1974); Barr and Berggren (1980) and the Globorotalia rex zone of Postuma (1971) (Fig. 10). It could be correlated with the lower part of the Morozovella subbotinae zone that was recorded by Al-Helou (2002) from the Early Eocene of Lebanon and matched with the Globorotalia edgari zone recorded by Masters (1984) from the Early Eocene of Tunisia. In Egypt, this zone is completely equivalent to the Morozovela edgari zone that was recorded from the Early Eocene by Obaidalla (2000); El Nady and Shahin (2001); Nassif and Omran (2001); ElBassiouni et al. (2003); Orabi and Hassan (2015) and the lower part of the Globorotalia subbotinae zone of Beckmann et al. (1969); Morozovella subbotinae zone of Hewaidy (1987); Shahin (1992); Galal & Kamel (2003) and equivalent to the Morozovella rex zone of Kora and Ayyad (1988) and Morozovella edgari/Morozovella subbotinae of Hamad (2009). 2-Morozovella subbotinae Zone - Early Eocene Category: Partial-Range Zone Definition: As mentioned by Toumarkine and Luterbacher (1985), the definition of this zone follows Luterbacher & Permoli Silva (in Caro et al., 1975). It is defined herein by the interval from the last occurrence of Morozovella edgari to the first occurrence of Morozovella aragonensis. Assemblages: Nine species were recorded from this zone: Acarinina soldadoensis soldadoensis, A. quetra, A. primitiva, Subbotina linaperta, Morozovella aequa, M. subbotinae, Morozovella f. gracilis, planorotalites chapmani and Pseudohastegerina wilcoxensis. Remarks: The present zone is recorded in the three studied sections with measured thicknesses of approximately 11 metres, 12 metres, and 9 metres (Figs. 7, 8, 9). Most of the recorded species extend to the overlying zone except for two species, Morozovella aequa and planorotalites chapmani, which disappear at the upper boundary of the present zone. This zone is also distinguished by its greater foraminiferal numbers and lower faunal diversity. Age and Correlation: Globally, the present zone was recorded from the Early Eocene of different localities, such as Spain (Gonzalvo and Molina, 1998), Lebanon (Al-Helou, 2002), Libya (Barr and Berggren, 1980) and Egypt (Hewaidy, 1987; Shahin, 1992; El Nady and Shahin, 2001: Nassif and Omran, 2001; El-Bassiouni et al., 2003; Galal and Kamel, 2003; Hamad, 2009; Orabi and Hassan, 2015 and others). Additionally, this zone is completely matched with the standard Morozovella subbotinae zone of Bolli (1966); Toumarkine and Luterbacher (1985) and equivalent to the upper part of the P6 zone of Blow (1969) and Berggren and Van Couvering (1974); the Middle part of the Globorotalia rex zone of Postuma (1971) and matched with the Morozovella f. formosa zone of Berggren and Pearson (2005). 3-Morozovella aragonensis Zone- Early Eocene Category: Lowest-Occurrence Zone Definition: The present zone was originally defined by Bolli (1957b). It is defined here by the interval from the first occurrence of Morozovella aragonensis to the first occurrence of Turborotlia cerroazulensis frontosa.
Assemblages: Twelve species were recorded from this zone: Morozovella aragonensis, Morozovella f. gracilis, M. subbotinae, Acarinina soldadoensis soldadoensis, A. quetra, A. primitiva, A. penacamerata, Pseudohastegerina wilcoxensis, P. micra, Subbotina linaperta, S. inaequispira and Igorina broedermani. Remarks: The identified zone is recorded in section 1 and measures 14 metres and section 2, measures 13 metres and is also present in section 3, measuring 15 metres thick (Figs. 7, 8, 9). The lower boundary of this zone is marked by the first appearance of Pseudohastegerina micra, Igorina broedermani, Morozovella aragonensis and Acarinina penacamerata, while its upper boundary is traced at the first appearance of Subbotina eocaena, Turborotlia cerroazulensis frontosa, T. griffinnae and T. praecentralis. All the identified species are extended to the overlying zone except for Morozovella f. gracilis, which disappeared within this zone. Age and Correlation: The present zone is equivalent to the Early Eocene Morozovella f. formosa and Morozovella aragonensis zones of Bolli (1966) and Toumarkine and Luterbacher (1985) (Worldwide); Al-Helou (2002) in Lebanon and the same zones in Egypt (Shahin, 1992; El Nady and Shahin, 2001; Nassif and Omran, 2001; El-Bassiouni et al., 2003; Hamad, 2009). On the other hand, this zone matches the Early Eocene p7 and p8 zones of Blow (1969); Berggren and Van Couvering (1974); Barr and Berggren (1980) and is equivalent to the Morozovella aragonensis - M. subbotinae and Acarinina pentacamerata zones of Berggren and Pearson (2005) and Morozovella aragonensis and the lower part of Acarinina pentacamerata zones of Gonzalvo and Molina (1998). Moreover, this zone could be correlated with Globorotalia formosa and the lower part of the G. aragonensis zones of Beckmann et al. (1969) in Egypt and matched with the Morozovella aragonensis zone that was recorded from the Early Eocene of UAE (Anan, 2015); Iraq (AlMutwali and Al-Sharbaty, 2013) and Turkey (Tasgin et al., 2014). 4-Acarinina pentacamerata Zone – late Early Eocene Category: Lowest-Occurrence Zone Definition: The present zone was originally defined as a subzone by Krasheninnikov (1965a,b). Toumarkine and Luterbacher (1985) defined this zone as the interval from the first occurrence of Turborotlia cerroazulensis frontosa to the first occurrence of representatives of the genus Hantkenina. In the present study, the species of the genus Hantkenina is not recorded, so this zone is defined here by the interval with a zonal marker from the first appearance of Turborotlia cerroazulensis frontosa to the first appearance of Acarinina bullbrooki. Assemblages: Twenty species and subspecies were recorded from this zone: Morozovella aragonensis, M. subbotinae, Acarinina soldadoensis soldadoensis, A. quetra, A. primitiva, A. penacamerata, Pseudohastegerina wilcoxensis, P. micra; Subbotina linaperta; S. inaequispira, S. eocaena, Igorina broedermani, Turborotlia cerroazulensis frontosa, T. griffinnae, T. praecentralis, T. boweri, Truncorotaloides praetopilensis, Shaeroiddinellopsis senni and Candeina ceicionii. Remarks: The present zone was recorded in the three studied sections and measured 9 metres thick at section 1, 10 metres thick at section 2, and 12 metres thick at section 3. The lower boundary of this zone is traced to the first occurrence of Subbotina
inaequispira, S. eocaena, Turborotlia c. frontosa, T. griffinnae, T. praecentralis, T. boweri and Candeina ceicionii, while its upper boundary is taken at the first occurrence of Acarinina bullborooki, A. spinuloinflata, A. matthewsae, Morozovelloides spinulosa, Truncorotaloides rohri and Truncorotaloides topilensis. In the present zone, the Acarinina s. soldadoensis completely disappears close to its upper boundary. This zone was characterized by the first appearance of Candeina cecionii, which was previously recorded from the late Early to early Middle Eocene of southern Cheli by Cañón and Earnst (1974) and restricted to the Southern Hemisphere as mentioned by Leckie and Webb (1985). The majority of the studies placed the boundary between the Lower and Middle Eocene at the top of this zone. Age and Correlation: Worldwide, the present zone represents the late Early Eocene and completely matched the Acarinina pentacamerata zone recorded by Bolli (1966); Toumarkine and Luterbacher (1985); Shahin (1992); El Nady and Shahin (2001); AlHelou (2002); El-Bassiouni et al. (2003); Al-Mutwali and Al-Sharbaty (2013); Tasgin et al. (2014); Anan (2015), and this zone is equivalent to the P9 zone of Blow (1969); Berggren and Van Couvering (1974); Barr and Berggren (1980) and coincides with the upper part of the Globorotalia formosa-aragonensis zone of Postuma (1971) and the Globorotalia aragonensis zone of Beckmann et al. (1969) and most of Morozovella f. formosa zone of Kora and Ayyad (1988). It is equated with the late Early Eocene Acarinina pentacamerata and Guembelitroides nuttalli zones of Berggren and Pearson (2005). On the other hand, the present zone could be correlated with the Turborotalia c. frontosa zone that was recorded from the late Early Eocene of Egypt by Nassif and Omran (2001). 5-Acarinina bullbrooki Zone – early Middle Eocene Category: Lowest-Occurrence Zone Definition: This zone is defined by the interval from the first occurrence of Acarinina bullbrooki to the first occurrence of Globigerinatheka mexicana mexicana. It was recorded by Krasheninnikov et al. (1964) as the Globorotalia bullbrooli zone from the Middle Eocene of Syria. Luterbacher (1964) also recorded this zone above the uppermost Early Eocene Globorotalia aragonensis zone in Trinidad. Assemblages: Twenty-six species and subspecies were recorded in this zone, of which 16 species extend from the underlying zone, and the remaining 10 species first appeared within this zone and extended to the overlying zone. The recorded species are Morozovella aragonensis, Morozovelloides crassata, M. spinulosa, Acarinina primitiva, A. penacamerata, A. collactea, A. bullbrooki, A. spinuloinflata, A. matthewsae, Pseudohastegerina micra; Subbotina linaperta; S. inaequispira, S. eocaena, Igorina broedermani, Turborotlia cerroazulensis frontosa, T. griffinnae, T. praecentralis, T. boweri, T. c. possagnoensis, T. pseudomayeri, Truncorotaloides praetopilensis, Tru. rohri, Tru. topilensis, Shaeroiddinellopsis senni, Candeina ceicionii and Globigerinatheka s. subconglobata. Remarks: The present zone was recorded in the three studied sections, measuring 13 metres thick at section 1, 11 metres thick at section 2, and 10 metres thick at section 3. The lower boundary of this zone is marked at the first occurrence of Acarinina bullborooki, A. spinuloinflata, A. matthewsae, Morozovelloides spinulosa,
Truncorotaloides rohri, Truncorotaloides topilensis and the last occurrence of Acarinina s. soldadoensis, while its upper boundary is traced to the first occurrence of Globigerinatheka m. mexicana, Gtk. m. barri, Gtk s. curryi, Turborotalia centralis and Turborotalia c. pomeroli. The present zone is distinguished by the first appearance of the typical Middle Eocene genera, such as Acarinina (A. bullborooki, A. spinuloinflata), Morozovelloides (M. spinulosa and M. crassata), Truncorotalloides (Truncorotalloides rohri and Truncorotalloides topilensis) and the first forms of the genus Globigerinatheka. Age and Correlation: The present zone represents the early Middle Eocene in most of the Tethyan Countries, such as Syria (Krasheninnikov et al., 1964); Lebanon (AlHelou, 2002); Iraq (Al-Mutwali & Al-Sharbaty, 2013); UAE (Anan, 2015) and Egypt (Beckmann et al., 1969; Kora and Ayyad, 1988; El-Bassiouni et al., 2003; AbdElshafy et al., 2007). This zone is also equated with the Hantkenina nuttalli zone of Bolli (1966); Toumarkine and Luterbacher (1985); Berggren et al. (1995); Gonzalvo and Molina (1998) and Guembelitroides nuttalli zone of Berggren and Pearson (2005). It is completely matched with the P10 zone of Blow (1969); Berggren and Van Couvering (1974); Barr and Berggren (1980). 6- Globigerinatheka subconglobata subconglobata Zone- Middle Eocene Category: Partial-Range Zone Definition: The present zone was originally named by Bolli (1957b) as the Globigerapsis kugleri zone, after which Proto Decima and Bolli (1970) named it Globigerinatheks subconglobata curryi, but Bolli (1972) renamed it Globigerinatheka s. subconglobata. It is defined by the interval of zonal markers from the first occurrence of Globigerinatheka mexicana mexicana to the last occurrence of Morozovella aragonensis. Assemblages: Forty-three species and subspecies were recorded in this zone, of which 24 species extend from the underlying zone and 19 first appear throughout this zone. The most characteristic species are Turborotalia c. cerroazulensis, Turborotlia c. pomeroli, T. c. possagnoensis, T. centralis, T. pseudoampliapertura, T. ampliapertura, T. pseudomayeri, Truncorotaloides topilensis, Tru. rohri, Morozovelloides crassata, M. spinulosa, Acarinina bullbrooki, A. spinuloinflata, A. matthewsae, A. medizzai, Chiloguembelina cubensis, Globigerinatheka s. subconglobata, Globigerinatheka s. curryi, Globigerinatheka m. mexicana, Globigerinatheka m. barri, Globigerinatheka m. kugleri, Globigerinatheka i. index, Turborotalita carcosseleensis, Globorotaloides suteri, Globigerinita e. echinata, Catapsydrax dissimiles, Cat. howi, Dentoglobigerina galavesi and D. venezuelana. Remarks: The present zone was recorded in the three studied sections and measured approximately 10 metres thick at section 1, 14 metres thick at section 2, and 13 metres thick at section 3. The established zone is characterized by its high foraminiferal numbers and diversity compared with the underlying zones and is also distinguished by the greater representations of the species of the genera Globigerinatheka and Turborotalia. Age and Correlation: The present zone is completely equated with the Globigerinatheka s. subconglobata that was recorded from the Middle Eocene of
Trinidad (Bolli, 1966); Caribbean (Premoli Silva and Bolli, 1973); Spain (Gonzalvo and Molina, 1998); Iraq (Al-Mutwali and Al-Sharbaty, 2013); Israel (Benjamini, 1980) and Egypt (Nishi et al., 1994). Additionally, it is completely equivalent to the P11 zone of Blow (1969); Berggren and Van Couvering (1974); Barr and Berggren (1980) and with the Globigerapsis kugleri zone of Beckmann et al. (1969); Postuma (1971); Kora & Ayyad, (1988). This zone could be correlated with the Globigerinatheka kugleri / Morozovella aragonensis zone of Berggren et al. (1995), Berggren and Pearson (2005) and Globigerinatheka s. subconglobata / Turborotalia. c. possagnoensis zone of (El-Bassiouni et al., 2003). 4-2. Benthic zones 1-Anomalinoides trinitatensis Zone - Early Eocene Category: Lowest-Occurrence Zone Definition: Interval from the lowest occurrence of Anomalinoides trinitatensis and Marginulina carri to the lowest occurrence of Bulimina jacksonensis and Bolivina carinata. Assemblages: Fifty-five benthic species and subspecies are identified in this zone. The characteristic species are Hanzawaia mantensis, Gyroidina depressa, Anomalinoides trinitatensis, Marginulina carri, Nodosaria latejugata, Laevidentalina reussi, Lenticulina turbinate, L. isidis, L. alatolimbata, Marginulinopsis tuberculata, Citharina plummerae, Lagena sulcata, L. isabella, Stilostomella gracillima, S. paleocenica, S. midwayensis, Uvigerina hispida, U. rippensis, U. dumblei, U. muttalli, Eponides subumbonatus, E. vicksburgensis, Cibicidoides pseudoacutus, Spiroplectinella excolata, S. carinata, Vulvulina adversa, Pyramidulina vertebralis and P. stainforthi. Remarks: The present zone includes the lower part of the Apollonia Formation at the three studied sections and thicknesses are approximately 34 metres at section 1, 43 metres at section 2 and 36 metres at section 3 (Fig. 3). Age and Correlation: The present zone is completely equivalent to the Early Eocene planktonic biozones; Morozovella edgari, M. subbotinae, M. aragonensis and Acarinina pentacamerata zones, which were recorded in the present study. It is also matched with the benthic Valvulinaria scorbiculat and Eponides lotus zones that were recorded in the Early Eocene of Egypt by El Dawy et al. (2018) 2-Bulimina jacksonensis Zone- Middle Eocene Category: Partial-Range Zone Definition: Interval from the lowest occurrence of Bulimina jacksonensis and Bolivina carinata to the highest occurrence of Vaginulinopsis cumulicostata and Lenticulina williamsoni Assemblages: Forty-six benthic species and subspecies are identified from this zone, and the more characteristic species are Bathysiphon samadica, Laevidentalina salami, L. reussi, Vaginulinopsis cumulicostata, Lenticulina williamsoni, L. alatolimbata, L. clericii, L. yaguatensis, Bolivina jacksonensis, B. carinata, B. anglica, Bulimina jacksonensis, Uvigerina cookei, U. hispida, U. rippensis, Uvigerina cocoaensis, Uvigerina mexicana, Cancris amplus, Planulina cocoaensis, Cibicides crassidiscs, C. mabahethi, Nuttallides truempyi, Osangularis Mexicana, O. dominicana, Hanzawaia ammophila, H. cubensis, Neoeponides schreibersi and Cibicidoides laurisae.
Remarks: This zone represents the upper part of the Apollonia Formation at the three studied sections and measures a thickness of approximately 23 metres at section 1, 25 metres at section 2 and 28 metres at section 3 (Fig. 3). Age and Correlation: In the present study, this zone is completely equivalent to the early Middle Eocene planktonic zones, Acarinina bullbrooki and Globigerinatheka subconglobata subconglobata zones. This zone could be correlated with the Elphidium cherifi zone, Cancris auriculus/Cancris amplus zone and Bulimina jacksonensis/Uvigerina jacksonensis that were recorded by Abd El-Gaied et al. (2019a); Abd El-Aziz (2002); Elewa et al. (1998) from the Middle and Upper Eocene of Egypt. Additionally, this zone matched the lower part of the Bulimina jacksonensis/Uvigerina jacksonensis zone, Norcottia danvillensis/Alistoma aegyptiaca zone, Anomalinoides fayoumensis zone, and Uvigerina nakady/Anomalinoides fayoumensis zone, which were recorded from the Middle Eocene of different localities in Egypt, as mentioned by El Dawy (1997); Shahin (2000); Helal (2002); El Dawy and Dakrory (2005); Shahin et al. (2007). Moreover, this zone could be correlated with the larger benthic foraminiferal zones; Nummulites gizahensis zone and Alveolina frumentiformis zone recorded by Mansour et al. (1982); Abu Ellil (2004) from the Middle Eocene of Egypt and the lower part of Nummulites cf. syricus zone and Nummulites aff. Puchellas zone that were recorded by Strougo et al. (1992); Boukhary et al., (2002) from the same interval. It is also equated with the Nummulites laevigatus zone that was recorded from the Early Middle Eocene (Lutetian) in Turkey by Tasgin et al. (2014). 5 - Chronostratigraphy The studied sedimentary succession of the Apallonian Formation in the northeast and southern parts of Darnah city could be subdivided into two chronostratigraphic units based on the identified foraminiferal species and subspecies as well as the occurrence of some larger benthic foraminifera that are known as index fossils for the Lower and Middle Eocene. The following is a brief description of these two units from old to young: 5-1. Lower Eocene (Ypresian): This unit includes the lower part of the Apollonia Formation in the three studied sections and measures 34 metres thick at section 1 (samples 1-18); 43 metres at section 2 (samples 1-27) and 36 metres at section 3 (samples 1-19) and is represented by four planktonic zones: Morozovella edgari, Morozovella subbotinae, Morozovella aragonensis, and Acarinina pentacamerata and one benthic zone; Anomalinoides trinitaensis. This unit is rich in both benthic and planktonic foraminifera in addition to the occurrence of some larger benthic species (Nummulites spp.). The faunal associations recorded in this unit are assigned an Early Eocene age (Ypresian) depending on the continuous occurrence of the typical Early Eocene fauna that is characterized by Acarinina soldadoensis, Morozovella subbotinae, Morozovella formosa gracilis, Acarinina (Morozovella) quetra and the complete disappearance of the Palaeocene fauna, such as Morozovella angulate, M. velascoensis, M. conicotruncana, M. pseudobolloides, M. uncinata, Acarinina mckannai, Planorotalites pusilla pusilla and Planorotalites pseudomenardii, as mentioned by Barr and Berggren (1980); Toumarkine and Luterbacher (1985); Berggren and Pearson (2005); besides the occurrence of the larger benthic species, Nummulites solitaries, N. planulatus, N. burdigalensis and N.
globulus were recorded in the Early Eocene in Egypt (Kenawy et al., 1988) and NE Libya (Abdulsamad, 1999). 5-2. early Middle Eocene (Lutetian): This unit includes the upper part of the Apollonia Formation in the three studied sections and measures 23 metres thick at section 1 (samples 19-28); 25 metres at section 2 (samples 28-40) and 28 metres at section 3 (samples 20-34) and is represented by two planktonic zones, Acarinina bullbrooki and Globigerinatheka subconglobata subconglobata and one benthic zone, Bulimina jacksonensis. The foraminiferal assemblages recorded in this unit are assigned an early Middle Eocene age (Lutetian) based on the first appearance of the typical Middle Eocene fauna, such as the large sized Acarinina (A. bullborooki, A. spinuloinflata and A. matthewsae), Morozovelloides (M. spinulosa and M. crassata), Truncorotalloides (Truncorotaloides rohri and Truncorotaloides topilensis) and the first occurrence of the globular forms of the Globigerinatheka group (Globigerinatheka subconglobata subconglobata, Globigerinatheka s. curryi, Globigerinatheka m. mexicana, Globigerinatheka m. barri) and Turborotalia c. possagnoensis, these in addition to the disappearance of the Early Eocene faunas. Additionally, the occurrence of common assemblages of the large benthic foraminifera at some levels within this unit, such as Nummulites gizehensis, N. laevigatus and Operculina praespira, attest an early Middle Eocene age (Lutetian) according to the work of Kenawy et al. (1977, 1988); Mansour et al. (1982); Abdulsamad (1999). 5-3. Lower / Middle Eocene (Ypresian/Lutetian) boundary: the Ypresian/Lutetian boundary in the present study area and most of the Southern Tethyan regions and Middle East is traced at the upper boundary of the planktonic Acarinina pentacamerata zone and the base of the Acarinina bullbrooki zone, as mentioned by Al-Helou, 2002 (Lebanon), Haggag & Luterbacher 1991; El-Bassiouni et al., 2003; Abd-Elshafy et al., 2007 (Egypt); Al-Mutwali and Al-Sharbaty, 2013 (Iraq); Anan, 1996, 2015 (UAE) and others. It is also located at the last appearance of the Early Eocene Acarinina soldadoensis soldadoensis and the first appearance of the Middle Eocene Acarinina (A. bullborooki, A. spinuloinflata) and Morozovelloides spinulosa. Globally, this boundary is located at the base of the planktonic Hantkenina nuttalli zone (P10) of Bolli, 1966; Blow, 1969; Barr & Berggren, 1980; Toumarkine & Luterbacher, 1985; Berggren et al. (1995), Gonzalvo & Molina, 1998 or Guembelitroides nuttalli zone (E8) of Berggren and Pearson (2005). The base of the Middle Eocene is usually traced at the first appearance of Hantkenina nuttalli, but this species is not recorded in earliest Middle Eocene of the studied area and many of the studied sections in Egypt, UAE and Southern Tethyan regions, and so it is placed at the first appearance of Acarinina bullbrooki that is located at the base of the Acarinina bullbrooki zone which considers the oldest Middle Eocene zone in these regions. In southern Spain Molina et al. (2000) and Ortiz et al. (2008) studied the nature of the Lower/Middle Eocene (Yepresian/Lutetian) boundary. They found, the base of Hantkenina nuttalli zone (P10) which locates the Yepresian/Lutetian boundary falls at a facies changes. They mentioned that the studied (Agost) section can be used as a Global Stratatype Section and Point (GSSP) for the
Yepresian/Lutetian boundary if no better section is found. On the other hand Molina et al. (2006) studied the Yepresian/Lutetian boundary in the Fortuna section in Spain and noticed that the planktonic foraminifera show a well distinct continuous succession spanning the planktonic zones P9, P10, P11. They mentioned that this boundary coincides with the Upper part of the Acarinina pentacamerata zone (P9) and the first occurrence of Hantkenina specimens that are located at the base of Hantkenina nuttalli zone (P10). In many Northern European sections the Lower/Middle Eocene transition is represented by a hiatus, including those in which the classic Stratatypes were originally defined (Payros et al., 2009). The hiatus during this time interval is also recorded in northern Spain by Molina et al. (2011) and the western shoulder of the Gulf of Suez, Egypt by El Ayyat and Obaidalla (2016). In the present studied sections there is no facies changes in the sedimentary succession at the Lower/Middle Eocene boundary, where the deposition was continuous and there is a great similarity in the lithology which is mainly carbonates (limestones). 6- Paleoenvironment The environmental conditions that controlled the deposition of the Lower and Middle Eocene succession of the Apollonia Formation in the three selected sections of the study area were estimated as being mainly dependent on the identified planktonic and benthic foraminiferal species and subspecies in addition to the lithologic characteristics and the larger benthic foraminiferal assemblages (Nummulites and Operculina). The ecologic parameters that are used in this study are focused on the total foraminiferal number (F.n), Species number (S.n), Benthic species (B), Planktonic species (P), calcareous species (C), arenaceous species (A), Planktonic percentage (P%), Epifauna percentage (Ep%), Rotaliina percentage (R%) and Lagenina percentage (L%) in each sample (Figs. 11, 12, 13). The paleoenvironmental conditions that occurred during the deposition of the Apollonia Formation in the studied sections are discussed in detail as follows: In section 1, the average planktonic percentage (P%) fluctuates between 21% in the lower part of the section and 29.4% in the upper part; at some interval (in the upper part, bed 26), this percentage reaches 38%. On the other hand, the average percentage of calcareous species (C%) was 94.8%, while the average arenaceous percentage (A%) was 5.2% and reached 8% at few levels. The Rotaliina percentage (R%) is 57.5%, while the percentage of Lagenina (L%) is 42.5%. Moreover, the average percentage of the epifaunal species is 50.2%. In section 2, the average percentage of planktonic species (P%) ranged between 14.4% in the lower part of the succession and 28.5% in the upper part. This ratio increased towards the upper part and reached 40% at some levels (bed 37). The average percentage of calcareous species (C%) is 95.2%, while the arenaceous percentage is 4.8% and increases in some levels to 10% and 14% (beds 11,12,17). On the other hand, the percentage of Rotaliina (R%) is 57.4%, Lagenina (L%) is 42.6% and epifaunal fauna (Ep%) is 48%. In section 3, the average planktonic percentage (P%) is graduated between 20.6% in the lower part of the sequence to 30.3% in the upper part; in some levels (bed 36), it reached approximately 36%. The average calcareous percentage (C%) is 95.5% and the
arenaceous percentage (A%) is 4.5% (reached 7% at beds 11,13), while the percentage of the Rotaliina (R%) is 58.3%, the Lagenina (L%) is 41.7% and the epifaunal fauna (Ep%) is 48%. In general, the abundance and varieties of assemblages of Uvigerina increased towards the upper part of the succession in the three studied sections. Additionally, the arenaceous assemblages are few and are represented by rare to common elements of Marsonella, Bathysiphon, Vulvulina and Spiroplectinella. The Rotaliina suborder is represented by abundant to frequent species of the genera Anomalinoides, Uvigerina, Bulimina, common to rare elements of Hanzawaia, Planulina, Stilostomella, Cancris, Eponides, Cibicides, Gyroidina, Nuttalides and Osangularis, while the Lagenina include abundant assemblages of Lenticulina, Pyramidulina, Laevidentalina and common to rare elements of Nodosaria, Marginulina, Vaginulinopsis, Lagena, Globulina, Citharina and Palmula. It is also worth noting that the Miliolina fauna are not recorded in the studied sections. Phleger (1960) mentioned that the planktonic/benthonic ratio attains its lowest value in the near-shore marine environments and generally increases with depth. Boersma (1978) reported that the middle shelf environment is marked by a planktonic/benthonic ratio between 15% and 30%; this ratio reaches approximately 50% at the outer shelf and 50%-85% at the upper continental slope. Luger (1985) mentioned that the middle neritic environment is characterized by a planktonic / benthonic ratio of approximately 30%, and this ratio is above 50% in the slope environment. Bassiouni and Luger (1990) reported that the planktonic/benthonic ratio for the inner shelf environment ranges from 1% to 10%, the middle shelf ranges from 25% to 41%, and the outer shelf is more than 61%. Hewaidy (1994) recorded that the low planktonic/benthonic ratio (11.05%) indicates an open shallower middle neritic environment. El Dawy (1997) recorded that the highest values of planktonic / benthonic ratio (0.75-1.68) suggest deepening of the sea to the outer neritic conditions, while the lowest values of the ratio (0.31-0.41) denote shallow sea water environments. Hewaidy and Strougo (2001); Saber and Salama (2017) mentioned that the low percentage or absence of planktonic fauna and dominance of the benthic assemblages suggest an inner to shallow middle shelf environment. Saint Marc (1986) recorded that the low values of the arenaceous/calcareous ratio indicate deposition that is largely above the carbonate compensation depth (CCD) in environments with high calcium carbonate content, well oxygenated and/or high temperature and characterized by normal salinity. Hewaidy (1997) reported that the relatively high proportion of the arenaceous/calcareous ratio (31.6%-56.5%) reflects a cooler environment. According to El Ashwah and El Deep (2000), the deep middle shelf has an arenaceous/calcareous ratio (A/C = 4.17%), the outer shelf has (A/C = 11.1%-14.9%) and a very high percentage of the arenaceous/calcareous ratio under cold water conditions, and the very low percentage (A/C = 2.04%) indicates warm water conditions. Boersma (1974); Barr and Berggren (1980); Abd El-Gaied et al. (2019b) mentioned that the costate buliminid (Bulimina jacksonensis) in addition to the hispido-costate and costate uvigerinid fauna distinguished the outer neritic
environment. The occurrence of the families Bagginidae, Nonionidae, Anomalinidae and Buliminidae are more indicative of outer shelf and bathyal environments (Haynes, 1981). Hulsbos et al. (1989) considered the dominance of nodosariids as indicative of deep marine conditions of the shelf sea at a water depth of approximately 50-200 m. According to Murray (1973, 1991), the genera of Lenticulina and Uvigerina live at a normal marine outer shelf to bathyal depths. Additionally, Murray (1973) and Haynes (1981) stated that the genera Bolivina, Bulimina and Uvigerina are more abundant on the outer shelf and the uppermost continental slope because they can tolerate lowered oxygen levels. The occurrence of nummulitid assemblage and Operculina indicates inner to middle neritic environments and water depths of less than 100 metres (Berggren, 1974; Barr and Berggren, 1980). In conclusion, all the above-mentioned data, in addition to the recorded environmental parameters, suggest that the Apollonian Formation in the three studied sections was deposited in a normal open marine, middle to outer neritic environment at water depths not exceeding 200 metres and low to moderate oxygen conditions. Additionally, the high ratio of the calcareous foraminiferal fauna in addition to the very low arenaceous/calcareous and the moderate epifaunal/infaunal ratios reflect deposition in an area of high calcium carbonate, normal salinity, meso to moderately eutrophic conditions and low to moderate oxygenation level. CONCLUSIONS
The present study focused on the stratigraphy and micropaleontology of the Apollonia Formation in three selected surface sections measured and described in the northeastern and southern parts of Darnah city, northeast Libya, by means of both planktonic and benthic foraminifera. Lithologically, the studied rock unit is mainly composed of a former scarp, repeated intercalations of snow white chalky limestones and light grey argillaceous limestones with rhythmical alignment containing dark brown to brownish grey chert nodules and bands. The foraminiferal investigation of 102 rock samples collected from this formation resulted in the identification of seventy-five benthic foraminiferal species and subspecies belonging to thirty-five genera, fifteen subfamilies, twenty-three families, twelve superfamilies and three suborders, in addition to fifty-eight planktonic species belonging to nineteen genera, four subfamilies, seven families and four superfamilies. The stratigraphic distribution of the identified foraminiferal species helped us recognise six planktonic zones, of which four belong to the Early Eocene (Morozovella edgari, Morozovella subbotinae, Morozovella aragonensis and Acarinina pentacamerata) and two belong to the Middle Eocene (Acarinina bullborooki and Globigerinatheka subconglobata subconglobata), in addition to two benthic zones, Anomalinoides trinitatensis (Early Eocene) and Bulimina jacksonensis (Middle Eocene). These zones were discussed and correlated with the international zones and with the nearby countries of the Tethyan Province. Depending on the identified marker of the foraminiferal species, two timestratigraphic units were recognizable: the Lower Eocene (Ypresian) unit and the early Middle Eocene (Lutetian) unit. Also the Lower/Middle Eocene boundary is discussed based on the first and last appearance of the identified species and the zonal
boundaries. The environmental conditions that controlled deposition of the studied succession of the Apollonia Formation in the selected three sections of the study area were estimated based on the statistical analysis of the identified planktonic and benthic foraminiferal assemblages in addition to the lithologic characteristics, where the studied rock unit was deposited in a normal open marine, middle to outer neritic environment at water depths not exceeding 200 metres and low to moderate oxygen conditions. ACKNOWLEDGEMENTS
The authors are very grateful to Prof. Dr. G.I. Abdel Gawad and Dr. Y. F.Salama Department of Geology, Faculty of Science, Beni-Suef University for reading critically the manuscript. REFERENCES
Abd El-Aziz, M. S., 2002. Stratigraphy of the Eocene sequences of Fayoum-Minia district (new Road) Egypt.- Ph. D. Thesis, Fac. Sc, Cairo Univ., Fayoum Branch, 439pp. Abd El-Gaied, I. M., Attia, G. M., Abd El-Aziz, M. A., Abu Baker, S., 2019a. Foraminiferal Biostratigraphy and Paleoenvironment of the Middle and Upper Eocene Succession at Cairo - Helwan area, north Eastern Desert, Egypt. Journal of African Earth Sciences 128, october 2019. Abd El-Gaied, I. M. A., Salama, Y. F., Saber, S. G., Sayed, M. M., 2019b. Benthic foraminiferal communities of the Eocene platform, north Eastern Desert, Egypt. Journal of African Earth Sciences 151, 121-135. Abd-Elshafy, F. M., El-Fawal, F. M., Nassif, M. S., Matter, Y. E., 2007. Foraminiferal Biostratigraphy of the Eocene exposures between Wadi Bagha and Wadi Matulla, west central Sinai, Egypt. Proceeding of the 8th Conf. Geology of Sinai for Development, Ismailia, pp. 91-125. Abdulsamad, E. O., 1999. Stratigraphy and paleobiogeography of Tertiary larger foraminifera from Al Jabal al Akhdar (Cyrenaica, NE Libya). Giornale di Geologia 61, 75-98 Bologna. Abdulsamad, E.O., 2000). Contribution to the Nummulites taxonomy from the Palaeogene Sequences of AI Jabal al Akhdar (Cyrenaica, NE Libya). Revue De Paléobiologie 19 (1), 19-45 Genève. Abu Ellil, M. M. A., 2004. Stratigraphy of the Eocene rocks in the area of QattamiaNorthern Galala stretch, North Eastern desert, (Doctoral dissertation, Zagazig University). Al-Helou, R., 2000. The stratigraphy of Eocene and Oligocene in the anti-Lebanon.5th internat. Confer. Geol. Arab. World, Cairo University 3, 1377-1392. Al-Mutwali, M. M., Al-Sharbaty, I. S., 2013. Biostratigraphy of planktonic foraminifera of Jaddala Formation (Eocene), Bara area, Northwestern Iraq. Iraqi National Journal of Earth Sciences 13 (2), 67-84. Anan, H.S, 1996. Early Eocene foraminifera of Jabal Hafit, United Arab Emirates Middle East Research Center Ain Shams University. Earth Science Series, Cairo, 10:147-162. Anan, H. S., 2001. Paleocene Vaginulininae (benthic foraminifera) of Duwi section, Red sea coast Egyptian Egypt Journal of Paleontology, 1, 135-139.
Anan, H. S., 2009. Paleontology, paleogeography, paleoenvironment, and stratigraphical implications of the Nakkadys benthic foraminiferal fauna in Egypt and Tethys. Egyptian Journal of Paleontology, 9, 31-52 Anan, H.S, 2015. Planktonic foraminifera around the Early/Middle Eocene boundary in the United Arab Emirates and other Tethyan localities. Revue de Paléobiologie, Genéve 34 (1), 11-25. Bandy, O.L., 1949. Eocene and Oligocene foraminifera from Little Stave Creek, Clarke Country. Alabama. Bull foraminifera. Amer. Paleont. New York,32,1207. Beckmann, J. P., 1953. Die foraminifera der Oceanic Formation (Eocaen Oligocaen) von Barbados, Kl. Antillen. Ecolog. Geol. Helv., 46(3), 301- 412. Bermudez, P. J., 1949. Tertiary smaller foraminifera of the Dominican Republic. Cushman Lab. Foram. Res., Spec., Publ. 25. Bermudez, P. J., 1961. Contribution al estudio de las Globigerinidae de la region Carbie- Antillana (Paleocene recientc). Bol. Geol. Venez. Publ. Espec. 3, 1119- 1393. Berry, E. W., 1928. The smaller foraminifera of the middle Lobitos shales of northwestern Peru. Eclogae Geologae Helvetiae, 21, 390-405 Blow, W. H., 1979. The Cenozoic Globigerinida 3 vols., E. J. Brill, Leiden: 1413pp. Blow, W. H., Banner, F. T., 1962. The Mid – Tertiary (Upper Eocene to Aquitanian) Globigerinaceae [In:] Eames, F. E. Blow, W. H. and Clarke, W. J. (eds.): Fundamentals of Mid - Tertiary Stratigraphical Correlation. Cambridge Univ., Press, pp. 61- 151. Bolli, H. M., 1945. Zur stratigraphie der oberen Kreide in den hoheren helvetischen Decken, Eclogae Geologicae Helvetiae, 37, 217-328. Bolli, H. M., Loeblich, A. R., and Tapann, H., 1957. Planktonic foraminifera families Hantkeninidae, Orbulinidae, Globorotaliidae and Globotruncanidae. Bull. U. S. natl Mus., 215, 3-50. Bowen, R. N. C., 1954. Foraminifera from the London Clay. Proc. Geol. Ass., 65, 125-174. Bronemann, J. G., 1855. Die mikroskopische Fauna des Septarienthones von Hermsdor bei Berlin. Zschr. Deu. Geol. Ges., 7, 307-371. Bronnimann, P., 1952a. Globigerinita and Globigerinatheka, new genera from the Tertiary of Trinidad, B.W.I. Contr. Cush. Found. Foram. Res., 3, 25-28. Bronnimann, P., Bermudez, P. J., 1953. Truncorotaloides, a new foraminiferal genus from the Eocene of Trinidad, B.W.I.- J. Paleont., 27, 817-820. Barr, F.T., Berggren, W.A., 1980. Lower Tertiary biostratigraphy and tectonics of northeastern Libya. [In:] Salem, M.J. and Busrewil, M.T. (eds.). The Geology of Libya. Academic press. London 1, 163-192. Barr, F.T., Hammuda, O.S., 1971. Biostratigraphy and planktonic zonation of the Upper Cretaceous Atrun Limestone and Hilal Shale, northeastern Libya (with discussion). Proc. 2nd Int. Conf. Planktonic Microfossils, 2, 27-38. Bassiouni, M.A., Luger, P., 1990. Maastrichtian to Early Eocene Ostracoda from southern Egypt. Paleontology, Paleoecology, Paleobiogeography and Biostratigraphy. Berliner geowiss. Abh., A. 120 (2), 755-928. Beckmann, J.B, El Heiny, M.T., Said, R., Viotti, I., 1969.Standard planktonic zones in Egypt.- Proc.1st . Internat.. Congr. Planktonic Microfossils 1, 92-103, Geneva. Benjamini, C., 1980. Planktonic foraminiferal biostratigraphy of the Avedat Group Eocene in the Northern Negev, Israel. J. Paleontol. 54, 325-358.
Berggren, W. A., 1974. Paleocene benthic foraminiferal biostratigraphy, biogeography, and paleoecology of Libya and Mali. Micropaleontology 20, 449-465, 11figs. Berggren, W.A., Pearson, P.N., 2005. A revised tropical to subtropical Paleogene planktonic foraminifera zonation: Journal of Foraminiferal Research 35(4), 279–298. Berggren, W. A., Van Couvering, J. A., 1974. The Late Neogene. Biostratigraphy, geochronology and paleoclimatology of the last 15 million years in marine and continental sequences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 16 (1-2), 1215. Berggren, W.A., Kent, D.V., Swisher III, C.C., Aubry, M.-P., 1995. A Revised Cenozoic Geochronology and Chronostratigraphy. Soc. Econom. Paleontol. Mineral, Spec. Publ., 54, 129–212. Blow, W. H., 1969. Late Middle Eocene to Recent planktonic foraminiferal biostratigraphy, in Bronnimann, P., and Renz, H.H (eds.), Procceedings of the First International Conf., on planktonic microfossils, Geneva, 1967: E.J. Brill, Leiden 1, 199-422. Boersma, A., 1978. Time-Space Distribution of Uvigerina: A Tertiary Benthic Foraminifera Genus. Ph.D. Thesis, Brown University, 252pp. Boersma, A., 1978. Foraminifera. In Haq B. U. and Boersma, A. (eds.). Introduction to marine micropaleontology. Elsevier, pp. 19-77. Bolli, H.M., 1957a. The genera Globigerina and Globorotalia in the Paleocene – Lower Eocene Lizard Springs Formation of Trinidad, B. W. I. In: Loeblich, A.R. (Ed.), Jour., and collaborators, Studies in Foraminifera. United States Nat. Mus. Bullet 215, 61–82. Bolli, H.M., 1957b. Planktonic foraminifera from the Eocene Navet Formation and San Fernando Formations in Trinidad. B. W. I. In: Loeblich, A.R., Jr., and collaborators (eds), Studies in Foraminifera. Buletin of the United States National. Museum 215, 61–82. Bolli, H. M., 1966. Zonation of Cretaceous to Pliocene marine sediments based on planktonic foraminifera, Boletino Informativo Asociacion Venezolana de Geologia, Mineriay Petroleo 9, 3-32. Bolli, H. M., 1972. The genus Globigerinatheka Bronnimann. J. Foram. Res. 2 (3), 109- 136. Boukhary, M., Hussein, A. I., El-Morcey, I. A., 2002. Eocene larger foraminifera from helwan, greater Cairo, Egypt. Revue de micropaléontologie 45(1), 27-45. Cañón, A., Ernst, M., 1974. Patt II Magallanes Basin foraminifera. In Ntland, M. L. Gonzales. E., Canon, A., and Ernst, M., A system of stages for Correlation of Magallanes Basin Sediments . Geological Society of American Memoir 139, 61-117 Caro, Y., Luterbacher, H., Perch-Nielsen, K., Premoli Silva, I., Riedel, W. R., Sanfilippo, A., 1975. Zonation á lʹaide de microfossiles pélagiques du Paléocéne supérior et de lʹEocene inférieur. Bull. Soc. Geol. Fr. 17, 125-47. Cole, W. S., 1927. A foraminiferal fauna from the Guayabal Formation in Mexico. Bulletins of American Paleontology, 14, 1-46. Cole, W. S., 1928. A foraminiferal fauna from the Chapapote Formation in Mexico. Bull. Am. Paleont., vol. 14: 3-32. Cushman, J. A., 1925. Some new foraminiferal from the Velasco shale of Mexico: Contributions from the Cushman Libratory for Foraminiferal Research. 1, 1823.
Cushman, J. A., 1926: The Foraminifera of the Velasco shale of the Tampico embayment San Luis Potosi, Mexico. Amer. Assoc. Petrol. Geol., Bull., 10: 581-612. Cushman, J. A., 1927. A New and interesting foraminifera from Mexico and Texas: Contributions from the Cushman Libratory for Foraminiferal Research, v. 3, p. 111-119. Cushman, J. A., 1928. Additional foraminifera from the Upper Eocene of Alabama. Contr. Lab. Foram., vol. 4: 73-79. Cushman, J. A., 1935. Upper Eocene foraminifera of the southeastern United States. U. S. Dept. Inst. Geol. Sur. Prof. Paper. (181): 1-60. Cushman, J. A., 1936. New genera and species of the families Verneuilinidae and Vavulinidae and of the subfamily Vergulinidae: Contributions from the Cushman Libratory for Foraminiferal Research, Spes. Publ. 6, p. 1-71. Cushman, J. A. and Applin, E. R. 1926. Texas Jackson foraminifera. Bull. Amer. Assoc. Petr. Geol., 10: 154-189. Cushman, J. A., Bermudez, P., 1936. New genera and species of foraminifera from the Eocene of Cuba. Contr. Cush. Lab. Foram. Res. Sharon, Mass, 12(2), 2738 Cushman, J. A., Bermudez, P., 1937. Further new species of foraminifera from the Eocene of Cuba. Contr. Cush. Lab. Foram. Res., 13, 1-29. Cushman, J. A., Bermudez, P., 1948. Additional species of Paleocene foraminifera from the Madruga Formation of Cuba. Contr. Cush. Lab. Foram. Res. Sharon, 24 (4), 85-89. Cushman, J. A., Bermudez, P., 1949. Some Cuban species of Globorotalia. Contr. Cush. Lab. Foram. Res., vol. 25: 26-44. Cushman, J. A., Edwards, P. G., 1937. Notes on the early described Eocene species of Uvigerina and some new species. Contr. Cush. Lab. Foram. Res., 3, 54-83. Cushman, J. A., Jarvis, P. M, 1934. Some interesting new uniserial foraminifera from Trinidad. Contr. Cush. Lab. Foram. Res., 10, 71-75. Cushman, J. A., Ellisor, A. C., 1939. New species of foraminifera from the Oligocene and Miocene. Contr. Cush. Lab. Foram. Res., vol. 159: 1-14. Cushman, J. A. and Ponton, G. M., 1932. An Eocene foraminiferal fauna of Wilcox age from .Alabama. (Contr. Cushm. Lab). Foram. Res., Vol. 8, pp. 51-72.). Cushman, J. A. and Ponton, G. M., 1932. An Eocene foraminiferal fauna of Wilcox age from .Alabama. (Contr. Cushm. Lab). Foram. Res., 8, 51-72. Cushman, J. A. and Todd, R. 1946. A foraminiferal fauna from the Paleocene of Arkansas. Cushm. Lab. Foram. Res. Contr., 22,45-65. Cushman J. A. and Renz, H. H. 1941. New Oligocene- Miocene foraminifera from Venezuela. Contrib. Cushman Lab. Foram. Res. Contr., 17, 1-27. Cushman J. A. and Renz, H. H. 1942. Eocene Midway Foraminifera from Soldado Rock, Trinidad. Contrib. Cushman Lab. Foram. Res. Contr., 18, 1-14. Cushman, J. A. and Renz, H. H., 1946. The foraminiferal fauna of Lizared Springs Formation of Trinidad, Britich west Indies: Contributions from the Cushman Libratory for Foraminiferal Research, Spc. Pub. 18, 48 p. d'Orbigny, A., 1826. Tableau methodique de la classe des Cephalopodes. Ann. Sci. Nat., 7: 245-314. d'Orbigny, A., 1839. Foraminiferes. In R. dela Sagra (ed.), Histoire, Physique, Politique et Naturalles de Cuba, Bertrand, Paris, 224 p. d'Orbigny, A. 1846. Foraminiferes fossiles du Bassin Tertiaire de Vienne. Paris, Gide:
El Ashwah, A., El Deep, W., 2000. Late Cretaceous foraminiferal paleobathymetric study of Wadi El Natrun Well no.1 succession, northeastern part of Western Desert, Egypt. Egypt Jour. Geol. 44, 1-12. El Ayyat, A. M., Obaidalla, N. A., 2016. The impact of the Syrian Arc Orogeny on the Early Paleogene rocks, western shoulder of the Gulf of Suez, Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology, 454 30-53. El-Bassiouni, E., Ayyad, S.N., Shahin, A.M., Shahin, S.M., 2003. Planktonic foraminiferal bio- and chronostratigraphy of the Upper Maastrichtian - Middle Eocene succession in northeastern Sinai, Egypt. Egypt. J. Paleontol. 3, 109140. El Dawy, M. H., 1997. Middle Eocene benthic foraminiferal biostrstigraphy and paleoecology of East Beni Mazar area, Nile Valley, Egypt. Egypt. Jour. Geol. 41(1), 413-464. El Dawy, M. H., Dakrory, A.M., 2005. Biostratigraphy and paleoecology of the Middle Eocene benthic foraminifers of East Beni Suef area, Nile Valley, Egypt. 4th Inter. Conf. the Geology of Africa 1, 623-656, Assiut, Egypt. El Dawy, M. H., Obidalla, N, A., Mahfouz, K. H., Salman, A. M., Abdel Wahed, S, A. 2018. Benthic foraminiferal biostratigraphy and faunal turnover events during the Late Paleocene-Early Eocene at Darb Gaga, Western Desert, Egypt: Paleoenvironmental and sequence stratigraphic interpretations.journal of African Earth Science 145, 246-260. Elewa, A. A. M., Omar, A. A., Dakrory, A. M., 1998. Biostratigraphical and paleoenvironmental studies on some Eocene ostracodes and foraminifera from the Fayoum depression, Western Desert, Egypt. Egypt. Jour. Geol. 42 (2), 439- 469. El Hawat, A. S., 1986. Fine-grained current-drift carbonates and associated facies in a slope to shelf shoaling-up sequence: The Eocene, NE Libya. In 7th European I.A.S. Mtg. (Abs). Krakow, Poland, pp. 208-210. El Hawat, A. S., Abdulsamad, E. O., 2004. The Geology and Archaeology of Cyrenaica 32nd International Geological Congress. 1- from PRoI to B15. El Khoudary, R. H., 1980. Middle Eocene planktonic foraminifera from the northern escarpment of Jabal Al Akhdar, NE. Libya. Rev. Espan. Micropaleont. 12(3), 339- 357. El Khoudary, R. H., Helmdach, F., 1980. Biostratigraphic studies on the Middle Eocene of the northern escarpment of Al Jabal Al Akhdar, NE. Libya. J. Fac. Petrol., and Mining Engineering. Al Fateh Univ., Tripoli 2(1), 35-46. El Mehaghag, A. A., Ashahomi, K. A., 2005. Calcareous nannofossil biostratigraphy of the Al Bayda Formation, Al Jabal Al Akhdar, NE Libya: a short note. J. Nannoplankton Res. 27 (1), 15-19. El Nady, H., Shahin, A., 2001. Planktonic foraminiferal biostratigraphy and paleobathymetry of the Late Cretaceous-Early tertiary succession at northeast Sinai, Egypt. Egyptian Journal of Paleontology 1, 193-227. Finlay, H. J., 1939. New Zealand foraminifera key species in stratigraphy, No. 2. Trans. Roy. Soc. New Zealand, Wellington, 69 (1), 89- 128. Finlay, H. J., 1947.New Zealand foraminifera, key species in stratigraphy. New Zealand Jour. Sci. Tech; 28 (5), Sec. B: 259-292, pls. 1-9. Fornasini, C., 1895. Cristellaria clericii n. sp., Bologna, 10 Gennaio 1895, Tipografia Gamberini e Parmeggiani, p. 1, fig. 1.
Galal, G., Kamel, S., 2003. Selandian - Ypresian planktonic foraminiferal datum events from the Gebel Matulla section, west central Sinai, Egypt. Egypt. J. Paleontol. 3, 25-54. Gallaway, J. J., Morrey, M., 1929. A Lower Tertiary foraminifera fauna from Manta, Ecuador, Bull. Amer. Paleontology, 15, 7-56. Gregory, J. W., 1911a. The geology of Cyrenaica Quart. Jour. Geol. Soc. London 67(268), 572-615. Gregory, J. W., 1911b. The fossil Echinoidea of Cyrenaica. Ibid, 67 (268), 661-680. Gonzalvo, C., Molina, E., 1998. Planktonic foraminiferal biostratigraphy across the Lower-Mddle Eocene transition in the Beltic Cordillera (Spain). N. Jb. Geol. Paläont. Mh. 11, 671-693. Gümbel, C. W., 1868. Beiträge zur Foraminiferenfauuna der nord-alpinen Eocängebilde. (Abh. K. Rayer. Akad. Wiss., Cl. 2, Vol. 10, Pt. 2, pp. 581730). Haggag, M.A., Luterbacher, H.P., 1991. Middle Eocene planktonic foraminiferal groups and biostratigraphy of the Wadi Nukhul section, Sinai, Egypt. Neu. Jb. Geol. Paläont. Mh., 6, 319-334. Hamad M. M., 2009. Biostratigraphy of the Late Paleocene /Early Eocene deposits of Gebel El Bruk area, North- Central Sinai, Egypt. Egyptian Journal of Paleontology 9, 1-29. Haynes, J.R., 1981. Foraminifera. Macmillan publ. LTD., London and Basingstoke, 391 pp. Hedberg, H. D., 1937. Foraminifera of the Middle Tertiary Carapita Formation of northeastern Venezeula. J. PaleontoL, 8, 661-697. Helal, S. A., 2002. Contribution to the Eocene benthic foraminifera and ostracoda of the Fayoum Depression, Egypt. Egypt. J. Paleontol. 2, 105-155. Hewaidy, A. A., 1987. Biostratigraphy and paleopathemetry of the Esna Shale in Qussaima area, northeast Sinai, Egypt. M.E.R.C. Ain Shams Univ., Earth Sci. Ser. 1, 180-206 Cairo. Hewaidy, A. A., 1994. Biostratigraphy and paleopathemetry of the Garra-Kurkur area, southwest Aswan, Egypt. M.E.R.C. Ain Shams Univ., Earth Sci. Ser. 8, 48-73 Cairo. Hewaidy, A. A., 1997. A proposed paleoecologic scheme for the Upper Cretaceous – Lower Tertiary sequences in Egypt. M.E.R.C. Ain Shams Univ., Earth Sci. 11, 159-168. Hewaidy, A. A., Strougo, A. 2001. Maastrichtian-Lower Eocene benthic foraminiferal distribution and paleoecology of three outcrop sections in Farafra. Egypt. Egypt. Jour. Paleontol. 1, 1-22. Howe, H.V., Wallace, W.E., 1932. Foraminifera of the Jackson Eocene at Danvile Landing on the Ouachita, Catahoula Parish. Louisiana. Bull. Louisiana Dept. Concer. Geol., 2, 18-79. Hulsbos, R. E., Kroon, D., Jansen, H. S., Van Hinte, J. E., 1989. Lower Eocene benthic foraminifera and paleoenvironment of the outer Voring Plateau, Norwegian Sea (DSDP sit 338). Micropaleont. 35 (3), 256-273. Kenawy, A. I., Khalifa, H., Mansour, H. H., 1977. Biostratigraphic zonation of the Middle Eocene in the Nile Valley, based on the larger foraminifera. Bull. Fac. Sci., Assiut Univ., Egypt 6 (2), 237-259. Kenawy, A. I., Bassiouni, M. A., Khalifa, H., Arafa, M. M., 1988. Stratigraphy of the Eocene outcrops between Assiut and Beni Suef, Nile Valley, Egypt. Bull. Fac. Sci., Assiut University 17 (1), 161-193.
Khalilov, D. M., 1956. Pelagic foraminifers of the Paleogene deposits of Azerbaydzhan. Akademy Nauk Azerbaydzhan, SSR, Inst. Geol. Trudy, 17, 234-61 (in Russian). Klen, L., 1974. Geological Map of Libya 1:250,000 Sheet Benghazi (NH 34-14) Explanatory Booklet: 56. Industrial Rsearch Centre, Tripoli. Kora, M., Ayyad, S.N., 1988. Biostratigraphy of an Early to Middle Eocene unconformity – bounded sequence at Bir Safra area, southeastern Sinai, Egypt. Newsl. Stratigr. 18 (3), 139-146. Berlin. Stuttgart. Krasheninnikov, V. A., Ponikarvo, V. P., Razavalyayeev, A. V., 1964 The Geological development of Syria in Paleogene time. Moskovsk. Bbshch. Ispyt, Prirod, Byull. Geol. Surv. 39 (5), 77 - 95 (Russian) Krasheninnikov, V.A. 1965a. Zonal stratigraphy of Paleogene deposits. International Geological Congress, 21st Norden, 1960, Doklady Soviet Geologists, Problem 16, Problems of Cenozoic stratigraphy, Akademy Nauk SSSR Izd, Moscow, pp.37-61 (in Russian) Krasheninnikov, V. A. 1965b. Zonal stratigraphy of Paleogene in the eastern Mediterranean. Akademy Nauk SSSR Geol, Inst. Trudy 133, 1-76 (in Russian) Leckie, R. M., Weeb, P-N., 1985. Candeina Antarctica, N. Sp and the Phylogenetic history and distribution of Candeina Spp. In the Paleogene - Early Neogene of the Southern Ocean. Journal of Foraminiferal Research 15(2), 65-78,pl.1-3. Le Calvez, Y., 1950. Revision du foraminifers Lutetiens du Bassin de Paris. III. Polymorphinidae, Buliminidae, nonioidae. Carte Geol. Detaillee France. Mem: 1-64 Le Roy, L. W., 1953. Biostratigraphy of the Maqfi section, Egypt: Geol. Soc. Amer., v. 54, p. 1-73. Loeblich, A. R., Tappan, H., 1955. A revision of some glanduline Nodosariidae (Foraminifera): Same, 126 (3), 1-9, Pl.1. Loeblich, A. R., Tappan, H., 1988. Foraminiferal genera and their classification: Van Nosrand Reinhold Co., New York 2, 970 pp. Luger, O., 1985. Stratigraphie der marinen oberkreide und des Alttertiärs in sudwestlichen Obernil-Becken (SW-Agypten) unter besonderer Berűcksichtigung der Micropalaontologic, Palökologie und Paläogeographic Berliner Geowiss., Abh. (A) 63, 1-151. Luterbacher, H., 1964. Studies on som Globorotalia from the Paleocene and Lower Eocene of the central Apennines.-Ecol. Geol. Helvert 57, 631-730, Basel. Mansour, H. H., Philobbas, E. R., Khalifa, H., Abdu, F. H., 1982. Contribution to the geology of the area east and northeast of Beni Suef, Nile Valley, Egypt. Bull, Fac. Sci., Qatar Univ., Qatar. Mallory, V. S., 1959. Lower Tertiary biostratigraphy of the California Coast Ranges.Am.Assoc.Petrol Geol,416 pp. Master, B., 1984. Comparison of Planktonic foraminifers at the Cretaceous-Tertiary Boundary from the El Haira Shale (Tunisia) and the Esna Shale (Egypt). EGPC, 7th. Exploration seminar, Cairo, pp. 310-324. Molina, E., Cosovic, V., Gonzalvo, C., von Salis, K., 2000. Integrated biostratigraphy across the Ypresian/Lutetian boundary at Agosy, Spain. Revue de Micropaléontologie, 34, 381-391. Molina, E., Gonzalvo, C., Mancheño, M., Ortiz, S., Schmitz, B., Thomas, E., von Salisk., 2006. Integrated stratigraphy and chronostratigraphy across the Ypresian/Lutetian transition in the Fortuna section (Betic Cordillera, (Spain). Newsl. Stratigr. 42 (1), 1-19.
Molina, E., Alegret, L., Apellaniz, E., Bernaola, G., Caballero, F., Dinarés – Turell, J., Hardenbol, J., Heilman – Clausen, C., Laarrasoańa, J.C., Luterbacher, H., Monechi, S., Ortiz, S., Orue Etxebarria, X., Payros, A., Pujalte, V., Rodriguez – Tovar, F.J., Tori, F., Tosquella, J., Uchman, A., 2011. The Global Stratotype – Section and Point (GSSP) for the base of the Lutetian at the Gorrondatxe section, Spain, Episodes, 34, 86-108. Montfort, D. De, 1808. Conchyliologie systematique et classification methodique des coquilles: v. 1, 409 p. Morozova, V.G., 1939. On the stratigraphy of the Upper Cretaceous and Paleogene of the Emba region according to the foraminiferal fauna. Moskov. Obshch. Ispytateley Prirody Byull., Otdel.,Geol., 17, 59-86 (in Russian). Myatlyuk, E. V., 1953. Spirillinidi, Rotalidi, Epistominidi, Assterigerinidi. Trudy Vsesoyuznyy Nauchno-Issledovatel"skiy Geologorazvedochniy Neftyanoy institute( VNIGRI). Leningrad. 71-273. Murray, J.W., 1991. Ecology and Paleoecology of benthic foraminifera. Longman Group UK, New York, 397pp. Murray, J.W., 1973. Distribution and ecology of living benthic foraminiferids. Crane and Russak, New York, pp. 274 pp. Nakkady, S. E., 1950 A new foraminiferal fauna from the Esna Shale and Upper Cretaceous chalk of Egypt. Egyptian Journal of Paleontology, 24(6), 675-692. Nassif, M., Omran, M., 2001. Eocene planktonic foraminiferal biozonations of ElSheikh Atia section in the Wadi Watir area, southeastern Sinai, Egypt. Proc. of the 6th Conf. Geology of Sinai for Development, Ismailia, pp. 231-238. Nishi, H., Elewa, A. M., Ishizaki, K., 1994. Planktonic foraminiferal biostratigraphy of Upper Paleocene to Middle Eocene sequences in the Eastern Desert area, Egypt. Trans. Proc. Palaeont. Soc. Japan, N. S. 175, 521-552. Nuttall, W. L. F., 1928. Tertiary foraminiferafrom the Naparima region of Trinidad (British West Indies). Quart. J. Geol. . Soc., 84-57-116 Nuttall, W. L. F., 1930. Eocene foraminifera from Mexico. Journal of Paleontology, 4:23-25. Nuttall, W. L. F., 1932. Lower Oligocene Foraminifera from Mexico. /. Paleontol., 6, 3-35. Obiddalla, N. A., 2000. Planktonic foraminiferal biostratigraphy and faunal turnover events during the Late Cretaceous-Early Tertiary along the Red Sea coast, Egypt. Journal of African Earth Science 31 (3-4), 571-595. Orabi, H. O., Hassan, H. F., 2015. Foraminifera from Paleocene - Early Eocene rocks of Bir El Markha section (West Central Sinai), Egypt. Journal of African Earth Science 111, 202-213. Ortiz, O., Gonzalvo, C., Molina, E., Rodriguez-Tovar, F., Uchman, A., Vandenberghe, N., Zeelmaekers, E., 2008. Paleoenvironmental turnover across the Ypresian-Lutetian transition at the Agost section, southeastern Spain: In search of a marker event to define the Stratotype for the base of the Lutetian age. Marine Micropaleontology 69: 297-313. Palmer, D. K. 1934. Some large fossil foraminifera from Cuba. Memoir Society Cubana Natural History, 8, 235-264. Parr, W. J., 1938. Upper Eocene foraminifera from the deep boringsin King"s Park, Perh, Western Australia, J. R. Soc. Western Australia, 24, 96-101. Payres, A., Tosquella, J., Bernaola, G., Dinarés-Turell, J., Orue-Etebarria, X., Pujalte, V., 2009. Filling the North European Early/Middle Eocene
(Ypresian/Lutetian) boundary gap. Paleogeography, Paleoclimatology, Paleoecology. 280 (3-4), 313-332. Pearson, P.N., Berggren, W., 2006: Taxonomy, Biostratigraphy, and Phylogeny of Morozovelloides. GEN. Cushman Foundation Special Publicatio 41, 327-342. Pietersz, C. R., 1968. Proposed nomenclature for Rock units in northern Cyrenaica in Geology and Archaeology of Northern Cyrenaica, Editor F. T. Barr, pp. 125130, 10th Annual Field Conference, Pet. Expl, Soc. of Libya, Tripoli Pijpers, P. J., 1933. Geology and paleontology of Bonaire (B.W.I). Geogr. Geol. Meded. Phys., Geol. Reeks, 8 (69). Phleger, F. B., 1960. Sedimentary patterns of microfauna in northern Gulf of Mexico. In: Shepared, F. D. (eds.), Recent sediments northwestern Gulf of Mexico. A. P. G., pp. 267-302. Postuma, J. A., 1971. Manual of planktonic foraminifera. Elsevier Publ. Co., Amsterdam, 420 pp. Plummer, H. J., 1926. Foraminifera of the Midway Formation in Texax. University of Texas Bulletin, 2644:1-198. Premoli Silva, I. and Bolli, H. M., 1973. Late Cretaceous to Eocene planktonic foraminifera and Stratigraphy of Leg. 15 sites in the Caribean Sea. [In:] Edgar, N.T., Saunders, H.B. et al., Initial report of the Deep Sea Drilling Project. Washington, 15, 449 pp. Premoli Silva, I., Bolli, H. M., 1973. Late Cretaceous to Eocene planktonic foraminifera and Stratigraphy of Leg. 15 sites in the Caribean Sea. [In:] Edgar, N.T., Saunders, H.B. et al., Initial report of the Deep Sea Drilling Project. Washington 15, 449 pp. Proto Decima, F., Bolli, H. M., 1970. Evolution and variability of Orbulinoides beckmanni (Saito). Ecog. Geol. Hely. 63, 883-905. Reuss, A. E. 1850. Neue Foraminiferen aus den Schichten des österreiscischen Tertiärbeckens. Denkschriften der Kaiserlichen Akademie der Wissenschaften, Wien, Mathematisch– Naturwissenschaftliche Klasse 1: 365–390. Reuss, A. E., 1851. Die foraminiferen und Entomostraceen des Kreidemergels von Lemberg Haidingers Naturwiss, Abh. v. 4, p. 17- 2. Reuss, A. E., 1862. Paläontologische Beiträge. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Classe, Wien, Bd. 44 (Jhrg. 1861), Abth. 1. Rohlich, P., 1974. Geological Map of Libya, 1: 250,000 Sheet Al Bayda (NI34-15). Exploratory booklet, Industrial Research Center, Tripoli. Saber, S. G., Salama, Y. F., 2017. Facies analysis and sequence stratigraphy of the Eocene successions, east Beni Suef area, eastern Desert, Egypt. J. Afr. Earth Sci. 135, 173-185. Said, R., 1949. Foraminifera of the Red Sea, Special Publ., Cushman Lab., for foraminiferal Res., 26: 1-44. Saint Marc, P., 1986. Qualitative and Quantatitative analysis of benthic foraminifera in Paleocene Deep Sea sediments of the Sierra Leone Risc, Central Atlantic. J. Foram. Res. 6 (3), 244-253. Schwager, C., 1866. Die foraminiferen aus dem Eocaenablagerungen der Libyschen Wuste und Aegyptens: Palaentographica, v. 30, p. 81-153. Shahin, A., 1992. Contribution to the foraminiferal biostratigraphy and paleobathymetry of the Late Cretaceous and Early Tertiary in the western central Sinai, Egypt. Rev., Micropaleont.16, 79-154, pls. 24-29.
Shahin, A., 2000. Biostratigraphic significance, paleobiogeography and paleobathymetry of Tertiary Buliminacea and Bolivinacea in the Western Sinai, Egypt- N. Jb. Geol. Paläont., Abh. 216 (2), 195-231. Shahin, A., Bassal, A., Elhalaby, O., Elbaz, S., 2007. Middle Eocene benthic foraminiferal biostratigraphy and paleoenvironment at the Qattamiya area, northern eastern Desert, Egypt. Egypt. Jour. Paleontol. 7, 1-29. Shutskaya, E.K., 1958. Variation of some Lower Paleogene planktonic foraminifers of the northern Caucasus. Akad. Nauk SSSR Voprosy Mikropaleontologie, B.R.G.M, Servis d Inf. Geol., 1960, 93-103. Stefanini, G., 1921. Fossil terziari della Cirenaica. Paleontol. Ital., 27, 101-146. Strougo, A., Bignot, G., Abd-Allah, A. M. 1992. Biostratigraphy and paleoenvironments of the Middle Eocene benthic foraminiferal assemblages of north central Eastern Desert, Egypt. MERC, Ain Shams Univ. Earth Sci., Ser. 6, 1-12. Subbotina, N.N., 1947. Foraminifers of the Danian and Paleogene deposits of the northern Caucasus. Microfauna of the Caucasus Emba region. and central Asia, Trudy VNIGRI, 39-16 (in Russian). Subbotina, N.N., 1953. Fossile foraminiferen von Kar Nikobar."Novara". Expedition, 1857-1859, Wien, Geologischer Theil, 2, 187-268. Tasgin, C. K., Kaya, M., Turkmen, I., 2014. Biostratigraphic Aspects and Depositional Environments of Eocene Deposits of Northweastern Suluova (Amasya, Northern Turkey. International Jour. of Applied Science and Technology 4 (1), 78-94. Terquem, M., 1882. Les Foraminiféres de l’Éocénes des environs de Paris. Mémoires de la Société Géologique de France, Paléontologie 3(2): 1–193. Toumarkine, M., Luterbacher, H.P., 1985. Paleocene and Eocene planktonic foraminifera, In: Bolli, H.M, Saunders, J.B., Perc-Nielsen, K. (Eds.), Plankton Stratigraphy, Cambridge University Press, Cambridge, pp. 87-154. Toumarkine, M., Bolli, H. M., 1970. Evolution de Globorotalia cerroazulensis (COLE) dans l’Eocéne moyen et supérieur de Possagno (Italie). Rev. Micropaleont., 13, 131- 145. Toumarkine, M., Bolli, H. M., 1975. Foraminiféres planktoniques de l’Eocéne moyen et supérieur de la Coupe de Possagno. Schweizer. Palaeont., 97, 69-83. Zert, B., 1974. Geological Map of Libya 1:250,000 Sheet Darnah (NI 34-16) Explanatory Booklet: 49. Industrial Rsearch Centre, Tripoli.
Figures captions Fig. 1a: Location map of the study area (Modified after El Mehaghag & Ashahomi, 2005) Fig. 1b: Geologic Surface Map of Gabal Al Akhdar (Modified after: Klen, 1974; Rohlich, 1974 and Zert, 1974) Fig. 2: Field photos for the studied sections (Photos A and B for section 1; Photo C for section 2 and photo D for section 3) Fig.3: Litho- and biostratigraphic units of the Lower and Middle Eocene succession in the three studied sections Fig.4. Planktonic foraminiferal species
1- Chiloguembelina cubensis (Palmer), side view. 2- Chiloguembelina martini (Pijpers), side view. 3- Igorina broedermanni (Cushman & Bermudez), ventral view. 4,5,7,9-Turborotalia ampliapertura (Bolli), 4,5 ventral view, 7,9 peripheral view. 6Turborotalia cerroazulensis cerroazulensis (Cole), ventral view. 8- Turborotalia cerroazulensis pomeroli (Toumarkine & Bolli), ventral view. 10- Turborotalia centralis (Cushman & Bermudez), ventral view. 11- Turborotalia increbescens (Bandy), ventral view. 12- Turborotalia cerroazulensis possagnoensis (Toumarkine & Bolli), ventral view. 13,14- Turborotalia cerroazulensis frontosa (Subbotina), 13 ventral view, 14 oblique peripheral view. 15- Turborotalia boweri (Bolli), ventral view. 16- Turborotalia pseudomayeri (Bolli), ventral view. 17,18-Turborotalia praecentralis (Blow), 17 ventral view, 18 peripheral view}. 19,20- Acarinina bullbrooki (Bolli), ventral view. 21- Acarinina matthewsae Blow, ventral view. 22Acarinina spinuloinflata (Bandy), ventral view. 23- Acarinina primitiva (Finlay), ventral view. 24,25- Acarinina pentacamerata (Subbotina), ventral view. Fig.5 Planktonic foraminiferal species 1- Acarinina collactea (Finlay), ventral view. 2- Acarinina pentacamerata Blow, ventral view. 3- Acarinina medizzai Toumarkine & Bolli, ventral view. 4- Acarinina quetra (Bolli), ventral view. 5,6- Acarinina soldadoensis soldadoensis (Brönnimann), 5 ventral view, 6 peripheral view. 7- Morozovella aeqa (Cushman & Renz), ventral view. 8Morozovella formosa gracilis (Bolli), oblique ventral view. 9,10,11- Morozovella subbotinae (Morozova) , 9,11 ventral view, 10 peripheral view. 12,13- Morozovella aragonensis (Nuttall), 12 ventral view, 10 peripheral view. 14- Morozovelloides crassata (Cushman), ventral view. 15,16- Morozovella edgari (Premoli Silva & Bolli), 15 ventral view, 16 peripheral view. 17- Morozovelloides spinulosa (Cushman), ventral view. 18Truncorotaloides rohri Brönnimann & Bermudez, ventral view}. 19,20- Truncorotaloides praetopilensis (Blow), ventral view. 21,22- Truncorotaloides topilensis (Cushman), 21 ventral view, 22 peripheral view. 23- Globigerinita echinata echinata (Bolli), ventral view. 24- Catapsydrax howei (Blow & Banner), ventral view. 25- Catapsydrax dissimilis (Cushman & Bermudez), ventral view. Fig.6 Planktonic and benthic foraminiferal species 1- Dentoglobigerina galavisi (Bermudez), ventral view. 2- Dentoglobigerina venezuelana (Hedberg), ventral view. 3- Globorotaloides suteri Bolli, ventral view. 4- Subbotina eocaena (Guembel), ventral view. 5-Subbotina pseudocorpulenta (Khalilov), ventral view. 6Subbotina linaperta (Finlay), ventral view. 7-Pseudohastigerina micra (Cole), ventral view. 8- Pseudohastigerina wilcoxensis (Cushman & Ponton), ventral view. 9- Globoturborotalita ouachitaensis Howe & Wallace, ventral view. 10- Turborotalita carcoselleensis (Toumarkine & Bolli), ventral view. 11,12- Globigerinatheka mexicana barri Bronnimann, 11 ventral view, 12 oblique dorsal view. 13-Globigerinatheka mexicana mexicana (Cushman), oblique ventral view. 14- Globigerinatheka mexicana kugleri (Bolli, Loeblich & Tappan), ventral view. 15- Globigerinatheka subconglobata curryi (Shutskaya), ventral view. 16Globigerinatheka index index (Finlay), ventral view. 17,18- Globigerinatheka subconglobata subconglobata (Shutskaya), ventral view. 19,20- Candeina cecionii Cañón & Earnst, ventral view. 21- Bulimina jacksonensis Cushman, side view. 22,23,24,25- Anomalinoides trinitatensis (Nuttall), 22 ventral view, 23 , 25 peripheral view, 24 dorsal view.
Fig.7: Range chart of the identified planktonic foraminiferal species at section.1 Fig.8: Range chart of the identified planktonic foraminiferal species at section.2 Fig.9: Range chart of the identified planktonic foraminiferal species at section.3 Fig.10: Correlation of the recorded planktonic foraminiferal biozones with the
International zonal schemes and with those in and outside Libya. Fig.11: Ecologic parameters and suggeseted environments of the Apollonia Formation at section.1. Fig.12: Ecologic parameters and suggeseted environments of the Apollonia Formation at section.2. Fig.13: Ecologic parameters and suggeseted environments of the Apollonia Formation at section.3.
Appendix for the benthic foraminiferal species 1-Anomalinoides trinitatensis (Nuttall, 1928) 1928- Truncatulina trinitatensis Nuttall, p. 97, pl.7, figs.3,5,6 2-Bathysiphon samanica (Berry, 1928) 1928- Rhabdammina samanica Berry, P.392, text-fig.21 3-Bolivina anglica Cushman, 1936 1936- Bolivina anglica Cushman, p. 50, pl. 7, fig. 11. 4-Bolivina carinata Terquem, 1882 1882- Bolivina carinata Terquem, p. 149, pl. 15, fig. 19. 5-Bolivina jacksonensis Cushman and Applin, 1926 1926- Bolivina jacksonensis Cushman & Applin, p.167, pl.7, figs.3, 4 6-Bulimina jacksonensis Cushman, 1925 1925- Bulimina jacksonensis Cushman, p. 6, pl.1, fig. 6, 7. 7-Cancris amplus Finlay, 1989 1989- Cancris amplus Finlay, p.463, pl.64, figs.92-94 8-Cibicides crassidiscus Bandy, 1949 1949- Cibicides crassidiscus Bandy, p. 104, pl.18, fig.7 9-Cibicides mabahethi Said, 1949 1949- Cibicides mabahethi Said, p. 42, pl. 4, fig. 20. 10-Cibicidoides laurisae (Mallory, 1959) 1959- Cibicides laurisae Mallory, p. 267, pl.24, fig.8a-c 11-Cibicidoides pseudoacutus (Nakkady, 1950) 1950- Anomalina pseudoacutus Nakkady, p. 691, pl. 90, figs. 29-32. 12-Citharina plummerae Anan, 2001 2001- Citharina plummerae Anan, p.135, pl.1, fig.1 13-Elphidium ancestrum Le Calvez, 1950 1950- Elphidium ancestrum Le Calvez, p. 54, pl. 3-4, figs. 62-63. 14-Eponides subumbonatus Myatlyuk, 1953 1953- Eponides subumbonatus Myatlyuk, p.109, pl.15, figs.2,3 15-Eponides vicksburgensis Cushman & Ellisor, 1939 1939- Eponides vicksburgensis Cushman & Ellisor, p.56, pl.7, fig.8 16-Globulina gibba (d'Orbigny, 1846) 1846- Polymorphina gibba d'Orbigny, 227, pl.13, figs.13,14 17-Gyroidinoides depressus (Alth, 1850) 1850- Rotalina depressa Alth, p.266, pl.13, fig.21 18-Gyroidinoides sp.
19-Hanzawaia ammophila (Gűmbel, 1868) 1868- Rotalia ammophila Gűmbel, p.652, pl.2, fig.90 20-Hanzawaia cubensis (Cushman & Berműdez, 1948) 1948- Boldina cubensis Cushman & Berműdez, p.74, pl.11, figs. 15,16 21-Hanzawaia mantaensis (Galloway & Morrey, 1929) 1929- Anomalina mantaensis Galloway & Morrey, p..28, pl.4, fig.5 22-Laevidentalina salimi Anan, 2009 2009- Laevidentalina salimi Anan, p.3, pl. 1 fig. 2. 23-Laevidentalina reussi (Neuggeboren, 1856) 1856- Dentalina reussi Neuggeboren, p.85, pl.3, figs.6,7,17 24-Lagena isabella (d'Orbigny, 1839) 1839- Oolina isabella d'Orbigny, p.20, pl.5, figs.7, 8 25-Lagena sulcata (Walker and Jacob,1798) 1798- Serpula sulcata Walker and Jacob, p. 634, pl. 14, fig. 5 26-Lenticulina alatolimbata (Gümbel 1868) 1868- Robulina alato-limbata Gümbel, p.641, pl.1, fig.70 27-Lenticulina clericii (Fornasini, 1895) 1895- Cristellaria clericii Fornasini, p. 1. 28-Lenticulina cultrata (Montfort, 1808) 1808- Robulus cultrata Montfort, p. 215 29-Lenticulina cuvillieri (Texier, 1849) 1849- Robulus cuvillieri Texier, p. 20, pl. 2, fig. 1. 30-Lenticulina ellisori Bowen, 1954 1954- Lenticulina ellisori Bowen, p.146, pl. A, fig.12 31-Lenticulina isidis (Schwager, 1883) 1883- Cristellaria isidis Schwager, p. 110, pl. 26, figs. 12a-b. 32-Lenticulina limbata (Bronemann, 1855) 1855- Robulus limbata Bronemann, p. 355, pl. 15, figs. 4-6 33-Lenticulina turbinata (Plummer, 1926) 1926- Cristellaria Turbinata plummer, p. 93, pl. 7, fig. 4; pl. 13, fig. 2. 34-Lenticulina williamsoni (Reuss, 1862) 1862- Cristellaria williamsoni Reuss, p. 327, pl. 6, fig. 4. 35-Lenticulina yaguatensis (Bermudez, 1949) 1949- Robulus yaguatensis Bermudez, p.132, pl. 7, fig. 29, 30. 36-Loxostomoides applinae (Plummer, 1926) 1926- Bolivina applinae Plummer, p.69, pl.4, fig.1 37-Marginulina carri Le Roy, 1953 38-Marginulina fragaria Gűmbel, 1868 1868- Marginulina fragaria Gűmbel, p.635 39-Marginulina glabra d'Orbigny, 1826. 1826- Marginulina glabra d'Orbigny, p.259, pl.6, fig.55 40-Marginulinopsis tuberculata (Plummer, 1926) 1926- Cristellaria tuberculata Plummer, p.101, pl.7, fig.2 41-Marssonella trinitatensis Cushman and Renz, 1946
1946- Marssonella trinitatensis Cushman and Renz, p. 22, pl. 2, fig. 29. 42-Neoponides schreibersi (d’Orbigny, 1846) 1846- Rotalina schreibersi d’Orbigny, p. 154, pl. 8, figs. 4-6. 43-Nodosaria jarvisi (Cushman, 1937) 1937- Ellipsonodosaria ?jarvisi Cushman 45-Nodosaria latejugata Guembel, 1870 1870- Nodosaria latejugata Guembel, p.619, pl.1, fig.32. 44-Nodosaria naumanni Reuss, 1875 46-Nuttallides trüempyi (Nuttall, 1930) 1930- Eponides trümpyi Nuttall, p. 287, pl. 24, figs. 9, 13, 14. 47-Oridorsalis umbonatus (Reuss, 1851) 1851-Rotalina umbonata Reuss, p.75, pl.5, fig.35 48-Osangularis dominicana (Bermudez, 1949) 1949- Parrella dominicana Bermudez, p.272, pl.21, figs.4-6 49-Osangularis mexicana (Cole, 1927) 1927- Pulvinulinella mexicana Cole, p.31, pl.1, figs.15,17. 50-Palmula sp. 51-Planulina cocoaensis Cushman, 1928 1928- Planulina cocoaensis Cushman, p. 76, pl. 10, figs. 1a-e. 52-Plectofrondicularia vaughani Cushman, 1927 1927- Plectofrondicularia vaughani Cushman, p.112, pl.23, fig.3 53-Pseudonodosaria apressa (Loeblich & Tappan, 1955) 1955- Rectoglandulina apress Loeblich & Tappan, 1955. 54-Pyramidulina isidroensis (Cushman & Renz, 1941) 1941- Dentalina isidroensis Cushman & Renz, p.15, pl.3, figs.2,3. 55-Pyramidulina stainforthi (Cushman & Renz, 1941) 1941- Nodosaria stainforthi Cushman & Renz, p.15, pl.3, fig.4 56-Pyramidulina vertebralis (Batsch, 1791) 1791- Nautilus (Orthoceras) vertebralis Batsch, pl.2, figs.8-11 57-Reussoolina apiculata (Reuss, 1850) 1850- Oolina apiculata Reuss, p. 6, pl. 1, fig. 1. 58-Siphonodosaria annulifera (Cushman & Berműdez, 1937) 1937- Ellipsonodosaria annulifera Cushman & Berműdez, p.28, pl.5, figs.8,9 59-Spiroplectammina carinata (d'Orbigny) 1846 - Textularia carinata d'Orbigny, p.247, pl.14, figs.32-34 60-Spiroplectinella excolata Cushman 1926 1926- Textularia excolata Cushman, p.585, pl.15, fig.9 61-Stilostomella gracillima (Cushman & Jarvis, 1934) 1934-Ellipsonodosaria nuttalli gracillima Cushman & Jarvis, p.72, pl.10, fig.7 62-Stilostomella dentaliniformis (Cushman & Jarvis, 1934) 1934- Ellipsonodosaria dentaliniformis Cushman & Jarvis, pl.10, fig.9 63-Stilostomella jacksonensis (Cushman & Applin, 1926) 64-Stilostomella paleocenica (Cushman & Tood, 1946) 1946- Ellipsonodosaria paleocenica Cushman & Tood, 1946, p.61, pl.10, fig.26 65-Uvigerina cocoaensis Cushman, 1925 1925- Uvigerina cocoaensis Cushman, p.68, pl.10, fig.12
66-Uvigerina cookei Cushman, 1935 1935- Uvigerina cookei Cushman, p.76, pl.15, figs.14-16. 67-Uvigerina dumblei Cushman & Applin, 1926 1926- Uvigerina dumblei Cushman & Applin, p.77, pl.8, fig.19 68-Uvigerina hispida Schwager, 1866 1866- Uvigerina hispida Schwager, p.249, pl.7, fig.95 69-Uvigerina mexicana Nuttal, 1932 1932- Uvigerina mexicana Nuttal, p.22, pl.5, fig.12 70-Uvigerina muttalli Cushman & Edwars, 1937 1937- Uvigerina muttalli Cushman & Edwars, p. 82, pl.14, figs.3-5 71-Uvigerina pigmen dʹOrbigny, 1826 1826- Uvigerina pigmen dʹOrbigny, p.269, pl.12, figs.8,9 72-Uvigerina rippensis Cole, 1927 1927- Uvigerina rippensis Cole, p. 27, pl. 2, fig. 16. 73-Vaginulinopsis cumulicostata (Gűmbel, 1868) 1868- Cristellaria cumulicostata Gumbel, p.60, pl.1, fig.67 74-Vaginulinopsis sp. 75-Vulvulina advena Cushman, 1926 1926- Vulvulina advena Cushman, p.82, pl.4, fig.9 Appendix for the planktonic foraminiferal species 1-Acarinina bullbrooki (Bolli, 1957a) 1957- Globorotalia bulbrooki Bolli, p.168-168, pl.38, figs.4a-5c 2-Acarinina collactea (Finlay, 1939) 1939- Globorotalia collactea Finlay, p.327, pl. 29, figs. 164-165 3-Acarinina matthewsae Blow, 1979 1979- Acranina matthewsae Blow, p.1074, pl.86, fig.10 4-Acarinina medizzai Toumarkine & Bolli, 1975 1975- Globigerina medizzai Toumarkine & Bolli, p.77, pl.5, figs.8-22, pl.6, figs.1-8 5-Acarinina pentacamerata (Subbotina,1947) 1947-Globorotalia pentacamerata Subbotina, p. 128, pl.7, figs.12-17; pl.9,figs.24-26 6-Acarinina primitiva (Finlay, 1947) 1947- Globiquadrina primitiva Finlay, p.291, pl.8, fig.129-134 7-Acarinina quetra (Bolli, 1957a) 1957a-Globorotalia quetra Bolli, p.79-80, pl.19, figs.1-6 8-Acarinina soldadoensis soldadoensis (Bronnimann, 1952a) 1952a- Globigerina soldadoensis Bronnimann, p. 7, pl.1, figs. 1-9 9-Acarinina spinuloinflata (Bandy, 1949) 1949- Globigerina spinuloinflata Bandy, p.122, pl.23, fig.1a-c 10-Candeina ceicionii Cañón & Ernst, 1974 1974- Candeina ceicionii Cañón & Ernst, p.83-84, pl.4, fig.6 11-Chiloguembelina cubensis (Palmer, 1934) 1934- Guembelina cubensis Palmer, p.74, figs.1-6 12-Chiloguembelina martini (Pijpers, 1933) 1933- Textularia martini Pijpers, p.57, figs.6-10.
13-Catapsydrax dissimilis (Cushman & Bermudez, 1937) 1937- Globigerina dissimilis Cushman & Bermudez, p.25, pl.3, figs.4-6 14-Catapsydrax howei (Blow & Banner, 1962) 1962- Globigerinita howei Blow & Banner, p.109, pl.14 15-Dentoglobigerina galavisi (Bermudez, 1961) 1961- Globigerina galavisi Bermudez, p.1183, pl.4, fig.3 16-Dentoglobigerina venezuelana (Hedberg, 1937) 1937- Globigerina venezuelana Hedberg, p.681, pl.92, fig. 7a-b 17-Globigerinatheka index index (Finlay, 1939) 1939- Globigerinoides index Finlay, p. 155-127, pl.14, figs.85-88 18-Globigerinatheka mexicana barri Bronnimann, 1952a 1952a- Globigerinatheka mexicana barri Bronnimann, p.27-28, fig. 3a-c,g & h 19-Globigerinatheka mexicana kugleri (Bolli, Loeblich & Tappan, 1957) 1957- Globigerapsis mexicana kugleri, Bolli, Loeblich &Tappan,p.34, pl.6, fig.6a-c 20-Globigerinatheka mexicana mexicana (Cushman, 1925) 1925-Globigerina mexicana Cushman, p.6-7, pl. 1, fig. 8a-b 21-Globigerinatheka subconglobata curryi (Proto Decima & Bolli, 1970) 1970- Globigerapsis subconglobata curryi Proto Decima & Bolli, p.889. 22-Globigerinatheka subconglobata subconglobata (Shutskaya, 1958) 1958-Globigerinoides s. subconglobata Shutskaya, p.86-87, pl. 1, figs. 4-11 23-Globigerinita echinata echinata (Bolli, 1957b) 1957b- Catapsydrax echinata Bolli, p.165-166, pl.37, figs.2-5 24-Globorotaloides suteri Bolli, 1957a 1957a- Globorotaloides suteri Bolli, p. 117, pl. 27, figs. 9a-13b. 25-Globoturborotalita ouachitaensis ouachitaensis (Howe & Wallace, 1932) 1932- Globigerina ouachitaensis ouachitaensis Howe & Wallace, p.74, pl.10, fig.7 26-Igorina broedermanni (Cushman & Bermudez,1949) 1949- Globorotalia broedermanni Cushman & Bermudez, p. 40, pl.7, figs. 22-24 27-Morozovella aeqa (Cushman & Renz, 1942) 1942- Globorotalia crassata (Cushman) aequa Cushman & Renz, p.12, pl.3, fig.3 28-Morozovella aragonensis (Nuttall, 1930) 1930- Globorotalia aragonensis Nuttall, p.288, pl.24, figs.6-11 29-Morozovella edgari (Premoli Silva & Bolli, 1973) 1973- Globorotalia edgari Premoli Silva & Bolli, 1973, p.526, pl.7, figs.10-12 30- Morozovella formosa gracilis (Bolli, 1957a) 1957a- Globorotalia formosa gracilis Bolli, p.75, pl.18, figs4-6 31-Morozovella subbotinae (Morozova, 1939) 1939- Globorotalia subbotinae Morozova, p.80-81, pl.2, figs 16-17 32-Morozovelloides crassatus (Cushman, 1925) 1925- Pulvinulina crassata Cushman, p.300, pl.7, fig.4 33-Morozovelloides spinulosa (Cushman, 1927) 1927- Globorotalia spinulosa Cushman, p.114, pl.23, fig.4a-c 34-Planorotalites chapmani (Parr, 1938) 1938- Globorotalia chapmani Parr, p.87, pl.9, figs. 8-9 35-Pseudohastigerina micra (Cole, 1927) 1927- Nonion micrus Cole, p.22, pl. 5, fig. 12 36-Pseudohastigerina wilcoxensis (Cushman & Ponton, 1932) 1932- Nonion wilcoxensis Cushman & Ponton, p.64, pl.8, fig.11 37-Sphaeroidinellopsis senni (Beckmann, 1953) 1953- Sphaeroidinella senni Beckmann, p.394-395, pl.26, figs. 2-4
38-Subbotina eocaena (Guembel, 1868) 1868- Globigerina eocaena Guembel, p.662, pl.2, fig. 109a-c 39-Subbotina inaequispira (Subbotina, 1953) 1953- Globigerina inaequispira Subbotina, p. 69, pl.6, figs.1a-4c 40-Subbotina linaperta (Finlay, 1939) 1939- Globigerina linaperta Finlay, p.125, pl.13, figs. 54-56 41-Subbotina pseudocorpulenta (khalilov, 1956) 1956-Globigerina pseudocorpulenta khalilov. p.245, pl.4, fig.3 42-Truncorotaloides praetopilensis (Blow, 1979) 1979-Globorotalia topilensis praetopilensis Blow, p.1043, pl.155, fig.9 43-Truncorotaloides rohri Bronnimann & Bermudez, 1953 1953- Truncorotaloides rohri Bronnimann & Bermudez, p.818-819, pl.87, figs.7-9 44-Truncorotaloides topilensis (Cushman, 1925) 1925- Globigerina topilensis Cushman, p.7, pl. 1, fig. 9 45-Turborotalia ampliapertura (Bolli, 1957b) 1957b- Globigerina ampliapertura Bolli, p.108, pl.22, figs.4-7 46-Turborotalia boweri (Bolli, 1957b) 1957b- Globigerina boweri Bolli, p.163, pl. 36, figs. 1 & 2 47-Turborotalia centralis (Cushman & Bermudez, 1937) 1937- Globorotalia centralis Cushman & Bermudez, p.26, pl.2, fig.65 48-Turborotalia cerroazulensis cerroazulensis (Cole, 1928) 1928- Globigerina cerroazulensis Cole, p.217, pl.2, figs.11-13 49-Turborotalia cerroazulensis frontosa (Subbotina, 1953) 1953- Globigerina frontosa Subbotina, p.76-84, pl.12, figs.3-7. 50-Turborotalia cerroazulensis pomeroli (Toumarkine & Bolli, 1970) 1970- Globororalia c. pomeroli Toumarkine & Bolli, p.140, pl.1, figs.10-18. 51-Turborotalia cerroazulensis possagnoensis (Toumarkine & Bolli, 1970) 1970- Globorotalia c. possagnoensis Toumarkine & Bolli, p.139-140, pl.1, figs.4-9. 52-Turborotalia griffinae (Blow, 1979) 1979- Globorotalia (Turborotalia) griffinae Blow, p.1072, pl.96, fig.8. 53-Turborotalia increbescens (Bandy, 1949) 1949- Globigerina increbescens Bandy, p.120, pl.23, fig. 3 54-Turborotalia praecentralis (Blow, 1979) 55-Turborotalia pseudoampliapertura (Blow & Banner, 1962) 1962- Globigerina pseudoampliapertura Blow & Banner, p.95, pl.12, fig.a-c, pl.17. 56-Turborotalia pseudomayeri (Bolli, 1945) 57-Turborotalita carcoselleensis (Toumarkine and Bolli, 1975) 1975- Globorotaloides carcoselleensis Toumarkine and Bolli, p.81, pl.5, fig. 24.
•
• •
This work provides biostratigraphic scheme for the Lower and Middle Eocene successions of the Apollonia Formation in northeast Libya based on the foraminifera associations Estimate the age of the studied rock unit based on the fossil assemblages This study includes the paleoenvrionmental conditions that were prevailed during the deposition of the Apollonia Formation.
Nov 19, 2019 Dear Editor in Chief
Journal of African Earth Science I would be happy if you considered my revised manuscript No. AES7910 and titled " Stratigraphy and Paleoenvironment of the Lower-Middle Eocene Succession in the Darnah Area, Northeast Libya" for publication in Journal of African Earth Science. The revised manuscript includes original data from the Eocene Succession in north East Libya. I stated that All the funding agency and financial support
for this work are mentioned Sincerely Ibrahim Mohamed Abd El-Gaied Associate Professor of Paleontology Geology Department, Faculty of Science, Beni-Suef University, Egypt
The absent references in the Libya paper (Abd El-Gaied and Abd El-Aziz) Anan, H. S., 2001. Paleocene Vaginulininae (benthic foraminifera) of Duwi section, Red sea coast Egyptian Egypt Journal of Paleontology, 1, 135-139. Anan, H. S., 2009. Paleontology, paleogeography, paleoenvironment, and stratigraphical implications of the Nakkadys benthic foraminiferal fauna in Egypt and Tethys. Egyptian Journal of Paleontology, 9, 31-52 Bandy, O.L., 1949. Eocene and Oligocene foraminifera from Little Stave Creek, Clarke Country. Alabama. Bull foraminifera. Amer. Paleont. New York,32,1207. Beckmann, J. P., 1953. Die foraminifera der Oceanic Formation (Eocaen Oligocaen) von Barbados, Kl. Antillen. Ecolog. Geol. Helv., 46(3), 301- 412. Bermudez, P. J., 1949. Tertiary smaller foraminifera of the Dominican Republic. Cushman Lab. Foram. Res., Spec., Publ. 25. Bermudez, P. J., 1961. Contribution al estudio de las Globigerinidae de la region Carbie- Antillana (Paleocene recientc). Bol. Geol. Venez. Publ. Espec. 3, 1119- 1393. Berry, E. W., 1928. The smaller foraminifera of the middle Lobitos shales of northwestern Peru. Eclogae Geologae Helvetiae, 21, 390-405 Blow, W. H., 1979. The Cenozoic Globigerinida 3 vols., E. J. Brill, Leiden: 1413pp. Blow, W. H., Banner, F. T., 1962. The Mid – Tertiary (Upper Eocene to Aquitanian) Globigerinaceae [In:] Eames, F. E. Blow, W. H. and Clarke, W. J. (eds.): Fundamentals of Mid - Tertiary Stratigraphical Correlation. Cambridge Univ., Press, pp. 61- 151. Bolli, H. M., 1945. Zur stratigraphie der oberen Kreide in den hoheren helvetischen Decken, Eclogae Geologicae Helvetiae, 37, 217-328. Bolli, H. M., Loeblich, A. R., and Tapann, H., 1957. Planktonic foraminifera families Hantkeninidae, Orbulinidae, Globorotaliidae and Globotruncanidae. Bull. U. S. natl Mus., 215, 3-50. Bowen, R. N. C., 1954. Foraminifera from the London Clay. Proc. Geol. Ass., 65, 125-174. Bronemann, J. G., 1855. Die mikroskopische Fauna des Septarienthones von Hermsdor bei Berlin. Zschr. Deu. Geol. Ges., 7, 307-371. Bronnimann, P., 1952a. Globigerinita and Globigerinatheka, new genera from the Tertiary of Trinidad, B.W.I. Contr. Cush. Found. Foram. Res., 3, 25-28. Bronnimann, P., Bermudez, P. J., 1953. Truncorotaloides, a new foraminiferal genus from the Eocene of Trinidad, B.W.I.- J. Paleont., 27, 817-820. Cole, W. S., 1927. A foraminiferal fauna from the Guayabal Formation in Mexico. Bulletins of American Paleontology, 14, 1-46.
Cole, W. S., 1928. A foraminiferal fauna from the Chapapote Formation in Mexico. Bull. Am. Paleont., vol. 14: 3-32. Cushman, J. A., 1925. Some new foraminiferal from the Velasco shale of Mexico: Contributions from the Cushman Libratory for Foraminiferal Research. 1, 1823. Cushman, J. A., 1926: The Foraminifera of the Velasco shale of the Tampico embayment San Luis Potosi, Mexico. Amer. Assoc. Petrol. Geol., Bull., 10: 581-612. Cushman, J. A., 1927. A New and interesting foraminifera from Mexico and Texas: Contributions from the Cushman Libratory for Foraminiferal Research, v. 3, p. 111-119. Cushman, J. A., 1928. Additional foraminifera from the Upper Eocene of Alabama. Contr. Lab. Foram., vol. 4: 73-79. Cushman, J. A., 1935. Upper Eocene foraminifera of the southeastern United States. U. S. Dept. Inst. Geol. Sur. Prof. Paper. (181): 1-60. Cushman, J. A., 1936. New genera and species of the families Verneuilinidae and Vavulinidae and of the subfamily Vergulinidae: Contributions from the Cushman Libratory for Foraminiferal Research, Spes. Publ. 6, p. 1-71. Cushman, J. A. and Applin, E. R. 1926. Texas Jackson foraminifera. Bull. Amer. Assoc. Petr. Geol., 10: 154-189. Cushman, J. A., Bermudez, P., 1936. New genera and species of foraminifera from the Eocene of Cuba. Contr. Cush. Lab. Foram. Res. Sharon, Mass, 12(2), 2738 Cushman, J. A., Bermudez, P., 1937. Further new species of foraminifera from the Eocene of Cuba. Contr. Cush. Lab. Foram. Res., 13, 1-29. Cushman, J. A., Edwards, P. G., 1937. Notes on the early described Eocene species of Uvigerina and some new species. Contr. Cush. Lab. Foram. Res., 3, 54-83. Cushman, J. A., Jarvis, P. M, 1934. Some interesting new uniserial foraminifera from Trinidad. Contr. Cush. Lab. Foram. Res., 10, 71-75. Cushman, J. A., Bermudez, P., 1948. Additional species of Paleocene foraminifera from the Madruga Formation of Cuba. Contr. Cush. Lab. Foram. Res. Sharon, 24 (4), 85-89. Cushman, J. A., Ellisor, A. C., 1939. New species of foraminifera from the Oligocene and Miocene. Contr. Cush. Lab. Foram. Res., vol. 159: 1-14. Cushman, J. A., Bermudez, P., 1949. Some Cuban species of Globorotalia. Contr. Cush. Lab. Foram. Res., vol. 25: 26-44. Cushman, J. A. and Ponton, G. M., 1932. An Eocene foraminiferal fauna of Wilcox age from .Alabama. (Contr. Cushm. Lab). Foram. Res., Vol. 8, pp. 51-72.). Cushman, J. A. and Ponton, G. M., 1932. An Eocene foraminiferal fauna of Wilcox age from .Alabama. (Contr. Cushm. Lab). Foram. Res., 8, 51-72. Cushman, J. A. and Todd, R. 1946. A foraminiferal fauna from the Paleocene of Arkansas. Cushm. Lab. Foram. Res. Contr., 22,45-65.
Cushman J. A. and Renz, H. H. 1941. New Oligocene- Miocene foraminifera from Venezuela. Contrib. Cushman Lab. Foram. Res. Contr., 17, 1-27. Cushman J. A. and Renz, H. H. 1942. Eocene Midway Foraminifera from Soldado Rock, Trinidad. Contrib. Cushman Lab. Foram. Res. Contr., 18, 1-14. Cushman, J. A. and Renz, H. H., 1946. The foraminiferal fauna of Lizared Springs Formation of Trinidad, Britich west Indies: Contributions from the Cushman Libratory for Foraminiferal Research, Spc. Pub. 18, 48 p. d'Orbigny, A., 1826. Tableau methodique de la classe des Cephalopodes. Ann. Sci. Nat., 7: 245-314. d'Orbigny, A., 1839. Foraminiferes. In R. dela Sagra (ed.), Histoire, Physique, Politique et Naturalles de Cuba, Bertrand, Paris, 224 p. d'Orbigny, A. 1846. Foraminiferes fossiles du Bassin Tertiaire de Vienne. Paris, Gide: 1–312. Finlay, H. J., 1939. New Zealand foraminifera key species in stratigraphy, No. 2. Trans. Roy. Soc. New Zealand, Wellington, 69 (1), 89- 128. Finlay, H. J., 1947.New Zealand foraminifera, key species in stratigraphy. New Zealand Jour. Sci. Tech; 28 (5), Sec. B: 259-292, pls. 1-9. Fornasini, C., 1895. Cristellaria clericii n. sp., Bologna, 10 Gennaio 1895, Tipografia Gamberini e Parmeggiani, p. 1, fig. 1. Gallaway, J. J., Morrey, M., 1929. A Lower Tertiary foraminifera fauna from Manta, Ecuador, Bull. Amer. Paleontology, 15, 7-56. Gümbel, C. W., 1868. Beiträge zur Foraminiferenfauuna der nord-alpinen Eocängebilde. (Abh. K. Rayer. Akad. Wiss., Cl. 2, Vol. 10, Pt. 2, pp. 581730). Hedberg, H. D., 1937. Foraminifera of the Middle Tertiary Carapita Formation of northeastern Venezeula. J. PaleontoL, 8, 661-697. Howe, H.V., Wallace, W.E., 1932. Foraminifera of the Jackson Eocene at Danvile Landing on the Ouachita, Catahoula Parish. Louisiana. Bull. Louisiana Dept. Concer. Geol., 2, 18-79. Khalilov, D. M., 1956. Pelagic foraminifers of the Paleogene deposits of Azerbaydzhan. Akademy Nauk Azerbaydzhan, SSR, Inst. Geol. Trudy, 17, 234-61 (in Russian). Le Calvez, Y., 1950. Revision du foraminifers Lutetiens du Bassin de Paris. III. Polymorphinidae, Buliminidae, nonioidae. Carte Geol. Detaillee France. Mem: 1-64 Le Roy, L. W., 1953. Biostratigraphy of the Maqfi section, Egypt: Geol. Soc. Amer., v. 54, p. 1-73. Loeblich, A. R., Tappan, H., 1955. A revision of some glanduline Nodosariidae (Foraminifera): Same, 126 (3), 1-9, Pl.1. Mallory, V. S., 1959. Lower Tertiary biostratigraphy of the California Coast Ranges.Am.Assoc.Petrol Geol,416 pp.
Montfort, D. De, 1808. Conchyliologie systematique et classification methodique des coquilles: v. 1, 409 p. Morozova, V.G., 1939. On the stratigraphy of the Upper Cretaceous and Paleogene of the Emba region according to the foraminiferal fauna. Moskov. Obshch. Ispytateley Prirody Byull., Otdel.,Geol., 17, 59-86 (in Russian). Myatlyuk, E. V., 1953. Spirillinidi, Rotalidi, Epistominidi, Assterigerinidi. Trudy Vsesoyuznyy Nauchno-Issledovatel"skiy Geologorazvedochniy Neftyanoy institute( VNIGRI). Leningrad. 71-273. Nakkady, S. E., 1950 A new foraminiferal fauna from the Esna Shale and Upper Cretaceous chalk of Egypt. Egyptian Journal of Paleontology, 24(6), 675-692. Nuttall, W. L. F., 1928. Tertiary foraminiferafrom the Naparima region of Trinidad (British West Indies). Quart. J. Geol. . Soc., 84-57-116 Nuttall, W. L. F., 1930. Eocene foraminifera from Mexico. Journal of Paleontology, 4:23-25. Nuttall, W. L. F., 1932. Lower Oligocene Foraminifera from Mexico. /. Paleontol., 6, 3-35. Ortiz, O., Gonzalvo, C., Molina, E., Rodriguez-Tovar, F., Uchman, A., Vandenberghe, N., Zeelmaekers, E., 2008. Paleoenvironmental turnover across the Ypresian-Lutetian transition at the Agost section, southeastern Spain: In search of a marker event to define the Stratotype for the base of the Lutetian age. Marine Micropaleontology 69: 297-313. Palmer, D. K. 1934. Some large fossil foraminifera from Cuba. Memoir Society Cubana Natural History, 8, 235-264. Parr, W. J., 1938. Upper Eocene foraminifera from the deep boringsin King"s Park, Perh, Western Australia, J. R. Soc. Western Australia, 24, 96-101. Pijpers, P. J., 1933. Geology and paleontology of Bonaire (B.W.I). Geogr. Geol. Meded. Phys., Geol. Reeks, 8 (69). Plummer, H. J., 1926. Foraminifera of the Midway Formation in Texax. University of Texas Bulletin, 2644:1-198. Premoli Silva, I. and Bolli, H. M., 1973. Late Cretaceous to Eocene planktonic foraminifera and Stratigraphy of Leg. 15 sites in the Caribean Sea. [In:] Edgar, N.T., Saunders, H.B. et al., Initial report of the Deep Sea Drilling Project. Washington, 15, 449 pp. Reuss, A. E. 1850. Neue Foraminiferen aus den Schichten des österreiscischen Tertiärbeckens. Denkschriften der Kaiserlichen Akademie der Wissenschaften, Wien, Mathematisch– Naturwissenschaftliche Klasse 1: 365–390. Reuss, A. E., 1851. Die foraminiferen und Entomostraceen des Kreidemergels von Lemberg Haidingers Naturwiss, Abh. v. 4, p. 17- 2. Reuss, A. E., 1862. Paläontologische Beiträge. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Classe, Wien, Bd. 44 (Jhrg. 1861), Abth. 1. Shutskaya, E.K., 1958. Variation of some Lower Paleogene planktonic foraminifers of the northern Caucasus. Akad. Nauk SSSR Voprosy Mikropaleontologie, B.R.G.M, Servis d Inf. Geol., 1960, 93-103.
Subbotina, N.N., 1947. Foraminifers of the Danian and Paleogene deposits of the northern Caucasus. Microfauna of the Caucasus Emba region. and central Asia, Trudy VNIGRI, 39-16 (in Russian). Said, R., 1949. Foraminifera of the Red Sea, Special Publ., Cushman Lab., for foraminiferal Res., 26: 1-44. Schwager, C., 1866. Die foraminiferen aus dem Eocaenablagerungen der Libyschen Wuste und Aegyptens: Palaentographica, v. 30, p. 81-153. Subbotina, N.N., 1953. Fossile foraminiferen von Kar Nikobar."Novara". Expedition, 1857-1859, Wien, Geologischer Theil, 2, 187-268. Terquem, M., 1882. Les Foraminiféres de l’Éocénes des environs de Paris. Mémoires de la Société Géologique de France, Paléontologie 3(2): 1–193. Toumarkine, M., Bolli, H. M., 1970. Evolution de Globorotalia cerroazulensis (COLE) dans l’Eocéne moyen et supérieur de Possagno (Italie). Rev. Micropaleont., 13, 131- 145. Toumarkine, M., Bolli, H. M., 1975. Foraminiféres planktoniques de l’Eocéne moyen et supérieur de la Coupe de Possagno. Schweizer. Palaeont., 97, 69-83.